Supporting Information

Porous aromatic cage-based electrochemical sensor for enantioselective recognition of DOPA

Junning Kou^{a1}, Ziyu Zhu^{a1}, Jianzhu Jiang^{a1}, Li Chen^b, Kunhao Zhang,^{c*}

Guogang Shan^a*, Xinlong Wang ^a*, Zhongmin Su^b, Chunyi Sun^a*

- a. National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
- b. Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
- c. Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China

¹ These authors contributed equally.

* Corresponding author.

E-mail address: suncy009@nenu.edu.cn (C. Sun); wangxl824@nenu.edu.cn (X. Wang); shangg187@nenu.edu.cn (G. Shan); zhangkh@sari.ac.cn (K. Zhang)

Table of Contents

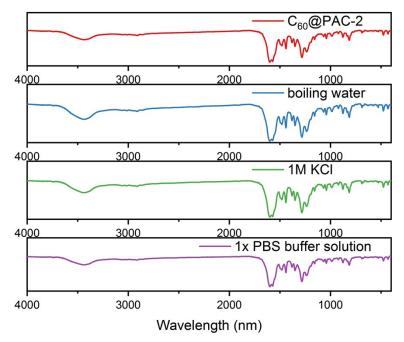
Experimental Procedures
Results and Discussion
Fig. S1. FTIR spectrum of C ₆₀ @ <i>R</i> -PAC-2 after soaking under different conditions
Fig. S2. Photograph of the prepared crystals of $C_{60}@R$ -PAC-24
Fig. S3. PXRD patterns of cages
Fig. S4. PXRD patterns of C_{60} @ <i>R</i> -PAC-2 under different harsh conditions
Fig. S5. UV-vis diffuse reflectance spectra of <i>R</i> -PAC-2 and C ₆₀ @ <i>R</i> -PAC-26
Fig. S6. UV absorption spectra of the solution after different solution after immersing C60@R-PAC-2.
Fig. S7. DPV of GCE, C ₆₀ /GCE, PAC-2/GCE and MIX in 0.01 M PBS solution containing 0.1 mM D-Dopa or L-Dopa
Fig. S8. Repeated electrochemical recognition of DOPA enantiomers by using C ₆₀ @ <i>R</i> -PAC- 2/GCE electrode
Fig. S9. The stability of the C_{60} @R-PAC-2/GCE sensor was studied after storing for 1 week.8
Fig. S10. DPV curves of increased concentrations (30 - 1000 μ M) of enantiomers D-DOPA and L-DOPA at the C ₆₀ @ <i>R</i> -PAC-2/GCE electrode
Fig. S11. DPV curves of increased concentrations (30 - 1000 μ M) of enantiomers D-DOPA and L-DOPA at the C ₆₀ @ <i>S</i> -PAC-2/GCE electrode
Fig. S12. The detection performance of chiral sensor C ₆₀ @ <i>R</i> -PAC-2 for interfering organic molecules
Supplementary Table 1. Summary of DOPA Chiral Sensors
Supplementary References11

Experimental Procedures

General information

All reagents and solvents were obtained from commercial sources and used without further purification. Fourier transform infrared (FT-IR) spectra (KBr pellets) were recorded in the range 4000–400 cm⁻¹ on Nicolet 6700 using the KBr pellet method. UVVis spectra were recorded at a UV-Vis-NIR spectrophotometer (Hitachi U-3900). **Synthesis of C₆₀@R/S-PAC-2.**

R/S-Br-BINAM (0.066 g, 0.15 mmol), TFP (0.021 g, 0.1 mmol), fullerene C_{60} (0.01mmol), O-Xylene (5 mL), n-butanol (1 mL) and 6M acetic acid (0.6 mL) were combined in a 20 mL Teflon reactor, sealed, and heated to 120°C for 84 h. After cooling in air to room temperature, the resulting crystals were filtered and repeatedly washed with Ethyl ether.


Electrochemical experiments

A bare glass carbon electrode (GCE) with a radius of 3 mm was polished continuously on a chamois for 60 s and then rinsed with deionised water. A total of 1 mg of samples, 200 μ L ethanol and 100 μ L of Nafion solution (5 wt%) were first dispersed in 200 μ L of water to produce a suspension. Following a 30-minute sonication-assisted treatment, the homogeneous sample suspensions were loaded onto GCE. The experiments electrochemical tests were conducted on a CHI-760E electrochemical workstation and a Biologic VMP3 electrochemical workstation with a three-electrode configuration. An Ag/AgCl (saturated KCl) electrode and a Pt were used as a reference electrode and counter-electrode respectively; GCE loaded with samples were used as working electrodes.

Electrochemical Chiral Recognition of Analyte Enantiomers.

Electrochemical chiral recognition of analyte enantiomers was investigated by differential pulse voltammetry (DPV). The as-prepared chiral electrodes were placed into 5mL test fluid. Then, DPVs were recorded from 0.0 to 0.7 V, with a step potential of 4 mV and an amplitude of 50 mV. Finally, the peak current ratio was calculated to evaluate the recognition efficiency.

Results and Discussion

Fig. S1. FTIR spectrum (KBr pellets) of $C_{60}@R$ -PAC-2 after soaking under different conditions. FTIR spectrum of the pristine $C_{60}@R$ -PAC-2 (Red), under boiling water (blue), 1M KCl (green) and 1 X PBS buffer solution (purple).

Fig. S2. Photograph of the prepared crystals of C_{60} @*R*-PAC-2.

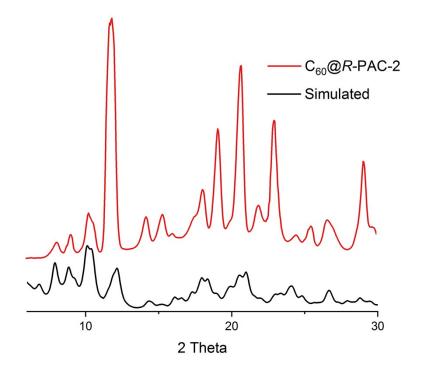
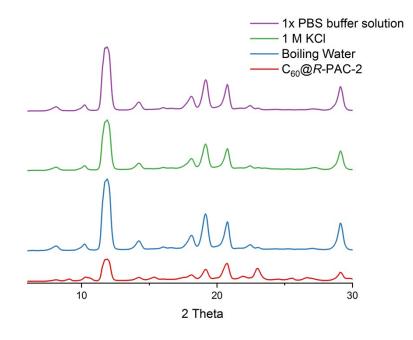
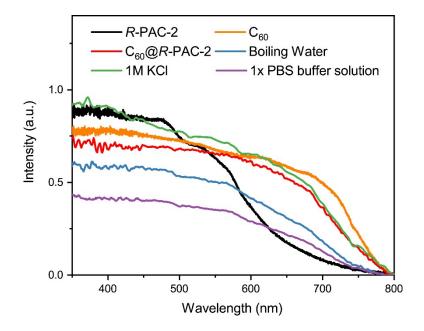




Fig. S3. PXRD patterns of cages. The synthesized (red line) and simulated one of $C_{60}@R$ -PAC-2(black line).

Fig. S4. PXRD patterns of $C_{60}@R$ -PAC-2 under different harsh conditions. The the $C_{60}@R$ -PAC-2 (red), $C_{60}@R$ -PAC-2 under boiling water (blue), 1M KCl (green) and 1 X PBS buffer solution (purple).

Fig. S5. UV-vis diffuse reflectance spectra of *R*-PAC-2 (black) and $C_{60}@R$ -PAC-2 (red). UV-vis diffuse reflectance spectra of the pristine $C_{60}@R$ -PAC-2 under boiling water (blue), 1M KCl (green) and 1 X PBS buffer solution (purple).

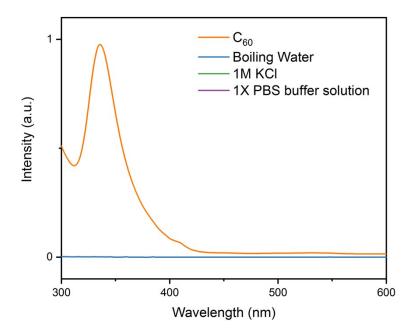


Fig. S6. UV absorption spectra of C_{60} in toluene (orange). UV absorption spectra of different solution after immersing C_{60} @*R*-PAC-2.

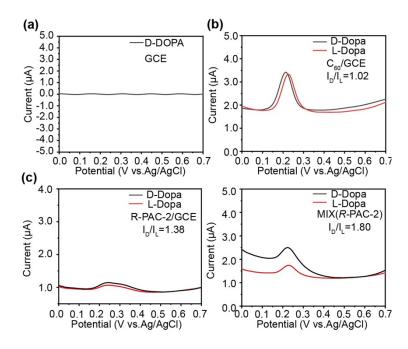


Fig. S7. DPV of (a) GCE, (b) C_{60} /GCE, (c) PAC-2/GCE and (d) MIX in 0.01 M PBS solution containing 0.1 mM D-Dopa or L-Dopa.

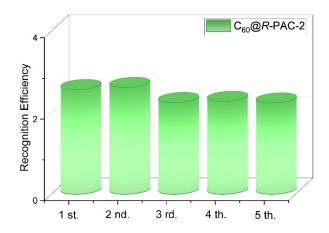


Fig. S8. Repeated electrochemical recognition of DOPA enantiomers by using $C_{60}@R$ -PAC-2/GCE electrode.

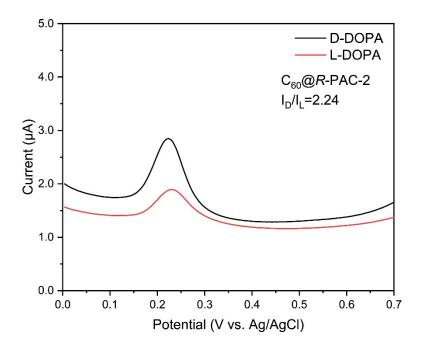


Fig. S9. The stability of the C_{60} @R-PAC-2/GCE sensor was studied after storing for 1 week.

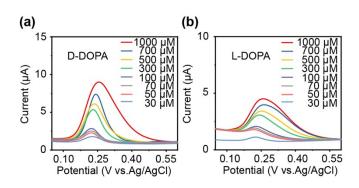


Fig. S10. DPV curves of increased concentrations (30 - 1000 μ M) of enantiomers D-DOPA(a) and L-DOPA(b) at the C₆₀@*R*-PAC-2/GCE electrode.

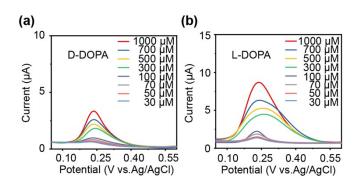


Fig. S11. DPV curves of increased concentrations (30 - 1000 μ M) of enantiomers D-DOPA(a) and L-DOPA(b) at the C₆₀@*S*-PAC-2/GCE electrode.

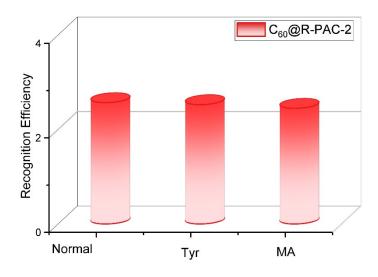


Fig. S12. The detection performance of chiral sensor C_{60} @*R*-PAC-2 for interfering organic molecules.

Modifier	Method	Recognition difference	LOD	Ref.
AuND/GCE	DPV	2.33	2.5 μM	1
SWCNTs-EDA	CV	2.55	-	2
M-(6,5)-SWCNT	DPV	2.05	-	3
P-(6,5)-SWCNT	DPV	1.90	-	3
β-CD/MWCNTs-IL	DPV	1.51	1.2 nM	4
Poly-lysine	CV/DPV	1.56	0.17 μM	5
L-tryptophan / Graphene /		1.60	1.7 10-8	6
Pt NPs	DPV		Μ	
cSWCNTs	SWV	1.4	-	7
GNPs/cSWCNTs	SWV	2.1	-	8
PLL/GCE	DPV	1.60	0.33 μM	5
P-SWCNTs/CFE	DPV	1.4	-	9
CdSe/ZnS QDs-PADP	Fluorescence	2.49	-	10
C ₆₀ @R-PAC-2	DPV	2.6	0.2μΜ	This
				work

Supplementary Table 1. Summary of DOPA Chiral Sensors

Supplementary References

- 1. H. Lian, S. Huang, X. Wei, J. Guo, X. Sun and B. Liu, *Talanta*, 2020, **210**, 120654.
- 2. H. Zhu, F. Chang and Z. Zhu, *Talanta*, 2017, **166**, 70-74.
- 3. C. Pu, Y. Xu, Q. Liu, A. Zhu and G. Shi, Anal. Chem., 2019, 91, 3015-3020.
- 4. Y. Chen, Y. Huang, D. Guo, C. Chen, Q. Wang and Y. Fu, *J. Solid State Electrochem.*, 2014, **18**, 3463-3469.
- 5. Y. Huang, Q. Han, Q. Zhang, L. Guo, D. Guo and Y. Fu, *Electrochim. Acta*, 2013, **113**, 564-569.
- 6. Y. Chen, J. Xu, C. Chen, D. Guo and Y. Fu, *New J. Chem.*, 2015, **39**, 6919-6924.
- 7. L. Chen, F. Chang, L. Meng, M. Li and Z. Zhu, *Analyst*, 2014, **139**, 2243-2248.
- 8. L. Chen, S. Liu, F. Chang, X. Xie and Z. Zhu, *Electroanalysis*, 2017, **29**, 955-959.
- 9. W. Kuang, H. Luo and Z. Zhu, *Electrochim. Acta*, 2024, **487**, 144162.
- 10. Z. Li and M. Zhu, Chem. Commun., 2020, 56, 14541-14552.