Supporting Information

Transition-Metal Free, Radical Oxidation of 1,6-Enyne Cyclopropanation: Synthesis of aza-bicyclo[4.1.0]heptane Derivatives

Shivam A. Meena^{‡a}, Deepika Thakur^{‡a}, Abhijit Nandy^c, Rahul Ranjan^d, Anubhav Rai^e, Shibdas Banerjee^{c*} and Akhilesh K. Verma^{ab*}

Email: averma@acbr.du.ac.in

^aDepartment of Chemistry, University of Delhi, Delhi-110007
^bInstitution of Eminence (IoE), University of Delhi, Delhi-110007
^cDepartment of Chemistry, IISER Tirupati, Tirupati -517507
^dDepartment of Chemistry, NSUT Delhi, Delhi-110078
^eDepartment of Chemistry, IIT(ISM) Dhanbad, Jharkhand 826004

Table of Contents

1.General Information
2. Reaction optimization
3. Real time mass monitoring studies
4. X-Ray Crystallographic Data of 2a, 2j and 4iS12-S16
5. Synthesis of Substrates 1
6. General procedure for the Synthesis of bicyclo[4.1.0]heptane
7. General procedure for post functionalization of products
8. Characterization Data of the Products 1, 2, 3, 5
9. Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR and Mass SpectraS55-S253
10. Isotopic study

11. Intermediate Adduct Data	
12. References	

(1) General Information.

All reagents were purchased (unless specified) at highest commercial quality and used as received. Reaction mixtures were stirred magnetically. All require temperature for reactions were achieved using a IKA heating plate and oil bath.

Rf: LC analysis was performed on commercially prepared 60 F_{254} silica gel plates and visualized by either UV irradiation or by staining with I_2 . Column chromatography was performed using 100- 200 mesh silica gel.

Melting Point: Melting points were measured on a Kofler hot-stage melting point apparatus and are uncorrected.

- ¹**H NMR:** Spectra were recorded on JEOL ECS (400 MHz) instruments. Chemical shifts (δ H) are quoted in parts per million (ppm) was used. Spin-spin coupling constants (*J*) are reported in Hertz (Hz).
- ¹³C NMR: Spectra were recorded on JEOL ECS (100 MHz) instruments. Chemical shifts (δ
 C) are quoted in parts per million (ppm) and referenced to the appropriate solvent peak(s).
 Spin-spin coupling constants (*J*) are reported in Hertz (Hz).
- **HRMS:** High resolution mass spectra were recorded on an Agilent 6500 series B5125 mass spectrometer (ESI-TOF).

(2) Reaction Optimization

commenced our investigation by employing N-(3-phenylpropioloyl)-N-(p-We tolyl)methacrylamide 1a as a model substrate. The reaction of 1a in the presence of I_2 , TBHP as an oxidant, and MeCN as a solvent gave the product 2a in 75% yield (Table 1, entry 1). When PIDA was used product 2a was observed in 65% yield, however, the use of Niodosuccinimide (NIS) gave a 60% yield of 2a (Table 1, entry 2-3) which shows that molecular iodine was the best iodine source for this conversion.

The use of other oxidants, DTBP and $K_2S_2O_8$ provided the desired product 2a in 40 and 10% yields (entries 4-5). When the reaction was performed under an N_2 atmosphere (entry 6) product 2a was obtained in 75% yield. This concluded that TBHP was the optimal oxidant for the reaction. Product 2a was formed in 60% yield when the reaction was conducted in H₂O as solvent. The use of other solvents like dioxane, toluene, THF, and DMSO, was found inferior/unsuitable for the reaction (entries 8-11).

When the reaction was performed without iodine, we did not observe the desired product 2a (entry 12). Also, the reaction did not proceed without the oxidant TBHP (entry 13). These observations indicate that both iodine and TBHP were necessary for the reaction. The yield of the product was further enhanced when a mixture of H_2O : MeCN (9:1) was used (entry 14). Subsequent adjustments in the reaction temperature revealed that deviations from the optimal temperature adversely affected the yield of product 2a. Reduction to 40 °C and 60 °C resulted in the product 2a in 50% and 60% yield, respectively. An increase in temperature to 100 °C and 120 °C proved to be unfavorable, leading to decreased yields of 2a in 30% and 25%, respectively.

Table S1. Optimization of Reaction Conditions^a

Ö

2a

Entry	I ₂ Source (0.5 equiv.)	Oxidant (3.0	Solvent	Yield ^b 2a (%)
		equiv.)		
1	I ₂	ТВНР	ACN	75
2	PIDA	ТВНР	ACN	65
3	NIS	ТВНР	ACN	60
4	I ₂	DTBP	ACN	40
5	I_2	$K_2S_2O_8$	ACN	10
6	I ₂	TBHP	ACN	75 ^c
7	I ₂	TBHP	H ₂ O	60
8	I ₂	ТВНР	Dioxane	0
9	I_2	TBHP	Toluene	20

10	I ₂	TBHP	THF	40
11	I_2	ТВНР	DMSO	0
12		TBHP	ACN	0
13	I ₂		ACN	0
14	I ₂	ТВНР	H ₂ O:ACN (9:1)	85^d
15	I ₂	ТВНР	H ₂ O:ACN (1:1)	80
16	I ₂	ТВНР	H ₂ O:ACN (9:1)	$50^e, 60^f, 30^g, 25^h$

^{*a*}Reaction Conditions: **1a** (0.346 mmol, 1.0 equiv.), Iodine (0.173 mmol, 0.5 equiv.), Oxidant (1.038 mmol, 3.0 equiv.) in a solvent at 80 °C for 1 h under an air atmosphere. ^{*b*}Isolated yield, $^{c}N_{2}$ atmosphere, ^{*d*}ACN was added to increase the solubility of the substrates, ^{*e*}40 °C, ^{*f*}60 °C, ^{*g*}100 °C, ^{*h*}120 °C.

(3) Real time mass monitoring studies:

(3.1) Experimental Section

All chemicals were obtained from commercial sources. LC-MS grade solvents were obtained from Thermo Fisher Scientific for online ESI-MS Study. The online ESI-MS study for realtime detection of reactive intermediates was performed using a custom-built pressurized sample infusion method, originally described by McIndoe and coworkers.¹ The experimental setup diagram is presented in the upper panel of Figure 2. Briefly, the reaction in a Schlenk flask was performed at a 0.346 mmol scale (containing 1a) in 2 mL (9: 1) of solvent (H2O: ACN) at 80 °C. The reaction flask was pressurized by nitrogen gas with a backpressure of 4 psi for transferring the reaction mixture through a borosilicate capillary to a T-junction, where it was mixed with acetonitrile delivered by a Hamilton syringe (30 μ L/min flow) connected to a high voltage (+5 kV) DC power source. The diluted reaction mixture from the T-junction was transferred to a custom-made electrospray source for spraying it to a high-resolution mass spectrometer (Orbitrap Exploris 120, Thermo Fisher Scientific). An inner fused silica capillary (100 µm i.d. and 360 µm o.d.) was utilized for solvent delivery, and an outer (coaxial) stainless steel capillary (0.5 mm i.d. and 1.6 mm o.d.) was employed for the nitrogen sheath gas supply (at 110 psi back pressure) in the customized spray source. To improve nebulization through the spray nozzle, the inner silica capillary tip was placed 1 mm outside the coaxial stainless steel capillary orifice. The stream of charged microdroplets from the spray nozzle was directed to the MS inlet capillary (300 oC), which caused the desolvation of the analyte ions for mass spectrometric detection. The maximum ion injection period with a single microscan was set to 500 ms, and the distance between the spray tip and the MS inlet was maintained at 15 mm. The mass resolution was set to 120,000. In order to obtain the highest ion current, other ion optics were further tuned. Thermo Fisher Scientific's XCalibur software was used for data acquisition. The dead time (time taken by the reaction mixture to travel from the reaction vial to the electrospray nozzle) is approximately 45 seconds and does not account for the onset of the reaction seen in Figure 2. The extracted ion chronogram of all the detected species (Figures 2a-h) is normalized to 1 as there is no cross-correlation between species for comparing their concentrations with ion signal intensities because of their differences in ionization efficiencies in the gas phase.

Figure S1. Custom-built online ESI-MS setup (upper panel) for real-time monitoring of the abundance of reactants, intermediates, and products in the positive ion mode during the progress of the reaction. All species are characterized by high mass accuracy, resolution, and isotopic distribution pattern (Figure S1).

(3.2) Reaction Setup

Figure S2: Online ESI-MS with pressurized sample infusion setup used monitoring to track different species S4 MS with pressurized sample infusion setup used for realmonitoring to track different species formed during the progress of the reaction.

(a) Chronogram showing the consumption of 1

MS Data

(b)Chronogram showing the consumption of Iodine

MS Data

(c) Chronogram showing the formation of intermediates A, B and C

MS Data

(d)Chronogram showing the formation of 2

MS Data

(4) X-Ray Crystallographic Data of 2a, 2j and 4j:

Data Collection and Refinement Single-crystal X-ray data of compounds was collected on Bruker SMART CCD Diffractometer using graphite monochromated MoK α radiation (λ = 0.71073 Å). Frames were collected at T = 302 K by ω , φ , and 2 θ -rotations with full quadrant data collection strategy (four domains each with 600 frames) at 10s per frame with SMART. The measured intensities were reduced to F² and corrected for absorption with SADABS.¹¹ Structure solution, refinement, and data output were carried out with the SHELXTL package by direct methods.¹² Non-hydrogen atoms were refined anisotropicallyusing the WinGX (version 1.80.05) program package.¹³ All non-hydrogen atoms were refined anisotropically and hydrogen atoms were treated as riding atoms using SHELX default parameters. Molecular structures have drawn using ORTEP software shown in figure S2, S3 and S4. Further information on the crystal structure determination (excluding structure factors) has been given as table S1, S2 and S3 and also deposited in the Cambridge Crystallographic Data Centre as supplementary publications number 1587648. Copies of the data can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033. e-mail: deposit@ccdc.cam.ac.uk) or via internet.

Figure S2: Ellipsoid plot

TableS2:Crystallographicdescriptionof1-methyl-3,6-diphenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2a):

Identification code	SMT-238_auto	
Empirical formula	C ₁₉ H ₁₅ NO ₃	
Formula weight	305.32	
Temperature	100 K	
Wavelength	0.71073	
Crystal system	monoclinic	
Space group	P21	
Unit cell dimensions	a = 10.2750(5) Å	a= 90°.
	b = 6.3644(3)Å	b= 112.449(6)°.
	c = 12.1715(6) Å	$g = 90^{\circ}$.
Volume	735.63(7) Å ³	
Ζ	2	
Density (calculated)	1.378 Mg/m ³	
Absorption coefficient	0.094 mm ⁻¹	
F(000)	320.0	
Crystal size	0.20 x 0.24 x 0.18 mm ³	
Theta range for data collection	6.588 to 52.712°.	
Index ranges	$-12 \le h \le 12, -7 \le k \le 7, -15 \le 1$	
	≤13	
Reflections collected	7187	
Independent reflections	2879 [Rint = 0.0310, Rsigma =	
	0.0364]	
Completeness to theta = 27.71°	100 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2879/1/210	
Goodness-of-fit on F ²	1.069	
Final R indices [I>2sigma(I)]	$R_1 = 0.0355, wR_2 = 0.0813$	
R indices (all data)	$R_1 = 0.0390, wR_2 = 0.0832$	
Largest diff. peak and hole	0.19 and -0.16 e.Å ⁻³	
CCDC	2350836	

Figure S3: Ellipsoid plot

 Table S3: Crystallographic description of 3-(4-acetylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2j):

Identification code	SMT-366_auto	
Empirical formula	C ₂₁ H1 ₇ NO ₄	
Formula weight	347.36	
Temperature/K	224(40)	
Wavelength	0.71073	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 14.2969(17) Å	α= 90°.
	b = 6.8015(6) Å	β=112.036(14)°.
	c = 18.834(2) Å	$\gamma = 90^{\circ}$.
Volume	1697.6(4)Å ³	
Ζ	4	
Density (calculated)	1.359 Mg/m ³	
Absorption coefficient	0.095 mm ⁻¹	
F(000)	728.0	

Crystal size	0.20 x 0.18 x 0.16 mm ³
Theta range for data collection	6.428 to 61.838°.
Index ranges	-17<=h<=18, -7<=k<=9,-
	26<=l<=22
Reflections collected	10835
Independent reflections	3870 [R(int) = 0.0569,
	R(sigma) = 0.0714]
Completeness to theta = 25.242°	100 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3870 / 0 / 237
Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	$R_1 = 0.0543, wR_2 = 0.1310$
R indices (all data)	$R_1 = 0.0865, wR_2 = 0.1469$
Largest diff. peak and hole	0.20 and -0.19 e.Å ⁻³
CCDC	2311799

Figure S4: Ellipsoid plot

 Table
 S4:
 Crystallographic
 description
 of
 1,6-dimethyl-3-(naphthalen-1-yl)-3

 azabicyclo[4.1.0]heptane-2,4,5-trione (4i):

Identification code	SMT-317_auto	
Empirical formula	C ₁₈ H ₁₅ NO ₃	
Formula weight	293.31	
Temperature	293 K	
Wavelength	0.71073	
Crystal system	triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.6199(4) Å	a= 103.773° (4)°.
	b = 10.8504(5)Å	b= 97.032(3) °.
	c = 15.1555(6) Å	g = 114.529(4).
Volume	1493.92(12) Å ³	
Ζ	4	
Density (calculated)	1.304 g/cm ³	
Absorption coefficient	0.089 mm ⁻¹	
F(000)	616.0	
Crystal size	0.24 x 0.19 x 0.18 mm ³	
Theta range for data collection	6.26 to 52.742°.	
Index ranges	$-13 \le h \le 13, -13 \le k \le 12, -18$	
	≤1≤18	
Reflections collected	21311	
Independent reflections	6120 [Rint = 0.0447, Rsigma =	
	0.0486]	
Completeness to theta = 27.71°	100 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6120/28/383	
Goodness-of-fit on F ²	1.070	
Final R indices [I>2sigma(I)]	$R_1 = 0.0652, wR_2 = 0.1858$	
R indices (all data)	$R_1 = 0.1049, wR_2 = 0.2094$	
Largest diff. peak and hole	0.57 and -0.28 e.Å ⁻³	
CCDC	2330995	

(5) Synthesis of Substrates 1:

Substrates 1 were prepared following the reported procedure.²

(i) Amide coupling for the synthesis of N-arylpropiolamides (S1):

Phenylpropiolic acid (1 equiv) and DMAP (10 mol%) were charged into an oven-dried roundbottom flask, which was then purged with nitrogen gas for 10 minutes. After dissolving the mixture in DCM, amine (1.1 equiv) was added. The mixture was cooled to 0°C and a saturated solution of DCC (1.0 equiv) in DCM was added dropwise. After addition the reaction mixture was warmed to the room temperature and stirred for approximately 12 hours (overnight). The contents of the flask were then filtered using a plug of Celite. The filtrate obtained was then concentrated under reduced pressure while adsorbing onto silica gel. The obtained adsorbed silica plug was then purified using silica gel column chromatography (PE:EA=19:1) to afford pure product **S1**.

(ii) Methallylation of S1

An oven-dried round-bottom flask equipped with a magnetic stir bar was charged with S1 (1.0 equiv) then sealed with septum and purged with nitrogen gas for 10 minutes. Afterwards DCM were added. Then, Methacryloyl chloride (1.5 equiv) and Et_3N (2.0 equiv) were added successively in dropwise manner while stirring the reaction mixture. The reaction mixture was

then stirred at room temperature for 6 h until S1 was consumed completely. The solvent was removed under reduced pressure while adsorbing the filtrate onto silica gel. The crude residue was purified by silica gel comlumn chromatography to afford pure product 1. The prepared substrates are as follows:

1q From Benzocaine

S 18

(6) General procedure for the Synthesis of bicyclo[4.1.0]heptane

An oven-dried round bottom flask equipped with a magnetic stir bar was charged with **1** (100 mg, 0.346 mmol) then I₂, TBHP, H₂O: ACN solution was added. The reaction mixture was then stirred at 80 °C oil bath for 0.5hrs (monitored reactions by TLC). Afterwards the solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography to afford pure product **2**.

(7) General procedure for post functionalization of products

(7.1) Sonogashira Coupling

To a solution of the compound **4g** (0.2 mmol) and phenylacetylene (0.3 mmol) in NEt₃ (1.5 mL) and THF (1.5 mL) was added $PdCl_2(PPh_3)_2$ (7.02 mg, 0.01 mmol) and Cul (2.85 mg, 0.015 mmol) under an argon atmosphere. The reaction mixture was stirred at room temperature. The reaction progress was monitored by TLC. After completion of the reaction, the residue was extracted with EtOAc (10 mL x 3). The combined organic phases were dried over anhydrous Na_2SO_4 and evaporated under reduced pressure to remove the solvent. The given residue was purified by flash chromatography using a mixture of EtOAc and P.E. as eluent to provide the substrates **7**.

(7.2) Suzuki- Miyaura Coupling

To a solution of compound 4g (0.2 mmol,0.274 mmol), Pd(OAc)₂ (0.1 equiv, 0.02 mmol) in DMF (4 mL)and water (1 mL) was added phenylboronic acid (2 equiv, 0.4 mmol) and K₂CO₃ (2equiv, 0.4 mmol) and the mixture was stirred under reflux at 85°C. The reaction progress was monitored by TLC. After completion of the reaction, the reaction mixture was washed with brine, and the aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄, concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (EtOAc/PE) to afford the desired product **9**.

(8) Characterization Data for the Products 1,2,3:

N-(**4**-isopropylphenyl)-*N*-(**3**-phenylpropioloyl)methacrylamide (**1g**): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired **1g** as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 7.4 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.18-7.15 (m, 1H), 7.13 (dd, *J* = 4.6, 2.1 Hz, 2H), 7.11-7.08 (m, 3H), 5.61 (s, 1H), 5.41 (s, 1H), 2.90-2.83 (m, 1H), 1.96 (s, 3H), 1.18 (d, J = 7.0 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 173.2, 154.4, 149.5, 141.3, 135.4, 132.7, 132.4, 130.7, 128.4, 128.3, 127.3, 127.2, 126.6, 122.0, 119.9, 119.3, 94.3, 82.6, 33.7, 23.7, 18.6, 17.7; **MS** (ESI) *m*/*z* 332 [M+H]⁺; HRMS Calculated for C₂₂H₂₂NO₂⁺ 332.1645; Found: 332.1652. [M+H]⁺.

N-(**2**,**6**-diethylphenyl)-*N*-(**3**-phenylpropioloyl)methacrylamide (**1i**): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired **1i** as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.44-7.38 (m, 1H), 7.33-7.28 (m, 6H), 7.22-7.19 (m, 2H), 5.71 (s, 1H), 5.54 (s, 1H), 2.49 (s, 3H), 2.05 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 173.1, 154.3, 141.3, 139.9, 134.4, 132.7, 132.4, 130.8, 129.7, 128.8, 128.5, 128.1, 127.5, 126.7, 122.5, 119.3, 94.5, 82.6, 18.7, 15.5; **MS** (ESI) *m*/*z* 336 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₂S⁺ 336.1083; Found: 336.1115. [M+H]⁺.

N-(**3**-phenylpropioloyl)-*N*-(**2**-(phenylthio)phenyl)methacrylamide (**1**): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired **1** as brown solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.42-7.33 (m, 6H), 7.32-7.26 (m, 3H), 7.25-7.22 (m, 5H), 5.78 (s, 1H), 5.47 (d, *J* = 1.5 Hz, 1H), 2.12 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.5, 154.2, 141.3, 137.4, 137.3, 133.7, 132.9, 132.3, 132.1, 130.8, 130.6, 129.8, 129.3, 128.5, 127.8, 127.7, 121.2, 119.4, 94.0, 82.8, 19.0; **MS** (ESI) *m*/*z* 398 [M+H]⁺; HRMS Calculated for C₂₅H₂₀NO₂S⁺ 398.1209; Found: 398.1239. [M+H]⁺.

N-(**2**-bromo-**4**-methylphenyl)-*N*-(**3**-phenylpropioloyl)methacrylamide (**1**m): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired **1**m as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.44-7.40 (m, 1H), 7.35-7.23 (m, 6H), 5.78 (s, 1H), 5.50 (s, 1H), 2.41 (s, 3H), 2.14 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.1, 154.0, 141.2, 141.1, 134.3, 133.9, 132.8, 130.9, 130.8, 129.1, 128.5, 123.5, 121.2, 119.4, 94.1, 82.5, 20.9, 19.0; **MS** (ESI) *m*/*z* 382 [M+H]⁺; HRMS Calculated for C₂₀H₁₇BrNO₂⁺ 382.0437; Found: 382.0440. [M+H]⁺.

N-(**2**,**6**-diethylphenyl)-*N*-(**3**-phenylpropioloyl)methacrylamide (**1n**): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired **1n** as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.45-7.39 (m, 2H), 7.32-7.26 (m, 4H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.60 (s, 1H), 5.47 (s, 1H), 2.63 (q, *J* = 7.5 Hz, 4H), 2.18 (s, 3H), 1.26 (t, *J* = 7.6 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.6, 155.3, 142.5, 142.1, 134.9, 133.1, 130.9, 129.7, 128.5, 126.6, 119.4, 119.2, 93.9, 82.6, 29.7, 24.4, 19.4, 14.3; **MS** (ESI) *m*/*z* 346 [M+H]⁺; HRMS Calculated for C₂₃H₂₄NO₂⁺ 346.1842; Found: 386.1869. [M+H]⁺.

N-(2,6-diethylphenyl)-*N*-(3-phenylpropioloyl)methacrylamide (10): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 10 as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.41-7.30 (m, 5H), 6.91-6.86 (m, 2H), 6.78-6.76 (m, 1H), 5.98 (s, 2H), 5.74 (s, 1H), 5.52 (d, J = 1.0 Hz, 1H), 2.06 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.7, 153.8, 148.9, 143.9, 141.0, 132.9, 132.7, 131.0, 128.7, 122.7, 122.1, 121.9, 120.2, 119.5, 109.1, 101.9, 93.7, 82.5, 18.8; **MS** (ESI) *m*/*z* 334 [M+H]⁺; HRMS Calculated for C₂₀H₁₆NO₄⁺ 334.1074; Found: 334.1082. [M+H]⁺.

N-([1,1'-biphenyl]-3-yl)-*N*-(3-phenylpropioloyl)methacrylamide (1p): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 1p as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 1H), 7.63-7.55 (m, 4H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.41-7.37 (m, 2H), 7.34-7.29 (m, 5H), 5.81 (s, 1H), 5.60 (s, 1H), 2.13 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 173.2, 154.3, 142.6, 141.3, 139.7, 138.2, 132.7, 130.8, 129.6, 128.8, 128.4, 127.7, 127.4, 127.3, 127.2, 127.1, 122.5, 119.3, 94.5, 82.6, 18.7; MS (ESI) *m/z* 366 [M+H]⁺; HRMS Calculated for C₂₅H₂₀NO₂⁺ 366.1489; Found: 366.1497. [M+H]⁺.

N-(**3**-phenylpropioloyl)-*N*-(thiophen-2-ylmethyl)methacrylamide (1s): Purification by silica gel chromatography (PE:EA=90:10) afforded the desired 1s as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.20 (t, *J* = 4.0 Hz, 1H), 7.09 (d, *J* = 2.3 Hz, 1H), 6.92 (t, *J* = 4.1 Hz, 1H), 5.44 (s, 1H), 5.38 (s, 1H), 5.21 (s, 2H), 2.06 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 173.6, 154.2, 142.0, 138.2, 132.6, 132.3, 130.7, 129.4, 128.8, 128.6, 128.2, 127.8, 127.5, 126.8, 126.6, 126.5, 125.8, 122.3, 119.3, 94.5, 82.6, 42.4, 18.7; MS (ESI) *m*/*z* 310 [M+H]⁺; HRMS Calculated for C₁₈H₁₆NO₂S⁺ 310.0896; Found: 310.0899. [M+H]⁺.

N-(**3**-phenylpropioloyl)-*N*-(pyridin-4-ylmethyl)methacrylamide (1t): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 1t as purple solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, DMSO-*d6*) δ 8.51 (d, *J* = 1.2 Hz, 2H), 7.75 (d, *J* = 3.4 Hz, 2H), 7.51 (s, 2H), 7.39 (d, *J* = 4.7 Hz, 3H), 6.91 (s, 1H), 6.65 (s, 1H), 5.36 (s, 1H), 5.29 (s, 1H), 1.89 (s, 3H); ¹³C-NMR (100 MHz, DMSO-*d6*) δ 168.6, 168.6, 161.4, 150.0, 145.9, 140.4, 131.1, 130.0, 128.9, 128.7, 127.9, 122.8, 119.9, 119.5, 62.4, 18.5; **MS** (ESI) *m/z* 305 [M+H]⁺; HRMS Calculated for C₁₉H₁₇N₂O₂⁺ 305.1285; Found: 305.1522. [M+H]⁺.

N-(**furan-2-ylmethyl**)-*N*-(**3-phenylpropioloyl**)**methacrylamide** (**1u**): Purification by silica gel chromatography (PE:EA=90:10) afforded the desired **1u** as white solid in 85% yield (3.56 g); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.44-7.41 (m, 1H), 7.37 (q, *J* = 3.7 Hz, 2H), 7.22-7.20 (m, 1H), 7.09 (s, 1H), 6.91 (t, *J* = 3.5 Hz, 1H), 5.44 (s, 1H), 5.38 (s, 1H), 5.21 (s, 2H), 2.06 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 173.7, 154.4, 142.1, 138.3, 132.4, 130.8, 128.7, 127.9, 126.6, 125.9, 122.4, 119.5, 94.6, 82.7, 42.6, 18.7; **MS** (ESI) *m/z* 294 [M+H]⁺; HRMS Calculated for C₁₈H₁₆NO₃⁺ 294.1125; Found: 294.1138. [M+H]⁺.

N-(**4-fluorobenzyl**)-*N*-(**3-phenylpropioloyl**)**methacrylamide** (**1v**): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **1v** as white solid in 85% yield (3.56 g); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.44-7.36 (m, 5H), 7.01 (t, *J* = 8.8 Hz, 2H), 5.47 (s, 1H), 5.37 (s, 1H), 5.02 (s, 2H), 2.09 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 174.1, 163.5, 161.0, 154.8, 142.3, 132.4, 130.8, 130.5, 130.4, 128.7, 128.0, 122.6, 119.5, 115.7, 115.5, 115.3, 94.6, 82.9, 47.2, 18.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –112.9 (s, 1F); **MS** (ESI) *m/z* 322 [M+H]⁺; HRMS Calculated for C₂₀H₁₇FNO₂⁺ 322.1238; Found: 322.1242. [M+H]⁺.

N-(**3**-phenylpropioloyl)-*N*-propylmethacrylamide (1y): Purification by silica gel chromatography (PE:EA=98:2) afforded the desired 1y as colourless oil in 85% yield (1.63 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H), 7.45-7.41 (m, 1H), 7.38-7.34 (m, 2H), 5.47-5.46 (m, 2H), 3.83-3.80 (m, 2H), 2.06 (t, *J* = 1.2 Hz, 3H), 1.72-1.62 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 174.6, 155.2, 142.7, 132.5, 130.8, 128.8, 121.8, 93.7, 83.1, 46.8, 22.1, 19.0, 11.5; MS (ESI) *m*/*z* 256 [M+H]⁺; HRMS Calculated for C₁₆H₁₈NO₂⁺ 256.1332; Found: 256.1343. [M+H]⁺.

N-allyl-*N*-(3-phenylpropioloyl)methacrylamide (1z): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 1z as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.38-7.36 (m, 2H), 7.34-7.28 (m, 1H), 7.26-7.21 (m, 2H), 5.83-5.72 (m, 1H), 5.37-5.36 (m, 2H), 5.15 (dq, *J* = 17.1, 1.3 Hz, 1H), 5.07 (dq, *J* = 10.3, 1.2 Hz, 1H), 4.35-4.33 (m, 2H), 1.95 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.3, 171.7, 158.4, 130.9, 130.7, 130.6, 128.9, 119.6, 45.5, 43.7, 34.8, 29.1, 16.1; MS (ESI) *m*/*z* 254 [M+H]⁺; HRMS Calculated for C₁₆H₁₆NO₂⁺ 254.1176; Found: 254.1168. [M+H]⁺.

N-(**3**-phenylpropioloyl)-*N*-(prop-2-yn-1-yl)methacrylamide (1aa): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 1aa as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.48-7.39 (m, 3H), 7.35-7.31 (m, 2H), 5.55-5.51 (m, 2H), 4.56 (d, *J* = 2.5 Hz, 2H), 2.25 (t, *J* = 2.5 Hz, 1H), 2.04 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 173.6, 154.4, 142.2, 132.4, 132.2, 130.8, 128.7, 121.7, 119.5, 93.7, 82.8, 47.0, 18.9; MS (ESI) *m*/*z* 252 [M+H]⁺; HRMS Calculated for C₁₆H₁₄NO₂⁺ 252.1019; Found: 252.1012. [M+H]⁺.

N-cyclopropyl-*N*-(3-phenylpropioloyl)methacrylamide (1ab): Purification by silica gel chromatography (PE:EA=98:2) afforded the desired 1ab as yellow semisolid in 80% yield (1.52 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.53-7.51 (m, 2H), 7.45-7.41 (m, 1H), 7.38-7.34 (m, 2H), 5.54-5.52 (m, 2H), 2.91-2.86 (m, 1H), 2.01 (s, 3H), 1.07 (q, *J* = 6.8 Hz, 2H), 0.75-0.71 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 175.3, 155.7, 142.4, 132.7, 130.8, 128.7, 123.2, 120.0, 93.3, 82.8, 28.1, 18.3, 9.2; MS (ESI) *m*/*z* 254 [M+H]⁺; HRMS Calculated for C₁₆H₁₆NO₂⁺ 254.1176; Found: 254.1197. [M+H]⁺.

N-(**3**-(**4**-methoxyphenyl)propioloyl)-*N*-phenylmethacrylamide (1ae): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 1ae as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.3 Hz, 1H), 7.51-7.43 (m, 3H), 7.34-7.29 (m, 3H), 7.17 (dd, *J* = 6.9, 1.9 Hz, 1H), 6.80 (dd, *J* = 7.0, 2.0 Hz, 1H), 5.69 (s, 1H), 5.51 (d, *J* = 1.3 Hz, 1H), 3.79 (s, 3H), 2.07 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 173.4, 161.7, 154.7, 141.6, 138.1, 134.9, 134.4, 131.4, 129.3, 129.0, 128.8, 128.8, 122.0, 120.4, 114.3, 111.3, 95.7, 82.5, 55.4, 18.8; MS (ESI) *m*/*z* 320 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₃⁺ 320.1281; Found: 320.1287. [M+H]⁺.

N-(**3**-([**1**,**1**'-**biphenyl**]-**4**-**y**]**propioloy**])-*N*-**phenylmethacrylamide** (**1af**): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired **1af** as white solid in 85% yield (3.56 g); ¹**H**-**NMR** (400 MHz, CDCl₃) δ 7.57-7.52 (m, 4H), 7.51-7.44 (m, 5H), 7.41-7.33 (m, 5H), 5.75 (s, 1H), 5.57 (d, *J* = 1.3 Hz, 1H), 2.10 (s, 3H); ¹³**C**-**NMR** (100 MHz, CDCl₃) δ 173.4, 154.5, 143.7, 141.5, 139.7, 138.0, 133.4, 133.1, 129.4, 129.0, 128.9, 128.8, 128.3, 127.2, 127.1, 122.4, 120.0, 118.3, 94.7, 83.4, 30.3, 29.8, 25.3, 18.9, 18.8; **MS** (ESI) *m*/*z* 366 [M+H]⁺; HRMS Calculated for C₂₅H₂₀NO₂⁺ 366.1489; Found: 366.1498. [M+H]⁺.

N-methacryloyl-*N*-(p-tolyl)but-2-ynamide (3b): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 3b as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 2H), 5.60 (s, 1H), 5.43 (s, 1H), 2.29 (s, 3H), 1.94 (s, 3H), 1.78 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 173.5, 154.4, 141.4, 138.5, 135.1, 129.9, 128.0, 122.5, 93.7, 74.6, 21.1, 18.6, 4.0; MS (ESI) *m/z* 242 [M+H]⁺; HRMS Calculated for C₁₅H₁₆NO₂⁺ 242.1176; Found: 242.1181. [M+H]⁺.

N-(**4**-bromophenyl)-*N*-methacryloylbut-2-ynamide (**3**f): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired **3**f as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.4 Hz, 1H), 7.07(d, *J* = 8.8 Hz, 1H), 5.65 (s, 1H), 5.35 (s, 2H), 2.00 (s, 3H), 1.90 (s, 3H)); ¹³C-NMR (100 MHz, CDCl₃) δ 173.2, 153.9, 141.3, 136.7, 132.6, 132.0, 131.9, 129.9, 123.1, 122.6, 121.7, 121.4, 94.4, 74.5, 18.7, 4.3; **MS** (ESI) *m/z* 306 [M+H]⁺; HRMS Calculated for C₁₄H₁₃BrNO₂⁺ 306.0124; Found: 306.0140. [M+H]⁺.

N-benzyl-*N*-methacryloylbut-2-ynamide (3j): Purification by silica gel chromatography (PE:EA=75:25) afforded the desired 3j as white solid in 85% yield (3.56 g); ¹H-NMR (400 MHz, CDCl₃) δ 7.37-7.28 (m, 4H), 5.38 (s, 1H), 5.29 (s, 1H), 5.00 (s, 2H), 2.02 (s, 3H), 1.99 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.3, 150.7, 149.0, 138.5, 133.2, 128.4, 117.6, 101.4, 90.0, 70.9, 56.6, 51.9, 44.0, 14.5; **MS** (ESI) *m*/*z* 255 [M+H]⁺; HRMS Calculated for C₁₅H₁₆NO₂⁺ 242.1176; Found: 242.1179. [M+H]⁺.

1-methyl-3,6-diphenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2a): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2a** as white solid in 85% yield (89.70 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.54-7.45 (m, 6H), 7.29-7.27 (m, 2H), 7.21-7.18 (m, 2H), 2.58 (d, *J* = 6.0 Hz, 1H), 2.24 (d, *J* = 6.0 Hz, 1H), 1.30 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.7, 172.2, 158.8, 134.0, 130.8, 130.7, 129.5, 129.3, 129.0, 129.0, 128.5, 127.9, 45.8, 35.3, 29.1, 16.2; **MS** (ESI) *m*/*z* 306 [M+H]⁺; HRMS Calculated for C₁₉H₁₆NO₃⁺ 306.1125; Found: 306.1136 [M+H]⁺.

1-methyl-6-phenyl-3-(*p*-tolyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2b): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 2b as white solid in 82% yield (90.60 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.41-7.34 (m, 3H), 7.25-7.20 (m, 2H), 7.18-7.15 (m, 2H), 6.92-7.03 (2H), 2.46 (d, J = 6.0 Hz, 1H), 2.33 (s, 3H), 2.12 (s, 1H), 1.19 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.7, 172.3, 158.9, 139.3, 131.3, 130.8, 130.6, 130.2, 128.9, 127.4, 45.7, 35.2, 29.0, 21.2, 16.2; **MS** (ESI) *m*/*z* 320 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₃ + 320.1281; Found: 320.1266. [M+H]⁺.

3-(4-methoxyphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2c): Purification by silica gel chromatography (PE:EA=80:20) afforded the desired **2c** as white solid in 80% yield (92.74 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.46-7.42 (m, 3H), 7.25-7.23 (m, 2H), 7.09-7.06 (m, 2H), 7.01-6.98 (m, 2H), 3.84 (s, 3H), 2.52 (d, *J* = 6.0 Hz, 1H), 2.20 (d, *J* = 5.9 Hz, 1H), 1.27 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.7, 172.3, 159.9, 159.0, 130.8, 130.7, 129.0, 128.8, 126.4, 114.8, 55.5, 45.8, 35.2, 29.0, 16.2; **MS** (ESI) *m/z* 336 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₄⁺ 336.1230; Found: 336.1209. [M+H]⁺.

3-(4-bromophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2d): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 2d as brown solid in 75% yield (99.69 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.64-7.60 (m, 2H), 7.47-7.43 (m, 3H), 7.25-7.22 (m, 2H), 7.07-7.03 (m, 2H), 2.54 (d, *J* = 6.0 Hz, 1H), 2.22 (d, *J* = 6.0 Hz, 1H), 1.27 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.3, 171.9, 158.5, 132.8, 132.7, 130.6, 129.6, 129.1, 129.0, 123.3, 45.8, 35.2, 29.1, 16.2; **MS** (ESI) *m/z* 384 [M+H]⁺; HRMS Calculated for C₁₉H₁₅BrNO₃⁺ 384.0230; Found: 384.0208. [M+H]⁺.

3-(4-fluorophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2e): Purification by silica gel chromatography (PE:EA=80:20) afforded the desired **2e** as white solid in 70% yield (78.3 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.46-7.43 (m, 3H), 7.25-7.23 (m, 2H), 7.20-7.14 (m, 4H), 2.53 (d, *J* = 6.2 Hz, 1H), 2.22 (d, *J* = 6.2 Hz, 1H), 1.24-1.28 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.4, 172.1, 160.1 (d, *J*_{C-F} = 266.4 Hz, 1C), 130.6, 130.1, 129.7 (d, *J*_{C-F} = 8.7 Hz, 1C), 129.1, 129.0, 128.5, 116.6 (d, *J*_{C-F} = 23 Hz, 1C), 45.8, 35.2, 29.1, 16.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.5 (s, 1F) **MS** (ESI) *m/z* 324 [M+H]⁺; HRMS Calculated for C₁₉H₁₅FNO₃⁺ 324.1030; Found: 324.1009. [M+H]⁺.

3-(4-chlorophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2f): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 2f as white solid in 82% yield (96.39 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.45-7.42 (m, 5H), 7.23-7.21 (m, 2H), 7.10 (d, *J* = 8.7 Hz, 2H), 2.55 (d, *J* = 6.0 Hz, 1H), 2.19 (d, *J* = 6.0 Hz, 1H), 1.25 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.4, 172.0, 158.5, 135.2, 132.3, 130.6, 129.7, 129.3, 129.0, 129.0, 45.8, 35.2, 29.7, 29.1, 16.2; MS (ESI) *m*/*z* 340 [M+H]⁺; HRMS Calculated for C₁₉H₁₅CINO₃ ⁺ 340.0735; Found: 340.0748. [M+H]⁺.

3-(4-*iso***propylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione** (2g): Purification by silica gel chromatography (PE:EA=83:17) afforded the desired **2g** as white solid in 73% yield (87.73 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.49-7.45 (m, 3H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.29-7.26 (m, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 3.02-2.95 (m, 1H), 2.57 (d, *J* = 6.0 Hz, 1H), 2.24 (d, *J* = 6.0 Hz, 1H), 1.30 (d, *J* = 7.0 Hz, 6H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 207.1, 186.8, 172.4, 158.9, 149.9, 131.5, 130.9, 130.7, 129.0, 127.6, 127.5, 45.8, 33.9, 31.0, 29.1, 23.9, 16.3, 14.2; **MS** (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₂₂H₂₂NO₃⁺ 348.1594; Found: 348.1589. [M+H]⁺.

1-methyl-6-phenyl-3-(4-propylphenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2h): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 2h as white solid in 81% yield (97.66 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.37-7.33 (m, 3H), 7.21 (s, 1H), 7.19 (s, 1H), 7.17-7.14 (m, 2H), 6.99-6.96 (m, 2H), 2.57-2.53 (m, 2H), 2.46 (d, *J* = 6.0 Hz, 1H), 2.11 (d, *J* = 6.2 Hz, 1H), 1.62-1.55 (m, 2H), 1.17 (s, 3H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.7, 172.2, 158.8, 143.8, 131.4, 130.8, 130.6, 129.4, 128.9, 127.4, 45.7, 37.6, 35.1, 29.0, 24.2, 16.1, 13.8; MS (ESI) *m/z* 348 [M+H]⁺; HRMS Calculated for C₂₂H₂₂NO₃ + 348.1594; Found: 348.1578. [M+H]⁺.

1-methyl-3-(4-(methylthio)phenyl)-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2i): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2i** as brown solid in 78% yield (94.83 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.47-7.43 (m, 3H), 7.35-7.32 (m, 2H), 7.26-7.23 (m, 2H), 7.10-7.06 (m, 2H), 2.54 (d, *J* = 6.0 Hz, 1H), 2.51 (s, 3H), 2.22 (d, *J* = 6.0 Hz, 1H), 1.27 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.6, 172.2, 158.8, 140.5, 130.7, 130.6, 130.6, 129.0, 128.1, 126.9, 45.8, 35.2, 29.1, 16.2, 15.5; **MS** (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₃S⁺ 352.1002; Found: 352.0992. [M+H]⁺.

3-(4-acetylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2j): Purification by silica gel chromatography (PE:EA=80:20) afforded the desired 2j as colourless oil in 69% yield (82.92 mg); ¹H-NMR (400 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 7.40-7.36 (m, 3H), 7.23-7.20 (m, 2H), 7.19-7.17 (m, 2H), 2.57 (s, 3H), 2.49 (d, *J* = 6.2 Hz, 1H), 2.18 (d, *J* = 6.0 Hz, 1H), 1.21 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 196.9, 186.2, 171.9, 158.4, 138.0, 137.5, 130.6, 130.6, 129.5, 129.1, 129.0, 128.3, 45.9, 35.3, 29.1, 26.7, 16.2; MS (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₂₁H₁₈NO₄⁺ 348.1230; Found: 348.1223. [M+H]⁺.

3-(2-iodophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2k): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2k** as white solid in 80% yield (119.35 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.44-7.36 (m, 4H), 7.21-7.18 (m, 2H), 7.14-7.10 (m, 2H), 3.06 (d, *J* = 6.2 Hz, 1H), 2.19 (d, *J* = 6.0 Hz, 1H), 1.24 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.2, 171.0, 157.8, 139.9, 137.2, 131.0, 131.0, 130.6, 129.9, 129.6, 129.0, 97.3, 46.2, 35.7, 29.3, 16.3; **MS** (ESI) *m/z* 432 [M+H]⁺; HRMS Calculated for C₁₉H₁₅INO₃ + 432.0091; Found: 432.0083. [M+H]⁺.

1-methyl-6-phenyl-3-(2-(phenylthio)phenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2l): Purification by silica gel chromatography (PE:EA=80:20) afforded the desired **2l** as white solid in 67% yield (95.85 mg); **¹H-NMR** (400 MHz, CDCl₃) δ 7.47-7.42 (m, 4H), 7.40 (d, *J* = 3.8 Hz, 2H), 7.35-7.34 (m, 4H), 7.32-7.25 (m, 4H), 2.95 (d, *J* = 5.9 Hz, 1H), 2.20 (d, *J* = 6.0 Hz, 1H), 1.28 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.8, 171.8, 158.4, 134.8, 134.4, 134.3, 133.8, 131.2, 131.1, 130.7, 130.4, 129.7, 129.5, 129.0, 128.8, 127.6, 46.2, 35.6, 29.3, 16.2; MS (ESI) *m*/*z* 255 [M+H]⁺; HRMS Calculated for C₂₅H₂₀NO₃S⁺ 414.1158; Found: 414.1159. [M+H]⁺.

3-(2-bromo-4-methylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (**2m):** Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2m** as white solid in 74% yield (106.22 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 6.8 Hz, 1H), 7.50-7.45 (m, 3H), 7.29-7.26 (m, 3H), 7.13 (d, *J* = 8.0 Hz, 1H), 2.95 (d, *J* = 6.0 Hz, 1H), 2.42 (s, 3H), 2.26 (d, *J* = 6.0 Hz, 1H), 1.30 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.5, 171.3, 158.0, 141.7, 133.9, 131.0, 130.7, 130.0, 129.5, 129.0, 121.6, 46.1, 35.5, 29.2, 21.0, 16.2; **MS** (ESI) *m/z* 398 [M+H]⁺; HRMS Calculated for C₂₀H₁₇BrNO₃ + 398.0386; Found: 398.0400. [M+H]⁺.

3-(2-bromo-4-methylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (**2n**): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2n** as white solid in 76% yield (97.78 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.51-7.46 (m, 3H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.30-7.23 (m, 4H), 2.60 (d, *J* = 6.0 Hz, 1H), 2.56-2.46 (m, 2H), 2.44-2.32 (m, 2H), 2.29 (d, *J* = 6.0 Hz, 1H), 1.32 (s, 3H), 1.24 (t, *J* = 7.6 Hz, 3H), 1.20 (t, *J* = 7.6 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.5, 171.3, 158.0, 141.7, 133.9, 131.0, 130.7, 130.0, 129.5, 129.0, 121.6, 46.1, 35.5, 29.2, 21.0, 16.2; **MS** (ESI) *m/z* 362 [M+H]⁺; HRMS Calculated for C₂₃H₂₄NO₃⁺ 362.1751; Found: 362.1768. [M+H]⁺.

3-(benzo[*d***][1,3]dioxol-4-yl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione** (**2o):** Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2o** as white solid in 80% yield (96.6 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.0 Hz, 3H), 7.29-7.26 (m, 3H), 6.94 (q, *J* = 7.9 Hz, 2H), 6.04 (d, *J* = 6.0 Hz, 2H), 2.60 (d, *J* = 6.0 Hz, 1H), 2.24 (d, *J* = 5.8 Hz, 1H), 1.30 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.6, 171.4, 148.9, 130.8, 130.7, 129.1, 129.0, 122.1, 121.5, 109.5, 102.0, 45.9, 35.3, 29.3, 16.2; **MS** (ESI) *m/z* 350 [M+H]⁺; HRMS Calculated for C₂₀H₁₆NO₅ + 350.1023; Found: 350.1020. [M+H]⁺.

3-([1,1'-biphenyl]-2-yl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2p): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 2p as white solid in 60% yield (79.18 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.58-7.52 (m, 3H), 7.45-7.41 (m, 5H), 7.37-7.34 (m, 2H), 7.26-7.23 (m, 2H), 7.13 (s, 1H), 2.58 (d, *J* = 6.0 Hz, 1H), 2.23 (d, *J* = 6.0 Hz, 1H), 1.27 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.7, 172.3, 158.8, 142.9, 139.9, 134.4, 130.8, 130.7, 129.9, 129.1, 129.0, 128.9, 128.0, 127.8, 127.3, 126.7, 126.5, 45.9, 35.3, 29.2, 16.3; **MS** (ESI) *m*/*z* 382 [M+H]⁺; HRMS Calculated for C₂₅H₂₀NO₃⁺ 382.1438; Found: 382.1440. [M+H]⁺.

ethyl 4-(1-methyl-2,4,5-trioxo-6-phenyl-3-azabicyclo[4.1.0]heptan-3-yl)benzoate (2q): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 2q as white solid in 65% yield (84.87 mg); ¹H-NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.8 Hz, 2H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.66 (d, *J* = 7.0 Hz, 1H), 7.52-7.44 (m, 3H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.24 (s, 1H), 4.43-4.35 (m, 2H), 2.56 (d, *J* = 6.3 Hz, 1H), 2.25 (d, *J* = 6.3 Hz, 1H), 1.40 (t, *J* = 7.1 Hz, 3H), 1.28 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 207.2, 186.3, 171.8, 165.5, 137.7, 130.8, 130.7, 129.1, 129.0, 128.2, 128.1, 128.0, 122.8, 61.3, 35.3, 30.1, 29.0, 16.3, 14.1; MS (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₂₂H₂₀NO₅⁺ 378.1336; Found: 378.1327. [M+H]⁺.

3-benzyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2r): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2r** as white solid in 78% yield (90.73 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.44-7.41 (m, 2H), 7.40-7.37 (m, 3H), 7.36-7.29 (m, 3H), 7.17-7.14 (m, 2H), 5.05 (d, *J* = 13.7 Hz, 1H), 4.94 (d, *J* = 13.6 Hz, 1H), 2.17 (d, *J* = 6.2 Hz, 1H), 2.02 (d, *J* = 5.9 Hz, 1H), 1.21 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.3, 171.9, 158.7, 135.8, 133.1, 131.0, 130.9, 130.5, 129.2, 128.9, 128.6, 128.5, 128.0, 127.7, 127.6, 45.5, 44.8, 34.8, 28.9, 16.1; **MS** (ESI) *m/z* 320 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₃⁺ 320.1281; Found: 320.1281. [M+H]⁺.

1-methyl-6-phenyl-3-(thiophen-3-ylmethyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2s): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2s** as yellow solid in 70% yield (78.80 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.42-7.39 (m, 4H), 7.17-7.14 (m, 3H), 6.96 (dd, *J* = 5.1, 3.6 Hz, 1H), 5.27 (d, *J* = 14.3 Hz, 1H), 5.09 (d, *J* = 14.3 Hz, 1H), 2.17 (d, *J* = 5.9 Hz, 1H), 2.04 (d, *J* = 5.9 Hz, 1H), 1.24 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.2, 171.7, 158.2, 148.7, 142.5, 131.0, 130.6, 128.9, 110.5, 109.7, 45.6, 37.5, 34.8, 29.0, 16.0; **MS** (ESI) *m/z* 326 [M+H]⁺; HRMS Calculated for C₁₈H₁₆NO₃S ⁺ 326.0845; Found: 326.0851. [M+H]⁺.

3-(2-bromo-4-methylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (**2t**): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2t** as white solid in 71% yield (3.56 g); ¹**H-NMR** (400 MHz, CDCl₃) δ 8.53-8.44 (m, 2H), 7.55-7.52 (m, 1H), 7.36 (dd, *J* = 4.5, 1.6 Hz, 1H), 7.32-7.21 (m, 4H), 7.06 (dd, *J* = 4.5, 1.6 Hz, 1H), 5.38-5.31 (m, 2H), 1.97 (d, *J* = 5.9 Hz, 1H), 1.23 (m, 4H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.8, 171.6, 158.4, 140.5, 137.8, 131.7, 131.6, 131.3, 130.6, 130.2, 129.6, 47.1, 46.9, 36.3, 29.9, 16.9; **MS** (ESI) *m*/*z* 321 [M+H]⁺; HRMS Calculated for C₁₉H₁₇N₂O₃ + 321.1234; Found: 321.1227. [M+H]⁺.

3-(furan-3-ylmethyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2u): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 2u as white solid in 73% yield (78.07 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.42-7.39 (m, 3H), 7.26-7.25 (m, 3H), 7.17-7.15 (m, 2H), 6.96 (dd, J = 5.2, 3.5 Hz, 1H), 5.27 (d, J = 14.3 Hz, 1H), 5.09 (d, J = 14.3 Hz, 1H), 2.18 (d, J = 5.9 Hz, 1H), 2.04 (d, J = 5.9 Hz, 1H), 1.24 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.1, 171.7, 158.2, 148.7, 142.5, 130.9, 130.6, 129.0, 110.6, 109.7, 45.6, 37.5, 34.8, 29.1, 16.1; **MS** (ESI) *m/z* 310 [M+H]⁺; HRMS Calculated for C₁₈H₁₆NO₄⁺ 310.1074; Found: 310.1080. [M+H]⁺.

3-(4-fluorobenzyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2v): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2v** as white solid in 74% yield (86.36 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.46-7.39 (m, 5H), 7.17-7.15 (m, 2H), 7.05-6.99 (m, 2H), 5.02 (d, *J* = 13.7 Hz, 1H), 4.91 (d, *J* = 13.7 Hz, 1H), 2.15 (d, *J* = 5.9 Hz, 1H), 2.04 (d, *J* = 5.9 Hz, 1H), 1.22 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.2, 171.9, 162.5 (d, *J*_{C-F} = 245.3 Hz, 1C), 158.7, 131.6, 131.4 (d, *J*_{C-F} = 8.6 Hz, 1C), 130.8, 130.5, 129.0, 115.6 (d, *J*_{C-F} = 22 Hz, 1C), 45.5, 44.1, 34.8, 29.7, 29.0, 16.1; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.5 (s, 1F); **MS** (ESI) *m/z* 338 [M+H]⁺; HRMS Calculated for C₂₀H₁₇FNO₃ + 338.1187; Found: 338.1179. [M+H]⁺.

3-(4-fluorobenzyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2w): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2w** as white solid in 68% yield (96.32 mg); **¹H-NMR** (400 MHz, CDCl₃) δ 7.43-7.38 (m, 3H), 7.16 (dd, *J* = 4.3, 3.2 Hz, 2H), 6.70 (s, 2H), 4.96 (d, *J* = 13.5 Hz, 1H), 4.87 (d, *J* = 13.5 Hz, 1H), 3.85 (d, *J* = 3.7 Hz, 6H), 3.83 (d, J = 2.7 Hz, 3H), 2.17 (d, *J* = 5.8 Hz, 1H), 2.05 (d, *J* = 5.9 Hz, 1H), 1.22 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.3, 171.9, 158.7, 153.4, 153.1, 137.7, 131.3, 130.8, 130.5, 128.9, 128.5, 128.5, 106.7, 104.5, 60.8, 56.1, 45.5, 45.0, 43.9, 34.8, 29.0, 16.1; **MS** (ESI) *m*/*z* 255 [M+H]⁺; HRMS Calculated for C₂₃H₂₄NO₆⁺ 410.1598; Found: 410.1594 [M+H]⁺.

1,3-dimethyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2x): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2x** as white solid in 78% yield (65.65 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.44-7.40 (m, 3H), 7.19-7.16 (m, 2H), 3.27 (s, 3H), 2.28 (d, *J* = 5.9 Hz, 1H), 2.09 (d, *J* = 5.9 Hz, 1H), 1.23 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.1, 172.3, 158.9, 130.9, 130.5, 128.9, 45.4, 34.7, 29.2, 28.1, 16.2; **MS** (ESI) *m/z* 244 [M+H]⁺; HRMS Calculated for C₁₄H₁₄NO₃ + 244.0968; Found: 244.0978. [M+H]⁺.

1-methyl-6-phenyl-3-propyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2y): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2y** as white solid in 78% yield (73.21 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.64-7.62 (m, 1H), 7.43-7.39 (m, 3H), 7.19-7.17 (m, 1H), 2.24 (d, J = 5.8 Hz, 1H), 2.08 (d, J = 5.9 Hz, 1H), 1.70-1.59 (m, 4H), 1.23 (s, 3H), 1.00-0.93 (m, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.5, 172.1, 158.8, 133.1, 131.1, 130.9, 130.6, 128.9, 128.7, 43.2, 34.7, 29.2, 22.2, 21.0, 16.2, 11.3; **MS** (ESI) *m/z* 272 [M+H]⁺; HRMS Calculated for C₁₆H₁₈NO₃⁺ 272.1281; Found: 272.1296. [M+H]⁺.

1,3-dimethyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2z): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2z** as white solid in 73% yield (68.01 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.43-7.40 (m, 3H), 7.19-7.16 (m, 2H), 5.89-5.79 (m, 1H), 5.33-5.23 (m, 2H), 4.51 (dd, *J* = 14.2, 6.5 Hz, 1H), 4.36 (dd, *J* = 15.4, 5.8 Hz, 1H), 2.27 (d, *J* = 5.9 Hz, 1H), 2.09 (d, *J* = 5.9 Hz, 1H), 1.23 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.3, 171.7, 158.4, 130.9, 130.7, 130.6, 128.9, 119.6, 45.5, 43.7, 34.8, 29.1, 16.1; **MS** (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₁₆H₁₆NO₃⁺270.1125; Found: 270.1117. [M+H]⁺.

1-methyl-6-phenyl-3-(prop-2-yn-1-yl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2aa): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2aa** as brown solid in 72% yield (66.57 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.42-7.39 (m, 3H), 7.18-7.16 (m, 2H), 4.64 (dd, J = 16.6, 2.5 Hz, 1H), 4.53 (dd, J = 16.5, 2.5 Hz, 1H), 2.31 (d, J = 6.0 Hz, 1H), 2.23 (t, J = 2.5 Hz, 1H), 2.11 (d, J = 6.0 Hz, 1H), 1.24 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 185.7, 171.1, 157.5, 130.7, 130.5, 128.9, 76.9, 71.7, 45.6, 34.8, 30.6, 29.0, 16.0; MS (ESI) m/z 255 [M+H]⁺; HRMS Calculated for C₁₆H₁₄NO₃⁺ 268.0968; Found: 268.0971. [M+H]⁺.

3-cyclopropyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2ab): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2ab** as white solid in 68% yield (63.35 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.44-7.39 (m, 3H), 7.18-7.15 (m, 2H), 2.74-2.68 (m, 1H), 2.18 (d, *J* = 5.9 Hz, 1H), 2.07 (d, *J* = 5.9 Hz, 1H), 1.25-1.15 (m, 4H), 1.12-1.05 (m, 1H), 0.91-0.83 (m, 1H), 0.66-0.59 (m, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.3, 173.0, 159.4, 131.0, 130.5, 128.9, 45.8, 35.0, 29.1, 25.3, 16.0, 9.0, 7.1; **MS** (ESI) *m/z* 270 [M+H]⁺; HRMS Calculated for C₁₆H₁₆NO₃⁺270.1125; Found: 270.1133. [M+H]⁺.

3-cyclobutyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (2ac): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **2ac** as white solid in 65% yield (63.71 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.42-7.38 (m, 3H), 7.18-7.15 (m, 2H), 4.92-4.83 (m, 1H), 2.70-2.59 (m, 2H), 2.35-2.29 (m, 3H), 2.08 (d, *J* = 5.9 Hz, 1H), 1.92-1.85 (m, 1H), 1.82-1.74 (m, 1H), 1.20 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 186.7, 172.6, 159.0, 132.0, 130.6, 130.1, 128.9, 128.8, 49.2, 45.6, 35.1, 29.2, 28.7, 27.7, 16.1, 15.4; **MS** (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₁₇H₁₈NO₃⁺ 284.1281; Found: 284.1287. [M+H]⁺.

1,6-dimethyl-3-(*p*-tolyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4a): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 4a as white solid in 80% yield (67.33 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 3H), 7.08-7.05 (m, 2H), 2.23 (d, *J* = 5.8 Hz, 1H), 1.57 (s, 3H), 1.55-1.53 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 188.3, 172.5, 158.3, 133.9, 129.3, 129.0, 127.7, 36.0, 34.0, 31.2, 14.1, 12.2; MS (ESI) *m*/*z* 255 [M+H]⁺; HRMS Calculated for C₁₄H₁₄NO₃⁺ 244.0968; Found: 244.0962. [M+H]⁺.

1,6-dimethyl-3-(*p*-tolyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4b): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 4b as white solid in 83% yield (73.88 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 10.6 Hz, 2H), 2.31 (s, 3H), 2.15 (d, *J* = 5.8 Hz, 1H), 1.51 (s, 3H), 1.48 (d, *J* = 6.2 Hz, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 188.4, 172.5, 158.5, 139.1, 131.2, 130.0, 127.4, 36.0, 34.0, 31.2, 21.2, 14.2, 12.3; MS (ESI) *m*/*z* 255 [M+H]⁺; HRMS Calculated for C₁₅H₁₆NO₃⁺ 258.1125; Found: 258.1120. [M+H]⁺.

3-(4-methoxyphenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4c): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 4c as white solid in 78% yield (73.75 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.01-6.94 (m, 4H), 3.81 (s, 3H), 2.21 (d, *J* = 5.8 Hz, 1H), 1.59 (s, 3H), 1.55 (d, *J* = 5.8 Hz, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 188.5, 172.7, 159.8, 158.8, 128.8, 126.5, 121.7, 114.7, 114.2, 55.5, 36.1, 34.0, 31.3, 14.3, 12.4; **MS** (ESI) *m/z* 274 [M+H]⁺; HRMS Calculated for C₁₅H₁₆NO₄⁺ 274.1074; Found: 274.1076. [M+H]⁺.

3-(4-methoxyphenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4d): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **4d** as white solid in 80% yield (72.31 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.17-7.11 (m, 2H), 7.08-7.04 (m, 2H), 2.22 (d, *J* = 5.8 Hz, 1H), 1.60 (s, 3H), 1.57 (d, *J* = 5.8 Hz, 1H), 1.55 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 188.1, 172.5, 162.6 (d, *J*_{C-F} = 247.0 Hz, 1C), 158.4, 129.7 (d, *J*_{C-F} = 8.7 Hz, 1C), 129.6, 116.5 (d, *J*_{C-F} = 22.4 Hz, 1C), 77.4, 36.2, 34.1, 31.3, 14.3, 12.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.5 (s, 1F);s **MS** (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₁₄H₁₃FNO₃⁺ 262.0874; Found: 262.0867. [M+H]⁺.

3-(4-chlorophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4e): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **4e** as white solid in 81% yield (77.82 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.45-7.42 (m, 2H), 7.05-7.01 (m, 2H), 2.22 (d, *J* = 5.8 Hz, 1H), 1.61 (s, 3H), 1.58 (d, *J* = 5.8 Hz, 1H), 1.57 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 188.0, 172.3, 158.2, 135.2, 132.3, 129.7, 129.2, 129.1, 36.2, 34.1, 31.3, 14.3, 12.4; **MS** (ESI) *m*/*z* 278 [M+H]⁺; HRMS Calculated for C₁₄H₁₃ClNO₃⁺ 278.0578; Found: 278.0587. [M+H]⁺.

3-(4-chlorophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4f): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **4f** as brown solid in 78% yield (86.93 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.90-7.60 (m, 2H), 7.01-6.97 (m, 2H), 2.24 (d, *J* = 5.8 Hz, 1H), 1.62 (s, 3H), 1.60 (d, *J* = 5.8 Hz, 1H), 1.58 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 188.0, 172.3, 158.2, 132.9, 132.7, 132.1, 129.6, 123.3, 36.2, 34.1, 31.3, 14.3, 12.4; **MS** (ESI) *m/z* 322 [M+H]⁺; HRMS Calculated for C₁₄H₁₃BrNO₃⁺ 322.0073; Found: 322.0072. [M+H]⁺.

3-(4-iodophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4g): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **4g** as white solid in 78% yield (102.17 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 2.23 (d, *J* = 5.8 Hz, 1H), 1.60 (s, 3H), 1.60 (d, *J* = 5.8 Hz, 1H), 1.59 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 188.0, 172.3, 158.2, 138.7, 138.0, 133.6, 129.7, 121.6, 95.0, 36.2, 34.1, 31.3, 14.3, 12.4; **MS** (ESI) *m/z* 370 [M+H]⁺; HRMS Calculated for C₁₄H₁₃INO₃⁺ 369.9935; Found: 369.9934. [M+H]⁺.

3-(4-iodophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4h): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **4h** as white solid in 70% yield (99.6 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.47-7.43 (m, 1H), 7.18-7.09 (m, 2H), 2.84 (d, *J* = 5.8 Hz, 1H), 1.64 (s, 3H), 1.60 (d, *J* = 5.8 Hz, 1H), 1.59 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 187.9, 171.3, 157.6, 139.9, 130.9, 129.9, 129.6, 121.6, 97.3, 36.5, 34.5, 31.5, 14.5, 12.7; **MS** (ESI) *m/z* 370 [M+H]⁺; HRMS Calculated for C₁₄H₁₃INO₃⁺ 369.9935; Found: 369.9946. [M+H]⁺.

1,6-dimethyl-3-(naphthalen-1-yl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (*dr*: 1:1) (4i): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 4i as white solid in 75% yield (76.11 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.89-7.83 (m, 4H), 7.49-7.41 (m, 5H), 7.40-7.32 (m, 2H), 7.19-7.16 (m, 3H), 2.45 (d, J = 5.8 Hz, 1H), 2.31 (d, J = 5.8 Hz, 1H), 1.67 (d, J = 5.8 Hz, 1H), 1.59-1.58 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 188.6, 188.3, 172.7, 172.2, 159.0, 158.6, 134.5, 134.4, 131.2, 130.5, 130.1, 129.9, 129.5, 129.3, 129.0, 128.6, 127.5, 127.4, 126.9, 126.6, 126.4, 125.6, 125.5, 125.3, 121.7, 120.8, 36.3, 36.1, 34.4, 34.1, 31.6, 31.5, 14.5, 14.3, 12.5, 12.4; **MS** (ESI) *m/z* 294 [M+H]⁺; HRMS Calculated for C₁₈H₁₆NO₃⁺294.1125; Found: 294.1129. [M+H]⁺.

3-benzyl-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4j): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **4j** as white solid in 71% yield (63.19 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.30 (d, *J* = 7.0 Hz, 2H), 7.24-7.19 (m, 3H), 4.91 (d, *J* = 13.7 Hz, 1H), 4.81 (d, *J* = 13.7 Hz, 1H), 1.80 (d, *J* = 5.6 Hz, 1H), 1.48 (s, 3H), 1.41 (s, 3H), 1.31 (d, J = 5.6 Hz, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 188.0, 172.3, 158.5, 135.9, 129.1, 128.6, 128.0, 44.6, 35.7, 33.7, 31.2, 14.3, 12.3; **MS** (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₁₅H₁₅NNaO₃⁺ 280.0944; Found: 280.0937. [M+Na]⁺.

3-benzyl-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (4k): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **4k** as white solid in 82% yield (98.55 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 6.64 (s, 2H), 4.88 (d, *J* = 13.6 Hz, 1H), 4.81 (d, *J* = 13.6 Hz, 1H), 3.82 (s, 6H), 3.80 (s, 3H), 1.86 (d, *J* = 5.5 Hz, 1H), 1.56 (s, 3H), 1.48 (s, 3H), 1.40 (d, J = 5.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 187.9, 172.3, 158.5, 153.1, 137.7, 131.3,

106.6, 60.7, 56.1, 44.8, 35.7, 33.7, 31.2, 14.2, 12.3; **MS** (ESI) m/z 348 [M+H]⁺; HRMS Calculated for C₁₈H₂₂NO₆⁺ 348.1442; Found: 348.1445. [M+H]⁺.

6-(4-chlorophenyl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (5a): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired 5a as white solid in 72% yield (84.64 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.38-7.35 (m, 5H), 7.13-7.07 (m, 4H), 2.48 (d, *J* = 6.0 Hz, 1H), 2.11 (d, *J* = 7.8 Hz, 1H), 1.21 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.4, 171.8, 158.5, 135.2, 133.8, 132.0, 129.5, 129.3, 129.2, 127.8, 45.1, 35.2, 29.0, 16.2; **MS** (ESI) *m*/*z* 340 [M+H]⁺; HRMS Calculated for C₁₉H₁₅ClNO₃⁺ 340.0735; Found: 340.0758. [M+H]⁺.

6-(4-methoxyphenyl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (5b): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **5b** as white solid in 75% yield (87.01 mg); ¹H-NMR (400 MHz, CDCl₃) δ 7.52-7.45 (m, 3H), 7.18-7.17 (m, 2H), 7.16-7.12 (m, 2H), 6.99-6.96 (m, 2H), 3.85 (s, 3H), 2.52 (d, J = 5.9 Hz, 1H), 2.19 (d, J = 6.0 Hz, 1H), 1.28 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 187.1, 172.3, 160.0, 158., 134.0,

131.8, 129.5, 129.3, 127.8, 122.5, 114.5, 55.4, 45.3, 35.6, 29.4, 16.2; **MS** (ESI) m/z 255 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₄⁺ 336.1230; Found: 336.1223. [M+H]⁺.

6-([**1**,**1**'-**biphenyl**]-**4**-**y**])-**1**-**methyl**-**3**-**phenyl**-**3**-**azabicyclo**[**4**.**1**.**0**]**heptane**-**2**,**4**,**5**-trione (**5**c): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **5**c as white solid in 71% yield (93.69 mg); ¹**H**-**NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.5 Hz, 2H), 7.64-7.61 (m, 2H), 7.53-7.45 (m, 5H), 7.41-7.37 (m, 1H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.20-7.17 (m, 2H), 2.59 (d, *J* = 6.3 Hz, 1H), 2.27 (d, *J* = 6.3 Hz, 1H), 1.33 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 186.8, 172.2, 158.8, 142.0, 140.2, 134.0, 131.1, 129.7, 129.5, 129.3, 128.9, 127.9, 127.7, 127.2, 45.6, 35.4, 29.2, 16.3; MS (ESI) *m*/*z* 255 [M+H]⁺; HRMS Calculated for C₂₅H₂₀NO₃⁺ 382.1438; Found: 382.1430. [M+H]⁺.

1,6-dimethyl-3-(4-(phenylethynyl)phenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (6): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **6** as dark brown solid in 65% yield (71.75 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 7.54-7.51

(m, 2H), 7.36-7.33 (m, 3H), 7.08-7.05 (m, 2H), 2.23 (d, J = 5.8 Hz, 1H), 1.60 (s, 3H), 1.56 (d, J = 4.8 Hz, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 188.1, 172.3, 158.2, 133.5, 132.5, 131.7, 128.5, 128.4, 127.9, 124.4, 122.8, 90.7, 88.3, , 36.1, 34.1, 31.2, 14.3, 12.4; **MS** (ESI) *m*/*z* 255 [M+H]⁺; HRMS Calculated for C₂₂H₁₈NO₃⁺ 344.1281; Found: 344.1274. [M+H]⁺.

3-([1,1'-biphenyl]-4-yl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione (7): Purification by silica gel chromatography (PE:EA=85:15) afforded the desired **7** as white solid in 60% yield (114.26 mg); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.67-7.64 (m, 2H), 7.59-7.57 (m, 2H), 7.46-7.42 (m, 2H), 7.39-7.35 (m, 1H), 7.18-7.15 (m, 2H), 2.26 (d, *J* = 5.8 Hz, 1H), 1.63 (s, 3H), 1.59 (d, *J* = 7.4 Hz, 4H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 13C-NMR (101 MHz, CHLOROFORM-D) δ 188.6, 172.8, 158.7, 134.0, 133.0, 132.2, 129.0, 128.8, 128.4, 124.9, 123.3, 36.6, 34.6, 31.7, 14.8, 12.9; **MS** (ESI) *m/z* 255 [M+H]⁺; HRMS Calculated for C₂₀H₁₈NO₃⁺ 320.1281; Found: 320.1270. [M+H]⁺.

(9) Copies of ¹H NMR, ¹³C NMR, ¹⁹F NMR and Mass Spectra

¹H NMR spectrum of 1g (400 MHz, CDCl₃)

N-(4-isopropylphenyl)-N-(3-phenylpropioloyl)methacrylamide

N-(4-isopropylphenyl)-N-(3-phenylpropioloyl)methacrylamide

HRMS spectrum of 1g

Qualitative Compound Report

N-(4-(methylthio)phenyl)-N-(3-phenylpropioloyl)methacrylamide

N-(4-(methylthio)phenyl)-N-(3-phenylpropioloyl)methacrylamide

HRMS spectrum of 1i

Counts vs. Mass-to-Charge (m/z)

N-(3-phenylpropioloyl)-N-(2-(phenylthio)phenyl)methacrylamide

N-(3-phenylpropioloyl)-N-(2-(phenylthio)phenyl)methacrylamide

HRMS spectrum of 11

Qualitative Compound Report

N-(2-bromo-4-methylphenyl)-N-(3-phenylpropioloyl)methacrylamide

N-(2-bromo-4-methylphenyl)-N-(3-phenylpropioloyl)methacrylamide

HRMS spectrum of 1m

1

Qualitative Compound Report

¹H NMR spectrum of 1n (400 MHz, CDCl₃)

N-(2,6-diethylphenyl)-N-(3-phenylpropioloyl)methacrylamide

N-(2,6-diethylphenyl)-N-(3-phenylpropioloyl)methacrylamide

HRMS spectrum of 1n

Counts vs. Mass-to-Charge (m/z)

N-(benzo[d][1,3]dioxol-4-yl)-N-(3-phenylpropioloyl)methacrylamide

N-(benzo[d][1,3]dioxol-4-yl)-N-(3-phenylpropioloyl)methacrylamide

HRMS spectrum of 10

Counts vs. Mass-to-Charge (m/z)

N-([1,1'-biphenyl]-3-yl)-N-(3-phenylpropioloyl)methacrylamide

N-([1,1'-biphenyl]-3-yl)-N-(3-phenylpropioloyl)methacrylamide

Mass spectrum of 1p

Qualitative Compound Report

N-(3-phenylpropioloyl)-N-(thiophen-2-ylmethyl)methacrylamide

N-(3-phenylpropioloyl)-N-(thiophen-2-ylmethyl)methacrylamide

HRMS spectrum of 1s

Qualitative Compound Report

N-(3-phenylpropioloyl)-N-(pyridin-4-ylmethyl)methacrylamide

N-(3-phenylpropioloyl)-N-(pyridin-4-ylmethyl)methacrylamide

HRMS spectrum of 1t

Counts vs. Mass-to-Charge (m/z)

N-(furan-2-ylmethyl)-N-(3-phenylpropioloyl)methacrylamide

N-(furan-2-ylmethyl)-N-(3-phenylpropioloyl)methacrylamide

HRMS spectrum of 1u

Qualitative Compound Report

O Agilent Technologies

Page 1 of 1

Printed at: 12:24 on:11-05-2024

N-(4-fluorobenzyl)-N-(3-phenylpropioloyl)methacrylamide

N-(4-fluorobenzyl)-N-(3-phenylpropioloyl)methacrylamide

N- (4-fluorobenzyl)-N- (3-phenyl propioloyl) methacrylamide

Mass spectrum of 1v

Qualitative Compound Report

G Agliner Technologies

Page 1 of 1

Printed at: 16:20 on:03-05-2024

N-(3-phenylpropioloyl)-N-propylmethacrylamide

N-(3-phenylpropioloyl)-N-propylmethacrylamide

N-(3-phenylpropioloyl)-N-propylmethacrylamide

N-allyl-N-(3-phenylpropioloyl)methacrylamide

N-allyl-N-(3-phenylpropioloyl)methacrylamide

HRMS spectrum of 1z

N-(3-phenylpropioloyl)-N-(prop-2-yn-1-yl)methacrylamide

N-(3-phenylpropioloyl)-N-(prop-2-yn-1-yl)methacrylamide

HRMS spectrum of 1aa

N-cyclopropyl-N-(3-phenylpropioloyl)methacrylamide

N-cyclopropyl-N-(3-phenylpropioloyl)methacrylamide

Mass Spectrum of 1ab

N-cyclopropyl-N-(3-phenylpropioloyl)methacrylamide

¹H NMR spectrum of 1ae (400 MHz, CDCl₃)

N-(3-(4-methoxyphenyl)propioloyl)-N-phenylmethacrylamide

N-(3-(4-methoxyphenyl)propioloyl)-N-phenylmethacrylamide

HRMS spectrum of 1ae

Qualitative Compound Report

Page 1 of 1

Printed at: 15:35 on:01-05-2024

N-(3-([1,1'-biphenyl]-4-yl)propioloyl)-N-phenylmethacrylamide

N-(3-([1,1'-biphenyl]-4-yl)propioloyl)-N-phenylmethacrylamide

ł

998 121

HRMS spectrum of 1af

Qualitative Compound Report

Comment	MS Scan.			Acquired Time DA Nethod	Default ri	4 (3:30:50			
Sample Group Acquisition SW 63 Version Q-	00 series TOF/65 TOF 8.05.01 (85)	100 series 125)	Lefo.	3					
Compound Table	RT	Masa	Abund	Form		Tgt Hase	Şilf (ppm)	MFG Formula	08 Formula
Cod 1: C35 H19 N C	02 0.359	365.1426	2003384	C35 H19	N 02	365.1416	6 2.7	C25 H19 N 02	C25 H19 W 02
Compound Label Cpd 1: C25 H19 N 02	m/s 366-1498	RT 0.359	Algorith Find By F	m prmula	Mass 365.1426	5			
x10 t Cpd 1: C25 H15	359	IC(366.148	19, 38A 13	08) Scan Frag-	175.0V 314	Ad			
	1								
2	1								
1-									
0 01 02 03	04 05 00	6 0,7 0	8 0 9	1 11 12	13 14 1	15 1.6 1.3	7 1.8		
	1.0000 1000 AND	Counts	s vs. Acqu	istion Time (mi	n).				
ME Exections									
MS Spectrum	9 N C2: + FBF 1	Spectrum (0.343, 0.3	193-0.426 min)	314-A.d Sut	binect			
MS Spectrum x10 6 Cpd 1: C25 H11	9 N O2: + FBF 1	Spectrum (0.343, 0.3	193-0.426 min)	314-A.d Sut	binact			
MS Spectrum x10 6 Cpd 1: C25 H11 2-	9 N C2: + FBF 1	Spectrum (0.343, 0.3	193-0.426 min)	314-A.d Sut	birneci			
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5	9 N C2: + FBF 1	Spectrum (0.343, 0.3	193-0.426 min)	314-A.d Sut	binact			
NS Spectrum x10 6 Cpd 1: C25 H11 2- 1.5- 1-	9 N C2: + FBF 1	Spectrum (0.343, 0.3	193-0.426 min)	314-A.d Sut	bract			
NS Spectrum x10 6 Cpd 1: C25 H11 2- 1.5 1- 0.5	9 N C2: + FBF 1	Spectrum (0.343, 0.3	193-0.426 min)	314-A.d Sut	388.1 (M+5)	318 01+		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 1 0.5 0 368 3	an co: + FBF 5 70 372 3	5pectrum (374 376 Counti	0.343,03 6 378 5 v5. Mass	193-0.426 min) 300 38 s-to-Charge (m	2 364 2)	388.1 (M+N 386 360	318 31+ 3 392		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 3 6 3 3 58 3 HS Zoomed Spectrum	an co: + FBF 5 70 372 3	Spectrum (3 ³⁴ 3 ³⁷ Count	(0.343,03 6 378 5 vs. Mass	193-0.426 min) 380 38 s-to-Charge (mr	2 364 2/	388.1 (b)+5 386 388	318 31+ 8 392		
NS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 1.5 0.5 0.5 0.5 358 3' HS Zoomed Spectrum x10 6 Cpd 1: C25 H11	9 N C2: + FBF 5 70 3 72 3 9 N C2: + FBF 5	Spectrum (374 377 Spectrum ((0.343, 0.3 6 378 6 vs. Mass (0.343, 0.3	193-0.426 min) 380 38 s-to-Charge (min) 193-0.426 min)	314-A.d Sut 2 364 21 514-A.d Sut	388.1 (M+N 386 388	318 201+ 8 390		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 0.5 0 358 3' HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 358 3' HS Zoomed Spectrum	9 N C2: + FBF 5 70 3-72 3 9 N C2: + FBF 5	Spectrum () 374 376 Counts Spectrum () 368,1496	(0.343, 0.3 6 378 5 vs. Mass (0.343, 0.3 6	193-0.426 min) 385 38 9-to-Charge (min) 193-0.426 min)	2 364 27 364 514-A.d Sul	388.1 (14-5 386 388 386 388	318 301+ 8 300		
MS Spectrum x10 6 Cpd 1: C25 H11 2- 1.5- 0- 368 3' MS Zoomed Spectrum x10 6 Cpd 1: C25 H11 368 3' HS Zoomed Spectrum	an O2: + FBF 5 70 372 3 9 N O2: + FBF 5	Spectrum () 374 376 Count Spectrum () 360,1479	(0.343, 0.3 6 378 5 v5. Mass (0.343, 0.3 6	193-0.426 min) 380 38 a-to-Charge (min) 193-0.426 min)	2 364 27 364 514-A.d Sut	388.1 (8+5 386 368 366 368	318 201+ 8 390		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 368 3 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 2 1.5 1 1 1 1 1 1 1 1 1 1 1 1 1	9 N CO2: + FBF 5 70 372 3 9 N CO2: + FBF 5	Spectrum (374 374 Counti Spectrum (360.1499	0.343,03 6 378 5 vs. Mass 0.343,03 6	193-0.426 min) 380 38 e-to-Charge (mi 193-0.426 min)	2 384 2 384 2) 514-A.d Sul	388.1 (84-5 386 363 boract	318 al+ 8 390		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 368 3 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 2 1.5 1 0.5	9 N C2: + FBF 5 70 372 3 9 N C2: + FBF 5	Spectrum () 374 377 Counts 368,1498 (M+PG+	0.343,03 6 378 5 v5. Mass 0.343, 0.3 6	393-0.426 min) 390 38 s-to-Charge (mi 193-0.426 min) 393-1.	2 364 2) 514-A.d Sut 514-A.d Sut	388.1 ((4+5) 386 364 809001	318 31+ 8 390		
MS Spectrum x10 6 Cpd 1: C25 H11 2- 1.5- 0- 358 3 HS Zoomad Spectrum x10 6 Cpd 1: C25 H11 358 3 HS Zoomad Spectrum x10 6 Cpd 1: C25 H11 0.5- 1- 0.5- 0.	9 N C2: + FBF 5 70 372 3 9 N C2: + FBF 5	Spectrum () 374 377 Counts 300,1494 304+64	0.343.03 6 378 5 v5.Mass 0.343.03 6	393-0.426 min) 390 38 e-to-Charge (min) 193-0.426 min) 398-1 (M+h)	2 304 2 304 514-A.d Sut 318	388 3 (14+5 386 368 509001	318 2014 8 399		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 358 3 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 358 3 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 0.5 0 358 3 HS Zoomed Spectrum	9 N C2: + FBF 5 70 3 72 3 9 N C2: + FBF 5 350 355 360	Spectrum () 374 376 Count 360,1496 ()M+90+ ()M+90+	0.343.03 6 378 5 vs. Masc 0.343.03 6 9 370 375 8 vs. Masc	193-0.426 min) 380 38 e-to-Charge (min) 193-0.426 min) 380 385 s-to-Charge (min)	2 364 2) 364 514-A.d Sul 318 0;* 990 395 2)	5188.1 (10+5) 386 389 bried 400 405 4	318 301- 8 300 410 415		
MS Spectrum x10 6 2 1.5 0 368 3 MS Zoomed Spectrum x10 6 Cod 1: C25 H11 368 3 MS Zoomed Spectrum X10 7 MS Zoomed Spectrum X10 7 MS Zoomed Spectrum X10 7 368 3 MS Zoomed Spectrum X10 7 X10 7 X1	a N C2: + FBF 5 70 3.72 3 9 N C2: + FBF 5 350 355 360 81	Spectrum () 374 376 Count 360.1496 (M+P)+ (M+P)+	0.343.03 6 378 5 vs. Mass 0.343.03 6 370 375 5 vs. Mass	193-0.426 min) 385 38 e-to-Charge (mi 193-0.426 min) 385-0.426 min) 385.1 385.5 5-to-Charge (mi	2 384 22 384 21 384 21 384 318 30° 390 395	388.1 (U+5) 386 388 000cl	318 201+ 8 380 410 415		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 368 2 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 0.5 0 368 2 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 0.5 0 340 345 MS Spectrum Peak L1 (m/x = 2 1.5 1 0.5 0 340 345	a N CO2: + FBF 5 70 3772 3 9 N CO2: + FBF 5 9 N CO2: + FBF 5	Spectrum () 374 376 Counts Spectrum () 368,1496 (M+PG+ 0 365 1 Counts 0 365 1 Counts 0 365 1	0.343.0.3 6 378 5 vs. Mass 0.343.0.3 6 9 770 375 5 vs. Mass	380 38 193-0.426 min) 380 38 193-0.426 min) 380-0.426 min) 380 585 540-Charge (min) 380 585 540-Charge (min)	2 384 22 384 21 384 318 80° 390 395	388.1 (0+5 386 383 009001	318 201+ 8 390 410 415		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 368 2 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 0.5 0 368 2 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 0.5 0 340 345 MS Spectrum Peak L1 m/z z Alassi 340 345 MS Spectrum Peak L3 0 347 15 1 20 340 345 MS Spectrum Peak L3 0 347 15 1 20 340 345 MS Spectrum Peak L3 0 367,1532 1 5 1 50 340 345 1 50 1 50	a N CO2: + FBF 5 30 372 3 9 N CO2: + FBF 5 9 N CO2: + FBF	Spectrum () 374 376 Counts 366,1499 366,149 360,149360,149 360,1	0.343.0.3 6 378 6 vs. Mass 0.343, 0.3 6 770 375 6 vs. Mass	380 38 a to-Charge (min) 383-0.426 min) 383-0.426 min) 388.1 (M+P) 380 385 s-to-Charge (min) 388.1 (M+P) 540-Charge (min)	2 364 22 364 514-A.d Sut 318 (0)* 390 395	388.1 (0+5 386 388 009001	318 201+ 8 390		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 368 2 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 0.5 0 368 2 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 0.5 0 340 345 MS Spectrum Peak L3 m/z z Along 340 345 MS Spectrum Peak L3 m/z z Along 366,1498 1 200 367,1533 1 55 368,1557 1 55 369,1557 1 55 370,1557 1 55	P N CO2: + FBF 5 70 372 3 P N CO2: + FBF 5 350 355 360 st f f f f f f f f f f f f f	Spectrum () 374 377 Counts 366,349 36,34936,349 36,349 36,349 36,3	0.343.03 6 378 6 vs. Mass 0.343,03 6 370 375 5 vs. Mass	380 38 ato-Charge (mr) 383-0.426 min) 383-0.426 min) 385 385 s-to-Charge (mr) 385 385 s-to-Charge (mr) (M+P) (M+P) (M+P) (M+P) (M+P)	2 364 22 364 514-A.d Sut 514-A.d Sut 318 (0)* 390 395	388.1 (84+5 386 383 009001	318 201+ 8 390 410 415		
MS Spectrum x10 6 Cpd 1: C25 H11 2 1.5 0 368 3 HS Zoomed Spectrum x10 6 Cpd 1: C25 H11 2 1.5 1 0.5 0 340 345 MS Spectrum Peak L1 m/z 2 340 345 MS Spectrum Peak L1 20 340 345 1 50 368,1557 1 368,1587 1 378,1587	a N CO2: + IFBF 5 70 372 3 8 N CO2: + FBF 5 8	Spectrum () 374 377 Counts Spectrum () 368,1498 M++G+ 0 365 3 Counts 0 365 3 Counts 0 365 3 NO2	0.343.03 6 378 5 vs. Mass 0.343, 0.3 6 9 770 375 5 vs. Mass	380 385 ato-Charge (min) 380 385 ato-Charge (min) 383-0.426 min) 380 385 s-to-Charge (min) 380 385 s-to-Charge (min) 380 385 s-to-Charge (min) (M+P)	2 364 2) 364 514-A.d Sut 518 60° 590 395	388.1 (14+5 386 363 boract	318 al+ 8 390		
MS Spectrum x10 6 Cpd 1: C25 H11 2- 1.5 0 368 3 MS Spectrum x10 6 Cpd 1: C25 H11 0.5 0 368 3 MS Spectrum Pask Li M/z z 1.5 1 0.5 0 340 345 MS Spectrum Pask Li 20 360,158 1 360,158 1 370,158 1 37	P N C2: + FBF 1 70 372 3 9 N C2: + FBF 3 9 N C2: + FBF 3 350 355 360 9 9 N C2: + FBF 3 9 N C2: + FBF	Spectrum () 374 377 Counts 368,1494 348+9+ 0 365 3 Counts 0 365 3 Counts 10 10 10 10 10 10 10 10 10 10	0.343.03 6 378 6 378 6 95 Mase 0.343.03 6	380 38 abo-Charge (min) 380 38 abo-Charge (min) 383-0.425 min) 380 385 s-to-Charge (min) 380 385 s-to-Charge (min) 380 385 (M+h)+ (M+h)+ (M+h)+ (M+h)+ (M+h)+ (M+h)+ (M+h)+ (M+h)+ (M+h)+	314-A.d Sut 2 384 514-A.d Sut 514-A.d Sut 318 107 390 395	388.1 ((4+5) 386 363 briad)	318 al+ 8 390		
MS Spectrum x10 6 Cpd 1: C25 H11 2- 1.5- 1- 0.5- 0 368 3: MS Spectrum x10 6 Cpd 1: C25 H11 2- 1.5- 1- 0.5- 0 340 345 MS Spectrum Peak Li MS Spectrum Peak Li 340 345 MS Spectrum Peak Li 360.158 1 360.158 1 370.158 1 37	P N C2: + FBF 5 70 372 3 9 N C2: + FBF 5 9 N C2: + FBF	Spectrum () 374 377 Counts Spectrum () 300,1478 20144994 0 365 3 Counts mN02 N02 N02 N02 N02 N02 N02 N02 N02 N02	0.343.03 6 378 6 378 6 95 Mass 0.343.03 6 9 770 375 8 9 70 375	193-0.426 min) 380 38 a-to-Charge (min) 193-0.426 min) 193-0.426 min) 388.1 (M+P) 380 585 560 585 560 585 (M+P) (M+P	314-A.d Sut 2 394 21 514-A.d Sut 318 (0)* 390 395 20	388.1 ((4+5) 386 364 beredi	318 al+ 8 390		

N-methacryloyl-N-(p-tolyl)but-2-ynamide

HRMS spectrum of 3b

Qualitative Compound Report

🔅 Agilent Technologies

Page 1 of 1

Printed at: 15:15 on:03-05-2024

N-(4-bromophenyl)-N-methacryloylbut-2-ynamide

180.0

HRMS spectrum of 3f

Apilant Technologies

Printed at: 12:39 on:11-05-2024

N-benzyl-N-methacryloylbut-2-ynamide

N-benzyl-N-methacryloylbut-2-ynamide

HRMS spectrum of 3j

1-methyl-3,6-diphenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1-methyl-3,6-diphenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2a

1-methyl-6-phenyl-3-(p-tolyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1-methyl-6-phenyl-3-(p-tolyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(4-methoxyphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(4-methoxyphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2c

Qualitative Compound Report

ž

3-(4-bromophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(4-bromophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2d

 $\label{eq:constraint} 3-(4-fluorophenyl)-1-methyl-6-phenyl-3-azabicyclo [4.1.0] heptane-2,4,5-trione$

 7.3
 7.3
 7.3
 7.1

 ノノハハ、ノトトトレイン
 ノトトレート
 レートレート
 レートレート
 レートレート

 期間常期時間
 酒飯
 四飯
 第三部第三部
 日

3-(4-fluorophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

 $\label{eq:constraint} 3-(4-fluorophenyl)-1-methyl-6-phenyl-3-azabicyclo [4.1.0] heptane-2,4,5-trione$

HRMS spectrum of 2e

¹H NMR spectrum of 2f (400 MHz, CDCl₃)

3-(4-chlorophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(4-chlorophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2f

3-(4-isopropylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(4-isopropylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

0.0

I

9ET 002

HRMS spectrum of 2g

1-methyl-6-phenyl-3-(4-propylphenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1-methyl-6-phenyl-3-(4-propylphenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2h

1-methyl-3-(4-(methylthio)phenyl)-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1-methyl-3-(4-(methylthio)phenyl)-6-phenyl-3-azabicyclo [4.1.0] heptane-2,4,5-trione

HRMS spectrum of 2i

3-(4-acetylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(4-acetylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2j

3-(2-iodophenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

 $\label{eq:constraint} 3-(2-iodophenyl)-1-methyl-6-phenyl-3-azabicyclo [4.1.0] heptane-2,4,5-trione$

HRMS spectrum of 2k

1-methyl-6-phenyl-3-(2-(phenylthio)phenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1-methyl-6-phenyl-3-(2-(phenylthio)phenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2l

3-(2-bromo-4-methylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(2-bromo-4-methylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2m

Qualitative Compound Report

3-(2,6-diethylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(2,6-diethylphenyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2n

Qualitative Compound Report

3-(benzo[d][1,3]dioxol-4-yl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(benzo[d][1,3]dioxol-4-yl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 20

3-([1,1'-biphenyl]-2-yl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

8.0

3-([1,1'-biphenyl]-2-yl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

ethyl 4-(1-methyl-2,4,5-trioxo-6-phenyl-3-azabicyclo[4.1.0]heptan-3-yl)benzoate

ethyl 4-(1-methyl-2,4,5-trioxo-6-phenyl-3-azabicyclo[4.1.0]heptan-3-yl)benzoate

HRMS spectrum of 2q

3-benzyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-benzyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1.0

116.272

HRMS spectrum of 2r

1-methyl-6-phenyl-3-(thiophen-3-ylmethyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1-methyl-6-phenyl-3-(thiophen-3-ylmethyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2s

Qualitative Compound Report

¹H NMR spectrum of 2t (400 MHz, CDCl₃)

1-methyl-6-phenyl-3-(pyridin-4-ylmethyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2t (100 MHz, CDCl₃)

1-methyl-6-phenyl-3-(pyridin-4-ylmethyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

変形

HRMS spectrum of 2t

Qualitative Compound Report

¹H NMR spectrum of 2u (400 MHz, CDCl₃)

3-(furan-3-ylmethyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2u (100 MHz, CDCl₃)

3-(furan-3-ylmethyl)-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2u

Ŀ

186,147

Qualitative Compound Report

¹H NMR spectrum of 2v (400 MHz, CDCl₃)

3-(4-fluorobenzyl)-6-methyl-1-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2v (100 MHz, CDCl₃)

3-(4-fluorobenzyl)-6-methyl-1-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹⁹F NMR spectrum of 2v (376 MHz, CDCl3)

00.0 80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0 -120.0 -140.0 -180.0 -205.0 -220.0 -240.0 -260.0 -280.0 -3 |

225111-

HRMS spectrum of 2v

¹H NMR spectrum of 2w (400 MHz, CDCl₃)

1-methyl-6-phenyl-3-(3,4,5-trimethoxybenzyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2w (100 MHz, CDCl₃)

1-methyl-6-phenyl-3-(3,4,5-trimethoxybenzyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2w

¹H NMR spectrum of 2x (400 MHz, CDCl₃)

1,3-dimethyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2x (100 MHz, CDCl₃)

1,3-dimethyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2x

¹H NMR spectrum of 2y (400 MHz, CDCl₃)

1-methyl-6-phenyl-3-propyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2y (100 MHz, CDCl₃)

1-methyl-6-phenyl-3-propyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2y

¹H NMR spectrum of 2z (400 MHz, CDCl₃)

3-allyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2z (100 MHz, CDCl₃)

S 194

3-allyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2z

¹H NMR spectrum of 2aa (400 MHz, CDCl₃)

1-methyl-6-phenyl-3-(prop-2-yn-1-yl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2aa (100 MHz, CDCl₃)

1-methyl-6-phenyl-3-(prop-2-yn-1-yl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2aa

3-cyclopropyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2ab (100 MHz, CDCl₃)

3-cyclopropyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2ab

3-cyclobutyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 2ac (100 MHz, CDCl₃)

3-cyclobutyl-1-methyl-6-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 2ac s 204

¹H NMR spectrum of 4a (400 MHz, CDCl₃)

1,6-dimethyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 4a (100 MHz, CDCl₃)

1,6-dimethyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4a

¹H NMR spectrum of 4b (400 MHz, CDCl₃)

S 208

1,6-dimethyl-3-(p-tolyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 4b (100 MHz, CDCl₃)

1,6-dimethyl-3-(p-tolyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4b

¹H NMR spectrum of 4c (400 MHz, CDCl₃)

 $\label{eq:constraint} 3-(4-methoxyphenyl)-1, 6-dimethyl-3-azabicyclo [4.1.0] heptane-2, 4, 5-trione$

¹³C NMR spectrum of 4c (100 MHz, CDCl₃)

 $\label{eq:constraint} 3-(4-methoxyphenyl)-1, 6-dimethyl-3-azabicyclo [4.1.0] heptane-2, 4, 5-trione$

HRMS spectrum of 4c

3-(4-fluorophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 4d (100 MHz, CDCl₃)

3-(4-fluorophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹⁹F NMR spectrum of 4d (MHz, CDCl₃)

3-(4-fluorophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4d

Counts vs. Mass-to-Charge (m/z)

¹H NMR spectrum of 4e (400 MHz, CDCl₃)

 $\label{eq:constraint} 3-(4-chlorophenyl)-1, 6-dimethyl-3-azabicyclo \cite{4.1.0}] heptane-2, 4, 5-trione$

¹³C NMR spectrum of 4e (100 MHz, CDCl₃)

3-(4-chlorophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4e

Qualitative Compound Report

¹H NMR spectrum of 4f (400 MHz, CDCl₃)

3-(4-bromophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 4f (100 MHz, CDCl₃)

3-(4-bromophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4f

3-(4-iodophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-(4-iodophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4g

3-(2-iodophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1.0

¹³C NMR spectrum of 4h (100 MHz, CDCl₃)

3-(2-iodophenyl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4h

¹H NMR spectrum of 4i (400 MHz, CDCl₃)

1,6-dimethyl-3-(naphthalen-1-yl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (dr 1:1)

¹³C NMR spectrum of 4i (100 MHz, CDCl₃)

1,6-dimethyl-3-(naphthalen-1-yl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione (dr 1:1)

HRMS spectrum of 4i

3-benzyl-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-benzyl-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4j

1,6-dimethyl-3-(3,4,5-trimethoxybenzyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1,6-dimethyl-3-(3,4,5-trimethoxybenzyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 4k

¹H NMR spectrum of 5a (400 MHz, CDCl₃)

6-(4-chlorophenyl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

6-(4-chlorophenyl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

190.0

田道

HRMS spectrum of 5a

6-(4-methoxyphenyl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 5b (100 MHz, CDCl₃)

6-(4-methoxyphenyl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 5b

Counts vs. Mass-to-Charge (m/z)

¹H NMR spectrum of 5c (400 MHz, CDCl₃)

6-([1,1'-biphenyl]-4-yl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

¹³C NMR spectrum of 5c (100 MHz, CDCl₃)

6-([1,1'-biphenyl]-4-yl)-1-methyl-3-phenyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 5c

1,6-dimethyl-3-(4-(phenylethynyl)phenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

1,6-dimethyl-3-(4-(phenylethynyl)phenyl)-3-azabicyclo[4.1.0]heptane-2,4,5-trione

200.003

HRMS spectrum of 6

3-([1,1'-biphenyl]-4-yl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

3-([1,1'-biphenyl]-4-yl)-1,6-dimethyl-3-azabicyclo[4.1.0]heptane-2,4,5-trione

HRMS spectrum of 7

Counts vs. Mass-to-Charge (m/z)

(10) Isotopic study:

Figure S5: Mass spectrum

(11) Intermediate Adduct Data:

1) HRMS Data of TEMPO adduct:

Figure S6: Mass spectrum of TEMPO adduct

2) HRMS Data of BHT adduct:

Compound	Molecular Formula	Molecular weight	Molecular mass found
Ph + + Bu O + OH O + OH	C34H39NO4	525.2902	526.2976

Sample Type Instrument Name Acq Hethod IRM Calibration Status Comment	SMT Belt d Sample Instrument I MS Scanum		Gample Name 5MT / fosition P1 45 Jeer Name Jecquired Time 29 17 XA Method Defa	817 2023 13-44:45 R.m		
Sample Group Acquisition SW 6 Version 0	200 series 107/4528 se 107 8-05.01 (85125)	jufo. NS	3			
Compound Table Compound Label Opt 1: CM 809 N	RT Man	Abund 7902 27800	Parmula CD4 HD9 N D4	Tgt Mass (ppm) 525.2829 4.45	MFG Formula CH /09 N D4	DB Formula C24 IUS N O4
Compound Label	m/2 RT	Algorithm	Mass	1		
Cpd 1: C34 Hd9 N O4	548.2791 0.10	3 Find By For	mula 525.2	902		
lour mus				D Bran Emeral 75 /04 5		
4 103	IN N OR HESI EICISI	10.2002. 527.29	65, 546,2771, 545,280	b) ocen magni rinov a		
0.6						
0.4						
0.2						
01 02 03	04 05 06 07		11 12 13 14 19	16 17 18 19 2		
0 01 02 03	04 05 06 07 (Co	ola ola i unts va Acquist	1.1 1.2 1.3 1.4 1.5 tion Time (min)	5 16 17 18 19 2		
0 01 02 03	0.4 0.5 0.6 0.7 Co	0.8 0.9 1 unts vs Acquist	1.1 1.2 1.3 1.4 1.9 Son Time (min)	5 1.6 1.7 1.8 1.9 2		
0 01 02 03 M5 Spectrum x10 5 Cpd 1 C34 H39 4	0.4 0.5 0.6 0.7 Co N 04 + FBF Spectru	0.8 0.9 1 unts vs. Acquise m (0.086-0.219	1.1 1.2 1.3 1.4 1.5 Son Time (min) mm) SMT-BHT & Sub	5 18 17 18 19 2		
0 01 02 03 #5 Spectrue: #10 5 Cpd 1: C34 H09 4	04 05 06 07 G Go N O4 + FBF Spectru	0.8 0.9 i unts vs. Acquisz m (0.086-0.219	11 12 13 14 15 Son Time (nin) min) SMT-ISHT & Sub	5 16 17 18 19 2		
0 01 02 03 HS Spectrum #10 5 Cpd 1 C34 H09 4 3	0.4 0.5 0.6 0.7 Co IN 04: + FBF Spectru	0.8 0.9 1 unts vs Acquisz m (0.086-0.219	1.1 1.2 1.3 1.4 1.9 ison Time (min) min) SMT-ISHT & Sub	5 1.6 1.7 1.8 19 2		
0 01 02 03 HS Spectrum #10 5 Cod 1 C34 H99 4 3 2	0.4 0.5 0.6 0.7 Co	0.8 09 1 units vs. Acquise m (0.086-0.219	1.1 1.2 1.3 1.4 1.3 ion Time (min) men) SMT-BHT & Sub	5 1.8 1.7 1.8 1.9 2		
0 01 02 03 M5 Spectrum #10 5 Cod 1 C34 H35 4 3 2 1	0.4 0.5 0.6 0.7 Co	0.8 0.9 1 unts vs Acquist	1.1 1.2 1.3 1.4 1.3 ion Time (nin) min) SMT-BHT & Sub	5 1.6 1.7 1.8 1.9 2 tract 548.2751 (M+Na)+		
0 01 02 03 M5 Spectrum #10 5 Cost 1 C34 H39 4 3 2 1 0 538 558	0.4 0.5 0.6 0.7 Co IN 04: + FBF Spectru 0. 532 534	0.8 0.9 1 unts vs Acquist m (0.086-0.219 536 538	11 12 13 14 13 Ion Time (min) min) SMT-BHT 4 Sub	5 1.6 1.7 1.8 1.9 2 tract 548.2751 (M*Haly* 4 546 548		
0 011 02 03 P5 Spectrum x10 5 Cod 1 C34 H39 4 3 2 1 0 538 538 P5 Jacmed Spectrum	04 05 06 0.7 Co Co IN O4 + FBF Spectru 0 532 534 Co	0.8 03 1 unts vs Acquest m (0.086-0.219 536 538 unts vs Maxe-ro	11 12 13 14 13 Ion Time (min) MT-BHT 4 Sub S40 S42 S4 Charge (mi2)	5 1.6 1.7 1.8 1.9 2 tract 548.2751 (M=14a)+ 4 545 548		
0 01 02 03 H5 Spectrum x10 5 Cod 1 C34 H39 4 3 2 1 538 SSR H5 Jacmed Spectrum x10 5 Cod 1 C34 H39	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0 532 534 Co N 0.4 + FBF Spectru	0.8 0.9 1 unts vs. Acquise m (0.086-0.219 S36 538 unts vs. Massero m (0.088-0.219)	11 12 13 14 13 Ion Time (mkn) MT-BHT a Sub SMD SM2 SM - Charge (mk2) min) SMT-BHT a Sub	5 1.6 1.7 1.8 1.9 2 tract 546.2751 (M-142)+ 4 545 548		
0 01 02 03 H5 Spectrum x10 5 Cpd 1 C34 H39 4 3 2 1 538 558 H5 Jacmed Spectrum x10 5 Cpd 1 C34 H39 4	0.4 0.5 0.6 0.7 Co Co IN 04: + FBF Spectru 0. 532 534 Co N 04: + FBF Spectru (State (N 7)	0.8 0.9 1 units vs. Acquisit or (0.086-0.219 536 538 mts vs. Mass-to m (0.088-0.219 10 0 0 0 0	11 12 13 14 13 Ion Time (mkn) MT-BHT 4 Sub SMD S42 54 -Charge (mk2) min) SMT-BHT 4 Subr	5 1.6 1.7 1.8 1.9 2 tract Se6.2751 (M-543)+ 4 545 548		
0 1 0.2 0.3 H5 Spectrum and b Cod 1 C34 H39 4 3 2 1 532 534 H5 Spectrum and b Cod 1 C34 H39 4 3 Cod 1 C34 H39 4 3	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0 532 534 Co N 0.4 + FBF Spectru State (M +	0.4 0.9 i unts vs. Acques m (0.085-0.219 536 Sala nto vs. Masseo m (0.086-0.219 m (0.086-0.219 070	11 12 13 14 13 Ion Time (mkn) MT-BHT 4 Sub SMD SM2 SM - Charge (mk2) min) SMT-BHT 4 Subn	5 1.6 1.7 1.8 1.9 2 tract 548.2751 (M-141)+ 4 545 548		
0 1 0.2 0.3 H5 Spectrum and b Cod 1 C34 H39 4 3 2 1 532 534 H5 Spectrum and 5 Cod 1 C34 H39 4 3 2 5 Cod 1 C34 H39 4 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0. <u>\$12</u> \$34 Co N 0.4 + FBF Spectru (M -	0.4 0.9 i unts vs. Acques m (0.085-0.219 556 558 nto vs. Masseo m (0.085-0.219 m (0.085-0.219 07	11 12 13 14 13 Ion Time (mkn) MT-BHT 4 Sub SMD SM2 SM - Charge (mk2) min) SMT-BHT 4 Subr	5 1.6 1.7 1.8 1.9 2 tract Se6.2751 (M-743)* 4 545 548		
0 1 0.2 0.3 H5 Spectrum a10 5 Cpd 1 C34 H39 4 3 2 522 53 H5 Jacreel Spectrum a10 5 Cpd 1 C34 H39 4 3 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0. 532 534 Co N 0.4 + FBF Spectru 201.7 (M - F	0.4 0.9 i unts vs. Acques m (0.085-0.219 536 Sala nts vs. Masseto m (0.086-0.219 (0.086-0.219) 00	11 12 13 14 13 ion Time (min) 3MT-BHT a Sub 540 542 54 Charge (min) 5MT-BHT a Subr min) SMT-BHT a Subr	5 1.6 1.7 1.8 1.9 2 tract 548.2751 (M*14)* 4 545 548		
0 01 02 03 M5 Spectrum a10 5 Cpd 1 C34 H39 4 3 2 1 522 53 K5 Jacreel Spectrum a10 5 Cpd 1 C34 H39 4 3 2 1	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0. 532 534 Co N 0.4 + FBF Spectru State (M-P	0.4 0.9 i unts vs. Acques m (0.085-0.219 536 S38 mto vs. Masseto m (0.085-0.219 (7) 00	540 542 54 min) SMT-BHT a Sub SMD 542 54 Charge (mi2) min) SMT-BHT a Sub Min) SMT-BHT a Sub Min SMT-BHT a Sub	5 1.6 1.7 1.8 19 2 tract 548.2751 (M-743)* 4 545 548		
0 01 0.2 0.3 M5 Spectrum a10 5 Cpd 1 C34 H39 4 3 0 528 535 M5 Jacmed Spectrum a10 5 Cpd 1. C34 H39 4 3 0 500 505 51	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0. 532 534 Co N 0.4 + FBF Spectru Co N 0.4 + FBF Spectru Co 0. 515 520 525	0.8 0.9 i unts vs. Acques m (0.085-0.219 536 538 m (0.085-0.219 m (0.085-0.219 m (0.085-0.219 0 530 535 5	940 942 94 940 942 94 Charge (mic) min) SMT-BHT a Sub 940 942 94 min) SMT-BHT a Subr 946 7700 1046 200 1046	5 1.6 1.7 1.8 19 2 tract 548.2751 (M-14)+ 4 545 548		
0 1 0.2 0.3 H5 Spectrum x10 5 Cpd 1 C34 H39 4 2 1 528 555 H5 Spectrum x10 5 Cpd 1 C34 H39 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4 0.5 0.6 0.7 Co Co IN 0.4 + FBF Spectru 0. 532 534 Co N 0.4 + FBF Spectru Co.0 M - P M	0.8 0.9 i unts vs. Acques m (0.085-0.219 536 538 m (0.085-0.219 m (0.085-0.219 m (0.085-0.219 m (0.085-0.219 m (0.085-0.219 m (0.085-0.219	540 542 54 540 542 54 Charge (mic) 547 542 54 min) SMT-BHT a Subs 548 7701 548 7701 548 7701 548 7701 548 7701 548 7701 548 7701 548 755 555	5 1.6 1.7 1.8 1.9 2 tract 548.27591 (M-743)* 4 545 548 reat		
0 2 2 23 H5 Spectrum x10 5 Cpd 1 C34 H39 4 2 1 528 538 H5 Jacmet Spectrum x10 5 Cpd 1 C34 H39 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4 0.5 0.6 0.7 Co Co IN 0.4 + FBF Spectru 0. 552 534 Co N 0.4 + FBF Spectru UL 2 M - P M	0.4 0.9 i units va Acquest units va Acquest m (0.086-0.219 556 538 units vs Mass-10 00 530 535 5- 510 5-	540 542 54 charge (mic) 540 542 54 charge (mic) 540 542 54 min) SMT-BHT d. Subt 540 7701 (b)=520 charge (mic) 555 charge (mic) 555	5 1.6 1.7 1.8 1.9 2 max 548.2751 (Minta)n 4 545 558 max 560 565 5.70 575		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0 532 534 Co N 0.4 + FBF Spectru 0.515 520 525 Cou 0.515 520 525 Cou	0.4 0.9 i units vs. Acquest units vs. Acquest m (0.086-0.219 536 538 units vs. Mass to m (0.086-0.219 01 530 535 5- 530 535 5- 510 535 5- 510 535 5- 510 535 5- 510	11 12 13 14 13 Ion Time (min) SMT-BHT 4 Sub S40 542 54 Charge (m/2) 144 7704 (U+1)a Charge (m/2) 555 Charge (m/2) 555	5 1.6 1.7 1.8 1.9 2 max 548.2751 (M+Ha)+ 4 545 548 max 560 545 570 575		
o 1 0 2 03 H5 Spectrum and 5 Cold 1: C34 H39 4 3 2 1 0 528 538 H5 Aconed Spectrum and 5 Cold 1: C34 H39 4 3 2 1 0 500 505 51 4 550 505 51 1 3905 1 3905 57 Aconed Spectrum 4 3 2 1 0 500 505 51 4 57 Aconed Spectrum 4 3 2 1 0 500 505 51 1 3905 57 Aconed Spectrum 4 3 2 1 0 500 505 51 1 3905 57 Aconed Spectrum 4 3 2 1 0 500 505 51 1 3905 57 Aconed Spectrum 57 Aconed Spectrum	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0. 532 534 Co N 0.4 + FBF Spectru 0. 515 520 525 0. 515 520 525	0.8 0.9 i units via Acquisa mi (0.086-0.219 536 538 units vis Masse mi (0.086-0.219 01 530 535 5- 510 5-	11 12 13 14 13 Ion Time (min) SMT-BHT 4 Sab S40 542 54 Charge (m/2) S48 2704 (Unitian) SMT-BHT 4 Sub S48 2704 (Unitian) SMT-BHT 4 Sub S48 2704 (Unitian) SMT-BHT 4 Sub S48 2704 (Unitian) SMT-BHT 4 Sub	5 1.6 1.7 1.8 1.9 2 tract 548.2751 (M+Ha)+ 4 545 548 reat		
o 1 1 2 2 3 3 H5 Spectrum a 10 % Cod 1 C34 H39 4 3 2 1 5 Spectrum 4 3 2 1 5 Spectrum 5 Sp	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0. 552 534 0. 552 534 Co N 0.4 + FBF Spectru 0. 515 520 525 Cou 0.	0.8 0.9 i units via Acquisa mi (0.086-0.219 536 538 ants vis Masse of (0.086-0.219 (0.086-0.219) (0.	11 12 13 14 13 Ion Time (min) SMT-BHT d. Sub SH0 SH2 54 Charge (m/2) Min (Mintan) SMT-BHT d. Sub SH2 7701 (Mintan) SMT-BHT d. Sub SH2 7701 (Mintan) SMT-BHT d. Sub SH2 7701 (Mintan) SMT-BHT d. Sub SH2 7701 (Mintan) SMT-BHT d. Sub	5 1.6 1.7 1.8 1.9 2 blact 548.2751 (M+Ha)+ 4 545 548 Fact 580 545 570 575		
0 1 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.4 0.5 0.6 0.7 Co IN 04: + FBF Spectru 0. 552 534 0. 552 534 Co N 04: + FBF Spectru 0. 515 520 525 Course 0. 515 520 Course 0. 515 520 Course 0. 515 520 Course	0.8 0.9 i units via Acquisa mi (0.086-0.219 536 538 ents vis Masse mi (0.086-0.219 (0.086-0.219 (0.086-0.219) (0.0	11 12 13 14 13 Ion Time (min) SMT-BHT d. Sub SH0 SH2 SH Charge (m/2) Min (Mintan) SMT-BHT d. Sub SH2 7700 (Mintan) SMT-BHT d. Sub SH2 SH Sh2 SH SH SH SH SH SH SH SH SH SH	5 1.6 1.7 1.8 1.9 2 blact 548.2751 (M+Ha)+ 4 545 548 Fact 580 585 570 575		
0 1 2 2 3 3 H5 Spectrum a 10 5 Cold 1 C34 H39 4 3 2 1 5 Spectrum a 10 5 Cold 1 C34 H39 4 3 2 1 5 Spectrum a 10 5 Cold 1 C34 H39 4 3 5 Spectrum 5	0.4 0.5 0.6 0.7 Co IN 0.4 + FBF Spectru 0. 552 534 0. 552 534 Co N 0.4 + FBF Spectru 0. 515 520 525 Cou 0. 515 520 Cou 0. 515 520 Cou 0. 515 520 Cou 0. 515 520 Cou 0. 515 520 Cou 0	0.8 0.9 i units ve Acquest mi (0.086-0.219 556 538 mi (0.086-0.219 mi (0.086-0.219 mi (0.086-0.219 mi (0.086-0.219 mi (0.086-0.219 mi (0.086-0.219 mi (0.086-0.219) mi (0.086-0.219 mi (0.086-0.219) mi (0.086-0.2	11 12 13 14 13 Ion Time (min) SMT-BHT d. Sab S40 542 54 Charge (m/2) Min (Mintan) SMT-BHT d. Sub S46 7700 (Mintan) SMT-BHT d. Sub S46 7700 (Mintan) SMT-BHT d. Sub S46 755 Charge (m/2) S55 Charge (m/2) S55	5 1.6 1.7 1.8 1.9 2 blact 548.2751 (M+Ha)+ 4 545 548 reat		

Figure S7: Mass Spectrum of BHT adduct

(12) References:

- 1) K. L. Vikse, M. P. Woods and J. S. McIndoe, Organometallics, 2010, 29, 6615.
- 2) Gu, Y.; Dai, L.; Mao, K.; Zhang, J.; Wang, C.; Zhao, L; Rong, L.; *Org. Lett.*, 2020, **22**, 2956.