Supplementary Information for

Pyridine-based small molecule inhibitors of SARM1 alleviate cell death caused by NADase activity.

Qingxuan Tang^{a,b}, and Hang Yin^{a,b*}

a. School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. E-mail: yin_hang@tsinghua.edu.cn. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China. State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China

b. Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China

*To whom correspondence may be addressed. H. Yin (yin_hang@tsinghua.edu.cn).

Contents

1. Chemical synthesis and Characterizations

General chemistry method

Compounds synthesis and characterizations

2. Materials and Methods

Cell Culture and CCK-8 Assay Methods

SARM1 Protein Expression Method

3. Supplementary Tables and Figures

Figure S1A: High-throughput Screening Methodology

Figure S1B: Enzymatic Assay Details and Reaction Scheme of ADPR, cADPR, and 1,N6-

Etheno-NAD Production

Figure S2: Schematic Diagram and High-Resolution Mass Spectrometry Analysis of

the Reaction Product AD-S-1.

Figure S3: Expression Levels of SARM1 in a Tet-On 3G Inducible Expression System

Across Different Doxycycline (Dox) Concentrations

Figure S4: Enzyme Kinetic Studies of S-1 and TH408.

Figure S5: Cytotoxicity Evaluation of the Molecules.

Table S1: Compound SMILES strings

Table S2: Introduction of Life Chemicals- Pre-plated Diversity Sets

4. NMR Spectra

5. HRMS spectra and HPLC trace

Chemical synthesis and Characterizations

General chemistry methods

NMR spectra were acquired on a Bruker AVANCE III HD 400 nuclear magnetic resonance spectrometer, running at 400 MHz for ¹H and 101 MHz for ¹³C. ¹H NMR spectra were recorded in CHCl₃-d and (CH₃)₂SO-d6, using residual CHCl₃ (7.26 ppm) and DMSO (2.50 ppm) as the internal reference. ¹³C NMR spectra were recorded in CHCl₃-d and (CH₃)₂SO-d6, using residual CHCl₃ (77.16 ppm), DMSO (39.52 ppm) as the internal reference. Mass spectrometry was performed using a Thermo Scientific QExactive mass spectrometer (ESI). Analytical grade solvents and commercially available reagents were used without further purification.

Compounds synthesis and characterization

R¹ is substituted pyridine groups

Scheme S1: synthesis of substituted pyridine derivatives.

Reagents and conditions: (i) pent-4-enoyl chloride, Et₃N, DCM, 0 °C, 30 min, then R.T., 3 h; (ii) pyridineboronic acid pinacol ester, K_2CO_3 , Pd(PPh₃)₄, dioxane/water = 4:1, 90 °C, overnight

1-(5-(pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-1)

A round-bottom flask was charged with 5-bromoindoline (1.0 g, 1.0 equiv) and triethylamine (Et₃N, 2.0 mL, 3.0 equiv) under an atmosphere of nitrogen. Anhydrous solvent dichloromethane (20 mL) was added, followed by the dropwise addition of reactant pent-4-enoyl chloride (0.9 ml, 1.5 equiv) under ice-bath condition. After stirring for 30 min under the ice bath, the reaction mixture was allowed to stir for 3 hours at room temperature. Then 80 mL water and ethyl acetate (80 mL×3) were added for extraction. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum to give the crude product 1-(5-bromoindolin-1-yl)pent-4-en-1-one as white solid, which was used in the next step without further purification. To the mixture of the intermediate product, potassium carbonate (K_2CO_3 , 2.0 g, 3.0 equiv), and 4-pyridineboronic acid pinacol ester (1.0 g, 1.0 equiv) in a solvent mixture of dioxane and water (4:1), the tetrakis(triphenylphosphine)palladium (0.6 g, 0.1 equiv) was added under a nitrogen atmosphere. The reaction was heated to 90°C and stirred for 12 hours, after which it was allowed

to reach room temperature. Then 100 mL water and ethyl acetate (100 mL×3) were added for extraction. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. The residue was purified on silica gel via petroleum ether : ethyl acetate = 1 : 1 to give an white solid (0.97 g, 71%). ¹H NMR (400 MHz, Chloroform-d) δ 8.62 (d, J = 5.2 Hz, 2H), 8.33 (d, J = 8.4 Hz, 1H), 7.52 – 7.45 (m, 4H), 5.93 (ddt, J = 16.4, 11.5, 6.0 Hz, 1H), 5.17 – 5.00 (m, 2H), 4.13 (t, J = 8.5 Hz, 2H), 3.27 (t, J = 8.5 Hz, 2H), 2.60 – 2.46 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.76, 150.11, 147.99, 144.06, 137.22, 133.26, 132.14, 126.69, 123.00, 121.22, 117.33, 115.51, 48.25, 35.23, 28.50, 27.96. HRMS (ESI) calculated C₁₈H₁₈N₂O, [M+H]+ = 279.1497, and measured [M+H]+: 279.1512

1-(5-(pyridin-3-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-2)

S-2 was prepared in a similar manner described for **S-1**. Yield: 47%. ¹H NMR (400 MHz, Chloroformd) δ 8.84 (d, J = 2.4 Hz, 1H), 8.57 (d, J = 4.7 Hz, 1H), 8.35 (d, J = 8.1 Hz, 1H), 7.85 (dt, J = 7.9, 2.0 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.35 (dd, J = 7.9, 4.8 Hz, 1H), 5.95 (ddt, J = 16.2, 9.8, 5.9 Hz, 1H), 5.24 – 4.95 (m, 2H), 4.14 (t, J = 8.5 Hz, 2H), 3.29 (t, J = 8.5 Hz, 2H), 2.64 – 2.46 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.66, 148.12, 148.08, 143.20, 137.29, 136.34, 133.97, 133.17, 132.12, 126.67, 123.51, 123.14, 117.37, 115.48, 48.20, 35.20, 28.53, 28.02. HRMS (ESI) calculated C₁₈H₁₈N₂O, [M+H]+ = 279.1497, and measured [M+H]+: 279.1518

1-(5-(4-methoxypyridin-3-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-3)

S-3 was prepared in a similar manner described for **S-1.** Yield: 32%. ¹H NMR (400 MHz, Chloroformd) δ 8.53 – 8.39 (m, 2H), 8.31 (d, J = 8.3 Hz, 1H), 7.39 – 7.33 (m, 2H), 6.89 (d, J = 5.6 Hz, 1H), 5.95 (ddt, J = 16.4, 11.7, 5.9 Hz, 1H), 5.19 – 5.01 (m, 2H), 4.11 (t, J = 8.5 Hz, 2H), 3.88 (s, 3H), 3.26 (t, J = 8.5 Hz, 2H), 2.60 – 2.48 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.52, 162.47, 150.70, 150.23, 142.71, 137.33, 131.15, 130.03, 128.99, 126.33, 125.56, 116.72, 115.41, 106.40, 55.38, 48.19, 35.18, 28.58, 28.04. HRMS (ESI) calculated $C_{19}H_{20}N_2O_2$, [M+H]+ = 309.1603, and measured [M+H]+: 309.1606

1-(5-(2-methylpyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-4)

S-4 was prepared in a similar manner described for S-1. Yield: 80%. ¹H NMR (400 MHz, Chloroform-

d) δ 8.52 (d, J = 5.2 Hz, 1H), 8.34 (d, J = 8.3 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.36 (s, 1H), 7.30 (d, J = 5.3 Hz, 1H), 5.96 (ddt, J = 16.5, 10.2, 6.1 Hz, 1H), 5.19 – 5.01 (m, 2H), 4.14 (t, J = 8.5 Hz, 2H), 3.29 (t, J = 8.5 Hz, 2H), 2.62 (s, 3H), 2.60 – 2.48 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.73, 158.82, 149.58, 148.22, 143.88, 137.26, 133.62, 132.05, 126.67, 123.02, 120.73, 118.44, 117.25, 115.51, 48.23, 35.21, 28.50, 27.97, 24.61. HRMS (ESI) calculated C₁₉H₂₀N₂O, [M+H]+ = 293.1654, and measured [M+H]+: 293.1650

1-(5-(2,6-dimethylpyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-5)

S-5 was prepared in a similar manner described for **S-1.** Yield: 67%. ¹H NMR (400 MHz, Chloroformd) δ 8.33 (d, J = 8.3 Hz, 1H), 7.50 (d, J = 8.6 Hz, 1H), 7.47 (s, 1H), 7.17 (s, 2H), 5.96 (ddt, J = 16.4, 11.6, 6.0 Hz, 1H), 5.24 – 4.97 (m, 2H), 4.14 (t, J = 5.3 Hz, 2H), 3.28 (t, J = 8.4 Hz, 2H), 2.59 (s, 6H), 2.59 – 2.49 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.82, 158.24, 158.24, 148.67, 137.40, 134.03, 132.07, 126.77, 126.17, 123.15, 118.04, 118.04, 117.31, 115.61, 48.34, 35.32, 28.62, 28.09, 24.74. HRMS (ESI) calculated C₂₀H₂₂N₂O, [M+H]+ = 307.1810, and measured [M+H]+: 307.1828

1-(5-(2-(trifluoromethyl)pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-6)

S-6 was prepared in a similar manner described for **S-1.** Yield: 40%. ¹H NMR (400 MHz, Chloroformd) δ 8.71 (d, J = 5.2 Hz, 1H), 8.36 (d, J = 8.3 Hz, 1H), 7.85 (s, 1H), 7.65 (d, J = 5.2 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1H), 7.49 (s, 1H), 5.93 (ddt, J = 16.5, 11.6, 6.2 Hz, 1H), 5.20 – 4.98 (m, 2H), 4.14 (t, J = 8.4 Hz, 2H), 3.29 (t, J = 8.5 Hz, 2H), 2.72 – 2.33 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.03, 150.53, 149.86, 148.81, 144.87, 137.28, 132.61, 131.98, 127.04, 123.68, 123.20, 120.47, 117.99 (d, J = 2.8 Hz), 117.59, 115.69, 48.39, 35.37, 28.57, 28.03. HRMS (ESI) calculated $C_{19}H_{17}F_3N_2O$, [M+H]+ = 347.1371, and measured [M+H]+: 347.1370

1-(5-(5-methoxypyridin-3-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-7)

S-7 was prepared in a similar manner described for **S-1.** Yield: 61%. ¹H NMR (400 MHz, Chloroformd) δ 8.30 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 5.4 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.42 (s, 1H), 7.06 (dd, J = 5.4, 1.5 Hz, 1H), 6.90 (d, J = 1.5 Hz, 1H), 5.92 (ddt, 1H), 5.22 – 4.93 (m, 2H), 4.09 (t, J = 8.5 Hz, 2H), 3.96 (s, 3H), 3.24 (t, J = 8.5 Hz, 2H), 2.51 (q, J = 5.5, 4.7 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.70, 164.95, 150.74, 147.17, 143.91, 137.26, 133.43, 131.99, 126.63, 123.01, 117.16, 115.49, 115.04, 107.85, 53.50, 48.22, 35.19, 28.50, 27.94. HRMS (ESI) calculated $C_{19}H_{20}N_2O_2$, [M+H]+ = 309.1603, and measured [M+H]+: 309.1606

1-(5-(2-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-8)

S-8 was prepared in a similar manner described for **S-1.** Yield: 67%. ¹H NMR (400 MHz, Chloroformd) δ 8.37 (d, J = 5.2 Hz, 1H), 8.32 (d, J = 8.3 Hz, 1H), 7.49 (d, J = 1.5 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.44 (s, 1H), 7.38 (dd, J = 5.2, 1.5 Hz, 1H), 5.92 (ddt, J = 16.4, 10.1, 6.1 Hz, 1H), 5.16 – 5.01 (m, 2H), 4.13 (t, J = 8.5 Hz, 2H), 3.26 (t, J = 8.5 Hz, 2H), 2.63 – 2.41 (m, 4H). ¹³C NMR (101 MHz, Chloroformd) δ 170.97, 152.35, 151.20, 150.04, 144.69, 137.29, 132.44, 131.97, 126.96, 123.16, 121.56, 120.10, 117.48, 115.66, 48.37, 35.35, 28.57, 28.02. HRMS (ESI) calculated $C_{18}H_{17}CIN_2O$, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (TH-408)

TH-408 was prepared in a similar manner described for **S-1.** Yield: 49%. ¹H NMR (400 MHz, Chloroform-d) δ 8.64 (s, 1H), 8.48 (d, J = 4.8 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.25 (d, J = 4.9 Hz, 1H), 5.93 (ddt, J = 16.3, 11.4, 6.0 Hz, 1H), 5.20 – 4.98 (m, 2H), 4.13 (t, J = 8.5 Hz, 2H), 3.27 (t, J = 8.5 Hz, 2H), 2.64 – 2.42 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.85, 150.24, 147.91, 147.40, 143.80, 137.30, 131.69, 131.42, 130.19, 128.82, 125.34, 125.23, 116.84, 115.58, 48.30, 35.29, 28.59, 28.04. HRMS (ESI) calculated $C_{18}H_{17}CIN_2O$, [M+H]+ = 313.1108, and measured [M+H]+: 313.1114

1-(5-(3-fluoropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-9)

S-9 was prepared in a similar manner described for **S-1.** Yield: 35%. ¹H NMR (400 MHz, Chloroformd) δ 8.50 (d, J = 2.1 Hz, 1H), 8.42 (d, J = 4.8 Hz, 1H), 8.34 (d, J = 8.6 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.37 (dd, J = 4.8, 2.1 Hz, 2H), 5.93 (ddt, J = 16.3, 11.5, 6.0 Hz, 1H), 5.20 – 4.94 (m, 2H), 4.13 (t, J = 8.5 Hz, 2H), 3.27 (t, J = 8.5 Hz, 2H), 2.65 – 2.45 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.96, 158.07, 155.52, 146.12, 146.07, 139.27, 139.01, 137.34, 131.86, 128.67, 125.18, 124.00, 117.24, 115.65, 48.36, 35.37, 28.62, 28.07. HRMS (ESI) calculated C₁₈H₁₇FN₂O, [M+H]+ = 297.1403, and measured [M+H]+: 297.141

1-(5-(3-(trifluoromethyl)pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-10)

S-10 was prepared in a similar manner described for **S-1.** Yield: 79%. ¹H NMR (400 MHz, Chloroform-d) δ 8.95 (s, 1H), 8.76 (d, J = 5.0 Hz, 1H), 8.31 (d, J = 8.6 Hz, 1H), 7.27 (d, J = 5.0 Hz, 1H), 7.19 – 7.14 (m, 2H), 5.94 (ddt, J = 16.3, 10.0, 6.0 Hz, 1H), 5.20 – 4.90 (m, 2H), 4.14 (t, J = 8.5 Hz, 2H), 3.26 (t, J = 8.5 Hz, 2H), 2.62 – 2.40 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.91, 152.61, 149.47, 147.58 (d, J = 6.0 Hz), 143.81, 137.35, 132.37, 131.30, 128.19, 126.24, 124.62, 124.43, 122.42, 116.67, 115.60, 48.29, 35.34, 28.61, 28.03. HRMS (ESI) calculated C₁₉H₁₇F₃N₂O, [M+H]+ = 347.1371, and measured [M+H]+: 347.1375

1-(5-(3-nitropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-11)

S-11 was prepared in a similar manner described for **S-1.** Yield: 55%. ¹H NMR (400 MHz, Chloroform-d) δ 9.04 (s, 1H), 8.78 (d, J = 5.0 Hz, 1H), 8.36 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 5.1 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 7.16 (s, 1H), 5.95 (ddt, J = 16.3, 10.2, 6.1 Hz, 1H), 5.23 – 4.99 (m, 2H), 4.15 (t, J = 8.5 Hz, 2H), 3.26 (t, J = 8.5 Hz, 2H), 2.65 – 2.43 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.90, 152.62, 145.64, 145.21, 144.57, 143.56, 137.14, 132.14, 129.27, 127.67, 125.60, 123.78, 117.37, 115.56, 48.23, 35.24, 28.45, 27.85. HRMS (ESI) calculated $C_{18}H_{17}N_3O_3$, [M+H]+ = 324.1348, and measured [M+H]+: 324.1340

1-(5-(3-methoxypyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-12)

S-12 was prepared in a similar manner described for **S-1.** Yield: 57%. ¹H NMR (400 MHz, Chloroform-d) δ 8.35 (s, 1H), 8.33 – 8.26 (m, 2H), 7.45 – 7.39 (m, 2H), 7.23 (d, J = 4.5 Hz, 1H), 5.93 (ddt, J = 16.5, 11.6, 6.0 Hz, 1H), 5.20 – 4.95 (m, 2H), 4.11 (t, J = 8.5 Hz, 2H), 3.91 (s, 3H), 3.26 (t, J = 8.5 Hz, 2H), 2.61 – 2.46 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.77, 143.36, 143.19, 137.54, 137.42, 134.61, 131.24, 131.05, 128.96, 128.66, 125.49, 124.38, 116.88, 115.59, 56.47, 48.35, 35.34, 28.69, 28.15. HRMS (ESI) calculated $C_{19}H_{20}N_2O_2$, [M+H]+ = 309.1603, and measured [M+H]+: 309.1606

1-(4-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-13)

S-13 was prepared in a similar manner described for S-1. Yield: 49%. ¹H NMR (400 MHz,

Chloroform-d) δ 8.67 (s, 1H), 8.51 (d, J = 4.7 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 7.28 (t, J = 7.9 Hz, 1H), 7.19 (d, J = 4.8 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 5.91 (ddt, J = 16.3, 11.5, 6.0 Hz, 1H), 5.17 – 4.99 (m, 2H), 4.06 (t, J = 8.5 Hz, 2H), 3.00 (t, J = 8.5 Hz, 2H), 2.67 – 2.32 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.66, 149.86, 147.74, 146.61, 143.36, 137.24, 133.31, 130.71, 129.54, 128.08, 125.12, 123.56, 117.23, 115.44, 47.96, 35.20, 28.48, 27.24. HRMS (ESI) calculated C₁₈H₁₇ClN₂O, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

1-(6-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-14)

S-14 was prepared in a similar manner described for **S-1.** Yield: 63%. ¹H NMR (400 MHz, Chloroform-d) δ 8.65 (s, 1H), 8.48 (d, J = 4.4 Hz, 1H), 8.39 (s, 1H), 7.31 – 7.27 (m, 2H), 7.14 (d, J = 7.5 Hz, 1H), 5.92 (ddt, J = 16.2, 9.9, 6.0 Hz, 1H), 5.39 – 4.87 (m, 2H), 4.12 (t, J = 8.6 Hz, 2H), 3.26 (t, J = 8.5 Hz, 2H), 2.71 – 2.38 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.87, 150.11, 147.81, 143.49, 137.35, 136.10, 132.03, 130.35, 128.61, 126.14, 125.60, 124.47, 117.54, 115.57, 48.31, 35.29, 28.53, 28.06. HRMS (ESI) calculated C₁₈H₁₇ClN₂O, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

1-(7-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-15)

S-15 was prepared in a similar manner described for **S-1.** Yield: 81%. ¹H NMR (400 MHz, Chloroform-d) δ 8.57 (s, 1H), 8.48 (d, J = 4.9 Hz, 1H), 7.31 (d, J = 7.1 Hz, 1H), 7.25 (d, J = 5.0 Hz, 1H), 7.20 – 7.11 (m, 2H), 5.69 (ddt, J = 16.8, 10.3, 6.4 Hz, 1H), 5.04 – 4.87 (m, 2H), 4.15 (t, J = 7.8 Hz, 2H), 3.14 (t, J = 7.5 Hz, 2H), 2.39 – 2.18 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.16, 149.38, 147.93, 147.64, 140.35, 136.97, 134.82, 130.00, 129.50, 126.54, 125.28, 124.84, 124.13, 115.48, 49.70, 34.82, 29.52, 29.12. HRMS (ESI) calculated C₁₈H₁₇ClN₂O, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

R² is substituted carbonyl groups

Scheme S2: synthesis of 3-chloropyridine substituted hydroindole derivatives.

Reagents and conditions: (i) substituted acyl chloride, Et₃N, DCM, 0 °C, 30 min, then R.T., overnight; (ii) 3-chloridepyridine-4-boronic acid pinacol ester, K_2CO_3 , Pd(PPh₃)₄, dioxane/water = 4:1, 90 °C, overnight

1-(5'-(3-chloropyridin-4-yl)spiro[cyclopentane-1,3'-indolin]-1'-yl)pent-4-en-1-one (S-16)

A round-bottom flask was charged with 5-bromospiro[1,2-dihydroindole-3,1'-cyclopentane] (1.0 g, 1.0 equiv) and triethylamine (Et₃N, 1.6 mL, 3.0 equiv) under an atmosphere of nitrogen. Anhydrous solvent dichloromethane (20 mL) was added, followed by the dropwise addition of reactant pent-4-encyl chloride (0.7 ml, 1.5 equiv) under ice-bath condition. After stirring for 30 min under the ice bath, the reaction mixture was allowed to stir overnight at room temperature. Then 80 mL water and ethyl acetate (80 mL×3) were added for extraction. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum to give the crude product 1-(5'-bromospiro[cyclopentane-1,3'-indolin]-1'-yl)pent-4-en-1-one as white solid, which was used in the next step without further purification. To the mixture of the intermediate product, potassium carbonate (K₂CO₃, 1.6 g, 3.0 equiv), and 3-chloridepyridine-4-boronic acid pinacol ester (0.8 g, 1.0 equiv) in a solvent mixture of dioxane and water (4:1), the tetrakis(triphenylphosphine)palladium (0.5 g, 0.1 equiv) was added under a nitrogen atmosphere. The reaction was heated to 90°C and stirred for 12 hours, after which it was allowed to reach room temperature. Then 100 mL water and ethyl acetate (100 mL×3) were added for extraction. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. The residue was purified on silica gel via petroleum ether : ethyl acetate = 1 : 1 to give a white solid (0.72 g, 57%). ¹H NMR (400 MHz, Chloroform-d) δ 8.65 (s, 1H), 8.49 (d, J = 4.9 Hz, 1H), 8.32 (d, J = 8.3 Hz, 1H), 7.37 – 7.24 (m, 4H), 5.94 (ddt, J = 16.4, 11.7, 6.0 Hz, 1H), 5.25 - 4.99 (m, 2H), 3.89 (s, 2H), 2.65 - 2.43 (m, 4H), 1.96 -1.76 (m, 8H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.82, 150.31, 147.96, 147.56, 143.17, 139.57, 137.33, 132.01, 130.24, 128.93, 125.40, 123.05, 116.73, 115.67, 63.10, 51.55, 41.36, 35.39, 28.70, 24.95. HRMS (ESI) calculated $C_{22}H_{23}CIN_2O$, [M+H]+ = 367.1577, and measured [M+H]+: 367.1549

1-(6-(3-chloropyridin-4-yl)-1,2,3,4-tetrahydroquinolin-1-yl)pent-4-en-1-one (S-17)

S-17 was prepared in a similar manner described for **S-16.** Yield: 75%. ¹H NMR (400 MHz, Chloroform-d) δ 8.67 (s, 1H), 8.51 (d, 1H), 7.35 – 7.23 (m, 4H), 5.84 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.08 – 4.96 (m, 2H), 3.83 (t, J = 6.4 Hz, 2H), 2.81 (t, J = 6.7 Hz, 2H), 2.66 (t, J = 8.5, 6.4 Hz, 2H), 2.46 (dd, J = 8.7, 6.7 Hz, 2H), 2.02 (dt, J = 6.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.21, 150.31, 147.97, 147.00, 139.69, 137.37, 133.06, 129.29, 126.84, 126.18, 126.09, 125.34, 124.67, 115.45, 43.75, 34.15, 29.82, 27.14, 24.08. HRMS (ESI) calculated C₁₉H₁₉ClN₂O, [M+H]+ = 327.1264, and measured [M+H]+: 327.1271

1-(6-(3-chloropyridin-4-yl)-1,2,3,4-tetrahydroisoquinolin-2-yl)pent-4-en-1-one (S-18)

S-18 was prepared in a similar manner described for **S-16.** Yield: 78%. ¹H NMR (400 MHz, Chloroform-d) δ 8.70 (s, 1H), 8.56 (d, J = 4.5 Hz, 1H), 7.37 – 7.14 (m, 3H), 7.07 (t, J = 8.0 Hz, 1H), 5.89 (ddt, J = 15.7, 10.1, 4.5 Hz, 1H), 5.13 – 4.96 (m, 2H), 4.85 – 4.69 (m, 2H), 3.80 – 3.60 (m, 2H), 2.72 – 2.38 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.24, 149.68, 147.79, 147.34, 137.43, 135.93, 134.45, 132.14, 127.44, 127.03, 126.75, 126.64, 126.38, 115.32, 44.31, 42.93, 32.84, 29.14, 27.37. HRMS (ESI) calculated C₁₉H₁₉ClN₂O, [M+H]+ = 327.1264, and measured [M+H]+: 327.1271

1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)hept-6-en-1-one (S-19)

S-19 was prepared in a similar manner described for **S-16.** Yield: 64%. ¹H NMR (400 MHz, Chloroform-d) δ 8.65 (s, 1H), 8.49 (d, J = 4.3 Hz, 1H), 8.34 (d, J = 8.3 Hz, 1H), 7.33 (s, 2H), 7.26 (d, J = 4.5 Hz, 1H), 5.83 (ddd, J = 16.8, 11.1, 5.6 Hz, 1H), 5.01 (dd, J = 26.0, 13.6 Hz, 2H), 4.12 (t, J = 8.5 Hz, 2H), 3.26 (t, J = 8.6 Hz, 2H), 2.46 (t, J = 7.6 Hz, 2H), 2.13 (dt, J = 7.3 Hz, 2H), 1.79 (tt, J = 7.8 Hz, 2H), 1.52 (tt, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.59, 150.21, 147.88, 147.40, 143.86, 138.54, 131.41, 130.16, 128.78, 125.99, 125.32, 125.19, 116.79, 114.78, 48.29, 35.84, 33.65, 28.65, 28.01, 24.07. HRMS (ESI) calculated C₂₀H₂₁ClN₂O, [M+H]+ = 341.1421, and measured [M+H]+: 341.1426

1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)propan-1-one (S-20)

S-20 was prepared in a similar manner described for S-16. Yield: 89%. ¹H NMR (400 MHz,

Chloroform-d) δ 8.65 (s, 1H), 8.49 (d, J = 4.9 Hz, 1H), 8.34 (d, J = 8.5 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.26 (d, J = 5.0 Hz, 1H), 4.12 (t, J = 8.5 Hz, 2H), 3.27 (t, J = 8.6 Hz, 2H), 2.48 (q, J = 7.4 Hz, 2H), 1.25 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.42, 150.29, 147.94, 147.49, 143.96, 131.62, 131.38, 130.25, 128.88, 125.39, 125.25, 116.81, 48.20, 29.31, 28.10, 8.81. HRMS (ESI) calculated C₁₆H₁₅ClN₂O, [M+H]+ = 287.0951, and measured [M+H]+: 287.0959

1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pentan-1-one (S-21)

S-21 was prepared in a similar manner described for **S-16.** Yield: 90%. ¹H NMR (400 MHz, Chloroform-d) δ 8.63 (s, 1H), 8.47 (d, J = 4.9 Hz, 1H), 8.33 (d, J = 8.6 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.24 (d, J = 4.9 Hz, 1H), 4.10 (t, J = 8.5 Hz, 2H), 3.24 (t, J = 8.5 Hz, 2H), 2.43 (t, J = 7.4 Hz, 2H), 1.72 (tt, J = 7.6 Hz, 2H), 1.53 – 1.35 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.66, 150.07, 150.07, 147.77, 147.25, 143.79, 131.35, 130.00, 128.61, 125.20, 125.07, 116.60, 48.16, 35.60, 27.87, 26.56, 22.42, 13.89, 13.89. HRMS (ESI) calculated $C_{18}H_{19}CIN_2O$, [M+H]+ = 315.1264, and measured [M+H]+: 315.1271

(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)(tricyclo[3.3.1.13,7]dec-1-yl)methanone (S-22)

S-22 was prepared in a similar manner described for **S-16.** Yield: 51%. ¹H NMR (400 MHz, Chloroform-d) δ 8.64 (s, 1H), 8.48 (d, J = 5.0 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H), 7.33 (s, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.25 (d, J = 5.0 Hz, 1H), 4.40 (t, J = 8.1 Hz, 2H), 3.20 (t, J = 8.1 Hz, 2H), 2.20 – 2.08 (m, 9H), 1.77 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 176.46, 150.13, 147.79, 147.42, 145.78, 131.58, 131.58, 130.97, 130.14, 128.48, 125.29, 124.80, 118.38, 49.83, 43.23, 38.30, 36.60, 29.44, 28.40. HRMS (ESI) calculated C₂₄H₂₅ClN₂O, [M+H]+ = 393.1734, and measured [M+H]+: 393.1732

1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)prop-2-en-1-one (S-23)

S-23 was prepared in a similar manner described for **S-16.** Yield: 47%. ¹H NMR (400 MHz, Chloroform-d) δ 8.65 (s, 1H), 8.49 (d, J = 5.0 Hz, 1H), 8.38 (s, 1H), 7.37 – 7.31 (m, 2H), 7.27 (d, J = 5.4 Hz, 1H), 6.64 – 6.49 (m, 2H), 5.83 (dd, 1H), 4.24 (t, J = 8.5 Hz, 2H), 3.28 (t, J = 8.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 164.19, 150.23, 147.90, 147.36, 143.65, 143.61, 132.12, 131.91, 130.23, 129.52, 128.95, 128.84, 125.36, 117.33, 48.43, 28.01. HRMS (ESI) calculated C₁₆H₁₃ClN₂O,

[M+H]+ = 285.0795, and measured [M+H]+: 285.0792

(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)(cyclohexyl)methanone (S-24)

S-24 was prepared in a similar manner described for **S-16.** Yield: 39%. ¹H NMR (400 MHz, Chloroform-d) δ 8.64 (s, 1H), 8.48 (d, J = 4.9 Hz, 1H), 8.36 (d, J = 7.5 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.25 (d, J = 4.9 Hz, 1H), 4.20 (t, J = 8.5 Hz, 2H), 3.26 (t, J = 8.5 Hz, 2H), 2.49 (t, J = 11.5 Hz, 1H), 1.92 – 1.81 (m, 4H), 1.76 – 1.57 (m, 3H), 1.39 – 1.26 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 175.08, 150.24, 150.24, 147.91, 147.45, 144.12, 131.61, 130.22, 128.79, 125.36, 125.18, 117.17, 48.20, 44.02, 29.16, 28.08, 25.89, 25.87. HRMS (ESI) calculated C₂₀H₂₁ClN₂O, [M+H]+ = 341.1421, and measured [M+H]+: 341.1418

4-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)-4-oxobutanenitrile (S-25)

S-25 was prepared in a similar manner described for **S-16.** Yield: 24%. ¹H NMR (400 MHz, Chloroform-d) δ 8.66 (s, 1H), 8.50 (d, J = 4.9 Hz, 1H), 8.29 (d, J = 8.2 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.26 (d, J = 4.7 Hz, 1H), 4.12 (t, J = 8.4 Hz, 2H), 3.32 (t, J = 8.4 Hz, 2H), 2.87 – 2.77 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 167.18, 150.32, 148.00, 147.26, 143.22, 132.48, 131.39, 130.24, 128.99, 125.44, 125.36, 119.21, 116.93, 48.14, 31.79, 28.10, 12.76. HRMS (ESI) calculated C₁₈H₁₅ClN₂O, [M+H]+ = 312.0904, and measured [M+H]+: 312.0898

Scheme S3: synthesis of S-1 derived PROTAC.

Reagents and conditions: (i) pyridine-4-boronic acid pinacol ester, K₂CO₃, Pd(PPh₃)₄, dioxane/water = 4:1, 90 °C, overnight; (ii) 1M HCl in dioxane, R.T., 3 h; (iii) 9-bromononanoic acid, HATU, DIPEA, DCM, R.T., 3 h; (iv) 4-hydroxythalidomide, NaHCO₃, KI, MeCN, 60 °C, overnight

tert-butyl 5-(pyridin-4-yl) -2,3-dihydroindole -1-carboxylate (1b)

To a mixture of the *tert*-butyl 5-bromo-2,3-dihydroindole-1-carboxylate (**1a**) (1.2 g, 1.0 equiv), potassium carbonate (K₂CO₃, 1.6 g, 3.0 equiv), and pyridine-4-boronic acid pinacol ester (0.8 g, 1.0 equiv) in a solvent mixture of dioxane and water (4:1), triphenylphosphine palladium (0.5 g, 0.1 equiv) was added under a nitrogen atmosphere. The reaction was heated to 90°C and stirred for 12 hours, after which it was allowed to reach room temperature. Then 100 mL water and ethyl acetate (100 mL×3) were added for extraction. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. Concentrated under vacuum to give the crude product *tert*-butyl 5-(pyridin-4-yl) -2,3-dihydroindole -1-carboxylate (**1b**) as yellow solid (1.06g, 90%). ¹H NMR (400 MHz, Chloroform-d) δ 8.60 (d, J = 5.3 Hz, 2H), 7.90 (s, 1H), 7.49 – 7.39 (m, 4H), 4.02 (t, J = 8.7 Hz, 2H), 3.13 (t, J = 8.7 Hz, 2H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.46, 150.19, 150.19, 148.04, 131.86, 126.50, 126.50, 123.21, 121.09, 121.09, 115.03, 115.03, 77.97, 47.94, 29.29, 28.48. HRMS (ESI) calculated C₁₈H₂₀N₂O₂, [M+H]+ = 297.1603, and measured [M+H]+: 297.1589

9-bromo-1-(5-(pyridin-4-yl)indolin-1-yl)nonan-1-one (1d)

To a mixture of the intermediate product (**1b**), the 1M hydrochloric acid in dioxane was dropwised to the system for 10 min. Continued stirring the mixture until the yellow color disappeared and a white suspension formed. Evaporated the solvent under reduced pressure and dried the residue under vacuum to get the crude product 5-pyridin-4-yl-2,3-dihydroindole hydrochloride (**1c**) as

yellow solid, which was used in the next step without further purification. To a mixture of the intermediate product (**1c**), HATU (1.6 g, 1.2 equiv) and 9-bromononanoic acid (0.8 g, 1.0 equiv) in a solvent mixture of DCM (20 ml), DIPEA (0.5 g, 3.0 equiv) was added under a nitrogen atmosphere. The reaction was stirred at room temperature for 2 hours. Then 100 mL water and ethyl acetate (100 mL×3) were added for extraction. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. Concentrated under vacuum and purified on silica gel via petroleum ether : ethyl acetate = 2 : 1 to give product 9-bromo-1-(5-(pyridin-4-yl)indolin-1-yl)nonan-1-one (**1d**) as yellow solid (1.13 g, 76%). 1H NMR (400 MHz, Chloroform-d) δ 8.58 (d, J = 5.5 Hz, 2H), 8.30 (d, J = 8.4 Hz, 1H), 7.48 – 7.41 (m, 4H), 4.07 (t, J = 8.5 Hz, 2H), 3.37 (t, J = 6.8 Hz, 2H), 3.22 (t, J = 8.5 Hz, 2H), 2.40 (t, J = 7.4 Hz, 2H), 1.83 (p, J = 6.9 Hz, 2H), 1.72 (p, J = 7.4 Hz, 2H), 1.46 – 1.27 (m, 8H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.63, 150.25, 150.25, 147.87, 144.17, 133.11, 132.22, 126.62, 122.99, 121.15, 121.15, 117.27, 48.28, 35.93, 34.05, 32.81, 29.33, 29.28, 28.64, 28.14, 27.97, 24.46. HRMS (ESI) calculated C₂₂H₂₇BrN₂O, [M+H]+ = 415.1385, and measured [M+H]+: 415.1383

2-(2,6-dioxopiperidin-3-yl)-4-((9-oxo-9-(5-(pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)nonyl)oxy)-1H-isoindole-1,3(2H)-dione (S-1 derived PROTAC, 1f)

To a mixture of the 9-bromo-1-(5-(pyridin-4-yl)indolin-1-yl)nonan-1-one (1d) (0.31 g, 1.0 equiv), NaHCO₃ (186 mg, 3 equiv) and KI (24 mg, 0.2 equiv) in a solvent mixture of MeCN (20 ml), 4hydroxythalidomide (220 mg, 1.1 equiv) weas added slowly. The reaction was stirred at 60 °C overnight. Then 100 mL water and ethyl acetate (100 mL×3) were added for extraction. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. Concentrated under vacuum and purified on silica gel via petroleum ether : ethyl acetate = 1 : 1 to give product 9-bromo-1-(5-(pyridin-4-yl)indolin-1-yl)nonan-1-one (1d) as yellow solid (0.27 g, 61%). ¹H NMR (400 MHz, DMSO-d6) δ 11.10 (s, 1H), 8.58 (d, J = 6.1 Hz, 2H), 8.17 (d, J = 8.4 Hz, 1H), 7.81 (dd, J = 8.5, 7.2 Hz, 1H), 7.70 (s, 1H), 7.68 – 7.66 (m, 2H), 7.64 (dd, J = 8.4, 2.0 Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.44 (d, J = 7.3 Hz, 1H), 5.08 (dd, J = 12.9, 5.4 Hz, 1H), 4.21 (t, J = 6.4 Hz, 2H), 4.14 (t, J = 8.6 Hz, 2H), 3.21 (t, J = 8.6 Hz, 2H), 2.65 – 2.52 (m, 2H), 2.52 – 2.50 (m, 4H), 2.46 (t, J = 7.3 Hz, 2H), 1.77 (tt, J = 10.9, 6.7, 5.1 Hz, 2H), 1.61 (t, J = 7.0 Hz, 2H), 1.48 (t, J = 7.4 Hz, 2H), 1.37 – 1.34 (m, 4H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.74, 171.30, 169.91, 166.83, 165.28, 156.02, 150.10, 146.62, 144.14, 136.99, 133.23, 132.95, 131.53, 125.89, 123.04, 120.58, 119.78, 116.22, 116.07, 115.10, 68.81, 48.73, 47.70, 34.87, 30.93, 28.83, 28.59, 28.57, 28.39, 27.31, 25.24, 23.90, 21.99. HRMS (ESI) calculated C₃₅H₃₆N₄O₆, [M+H]+ = 609.2713, and measured [M+H]+: 609.2714

Materials and Methods

Cell Culture and CCK-8 Assay Methods

MO3.13 and HMC3 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin, and 1% L-glutamine. Cells were maintained in a humidified incubator at 37°C with 5% CO2. The medium was changed every 2-3 days. For the Cell Counting Kit-8 (CCK-8) assay, MO3.13 and HMC3 cells were seeded into 96-well plates at a density of 5,000 cells per well in 100 μ L of culture medium. After an overnight incubation to allow cell attachment, various treatments were applied according to the experimental design. Following the treatment period, 10 μ L of CCK-8 solution (Dojindo Molecular Technologies) was added to each well. The plates were then incubated for an additional 2 hours at 37°C with 5% CO2. Absorbance was measured at 450 nm using a microplate reader. All experiments were performed in triplicate, and data were expressed as mean ± standard deviation (SD).

SARM1 Protein Expression Method

The active truncated human SARM1 protein (412-724) was cloned into the pET-28a(+) vector, resulting in a construct with an N-terminal 6xHis-tag. This construct was transformed into E. coli BL21 (DE3) cells, which were grown at 37°C until the optical density at 600 nm (OD600) reached 0.6-0.8. The culture temperature was then reduced to 16°C, and protein expression was induced by adding 0.5 mM IPTG. The cells were grown overnight for approximately 18 hours before being harvested by centrifugation at 4,000 x g for 10 minutes at 4°C. The cell pellets were resuspended in lysis buffer (50 mM hepes, pH 8.0, 300 mM NaCl, , 1 mM phenylmethylsulfonyl fluoride (PMSF), and 5% Triton X-100). The cells were lysated and then clarified by centrifugation at 20,000 x g for 30 minutes at 4°C. The supernatant was then applied to a nickel-nitrilotriacetic acid (Ni-NTA) affinity column pre-equilibrated with the lysis buffer. The column was washed with 10 column volumes (CVs) of wash buffer (50 mM hepes, pH 8.0, 300 mM NaCl, 5% Triton X-100, and 50 mM imidazole) to remove non-specifically bound proteins. The SARM1 protein was eluted using an elution buffer containing 50 mM hepes, pH 8.0, 300 mM NaCl, 5% Triton X-100 and 300 mM imidazole. Elution fractions containing the SARM1 protein were identified by SDS-PAGE. The protein was then subjected to size-exclusion chromatography (SEC) using a Superdex 200 Increase 10/300 GL column (GE Healthcare) pre-equilibrated with the elution buffer. Peak fractions containing the SARM1 protein were collected, and stored at -80°C in 10ml aliquots.

Figure S1A: High-throughput screening methodology. 200 μ M 1,N6-Etheno-NAD (e-NAD) and 40 μ g/ml active truncated human SARM1 protein (412-724) was incubated for 2h as positive control. 200 μ M 1,N6-Etheno-NAD (e-NAD), 20 μ M DSRM-3716 and 40 μ g/ml active truncated human SARM1 protein (412-724) was incubated for 2h as negative control.

Figure S1B: Enzymatic Assay Details and Reaction Scheme of ADPR, cADPR, and 1,N6-Etheno-NAD Production

Figure S2: Schematic Diagram and High-Resolution Mass Spectrometry Analysis of the Reaction Product AD-S-1. HRMS (ESI) calculated $C_{33}H_{39}N_7O_{14}P_2$, [M+H]+ = 820.2108, and measured [M+H]+: 820.2131

Figure S3: Expression Levels of SARM1 in a Tet-On 3G Inducible Expression System Across Different

Doxycycline (Dox) Concentrations

Figure S4: Enzyme Kinetic Studies of **S-1** and **TH408** Showing Uncompetitive Inhibition Mechanism. (A) Michaelis-Menten curves for the lead compound **S-1** at various concentrations (0, 0.4, 2, and 10 μ M) are shown. (B) Lineweaver-Burk plot for **S-1** at concentrations of 0, 0.4, and 2 μ M. (C) Lineweaver-Burk plot for **TH408** at concentrations of 0, 0.4, and 2 μ M.

Figure S5: Cytotoxicity evaluation of the molecules.

Table S1: Compound SMILES strings

S-1	O=C(CCC=C)N1C2=CC=C(C3=CC=NC=C3)C=C2CC1
S-2	O=C(CCC=C)N1C2=CC=C(C3=CC=CN=C3)C=C2CC1
S-3	O=C(CCC=C)N1C2=CC=C(C3=C(OC)C=CN=C3)C=C2CC1
S-4	O=C(CCC=C)N1C2=CC=C(C3=CC(C)=NC=C3)C=C2CC1
S-5	O=C(CCC=C)N1C2=CC=C(C3=CC(C)=NC(C)=C3)C=C2CC1
S-6	O=C(CCC=C)N1C2=CC=C(C3=CC(C(F)(F)F)=NC=C3)C=C2CC1
S-7	O=C(CCC=C)N1C2=CC=C(C3=CC(OC)=CN=C3)C=C2CC1
S-8	O=C(CCC=C)N1C2=CC=C(C3=CC(Cl)=NC=C3)C=C2CC1
TH-408	O=C(CCC=C)N1C2=CC=C(C3=C(CI)C=NC=C3)C=C2CC1
S-9	FC(C=NC=C1)=C1C2=CC=C(N(C(CCC=C)=O)CC3)C3=C2
S-10	O=C(CCC=C)N1C2=CC=C(C3=C(C(F)(F)F)C=NC=C3)C=C2CC1
S-11	O=C(CCC=C)N1C2=CC=C(C3=C([N+]([O-])=O)C=NC=C3)C=C2CC1
S-12	O=C(CCC=C)N1C2=CC=C(C3=C(OC)C=NC=C3)C=C2CC1
S-13	O=C(N1C2=CC=CC(C3=C(CI)C=NC=C3)=C2CC1)CCC=C
S-14	O=C(N1C2=CC(C3=C(CI)C=NC=C3)=CC=C2CC1)CCC=C
S-15	CIC(C=NC=C1)=C1C2=C(N(C(CCC=C)=O)CC3)C3=CC=C2
S-16	C=CCCC(N1CC2(C3=CC(C4=CC=NC=C4Cl)=CC=C31)CCCC2)=O
S-17	O=C(CCC=C)N1C2=CC=C(C=C2CCC1)C3=C(C=NC=C3)Cl
S-18	O=C(N1CC2=CC=C(C3=C(CI)C=NC=C3)C=C2CC1)CCC=C
S-19	O=C(N1C2=CC=C(C3=C(CI)C=NC=C3)C=C2CC1)CCCCC=C
S-20	O=C(CC)N1C2=CC=C(C3=C(CI)C=NC=C3)C=C2CC1
S-21	O=C(CCCC)N1C2=CC=C(C3=C(CI)C=NC=C3)C=C2CC1
S-22	O=C(C12CC3CC(C2)CC(C1)C3)N4C5=CC=C(C6=C(Cl)C=NC=C6)C=C5CC4
S-23	O=C(C=C)N1C2=CC=C(C3=C(CI)C=NC=C3)C=C2CC1
S-24	O=C(C1CCCCC1)N2C3=CC=C(C4=C(CI)C=NC=C4)C=C3CC2
S-25	O=C(C1CCCCC1)N2C3=CC=C(C4=C(Cl)C=NC=C4)C=C3CC2
1b	O=C(OC(C)(C)C)N1C2=CC=C(C3=CC=NC=C3)C=C2CC1
1d	O=C(N1C2=CC=C(C=C2CC1)C3=CC=NC=C3)CCCCCCCBr
PROTAC	O=C(N1C2=CC=C(C=C2CC1)C3=CC=NC=C3)CCCCCCCCCC4=CC=CC(C(N5C6CCC(NC6=O)=O)=O)=C4C5=O

Diversity	2			Averag	e values			
Set	MW	HbD	HbAc	cLogP	RotB	Fsp3	PSA	Tanimoto
50K	357.29	1.38	3.77	2.51	4.91	0.35	93.67	0.79
20K	355.04	1.39	3.77	2.42	4.78	0.35	93.06	0.74
15K	357.53	1.40	3.77	2.48	4.94	0.36	91.34	0.76
10K	359.44	1.38	3.76	2.59	5.02	0.35	90.06	0.78
5K	361.31	1.34	3.78	2.76	5.11	0.33	88.52	0.80

Table S2: Introduction of Life Chemicals- Pre-plated Diversity Sets

Diversity Set	Number of compounds	Number of Scaffolds	Number of Scaffold- based compounds	Number of Singletones	
50K	50,240	2,242	42,283	7,957	
20K	20,160	1,847	17,974	2,186	
15K	15,040	1,947	12,904	2,136	
10K	9,920	1,813	7,893	2,027	
5K	5,120	1,413	3,378	1,742	

The "life chemicals pre-plated diversity sets" originate from the Active Screening Platform at the Center for Pharmaceutical Technology, Tsinghua University, which is a commercial library. Provided by Life Chemicals, these sets are a series of pre-formulated compound diversity collections. These collections encompass up to 50,000 novel compounds, selected for their optimal physicochemical properties, making them a rich resource for high-throughput screening initiatives.

4. NMR Spectra

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-1)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(pyridin-3-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one

(S-2)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(4-methoxypyridin-3-yl)-2,3-dihydro-1H-indol-1-yl)pent-

4-en-1-one (S-3)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(2-methylpyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-

en-1-one (S-4)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(2,6-dimethylpyridin-4-yl)-2,3-dihydro-1H-indol-1yl)pent-4-en-1-one (S-5)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(2-(trifluoromethyl)pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-6)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(5-methoxypyridin-3-yl)-2,3-dihydro-1H-indol-1-yl)pent-

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(2-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4en-1-one (S-8)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4en-1-one (TH-408)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-fluoropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4en-1-one (S-9)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-(trifluoromethyl)pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-en-1-one (S-10)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-nitropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4en-1-one (S-11)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-methoxypyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-

4-en-1-one (S-12)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(4-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-

Spectra of ¹H-NMR and ¹³C-NMR of 1-(6-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4en-1-one (S-14)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(7-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pent-4-

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5'-(3-chloropyridin-4-yl)spiro[cyclopentane-1,3'-indolin]-

Spectra of ¹H-NMR and ¹³C-NMR of 1-(6-(3-chloropyridin-4-yl)-1,2,3,4-tetrahydroquinolin-1yl)pent-4-en-1-one (S-17)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(6-(3-chloropyridin-4-yl)-1,2,3,4-tetrahydroisoquinolin-2yl)pent-4-en-1-one (S-18)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)hept-6-

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)propan-

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)pentan-

1-one (S-21)

Spectra of ¹H-NMR and ¹³C-NMR of (5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-

yl)(tricyclo[3.3.1.13,7]dec-1-yl)methanone (S-22)

Spectra of ¹H-NMR and ¹³C-NMR of 1-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)prop-2-

Spectra of ¹H-NMR and ¹³C-NMR of (5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-

yl)(cyclohexyl)methanone (S-24)

.

Spectra of ¹H-NMR and ¹³C-NMR of 4-(5-(3-chloropyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)-4-

Spectra of ¹H-NMR and ¹³C-NMR of *tert*-butyl 5-(pyridin-4-yl) -2,3-dihydroindole -1-carboxylate (1b)

Spectra of ¹H-NMR and ¹³C-NMR of 9-bromo-1-(5-(pyridin-4-yl)indolin-1-yl)nonan-1-one (1d)

ANALY AND ANALY AND ANALY ANA 10000 9000 8000 5000 1000 5990 4000 300 2000 1000 -TT 24 888 â h (pps) 18 14 ii) -5 ĥ 42 ii. -2 10 ŝ ĥ, 本所当後8 11日 11 11/1/ 10 miles -2100 3100 1900 1900 1700 1660 1500 1490 1300 1290 1100 1000 909 (4) 100 rini) śnè 400 á0) 310 100 -100 -366 160 150 140 120 120 110 100 11 (1996) 210 200 20 60 10 40 20 10 -19 199 180 170 781 . 140 80

2-(2,6-dioxopiperidin-3-yl)-4-((9-oxo-9-(5-(pyridin-4-yl)-2,3-dihydro-1H-indol-1-yl)nonyl)oxy)-1H-isoindole-1,3(2H)-dione (1f, S-1 derived PROTAC)

HRMS spectra and HPLC trace

Instrument information and method

HRMS spectra were obtained from a XEVO G2 QTOF spectrometer (Waters Ltd.). HPLC analysis was performed on Agilent 1260 Inffnity using a C18 column [(Agilent Ltd.) SB-C18, 50 × 2.1 mm, 1.8 μ m, 0.3 mL/min] and SHIMADZU LC-20AR (Shimadzu Ltd.) using a C8 column (CAPCELL PAK C8 DD, 250 × 10 mm, 5 μ m, 4.0 mL/min).

HPLC conditions	Mobile phase A: 0.1% Formic acid in water								
	Mobile phase B: acetonitrile								
Method A	Time (min)	Solvent A (%)	Solvent B (%)	Flow (mL/min)					
	0.00	95.0	5.0	0.300					
	0.25	95.0	5.0	0.300					
	9.00	0.0	100.0	0.300					
	10.00	0.0	100.0	0.300					
	10.10	95.0	5.0	0.300					
	11.00	95.0	5.0	0.300					
	Column:	Agilent SB-C18 1.	.8μm (2.1*50 mr	n)					
Method B	Time (min)	Solvent A (%)	Solvent B (%)	Flow (mL/min)					
	0.00	80.0	20.0	1.000					
	0.25	80.0	20.0	1.000					
	12.00	0.0	100.0	1.000					
	16.00	0.0	100.0	1.000					
	16.10	80.0	20.0	1.000					
	17.00	80.0	20.0	1.000					
	Column:	CAPCELL PAK C8	DD (250*10 mm)					

HPLC trace for blank of sequence for all compounds except for S-22 and S-25 (method A)

Signal: VWD1 A, Wavelength=254 nm

Retention Time	[min]	Peak Width [min]	Peak Area	Peak Height	Area %
	0.637	0.0881	2.7417	0.4837	1. 4393
	0.824	0.0864	83.3077	15.0812	43.7342
	5.443	0.1162	1.8926	0.2503	0.9935
	7.008	0.8498	11.7658	0.1747	6.1767
	7.990	0.1162	1.0452	0.1483	0. 5487
	8.524	0.0881	1.1260	0.2115	0.5911
	8.670	0.0921	0.8708	0.1538	0,4572
	9,061	0.1196	69.5674	9.0610	36. 5209
	9.211	0.0852	6.3460	1.2097	3. 3315
	10.270	0. 1820	2.4627	0.1818	1.2929
	10. 594	0.1135	9.3605	1.2768	4.9140

Signal: VWD1 A, V	Wavelength=254 nm			
Retention Time [min]	Peak Width [min]	Peak Area	Peak Height	Area %
2.023	0. 0422	0.0768	0,0296	0.0690
2, 307	0. 1181	21.9700	2.6406	19, 7561
2.390	0. 0259	0.2930	0, 1811	0.2635
2.470	0. 0402	1.8652	0, 7444	1.6773
2, 569	0. 0401	1.1557	0.4792	1.0392
2.640	0. 0606	5.6854	1.3932	5, 1125
2.777	0.0394	2.2351	0, 9179	2,0099
2.921	0.0697	19.2747	3.9645	17.3324
3.223	0. 3758	13.4375	0.5111	12,0834
7,671	0, 0837	2.3798	0.4499	2, 1400
7.839	0. 0444	0.0385	0.0143	0.0346
7.965	5 0. 0830	1.2480	0.2425	1.1223
8,249	0. 1000	1.1359	0.1744	1.0214
9.460	0. 0813	0.1601	0.0295	0.1440
9.918	0.1124	1.5805	0.1953	1.4212
11.045	5 0 <mark>. 1</mark> 033	23, 4655	3.6848	21.1009
11, 223	0. 0948	3.4986	0.6113	3, 1461
11.469	0. 0885	3. 7918	0.6755	3.4097
11.967	0, 1002	1,9301	0.2881	1.7356

HRMS (ESI) calculated $C_{18}H_{18}N_2O$, [M+H]+ = 279.1497, and measured [M+H]+: 279.1512.

HPLC trace for S-1 (purity, 98.49%, detection at 254nm)

100.8076

Area %

98.4889

1.5111

16.8079

Signal:	VWI	01 A, Wa	avelength=254	1 nm		
Retention	Time	[min]	Peak Width	[min]	Peak Area	Peak Height
		6.441		0, 1917	6570, 4482	519.1284

0.0960

7,979

HRMS (ESI) calculated C₁₈H₁₈N₂O, [M+H]+ = 279.1497, and measured [M+H]+: 279.1518

Signal:	VWD1	Λ,	Wavelength=254	l nm
---------	------	----	----------------	------

Retention Time	[min] Peak	Width [min]	Peak Area	Peak Height	Area %
	6, 947	0,1319	4097.6777	517.7788	97.9214
	8.211	0, 1226	86, 9807	10.9589	2,0786

HRMS (ESI) calculated $C_{19}H_{20}N_2O_2$, [M+H]+ = 309.1603, and measured [M+H]+: 309.1606

HPLC trace for S-3 (purity, 98.90%, detection at 254nm)

Signal:	VWD1	Α.	Wavel	ength	=254	nm
CARAGE C	1 H L L	198	1014 1114		 Aug 17 (B). 	

Retention Time	[min]	Peak Width	[min]	Peak	Area	Peak He	ight	Area %
	6.475		0.1835	2913.	4114	250.	7777	98, 9067
	8.807		0, 1091	32.	2036	4.	6312	1.0933

HRMS (ESI) calculated $C_{19}H_{20}N_2O$, [M+H]+ = 293.1654, and measured [M+H]+: 293.1650

HPLC trace for S-4 (purity, 98.83%, detection at 254nm)

Signal:	VWD1 A.	Wave!	length=254	nm
---------	---------	-------	------------	----

Retention Time [min] Peak	Width [min]	Peak Area	Peak Height	Area %
6	5. 567	0.1960	3020, 9558	244, 7359	98, 8358
8	3. 017	0, 1059	15.4118	2, 3091	0.5042
8	3. 257	0, 0950	6,2359	1.0241	0,2040
9	0.450	0.0957	13.9377	2.2678	0.4560

HRMS (ESI) calculated C₂₀H₂₂N₂O, [M+H]+ = 307.1810, and measured [M+H]+: 307.1828

Signal:	VWD1 A, Wa	welength=254 nm			
Retention	Time [min]	Peak Width [min]	Peak Area	Peak Height	Area %
	6.786	0.1946	1978, 7377	161.8880	96, 6163
	8.182	0.1329	55, 9496	6.2221	2,7319
	9,449	0.0956	13, 3501	2.1766	0.6518

HRMS (ESI) calculated C₁₉H₁₇F₃N₂O, [M+H]+ = 347.1371, and measured [M+H]+: 347.1370

HPLC trace for S-6 (purity, 100%, detection at 254nm)

Signal: YMDI A, Wavelength=234 nm	Signal:	VWD1	Λ.	Wave]	length=254	10
-----------------------------------	---------	------	----	-------	------------	----

Retention	Time	[min]	Peak Width [min]	Peak Area	Peak Height	Area %
		9.749	0.1168	1025.7622	134.7071	100,0000

HRMS (ESI) calculated $C_{19}H_{20}N_2O_2$, [M+H]+ = 309.1603, and measured [M+H]+: 309.1606

HPLC trace for S-7 (purity, 100%, detection at 254nm)

Signal:	VWI	01 A, Wa	velength=254 nm		
Retention	Time	[min]	Peak Width [min]	Peak Area	P
		9.229	0.1299	1043.2941	

Peak Area	Peak Height
1043, 2941	133, 8300

Area % 100.0000

HRMS (ESI) calculated C₁₈H₁₇ClN₂O, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

HPLC trace for S-8 (purity, 100%, detection at 254nm)

Signal:	VWE	1 A. We	welength=254	nm			
Retention	Time	[min]	Peak Width	[min]	Peak Area	Peak Height	Area %
		9.420		0.1071	828, 1421	119.1893	100,0000

HRMS (ESI) calculated $C_{18}H_{17}CIN_2O$, [M+H]+ = 313.1108, and measured [M+H]+: 313.1114

Signal:	VWD1 A, Wa	ivelength=254 nm			
Retention	Time [min]	Peak Width [min]	Peak Area	Peak Height	Area %
	9.241	0.1061	1450, 0017	211.0805	99.0325
	10, 091	0.1133	14.1652	1.9370	0.9675

HRMS (ESI) calculated C₁₈H₁₇FN₂O, [M+H]+ = 297.1403, and measured [M+H]+: 297.141

HPLC trace for S-9 (purity, 100%, detection at 254nm)

Signal:	VWI	01 A, W	avelengt	h=254	nm				
Retention	Time	[min]	Peak W	idth	[min]	Peak Area	a Peak	Height	Area %
		8, 791		(0.1073	960.651	9 1	41.3400	100.0000

HRMS (ESI) calculated C₁₉H₁₇F₃N₂O, [M+H]+ = 347.1371, and measured [M+H]+: 347.1375

Signal:	VWE	01 A, Wa	avelength=254	nm			
Retention	Time	[min]	Peak Width	[min]	Peak Area	Peak Height	Area %
		9.399		0, 1123	2732, 7261	378. 3625	100.0000

HRMS (ESI) calculated $C_{18}H_{17}N_3O_3$, [M+H]+ = 324.1348, and measured [M+H]+: 324.1340

HPLC trace for S-11 (purity, 100%, detection at 254nm)

Signal:	VWI	01 A, W	avelengt	h=254	nm				
Retention	Time	[min]	Peak W	Vidth	[min]	Peak	Area	Peak Height	Area %
		8.730		- 20	0.1091	1549.	6306	222.8377	100.0000

HRMS (ESI) calculated $C_{19}H_{20}N_2O_2$, [M+H]+ = 309.1603, and measured [M+H]+: 309.1606

HPLC trace for S-12 (purity, 97.73%, detection at 254nm)

Area %

2.2700

Signal:	VWI	01 A, Wa	welength=25	4 nm			
Retention	Time	[min]	Peak Width	[min]	Peak Area	Peak Height	
		6,985		0.1544	4238, 8691	424.8307	
		8.209		0.1249	98.4573	12.1083	

HRMS (ESI) calculated C₁₈H₁₇ClN₂O, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

Signal:	VWD1 A, Wa	avelength=254 nm			
Retention	Time [min]	Peak Width [min]	Peak Area	Peak Height	Area %
	9.146	0.1240	3436. 3147	417.4023	96, 8279
	10, 397	0.1238	112.5757	15, 1561	3.1721

HRMS (ESI) calculated C₁₈H₁₇ClN₂O, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

HPLC trace for S-14 (purity, 100%, detection at 254nm)

Area %

100.0000

Signal:	VWI	01 A, We	welength=254	1 nm		
Retention	Time	[min]	Peak Width	[min]	Peak Area	Peak Height
		9.278		0.1175	11090.8857	1445.0328

HRMS (ESI) calculated C₁₈H₁₇ClN₂O, [M+H]+ = 313.1108, and measured [M+H]+: 313.1118

HPLC trace for S-15 (purity, 99.25%, detection at 254nm)

Signal: V#D1 A, #averength=204 nm	Signal:	VWD1	٨.	Wavelength=254	nm
-----------------------------------	---------	------	----	----------------	----

Retention Tim	e [min]	Peak Width	[min]	Peak	Area	Peak	Height	Area 9
	7.647		0, 1197	16	4733		2,0522	0.754
	8.434		0.1122	2166	. 9690	30	00. 3223	99.245

HRMS (ESI) calculated C₂₂H₂₃ClN₂O, [M+H]+ = 367.1577, and measured [M+H]+: 367.1549

Signal .	VWDT	4	Wavel	ongti	h=254	100
SIXINI.	1 11/1	144	11111111	наки	1-601	11.00

Retention Time [min]	Peak Width [min]	Peak Area	Peak Height	Area %
10,757	0.1250	2206, 5828	294, 3026	100.0000

HRMS (ESI) calculated $C_{19}H_{19}CIN_2O$, [M+H]+ = 327.1264, and measured [M+H]+: 327.1271

HPLC trace for S-17 (purity, 98.51%, detection at 254nm)

Area %

98.5140

1.4860

Signal:	VWI	01 Å, Wa	welength=254	nm		
Retention	Time	[min]	Peak Width	[min]	Peak Area	Peak Height
		9.359		0.0774	4082, 6995	801. 7144
		10.488		0.0793	61.5830	12.9384

HRMS (ESI) calculated $C_{19}H_{19}CIN_2O$, [M+H]+ = 327.1264, and measured [M+H]+: 327.1271

HPLC trace for S-18 (purity, 99.48%, detection at 254nm)

Signal:	VWI)1 A, We	velength=254	1.00					
Retention	Time	[min]	Peak Width	[min]	Peak	Area	Peak	Height	Area %
		8.250	0	. 1085	26.	. 3020		3.7193	0.5225
		8,740	ः (. 1095	5007.	. 5469	6	99.9510	99, 4775

HRMS (ESI) calculated C₂₀H₂₁ClN₂O, [M+H]+ = 341.1421, and measured [M+H]+: 341.1426

Signal:	VWD1	A. We	welength=254	nm					
Retention	Time [m	in]	Peak Width	[min]	Peak	Area	Peak	Height	Area %
	9	. 888		0.1358	41	. 4052		4.3985	3.8714
	10	. 219		0.1242	1028	. 1101	13	37.9924	96.1286

HRMS (ESI) calculated C₁₆H₁₅ClN₂O, [M+H]+ = 287.0951, and measured [M+H]+: 287.0959

HPLC trace for S-20 (purity, 100%, detection at 254nm)

Signal:	VWL)1 A, W	avelength=25	nn 1			
Retention	Time	[min]	Peak Width	[min]	Peak Area	Peak Height	Area %
		8.420		0.1124	2176.6836	300.9221	100.0000

HRMS (ESI) calculated C₁₈H₁₉ClN₂O, [M+H]+ = 315.1264, and measured [M+H]+: 315.1271

HPLC trace for S-21 (purity, 100%, detection at 254nm)

Signal:	VWD	Ι Α,	Waveleng	th=254	nm					
Retention	Time	[min]	Peak	Width	[min]	Peak	Area	Peak H	eight	Area %
		9.63	7		0.1119	2178	. 3867	302	. 7588	100,0000

HRMS (ESI) calculated C₁₆H₁₃ClN₂O, [M+H]+ = 285.0795, and measured [M+H]+: 285.0792

HPLC trace for S-23 (purity, 100%, detection at 254nm)

Area %

Signal:	VWE	01 A, Wa	aveleng	th=254	nm		
Retention	Time	[min]	Peak	Width	[min]	Peak Area	Peak Height
		8, 235			0.1126	681, 9696	94,0080

HRMS (ESI) calculated C₂₀H₂₁ClN₂O, [M+H]+ = 341.1421, and measured [M+H]+: 341.1418

Signal:	VWD1 A, W	avelength=254 nm			
Retention	Time [min]	Peak Width [min]	Peak Area	Peak Height	Area %
	10, 145	0, 1226	1094.2311	148, 7195	100.0000

HRMS (ESI) calculated C₂₄H₂₅ClN₂O, [M+H]+ = 393.1734, and measured [M+H]+: 393.1732

Signal:	VWD1	Α,	Wavelength=254	nm
---------	------	----	----------------	----

Retention	Time	[min]	Peak Width [min]	Peak Area	Peak Height	Area %
		9.308	0.0751	1.7604	0.3597	0.5365
		10.328	0.0824	2.4012	0.4283	0.7318
		13.407	0.0485	0.5058	0.1616	0.1542
		13. 468	0.0553	0.7580	0. 2248	0.2310
		15, 231	0.1095	322.6840	44.0537	98.3465

HRMS (ESI) calculated C₁₈H₁₅ClN₂O, [M+H]+ = 312.0904, and measured [M+H]+: 312.0898

Signal: VWDI A, Wavelength=254 n	Signal:	VWD1	A,	Wavelength=254	TIR.
----------------------------------	---------	------	----	----------------	------

Retention Time	[min]	Peak Width [min]	Peak Area	Peak Height	Area %
	8.654	0.0687	4024.3447	907.8820	100.0000

HRMS spectra for 1b

HRMS (ESI) calculated $C_{18}H_{20}N_2O_2$, [M+H]+ = 297.1603, and measured [M+H]+: 297.1589

HRMS spectra for 1d

HRMS (ESI) calculated $C_{22}H_{27}BrN_2O$, [M+H]+ = 415.1385, and measured [M+H]+: 415.1383

HRMS spectra for S-1 derived PROTAC

HRMS (ESI) calculated $C_{35}H_{36}N_4O_6$, [M+H]+ = 609.2713, and measured [M+H]+: 609.2714

HPLC trace for S-1 derived PROTAC (purity, 100%, detection at 254nm)

Signal:	VWI)1 A,	Waveleng	gth=254	num			
Retention	Time	[min]] Peak	Width	[min]	Peak Area	Peak Height	Area %
		7.83	35		0.1567	5365.6885	502. 1758	100,0000