Supplementary Information

Advancing catalytic oxidation of lean methane over cobalt-

manganese oxide via phase-engineered amorphous/crystalline

interface

Wei Wang^{a,b†}, Ruishan Qiu^{a,b†}, Chenqi Li^{a,b}, Ruixia Zhong^a, Haiwang Wang^{*a}, Jian Qi ^{*c,d}

^aKey Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China

^bSchool of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, P. R. China ^cState Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China

^dSchool of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

†These authors contributed equally to this work.

**Corresponding authors:*

Email: whwdbdx@126.com (H. Wang); jqi@ipe.ac.cn (J. Qi)

Experimental section

All chemicals (analytical grade) were used directly without further purification in the synthesis process. The preparation process refers to the literature¹. $Co(NO₃)₂·6H₂O$ (5 mmol), $Mn(CH₃COO)₂·4H₂O$ (1 mmol), and Polyethylene glycol-2000 (PEG-2000) (0.1875 mmol) were dissolved in 20 mL of deionized water to prepare the precursor solution A. $NH₄HCO₃$ (6 mmol) was prepared in 10 mL of deionized water as the precipitant to form the solution B, which was transferred to a flat bottom flask. NH₄HCO₃ (6 mmol) was prepared in 10 ml of deionized water as a precipitant to form solution B, which was then transferred to a flat-bottom flask. Solution A was then added to solution B and reacted in anultraviolet ultrasonic microwave three-in-one reaction instrument,(MC8S-3, Nanjing, China) for 30 minutes. The suspension was then washed three times with anhydrous ethanol and the precipitate was dried at 70 °C for 6 h and then calcined at 350 °C for 4 h. The ultrasonic power was fixed at 300 W. The precipitate was then dried at 70 °C for 6 h

and calcined at 350 °C for 4 h. To explore the optimal microwave power, the ultrasonic power was fixed at 300 W. The $CoMnO_x$ samples were referred to as MW-X US-300W (MW is the microwave power and X is the power in watts. The X = 50W, 100W, 150W, 200W, 250W, 300W and 400W)

After determining the optimal power of 250 W, the microwave power was fixed at 250 W and the ultrasonic power was adjusted to obtain a sample called MW-250 W US-Y (US is the ultrasonic power, $Y = 90$ W, 180 W, 300 W, 450 W and 540 W)

Catalyst characterizations

The XRD patterns were determined by an X-ray diffractometer (Rigaku Smartlab, Japan). The thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) was conducted on a Setsys Evolution thermal analyzer (Simultaneous, France). SEM analysis was performed on a Supra 55 scanning electron microscope (Germany). TEM and HRTEM were conducted by Tecnai G2 TF20 high-resolution transmission electron microscope (Philips-FEI) to observe the micromorphology and crystal structure of the catalysts. The Brunauer-Emmett-Teller (BET) surface area was measured on an SSA-4000 pore specific surface area analyzer. Fourier transform infrared (FTIR) spectra were carried out using an FTIR-8400S spectrometer (Shimadu, Japan). XPS was measured on the Escalab 250 X-ray photoelectron spectrometer (Thermo VG, USA). Hydrogen temperature programmed reduction analysis (H_2-TPR) was performed on a BELCAT instrument (BEL Japan, Inc.). In situ DRIFTS was carried out on Bruker equipment (Germany).

Catalytic activity test

The catalytic activities of catalysts for methane combustion were carried out in a quartz reaction tube (diameter $= 6$ mm, length $= 550$ mm) which was used as a quartz micro-fixed bed reactor at atmospheric pressure. The middle of the quartz tube is fixed by a sand core. For each measurement, 100 mg of the catalysts were loaded into the center of the quartz micro-fixed bed reactor. A gas mixture composed of 1 vol.% CH₄, 20 vol.% O_2 , 5 vol.% or 10 vol.% H₂O (when used) and balanced N₂ was fed

into the micro-reactor, and the total flow rate was held at 60 mL min−1 via a mass flow controller, corresponding to the space velocity (GHSV) of $36,000 \text{ mL g}^{-1} \text{ h}^{-1}$. The gas composition of the inlet and outlet of the reaction tube was analyzed on-line by a gas chromatograph (GC-7890) equipped with TCD and a flame ionization detector (FID) detector.

The methane gas conversion was calculated by the following equation:

CH4 conversion (%) =
$$
\frac{\text{[CH4]}_{in} - \text{[CH4]}_{out}}{\text{[CH4]}_{in}} \times 100\%
$$

Where CH_4 conversion (%) represents the conversion of methane, $[CH_4]_{in}$ represents the initial concentration of methane, and [CH4]out represents the concentration of methane after catalytic combustion.

Fig. S2 SEM-EDS of the typical MW-250 W US-300 W catalyst.

Fig. S3 CH⁴ oxidation activity for different samples as a function of temperature.

Fig. S4 Arrhenius plots for methane oxidation over different samples.

Fig. S5 The relationship between microwave, morphology, and performance of catalysts.

Fig. S6 Static water droplets contact angles of MW-250W US-300W catalyst

Sample	(m/g) BET	$(\text{cm }/\text{g})$	Average pore size (nm)	
MW-50W US-300W	94.95	0.54	22.56	
MW-250W US-300W	87.69	0.84	38.02	
MW-400W US-300W	96.43	0.50	19.86	
MW-400W US-90W	91.21	0.57	25.12	

Table S1 BET surface areas, pore sizes, pore volumes for the different samples

Table S2 Comparison of the catalytic activities of various reported catalysts with those in present work

Catalysts	Reaction Conditions	T_{50} /°C	T_{90} /°C	Ref.
MB -Co ₃ O ₄	$1\% \text{ CH}_4$, $20\% \text{ O}_2$, $30,000 \text{ mL} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	355	434	2
$NiCo2O4$ bubbles	1 % CH ₄ , 20% O ₂ , 30,000 mL·h ⁻¹ ·g ⁻¹	346	401	2
60% MnCo ₂ O ₄ /SiC	$1\% \text{ CH}_4$, $20\% \text{ O}_2$, $SV = 45000 \text{ mL/(g} \cdot h)$	375	444	3
Co_3O_4 -ZrO ₂ (2%)	0.5% CH ₄ , 8.0% O ₂ , 40 mL·min ⁻¹		335	$\overline{4}$
$Co-In-0.2$	1% CH ₄ , 10% O ₂ , 48,000 mL \cdot g ⁻¹ \cdot h ⁻¹		380	5
$N-Co3O4-110$	2vol.% CH ₄ , 20 vol.% O ₂ , 46,800 mL·g ⁻¹ ·h ⁻¹	342	412	6
CoGO50	$1\,\mathrm{vol}\% \,CH_4$, 10 vol $\%$ O ₂ , 30,000 mL·g ⁻¹ ·h ⁻¹	295	370	7
$Pd(PdO)/Co_3O_4(a)SiO_2$	$1\% \text{ CH}_4$, $21\% \text{ O}_2$, $30,000 \text{ mL} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	357	445	8
Pd -Co ₃ O ₄	1% CH ₄ , 20% O ₂ , 30,000 mL·g ⁻¹ ·h ⁻¹	291	337	9
$CoMnOx MW-250W$	1% CH ₄ , 20% O ₂ , 36,000 mL·g ⁻¹ ·h ⁻¹	281	330	This work

Notes and references

- 1. X. Fan, L. Li, X. Yang, Z. Guo, F. Jing and W. Chu, *Catalysis Today*, 2020, **347**, 23-30.
- 2. W. Wen, J. Che, J. Wu, H. Kobayashi, Y. Pan, W. Wen, Y.-H. Dai, W. Huang, C. Fu, Q. Zhou, G.- L. Lu, H. Tian, J. Liu, P. Yang, X. Chen, T.-L. Sun and J. Fan, *ACS Catalysis*, 2022, **12**, 7037-7045.
- 3. Y. Zhao, Z. Gu, D. Li, J. Yuan, L. Jiang, H. Xu, C. Lu, G. Deng, M. Li, W. Xiao and K. Li, *Fuel*, 2022, **323**, 124399.
- 4. Z. Pu, Y. Liu, H. Zhou, W. Huang, Y. Zheng and X. Li, *Applied Surface Science*, 2017, **422**, 85-93.
- 5. Y. Zheng, C. Wang, J. Li, F. Zhong, Y. Xiao and L. Jiang, *ACS Applied Nano Materials*, 2020, **3**, 9470-9479.
- 6. Q. Yu, C. Liu, X. Li, C. Wang, X. Wang, H. Cao, M. Zhao, G. Wu, W. Su, T. Ma, J. Zhang, H. Bao, J. Wang, B. Ding, M. He, Y. Yamauchi and X. S. Zhao, *Applied Catalysis B: Environmental*, 2020, **269**, 118757.
- 7. D. Gong and G. Zeng, *Scientific Reports*, 2021, **11**, 12604.
- 8. Y. Ma, S. Li, T. Zhang, Y. Zhang, X. Wang, Y. Xiao, Y. Zhan and L. Jiang, *Nanoscale*, 2021, **13**, 5026-5032.
- 9. J. Xiong, K. Wu, J. Yang, P. Liu, L. Song, J. Zhang, M. Fu, L. Chen, H. Huang, J. Wu and D. Ye, *Applied Surface Science*, 2021, **539**, 148211.