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1. General Information.

Unless otherwise noted, all chemicals, containing 2-phenylacetophenones, ligands,
propiophenones, fert-butylhydrazinecarboxylate, (1-phenylethylidene)benzohydrazide,
Cu-catalysts, acid additives, base additives, oxidants, and all solvents, were obtained
from commercial source and used as received without any further purification. (E)-N"-
(1-phenylethylidene)Benzohydrazide substrates (1) were synthesized according to the
relevant reference,! 2-phenylacetophenone substrates (2) were synthesized according to
the relevant reference,” fert-butyl(E)-2-(Phenylethylidene)hydrazine-1-carboxylate
substrates (4) were synthesized according to the relevant references.’® 1-Phenylprop-
2-en-1-one (5h) and (1-phenylethylidene)hydrazine (1i) were synthesized according to
the relevant references.”® 'TH NMR and '*C NMR spectra were measured on a 500 MHz
and 400 MHz Bruker spectrometer, using CDCl; as the solvent with tetramethylsilane
(TMYS) as the internal standard at room temperature. Chemical shifts are given o relative
to tetramethylsilane, and the coupling constants J are given in hertz. The multiplicities
are reported as follows: singlet (s), doublet (d), triplet (t), quarter (q) and multiplet (m).
High-resolution mass spectra (HRMS) were recorded on an electrospray ionization
(ESI-TOF) quadrupole time-of-flight mass spectrometer. Melting points were
measured with WRR digital point apparatus. Analytical thin-layer chromatography
(TLC) was performed on pre-coated, glass-backed silica gel plates. Flash column
chromatography was performed over silica gel (300-400 mesh) using ethyl acetate
(EA)/petroleum ether (PE) as eluent. X-ray crystallographic analysis was done at the
X-ray crystallography facility, Shanghai Institute of Organic Chemistry (SIOC),
Chinese Academy of Sciences (CAS).

2. Experimental Section for the Synthesis of Substrates.

2.1. General procedure for the synthesis of acylhydrazones (1a-1h)!

H
(0] N\ Ph
o+ e - N
R Ph” “NHNH, EtOH, reflux, 6 h R 1ot O
a-

Standard procedure for the preparation of substituted acylhydrazones (1a-1h) were

according to the reported procedure:! to a stirred solution of benzoyl hydrazine (10
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mmol) in EtOH was added aryl ketones (10 mmol). The reaction mixture was heated
under reflux for 6 hours, the precipitates were collected on a Biichner funnel. The
acylhydrazones (1a-1h) were obtained in a quantitative yield and were purified by

recrystallization from ethanol and washed with diethyl ether. In all cases, the obtained

2.2. General procedure for the synthesis of 2-phenylacetophenones (2a-2h)?
B(OH), & Pd(OAc); (5 mol %) O
R1
O/ bpy, TFA, THF/H,0 O
80°C, 36 h, N,

0 o
OOO

Standard procedure for the preparation of substituted 2-phenylacetophenones (2a-2h)

acylhydrazone was E configuration.

oo
T

C&Q

@]

2‘;

were according to the reported procedure:? to a Schlenk tube with a magnetic stirring
bar were charged the substituted 2-phenylacetonitriles (2 mmol), substituted
arylboronic acids (4.0 mmol), Pd(OAc), (5 mol %), 2,2'-bipyridine (10 mol %), TFA
(10 equiv), THF (10 mL), and H,O (4 mL) under a N, atmosphere. The reaction mixture
was stirred at 80 °C for 36 h. After cooling to room temperature, the mixture was poured
into EtOAc (25 mL), which was washed with saturated NaHCOj; solution (2 x 10 mL)
and then brine (1 x 10 mL). After extracting the aqueous layer with EtOAc (3 X 10 mL),
the combined organic layers were dried (Na,SO,), and evaporated under vacuum. The
residue was purified by flash column chromatography (PE/EtOAc) to afford the
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substituted 2-phenylacetophenones (2a-2h).

2.3. General procedure for the synthesis of acylhydrazones (4a-4k)3-6

R2 R2

0 HOAc
R1@O + H2N\NHJLOJ< > R1‘E>)\\N'NHBOC
CH3OH, reflux, 4 h 4a-4k

Standard procedure for the preparation of substituted acylhydrazones (4a-4k) were

according to the reported procedures:3-° to a stirred solution of tertiary butyl carbazate
(10 mmol, 1.32 g) and HOAc (2 mmol, 0.12 g) in CH;0H (5 mL) was added
corresponding substituted acetophenones (10 mmol) and allowed to stir the reaction
mixture at reflux for about 4 h. The completion of the reaction was monitored by TLC
chromatography. After completion of the reaction, the reaction mixture was cooled and
filtered to remove the solvent. The filtered solid was recrystallized with petroleum ether
to get the pure corresponding acylhydrazones (4a-4k). In all cases, the obtained

acylhydrazone was E configuration.

X .NHB X .NHB X .NHB
/©)\\N,NHBOC ©)\N oC /@)\N oc /@)\N oC
Cl Me MeO
4a 4b 4c 4d

X, ,-NHB
/©)\\N,NHBOC /©)\\N,NHBOC /O)\N 0C  F : ,L\N,NHBoc
PhO F F4C
4e 4f 49 4h
M X, -NHB X, ,-NHB
S N—NHBoc
4i 4j 4k

2.4. General procedure for the synthesis of 1-phenylprop-2-en-1-one (5h)’

0 0
Et;N (1.1 equiv)
Cl > Z
DCM, rt., 3 h
5h

Standard procedure for the preparation of 1-phenylprop-2-en-1-one (Sh) was according

to the reported procedure:” to a 50 mL round bottom flask equipped with magnetic stir
bar was added 3-chloro-1-phenylpropan-1-one (10 mmol) in DCM (20 mL), then Et;N

(11 mmol) was added dropwise for about 10 min, afterwards, the reaction was stirred
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at room temperature for the appropriate time (monitored by TLC). After completion of
the reaction, the mixture was poured into DCM (15 mL) and washed with water (3 x 20
mL), then dried with anhydrous Na,SO, and evaporated under vacuum. The residue
was purified by flash column chromatography (hexane-EtOAc) to afford the targeted
1-phenylprop-2-en-1-one (Sh).

2.5. General procedure for the synthesis of (1-phenylethylidene)hydrazine (1i)®

NH2NH2 + (@] —_—— \N’NHZ

CHCl,, 120 °C
1i

Standard procedure for the preparation of (1-phenylethylidene)hydrazine (1i) was
according to the reported procedure:® to a 100 mL round bottom flask equipped with
magnetic stir bar was added hydrazine hydrate (1.2 mol) and acetophenone (40.0 mmol)
in CHCIl; (30 mL), then stirred the reaction mixture at 120 °C for 4 hours. After cooling
to room temperature, the mixture was extracted with DCM. The combined organic layer
was washed with brine, then dried with Na,SO, and evaporated under vacuum to afford

the targeted product 1i. The obtained hydrazine was E configuration.

3. Optimization of Reaction Conditions.

Table S1. Optimization of reaction conditions for the synthesis of 3,4,6-

trisubstituted pyridazine.*?

H Cu(OAc), (100 mol %) /@
o .
\N_NH Ph N i on TEMPO (2 equiv) > | \|
T pr~ CH3COOH (1.6 equiv) Nv#
o MeCN, 100 °C, Ny, 12 h

1a, 0.3 mmol 2a, 0.2 mmol 3a

entry Deviation from the standard conditions yield(%)?
1 none 90

2 without Cu-salt trace
3 without TEMPO 33

4 without acid additive 55

5 CuBr; instead of Cu(OAc), 15

6 Cu(OTY), instead of Cu(OAc), 17

7 Cu(acac), instead of Cu(OAc), 48

8 Cul instead of Cu(OAc), 46
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9 DMF instead of MeCN trace

10 THF instead of MeCN 15
11 DMSO instead of MeCN 35
12 EtOH instead of MeCN 45
13 PhCHj; instead of MeCN 15
14 "C4HoCOOH instead of HOAc 79
15 PivOH instead of HOAc 75
16 0.5 equiv. Cu(OAc), was used 74
17 1.5 equiv. Cu(OAc), was used 75
18 120 °C instead of 100 °C 80
19 80 °C instead of 100 °C 48
20 air instead of N, 58
21 O, instead of N, 19

@Reaction Conditions: 1a (0.3 mmol), 2a (0.2 mmol), Cu(OAc), (100 mol%), TEMPO (2 equiv), HOAc (1.6 equiv),
MeCN (2 mL), 100 °C, N», 12 h. “Isolated yields.

Table S2. Screening of the leaving group on the acylhydrazone for the synthesis of

3,4,6-trisubstituted pyridazine.~?

H Cu(OAc), (100 mol %)
o] TEMPO (2 equiv) Phj/\ ~Ph
Xy NHL LG + o > |7
I P~ CH3COOH (1.6 equiv) N\ e
1 2a MeCN, 100 °C, Ny, 12 h 3a
s Boen K Rowe K Roos IS Hoowe s K oen
Ph N Ph N ¢ PN e Y PN e ¢ PN N e
o} o} o} o} o}
90% 74% 48% 30% 10%

@Reaction Conditions: 1 (0.3 mmol), 2a (0.2 mmol), Cu(OAc), (100 mol%), TEMPO (2 equiv), HOAc (1.6 equiv),
MeCN (2 mL), 100 °C, N, 12 h. “Isolated yields.

Table S3. Optimization of reaction conditions for the synthesis of 3,5-disubstituted

pyridazine.*?

0 Cu(OAc), (150 mol %)

/©)\\ ,H OBu TEMPO (2 equiv) CI\@\/\ i
cl O 6,6'-dimethyl-2,2'-dipyridine (60 mol %) NI‘NJ
6a

"BuCOOH (2 equiv)

4a 5a LIOAc (2 equiv), DMF, 130 °C, air
entry deviation from the standard conditions yield(%)?
1 none 76
2 without Cu-salt trace
3 without TEMPO trace
4 without ligand 50
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5 without base additive 57
6 without acid additive 56
7 Cu(acac), instead of Cu(OAc), <10
8 Cu(OTY), instead of Cu(OAc), <10
9 CuSOy instead of Cu(OAc), 24
10 CuCl, instead of Cu(OAc), trace
11 Cul instead of Cu(OAc), <10
12 MeCN instead of DMF 15
13 DCE instead of DMF <10
14 THF instead of DMF 20
15 DMSO instead of DMF 57
16 NMP instead of DMF 60
17 HOACc instead of "C4;HyCOOH 66
18 PivOH instead of "C,HoCOOH 69
19 Li,COs; instead of LiOAc 50
20 LiOH instead of LiOAc 58
21 LiOMe instead of LiOAc 60
22 L2 instead of L1 55
23 L3 instead of L1 40
24 L4 instead of L1 65
25 L5 instead of L1 65
26 N, instead of air 62
27 O, instead of air 38
28 140 °C instead of 130 °C 74
29 120 °C instead of 130 °C 68

@Reaction Conditions: 4a (0.25 mmol), 5a (0.2 mmol), Cu(OAc), (150 mol%), TEMPO (2 equiv), 6,6'-dimethyl-
2,2"-bipyridine (60 mol%), "C4HyCOOH (2 equiv), LiOAc (2 equiv), DMF (2 mL), 130 °C, air, 12 h. ®Isolated yields.

P o o e o

L1 L2 L3 L4 L5
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Table S4. Screening of the leaving groups on the acylhydrazone for the synthesis

of 3,5-disubstituted pyridazine.~*

Cu(OAG), (150 mol %)

H Q o
\N’NYLG N _® TEMPO (2 equiv) -
- N
o 6,6'-dimethyl-2,2'-dipyridine (60 mol %) NI /’*
°N
4 5a 6h

"BuCOOH (2 equiv)
LiOAc (2 equiv), DMF, 130 °C, air

sasmicasrasueasalivagalvan

70% 13% trace trace
“Reaction Conditions: 4 (0.25 mmol), Sa (0.2 mmol), Cu(OAc), (150 mol%), TEMPO (2 equiv), 6,6'-dimethyl-2,2'-
bipyridine (60 mol%), "CsHyCOOH (2 equiv), LiOAc (2 equiv), DMF (2 mL), 130 °C, air, 12 h. “Isolated yields.

4. General Procedure for Accessing Polysubstituted Pyridazines.

4.1. General procedure for the synthesis of 3,4,6-triaryl pyridazines (3a-30).

Cu(OAc), (100 mol %)

R3 TEMPO (2 equiv)
CH3COOH 1Gequ|v) Nl /
MeCN, 100 °C, Np, 12 h

3a- 30

In a 25 mL Schlenk reaction tube with a stir bar, N-benzoylhydrazones (1) (0.3 mmol),
substituted 2-phenylacetophenone (2) (0.2 mmol), Cu(OAc), (0.2 mmol, 36.2 mg),
TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32 mmol) were dissolved in MeCN (2.0 mL)
under a nitrogen atmosphere. The reaction mixture was then heated at 100 °C (oil bath)
with vigorous stirring for 12 hours. After the reaction completion, the mixture was
poured into ethyl acetate, and washed with saturated brine (1 x 40 mL). The combined
organic layers were dried over anhydrous Na,SO, and evaporated under vacuum. The
residue was purified by a silica gel packed flash chromatography column with
petroleum ether/ethyl acetate (15:1) as the eluent to afford the desired 3.,4,6-
triarylpyridazines (3a-30).

4.2. General procedure for the synthesis of tert-butyl 3-methyl-6-
phenylpyridazine-4-carboxylate (3p).

Cu(OAc), (100 mol %) o
~ NH o o TEMPO (2 equiv)
- + > N i
N )J\/U\ozBu CH3COOH (1.6 equiv) | O'Bu
0o MeCN, 100 °C, Np, 12 h N \?
1a 2i 3p, 26%

In a 25 mL Schlenk reaction tube with a stir bar, substituted acylhydrazones (1a) (0.3

mmol), fert-butyl 3-oxobutanoate (2i) (0.2 mmol), Cu(OAc), (0.2 mmol, 36.2 mg),
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TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32 mmol) were dissolved in MeCN (2.0 mL)
under a nitrogen atmosphere. The reaction mixture was then heated at 100 °C (oil bath)
with vigorous stirring for 12 hours. After the reaction completion, the mixture was
poured into ethyl acetate, and washed with saturated brine (1 X 40 mL). The combined
organic layers were dried over anhydrous Na,SO, and evaporated under vacuum. The
residue was purified by a silica gel packed flash chromatography column with
petroleum ether/ethyl acetate (15:1) as the eluent to afford the desired tert-butyl 3-
methyl-6-phenylpyridazine-4-carboxylate (3p) in a yield of 26%.
4.3. General procedure for the synthesis of 3,5-disubstituted pyridazines (6a-6q).
) @AT - w@)V . S O
! - R SR,

LiOAC (2 equiv)
DMF, 130 °C, air 6a-6q

4 5
In a 25 mL Schlenk reaction tube with a stir bar, substituted acylhydrazone (4) (0.25
mmol), substituted propiophenone (5) (0.2 mmol), Cu(OAc); (0.3 mmol, 54.3 mg), 6,6'-
dimethyl-2,2'-bipyridine (0.12 mmol, 22.1 mg), TEMPO (0.4 mmol, 62.4 mg), LiOAc
(0.4 mmol, 25.6 mg), "C4HyCOOH (0.4 mmol, 40.8 mg) were dissolved in DMF (2 mL)
under air atmosphere. The reaction mixture was then heated at 130 °C (oil bath) with
vigorous stirring for 12 hours. After the reaction equilibrium, the mixture was poured
into ethyl acetate and washed with saturated brine (3 x 10 mL). The combined organic
layers were dried over anhydrous Na,SO, and evaporated under vacuum. The residue
was purified by a silica gel packed flash chromatography column with petroleum
ether/ethyl acetate (12:1) as the eluent to afford the desired 3-aryl-5-benzoylpyridazines

products (6a-6q).
5. Analytical Data for All Products.

3,4,6-triphenylpyridazine (3a):
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Yellow solid (55.4 mg, 90%). mp: 165-166 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (500 MHz, CDCls) 6 8.20 (d, J
=17.5 Hz, 2H), 7.86 (s, 1H), 7.57-7.50 (m, 5H), 7.37-7.30 (m, 6H), 7.28-7.26 (m, 2H).
I3C NMR (125 MHz, CDCl;) 6 158.2, 157.8, 139.5, 137.2, 136.7, 136.2, 130.1, 129.1,
129.1, 128.8, 128.7, 128.1, 127.1, 124.8. HRMS (ESI-TOF) m/z: [M + H]" Calcd for
CxH;7N; 309.1386, Found 309.1374.

3,4-diphenyl-6-(p-tolyl)pyridazine (3b):

s
JAAe

Yellow solid (53.5 mg, 83%). mp: 196-197 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'TH NMR (400 MHz, CDCl;) 8 8.15 (d, J
=7.5Hz, 2H), 7.87 (s, 1H), 7.55 (d, J= 7.5 Hz, 2H), 7.42-7.30 (m, 10H), 2.49 (s, 3H).
I3C NMR (125 MHz, CDCl3) 8158.3, 157.7, 139.5, 138.8, 136.9, 136.2, 134.2, 130.0,
130.0, 129.5, 129.0, 129.0, 128.7, 128.1, 127.1, 124.8, 21.3. HRMS (ESI-TOF) m/z:
[M + HJ" Calcd for Cp3H 9N, 323.1543, Found 323.1545.

6-(4-phenoxyphenyl)-3,4-diphenylpyridazine (3c¢):

Yellow solid (66.4 mg, 83%). mp: 165-166 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCls) 6 8.26 (d, J
=8.4 Hz, 2H), 7.88 (s, 1H), 7.57 (d, J= 7.2 Hz, 2H), 7.48-7.33 (m, 10H), 7.24-7.17 (m,
5H). 3C NMR (100 MHz, CDCl;) & 159.5, 156.5, 137.3, 136.8, 130.9, 130.1, 130.0,
129.2, 128.8, 128.8, 128.7, 128.2, 124.4, 124.0, 119.6, 118.8. HRMS (ESI-TOF) m/z:
[M + Na]* Calcd for CpgH,N,O 423.1468, Found 423.1451.

6-(4-fluorophenyl)-3,4-diphenylpyridazine (3d):
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Yellow solid (54.1 mg, 83%). mp: 174-175 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCl;) 6 8.10-8.06
(m, 2H), 7.70 (s, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.26-7.19 (m, 6H), 7.16-7.13 (m, 3H),
7.11-7.09 (m, 1H). 3C NMR (125 MHz, CDCls) 6 164.2 (d, Jc.r = 248.8 Hz), 158.2,
156.8, 139.6, 137.1, 136.6, 132.3 (d, Jc.r = 3.8 Hz), 130.0, 129.1, 129.0, 129.0, 128.8,
128.8, 128.2,124.5,116.1 (d, Jc.r = 22.5 Hz). HRMS (ESI-TOF) m/z: [M + H]* Calcd
for CoH 6FN, 327.1292, Found 327.1321.

6-(3-fluorophenyl)-3,4-diphenylpyridazine (3e):

Yellow solid (51.5 mg, 79%). mp: 202-203 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'TH NMR (500 MHz, CDCl;) 6 7.87-7.84
(m, 2H), 7.73 (s, 1H), 7.41-7.38 (m, 3H), 7.27-7.24 (m, 4H), 7.23-7.21 (m, 2H), 7.17
(d, J=17.0 Hz, 2H), 7.10 (t, J = 9.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) 4 163.4 (d,
Jer=243.8 Hz), 158.7, 156.5, 139.6, 138.4 (d, Jc.r = 7.5 Hz), 137.0, 136.6, 130.6 (d,
Jer=7.5Hz), 130.1, 129.1, 128.9, 128.9, 128.8, 128.2, 124.9, 122.6 (d, Jc.r = 2.5 Hz),
117.0 (d, Jc.r=21.3 Hz), 114.1 (d, Jc.r = 23.8 Hz). HRMS (ESI-TOF) m/z: [M + H]*
Calcd for C,oH 6FN; 327.1292, Found 327.1313.

6-(3-bromophenyl)-3,4-diphenylpyridazine (3f):

Yellow solid (57.3 mg, 74%). mp: 140-141 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'TH NMR (400 MHz, CDCl;) & 8.26 (s,

S11



1H), 8.04 (d, J = 7.6 Hz, 1H), 7.73 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0
Hz, 2H), 7.34-7.30 (m, 1H), 7.30-7.22 (m, 6H), 7.17 (d, J = 3.6 Hz, 2H). 13C NMR
(125 MHz, CDCls) & 138.2, 133.0, 130.6, 130.1, 130.0, 129.1, 128.9, 128.9, 128.8,
128.2, 125.6, 123.3. HRMS (ESI-TOF) m/z: [M + H]" Calcd for CyH;¢BrN,
387.0491, Found 387.0475.

6-(3-methoxyphenyl)-3,4-diphenylpyridazine (3g):

Yellow solid (54.8 mg, 81%). mp: 107-108 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCl3) 6 7.77 (d, J
=12.0 Hz, 2H), 7.59 (d, J=7.6 Hz, 1H), 7.42 (d, /= 7.6 Hz, 2H), 7.34 (t, J = 8.0 Hz,
1H), 7.28-7.17 (m, 8H), 6.97 (d, J = 8.4 Hz, 1H), 3.82 (s, 3H). 3C NMR (100 MHz,
CDCl;) 6 160.3, 139.5, 137.5, 137.2, 136.8, 130.1, 130.1, 129.1, 128.8, 128.2, 125.0,
119.4, 116.5, 112.0, 55.5. HRMS (ESI-TOF) m/z: [M + H]" Caled for C,3H;9N,O
339.1492, Found 339.1509.

6-(naphthalen-2-yl)-3,4-diphenylpyridazine (3h):

Yellow solid (59.4 mg, 83%). mp: 173-174 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'TH NMR (400 MHz, CDCl;) 6 8.67 (s,
1H), 8.37 (d, J = 8.4 Hz, 1H), 8.03-7.97 (m, 3H), 7.91 (d, J = 4.4 Hz, 1H), 7.56-7.53
(m, 4H), 7.40-7.29 (m, 8H). 3C NMR (125 MHz, CDCl;) 6 158.2, 157.6, 139.5, 137.3,
136.8, 134.2, 133.4, 130.1, 129.1, 128.9, 128.9, 128.8, 128.8, 128.8, 128.2, 127.8,
127.1, 126.9, 126.6, 125.0, 124.3. HRMS (ESI-TOF) m/z: [M + H]" Calcd for
Cy6H19N; 359.1543, Found 359.1532.

3-(4-chlorophenyl)-4,6-diphenylpyridazine (3i):
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Yellow solid (50.7 mg, 74%). mp: 138-139 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCls) 6 8.08 (d, J
= 7.2 Hz, 2H), 7.74 (s, 1H), 7.46-7.37 (m, 5H), 7.31-7.26 (m, 3H), 7.18-7.15 (m, 2H),
6.92-6.88 (m, 2H). 3C NMR (125 MHz, CDCl;) 8 164.2, 162.2, 137.1, 136.0, 132.8,
132.0, 131.9, 130.1, 129.1, 129.0, 128.9, 128.9, 127.1, 124.9, 115.4, 115.2. HRMS
(ESI-TOF) m/z: [M + H]" Calcd for C,,H;4CIN; 343.0997, Found 343.0997.

3-(4-fluorophenyl)-4,6-diphenylpyridazine (3j):

Yellow solid (55.7 mg, 72%). mp: 160-161 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'TH NMR (400 MHz, CDCl;) 8 8.27 (d, J
=7.2 Hz, 2H), 7.93 (s, 1H), 7.65-7.59 (m, 3H), 7.54 (d, J = 8.0 Hz, 2H), 7.48-7.46 (m,
3H), 7.38-7.34 (m, 4H). 3C NMR (125 MHz, CDCI3) & 157.9, 157.1, 139.4, 136.9,
136.0, 135.2, 135.1, 131.4, 130.2, 129.1, 129.0, 129.0, 129.0, 128.4, 127.1, 124.9.
HRMS (ESI-TOF) m/z: [M + H]* Calcd for Cy,H¢BrN; 387.0491, Found 387.0493.
3-(4-(tert-butyl)phenyl)-4,6-diphenylpyridazine (3k):

Yellow solid (42.2 mg, 58%). mp: 122-123 °C. Column chromatography on silica gel

(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCls) 6 8.09 (d, J

= 6.8 Hz, 2H), 7.72 (s, 1H), 7.45-7.39 (m, 3H), 7.35 (d, J = 8.4 Hz, 2H), 7.28-7.18 (m,

7H), 1.21 (s, 9H). 3C NMR (100 MHz, CDCIl;) 6 158.1, 157.5, 152.0, 139.3, 137.5,
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136.3, 133.7, 130.0, 129.8, 129.1, 129.1, 128.8, 128.7, 127.1, 125.1, 124.9, 34.7, 31.3.
HRMS (ESI-TOF) m/z: [M + Na]* Calcd for CysH,4N>Na 387.1832, Found 387.1858.

4,6-diphenyl-3-(m-tolyl)pyridazine (31):

Yellow solid (39.3 mg, 61%). mp: 117-118 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'TH NMR (400 MHz, CDCl;) 4 8.10 (d, J
= 6.0 Hz, 2H), 7.75 (s, 1H), 7.48-7.41 (m, 3H), 7.36 (s, 1H), 7.28-7.26 (m, 3H), 7.19-
7.17 (m, 2H), 7.09-7.05 (m, 3H), 2.22 (s, 3H). 3C NMR (125 MHz, CDCl;) 8 137.9,
137.3, 136.6, 136.2, 130.7, 130.0, 129.5, 129.1, 129.1, 128.7, 128.7, 127.8, 127.2,
127.1, 124.8, 21.4. HRMS (ESI-TOF) m/z: [M + H]* Calcd for Cy3H 9N, 323.1543,
Found 323.1511.

3-(naphthalen-2-yl)-4,6-diphenylpyridazine (3m):

Yellow solid (59.4 mg, 83%). mp: 153-154 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'TH NMR (400 MHz, CDCl;) 4 8.10 (d, J
= 6.8 Hz, 2H), 8.05 (s, 1H), 7.76 (s, 1H), 7.69-7.64 (m, 2H), 7.59 (d, J = 8.4 Hz, 1H),
7.45-7.33 (m, 6H), 7.24-7.18 (m, 5H). 13C NMR (100 MHz, CDCI;) & 158.1, 157.8,
139.7, 137.3, 136.2, 134.3, 133.3, 133.2, 130.1, 129.2, 129.1, 128.9, 128.8, 128.7,
127.7, 127.6, 127.3, 127.2, 126.8, 126.2, 124.9. HRMS (ESI-TOF) m/z: [M + H]*
Calcd for Co6H 9N, 359.1543, Found 359.1532.

4-(4-fluorophenyl)-3,6-diphenylpyridazine (3n):
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Yellow solid (29.3 mg, 45%). mp: 175-176 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCl3) 6 8.17 (d, J
= 8.0 Hz, 2H), 7.80 (s, 1H), 7.55-7.46 (m, 5H), 7.35-7.29 (m, 3H), 7.25-7.21 (m, 2H),
7.01-7.05 (m, 2H). 3C NMR (125 MHz, CDCl3) 8 163.0 (d, Jc.r = 248.8 Hz), 158.2,
157.8, 138.5, 136.6, 136.0, 133.2 (d, Jc.r = 2.5 Hz), 131.0 (d, Jc.r = 7.5 Hz), 130.2,
130.0, 129.1, 128.9, 128.3, 127.1, 124.7, 116.0 (d, Jc.r = 21.3 Hz). HRMS (ESI-TOF)
m/z: [M + H]" Calcd for C,,H6FN, 327.1292, Found 327.1313.
3,6-diphenyl-4-(p-tolyl)pyridazine (30):

Yellow solid (47.0 mg, 73%). mp: 128-129 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCls) 6 8.18 (d, J
= 8.0 Hz, 2H), 7.83 (s, 1H), 7.56-7.49 (m, 5H), 7.35-7.29 (m, 3H), 7.18-7.12 (m, 4H),
2.36 (s, 3H). BC NMR (125 MHz, CDCl;) 6 160.3, 158.3, 157.5, 139.5, 137.5, 137.2,
136.7,130.1, 130.0, 129.1, 128.8, 128.1, 125.0, 119.3, 116.5, 111.9, 55.5. HRMS (ESI-
TOF) m/z: [M + H]* Caled for Co3H 9N, 323.1543, Found 323.1555.

tert-butyl 3-methyl-6-phenylpyridazine-4-carboxylate (3p):

N"N |
S O\|<
(0]

Yellow solid (14.0 mg, 26%). mp: 112-123 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 15/1). 'H NMR (400 MHz, CDCl;) & 8.12-8.09
(m, 3H), 7.55-7.48 (m, 3H), 2.98 (s, 3H), 1.64 (s, 9H). 3C NMR (125 MHz, CDCl3) &
164.7, 158.4, 156.7, 135.8, 130.4, 130.1, 129.1, 127.0, 123.5, 83.8, 28.2, 22.0. HRMS
(ESI-TOF) m/z: [M + HJ* Calcd for C;H 9N,O, 271.1441, Found 271.1443.

(6-(4-chlorophenyl)pyridazin-4-yl)(p-tolyl)methanone (6a):
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Yellow solid (46.9 mg, 76%). mp: 178-179 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) 6 9.36 (s,
1H), 8.09-8.06 (m, 3H), 7.75 (d, J = 7.6 Hz, 2H), 7.51 (d, J = 9.2 Hz, 2H), 7.35 (d, J =
7.6 Hz, 2H), 2.47 (s, 3H). 3C NMR (125 MHz, CDCl;) 8 192.8, 158.8, 148.2, 145.7,
137.1,135.6, 134.0, 132.7, 130.3, 129.8, 129.5, 128.5, 122.5, 21.9. HRMS (ESI-TOF)
m/z: [M + H]* Calcd for C;gH;4CIN,O 309.0789, Found 309.0760.

(6-(4-chlorophenyl)pyridazin-4-yl)(phenyl)methanone (6b):

Yellow solid (35.3 mg, 60%). mp: 146-147 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) & 9.38 (s,
1H), 8.14-8.08 (m, 3H), 7.86 (d, J = 8.0 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.57 (t,J =
7.5 Hz, 2H), 7.52 (d, J = 9.0 Hz, 2H). 13C NMR (125 MHz, CDCls) 3 193.2, 158.9,
148.1, 137.1, 135.2, 135.2, 134.4, 134.0, 130.1, 129.5, 129.1, 128.5, 122.5. HRMS
(ESI-TOF) m/z: [M + HJ" Calcd for C,;H;,CIN,O 295.0633, Found 295.0613.

(6-(4-chlorophenyl)pyridazin-4-yl)(4-ethylphenyl)methanone (6c¢):

Yellow solid (35.4 mg, 55%). mp: 156-157 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) 6 9.36 (s,
1H), 8.09-8.06 (m, 3H), 7.78 (d, J = 6.0 Hz, 2H), 7.51 (d, J = 6.0 Hz, 2H), 7.38 (d, J =
6.4 Hz, 2H), 2.76 (q, J = 6.0 Hz, 2H), 1.30 (t, J = 6.0 Hz, 3H). 3C NMR (125 MHz,
CDCl;) 6 192.8, 158.8, 151.8, 148.2, 137.1, 135.6, 134.1, 132.9, 130.4, 129.5, 128.6,
128.5, 122.5, 29.1, 15.1. HRMS (ESI-TOF) m/z: [M + H]" Calcd for C;9H;cCIN,O
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323.0946; Found 323.0938.

(4-chlorophenyl)(6-(4-chlorophenyl)pyridazin-4-yl)methanone (6d):

Cl

Yellow solid (41.4 mg, 63%). mp: 194-195 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) 6 9.36 (s,
1H), 8.09-8.05 (m, 3H), 7.81 (d, J = 8.8 Hz, 2H), 7.56-7.52 (m, 4H). 3C NMR (125
MHz, CDCl;) & 192.0, 159.0, 147.8, 141.2, 137.2, 134.9, 133.9, 133.5, 131.4, 129.5,
128.5, 122.3. HRMS (ESI-TOF) m/z:[M + H]* Calcd for C;7H;;CLLN,O 329.0243;
Found 329.0238.

(6-(4-chlorophenyl)pyridazin-4-yl)(4-(trifluoromethyl)phenyl)methanone (6e):

Yellow solid (34.8 mg, 48%). mp: 180-181 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) & 9.38 (s,
1H), 8.09-8.08 (m, 3H), 7.97 (d, J = 8.0 Hz, 2H), 7.84 (d, J/ = 8.0 Hz, 2H), 7.53 (d, J =
8.4 Hz, 2H). 13C NMR (125 MHz, CDCls) 6 192.4, 159.1, 147.7, 138.0, 137.3, 135.5
(9, Jer = 32.5 Hz), 134.2, 133.7, 130.3, 129.6, 128.5, 126.2 (q, Jc.r = 2.5 Hz), 123.3
(q, Je.r,=271.2 Hz), 122.2. HRMS (ESI-TOF) m/z: [M + H]* Calcd for CgH;;CIF;N,O
363.0507, Found 363.0532.

(6-(4-chlorophenyl)pyridazin-4-yl)(3-methoxyphenyl)methanone (6f):

Yellow solid (31.8 mg, 49%). mp: 156-157 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) & 9.39 (s,
1H), 8.12-8.09 (m, 3H), 7.53 (d, J = 8.0 Hz, 2H), 7.47-7.43 (m, 2H), 7.34 (d, J = 7.2
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Hz, 1H), 7.28-7.24 (m, 1H), 3.89 (s, 3H). 13C NMR (125 MHz, CDCl3) 4 193.0, 160.2,
158.9, 148.1, 137.1, 136.5, 135.3, 134.0, 130.0, 129.5, 128.5, 123.0, 122.5, 120.9,
114.0, 55.6. HRMS (ESI-TOF) m/z: [M + H]" Calcd for C,sH4CIN,O, 325.0738, Found
325.0714.

phenyl(6-phenylpyridazin-4-yl)methanone (6g):

Yellow solid (33.3 mg, 64%). mp: 130-131 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) & 9.39 (s,
1H), 8.14-8.12 (m, 2H), 8.10 (s, 1H), 7.86 (d, J= 7.5 Hz, 2H), 7.71 (t,J = 7.0 Hz, 1H),
7.58-7.53 (m, 5H). 13C NMR (125 MHz, CDCls) 6 193.4, 160.0, 148.0, 135.6, 135.3,
135.1, 134.3, 130.7, 130.1, 129.2, 129.1, 127.3, 122.8. HRMS (ESI-TOF) m/z: [M +
H]* Calcd for C7H3N,0 261.1022, Found 261.1033.

(6-phenylpyridazin-4-yl)(p-tolyl)methanone (6h):

Yellow solid (38.4 mg, 70%). mp: 170-171 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) 6 9.38 (s,
1H), 8.14 (d, /= 8.0 Hz, 2H), 8.08 (s, 1H), 7.77 (d, J= 8.0 Hz, 2H), 7.57-7.54 (m, 3H),
7.36 (d, J = 8.0 Hz, 2H), 2.48 (s, 3H). 13C NMR (125 MHz, CDCl3) 8 193.0, 159.9,
148.0, 145.6, 135.7, 135.5, 132.8, 130.6, 130.3, 129.8, 129.2, 127.3, 122.8, 21.9.
HRMS (ESI-TOF) m/z: [M + H]* Calcd for CgH;sN,O 275.1179, Found 275.1186.

p-tolyl(6-(p-tolyl)pyridazin-4-yl)methanone (6i):

Yellow solid (30.0 mg, 52%). mp: 164-165 °C. Column chromatography on silica gel

(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) & 9.33 (s,

1H), 8.05-8.02 (m, 3H), 7.76 (d, J = 8.5 Hz, 2H), 7.36-7.34 (m, 4H), 2.47 (s, 3H), 2.44
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(s, 3H). BC NMR (125 MHz, CDCl;) 6 193.0, 159.8, 147.7, 145.5, 141.0, 135.4, 132.9,
132.8,130.3,129.9,129.7, 127.2, 122.4, 21.8, 21.4. HRMS (ESI-TOF) m/z: [M + H]*
Calcd for C;9H{7N,O 289.1335, Found 289.1358.

(6-(4-methoxyphenyl)pyridazin-4-yl)(p-tolyl)methanone (6j):

O

T
I\

N., =

N
Yellow solid (45.6 mg, 75%). mp: 153-154 °C. Column chromatography on silica gel

(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) 6 9.30 (s,
1H), 8.10 (d, J = 8.8 Hz, 2H), 8.02 (s, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.35 (d, J= 7.6
Hz, 2H), 7.04 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H), 2.47 (s, 3H). 13C NMR (125 MHz,
CDCl;) 6 193.1, 161.8, 159.4, 147.4, 145.5, 135.4, 132.8, 130.3, 129.7, 128.7, 128.0,
122.0, 114.6, 55.5, 21.9. HRMS (ESI-TOF) m/z: [M + H]* Caled for C;9H;7N,0,
305.1285, Found 305.1297.

(6-(4-phenoxyphenyl)pyridazin-4-yl)(p-tolyl)methanone (6k):

Yellow solid (40.3 mg, 55%). mp: 130-131 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'H NMR (500 MHz, CDCls) 6 8.19 (d, J
= 7.5 Hz, 2H), 7.84 (s, 1H), 7.55-7.51 (m, 5H), 7.35-7.30 (m, 3H), 7.16-7.15 (m, 4H),
2.37 (s, 3H). BC NMR (125 MHz, CDCl;) 6 196.2, 158.3, 157.7, 139.5, 138.8, 137.0,
136.2, 134.2, 130.0, 130.0, 129.5, 129.0, 129.0, 128.7, 128.1, 127.1, 124.8, 21.3.
HRMS (ESI-TOF) m/z: [M + H]* Calcd for C,4H9N,O, 367.1441, Found 367.1479.

(6-(4-fluorophenyl)pyridazin-4-yl)(p-tolyl)methanone (61):

Yellow solid (34.5 mg, 59%). mp: 146-147 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) 8 9.43 (s,
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1H), 8.22-8.17 (m, 2H), 8.12 (s, 1H), 7.82 (d, J = 6.4 Hz, 2H), 7.42 (d, /= 6.8 Hz, 2H),
7.32-7.27 (m, 2H), 2.54 (s, 3H). 13C NMR (125 MHz, CDCl3) 4 192.9, 164.5 (d, Jc.r =
250.0 Hz), 148.0, 145.7, 135.7, 132.7, 131.8 (d, Jc.r = 3.8 Hz), 130.3, 129.8, 129.3 (d,
Jer=8.8 Hz), 1224, 116.3 (d, Jc.r = 21.3 Hz), 21.9. HRMS (ESI-TOF) m/z: [M +
H]" Calcd for C;gH4FN,O 293.1085, Found 293.1064.

p-tolyl(6-(4-(trifluoromethyl)phenyl)pyridazin-4-yl)methanone (6m):
FsC

Yellow solid (41.0 mg, 60%). mp: 196-197 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) 6 9.42 (s,
1H), 8.27 (d, J = 8.0 Hz, 2H), 8.13 (s, 1H), 7.79 (q, J = 8.8 Hz, 4H), 7.37 (d, J = 8.0
Hz, 2H), 2.49 (s, 3H). 13C NMR (125 MHz, CDCls) 6 192.6, 158.6, 148.6, 145.8, 139.0,
135.7, 132.6, 132.4 (q, Jc.r = 32.5 Hz), 130.3, 129.8, 127.6, 126.1 (q, Jc.r = 3.8 Hz),
123.9 (q, Jc.r = 270.0 Hz), 123.0, 21.9. HRMS (ESI-TOF) m/z: [M + H]* Calcd for
Ci9H14F3N,0 343.1053, Found 343.1066.

(6-(3-fluorophenyl)pyridazin-4-yl)(p-tolyl)methanone (6n):

Yellow solid (25.1 mg, 43%). mp: 124-125 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) 6 9.39 (s,
1H), 8.09 (s, 1H), 7.95-7.90 (m, 2H), 7.80-7.77 (m, 2H), 7.53 (s, 1H), 7.42-7.36 (m,
2H), 7.29-7.23 (m, 1H), 2.50 (s, 3H). 13C NMR (125 MHz, CDCl;) 8 192.7, 163.4 (d,
Jor=245.0 Hz), 158.7, 148.4, 145.7, 137.9, 135.6, 132.7, 130.8 (d, Jc.r = 7.5 Hz),
130.3, 129.8, 122.8 (d, Jc.r = 32.5 Hz), 117.6 (d, Jc.r = 20.0 Hz), 114.3 (d, Jc.r = 25.0
Hz), 21.8. HRMS (ESI-TOF) m/z: [M + H]* Calcd for CgH;4FN,0 293.1085, Found
293.1081.

(6-(3-methoxyphenyl)pyridazin-4-yl)(p-tolyl)methanone (60):

S20



Yellow solid (25.5 mg, 42%). mp: 144-145°C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) 6 9.36 (s,
1H), 8.06 (s, 1H), 7.78-7.75 (m, 3H), 7.62 (d, J = 7.5 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H),
7.36 (t,J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 1H), 3.91 (s, 3H), 2.47 (s, 3H). BC NMR
(125 MHz, CDCls) & 192.9, 160.4, 159.6, 148.1, 145.6, 137.0, 135.5, 132.8, 130.3,
130.2,129.8,122.8, 119.5, 116.9, 112.3, 55.5, 21.8. HRMS (ESI-TOF) m/z: [M + H]*
Calcd for C;9H;7N,O, 305.1285, Found 305.1294.

(6-(naphthalen-2-yl)pyridazin-4-yl)(p-tolyl)methanone (6p):

Yellow solid (31.8 mg, 49%). mp: 189-190 °C. Column chromatography on silica gel
(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (500 MHz, CDCl;) 6 9.40 (s,
1H), 8.61 (s, 1H), 8.29 (d, J = 8.5 Hz, 1H), 8.23 (s, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.97
(d,J=8.0Hz, 1H), 7.91 (d, J = 7.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.57- 7.55 (m,
2H), 7.37 (d, J = 8.0 Hz, 2H), 2.49 (s, 3H). 3C NMR (125 MHz, CDCl;) 6 193.0,
159.9, 148.0, 145.6, 135.6, 134.4, 133.4, 132.9, 132.8, 130.3, 129.8, 129.1, 128.9,
127.8,127.5,127.4,126.8, 124.1, 122.9, 21.8. HRMS (ESI-TOF) m/z: [M + H]" Calcd
for C5,H7N,0 325.1335, Found 325.1302.
(6-(benzo|b]thiophen-2-yl)pyridazin-4-yl)(p-tolyl)methanone (6q):

Yellow solid (13.9 mg, 21%). mp: 178-179 °C. Column chromatography on silica gel

(Eluent: petroleum ether/ethyl acetate, 12/1). 'TH NMR (400 MHz, CDCl;) & 9.32 (s,

1H), 8.14 (s, 1H), 7.99 (s, 1H), 7.93-7.90 (m, 1H), 7.86-7.83 (m, 1H), 7.79-7.77 (d, J =
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8.0 Hz, 2H), 7.42-7.37 (m, 4H), 2.49 (s, 3H). 3C NMR (125 MHz, CDCl;) & 192.6,
148.2, 145.7, 141.5, 140.0, 139.8, 135.3, 132.7, 130.3, 129.8, 126.2, 124.9, 124.6,
124.0, 122.8, 121.7, 21.9. HRMS (ESI-TOF) m/z: [M + HJ* Caled for CaoH;sN,OS
331.0900, Found 331.0929.

6. Synthetic Applications.

6.1. Gram-scale reaction for the synthesis of triphenyl pyridazine (3a).

0 Cu(OAc), (100 mol %)
Hp O TEMPO (2 equiv)
x> N + -
N O CH,COOH (1.6 equiv)

MeCN, 100 °C, Ny, 12 h

3a, 94%
145

1a, 7.5 mmol 2a, 5 mmol
In a 100 mL Schlenk reaction tube with a stir bar, benzoylhydrazone (1a) (7.5 mmol,
1.79 g), 2-phenylacetophenone (2a) (5 mmol, 0.98 g), Cu(OAc), (5 mmol, 0.905 g),
TEMPO (10 mmol, 1.56 g), HOAc (8 mmol, 1 mL) were dissolved in MeCN (50 mL)
under a nitrogen atmosphere. The reaction mixture was then heated at 100 °C (oil bath)
with vigorous stirring for 12 hours. After the reaction equilibrium, the mixture was
poured into ethyl acetate, and was washed with saturated brine (I % 40 mL). The
combined organic layers were dried over anhydrous Na,SO, and evaporated under
vacuum. The residue was purified by a silica gel packed flash chromatography column
with petroleum ether/ethyl acetate (15:1) as the eluent to afford the desired product 3a
within a 94% yield.

6.2. Gram-scale reaction for the synthesis of disubstituted pyridazine (6a)

Gram-scale reactions:
Cu(OAc), (150 mol %)

cl
< N omu Q TEMPO (2 equiv) O 0
N~ \n/ + > S

o o} 6,6'-dimethyldipyridine (60 mol %) P O

C4HoCOOH (2 equiv) N
LiOAc (2 equiv) 9
4a, 6.25 mmol 5a, 5 mmol DMF, 130 °C, air, 20 h 68 ,8%294)

In a 100 mL Schlenk reaction tube with a stir bar, acylhydrazone (4a) (6.25 mmol, 1.68
g), 4'-methylpropiophenone (5a) (5 mmol, 0.67 g), Cu(OAc), (7.5 mmol, 1.36 g), 6,6’-
dimethyldipyridine (3 mmol, 0.55 g), TEMPO (10 mmol, 1.56g), LiOAc (10 mmol,
0.65 g), "C4HyCOOH (10 mmol, 1.02 g) were dissolved in DMF (50 mL) under air
atmosphere. The reaction mixture was then heated at 130 °C (oil bath) with vigorous

stirring for 20 hours. After the reaction equilibrium, the mixture was poured into ethyl
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acetate and was washed with saturated brine (3 x 50 mL). The combined organic layers
were dried over anhydrous Na,SO, and evaporated under vacuum. The residue was
purified by a silica gel packed flash chromatography column with petroleum ether/ethyl
acetate (12:1) as the eluent to afford the desired products 6a within 52% yield.

6.3. Cross-coupling of the resulting pyridazines 3f with phenyl boronic acid.’

Br Pd(OACc), (5 mol %) Bh
B(OH), PPh; (10 mol %)
Ph + > Ph
P K3PO4 (2 equiv) P
N en 1,4-dioxane, 120 °C, 12 h N ph
3f, 0.2 mmol 0.3 mmol 3q, 55%

According to the reported reference:® in a 10 mL Schlenk reaction tube with a stir bar,
the as-prepared pyridazine 3f (0.2 mmol, 77.2 mg), phenyl boronic acid (36.6 mg, 0.3
mmol), Pd(OAc), (2.24 mg, 0.01 mmol), PPh; (5.24 mg, 0.02 mmol) and K;PO, (84.9
mg, 0.4 mmol) were dissolved in 1,4-dioxane (2 mL). The reaction mixture was then
heated at 120 °C (oil bath) with vigorous stirring for 12 hours under air atmosphere.
After the reaction equilibrium, the mixture was poured into ethyl acetate and then brine
(2 x 10 mL). After the aqueous layer was extracted with ethyl acetate, the combined
organic layers were dried over anhydrous Na,SO, and evaporated under vacuum. The
filtrate was concentrated in vacuo and purified by a silica gel packed flash
chromatography column with petroleum ether/ethyl acetate (10:1) as the eluent to
afford the desired product 6-([1,1'-biphenyl]-3-yl)-3,4-diphenylpyridazine 3q.

White solid (42.3 mg, 55%). mp: 141.9-143.2 °C. Column chromatography on silica
gel (Eluent: petroleum ether/ethyl acetate, 10/1). 'H NMR (400 MHz, CDCl3) 6 8.44
(s, 1H), 8.14 (d, /= 8.0 Hz, 1H), 7.90 (s, 1H), 7.73 (d, /= 7.6 Hz, 1H), 7.70 (d, /= 7.6
Hz, 2H), 7.60 (t, J = 8.0 Hz, 1H), 7.51 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H),
7.39-7.27 (m, 8H), 7.24 (s, 1H). 3C NMR (100 MHz, CDCls) & 142.1, 140.7, 137.2,
136.8, 136.7, 130.1, 129.6, 129.2, 129.0, 128.9, 128.8, 128.8, 128.2, 127.4, 127.2,
126.0, 125.0. HRMS (ESI-TOF) m/z: [M + H]" Calcd for CysH, N, 385.1705, Found
385.1710.

6.4. Wittig reaction of the pyridazine product 6a.!
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Cl o "BuLi (5 equiv) Cl
O Ph3PMeBr (5 equiv) O
| > | >
N. - THF, 0°C-rt., 12 h N. -
°N °N

6a, 0.1 mmol 6r, 35%

\

According to the reported reference:'® under nitrogen atmosphere, a suspension of
Ph;PMeBr (357 mg, 1 mmol, 5.0 equiv) in THF (2.0 mL) was added "BuLi (2.4 M in
hexane, 0.42 mL, 1 mmol, 5.0 equiv) at 0 °C (ice bath), and the mixture was stirred at
0 °C for 30 min to yield a yellow mixture. A solution of the targeted pyridazine 6a (62.2
mg, 0.20 mmol, 1.0 equiv) in THF (2.0 mL) was added at 0 °C. The reaction mixture
was stirred at room temperature for 12 h. The resulting solution was quenched with
saturated NH4Cl solution and extracted with ethyl acetate (3x10 mL). The combined
organic phases were dried over anhydrous Na,SOy,, filtrated and concentrated in vacuo,
and the residue was purified by column chromatography on silica gel (PE/EtOAc =5:1)
to give the corresponding product 6r.

White solid (21.4 mg, 35%). mp: 149.6-151.0 °C. Column chromatography on silica
gel (Eluent: petroleum ether/ethyl acetate, 5/1). 'TH NMR (400 MHz, CDCls) 6 9.16 (d,
J=2.0 Hz, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.70 (d, /= 2 Hz, 1H), 7.48 (d, J = 8.4 Hz,
2H), 7.21 (s, 4H), 5.76 (s, 1H), 5.72 (s, 1H), 2.40 (s, 3H). 3C NMR (100 MHz, CDCl;)
0 158.2, 149.5, 145.0, 140.2, 139.0, 136.5, 135.6, 134.8, 129.6, 129.3, 128.5, 127.9,
122.1,118.4,21.3. HRMS (ESI-TOF) m/z: [M + H]* Calcd for C;9H;,CIN, 307.0997,
Found 307.1003.

7. Mechanistic Investigations.

7.1. Mechanistic studies for the synthesis of 3,4,6-triaryl pyridazines.

7.1.1. Radical-trapping experiments.

H (0]
. N Ph standard conditions
@ A ‘*/‘O 9 -
(0]
Conditions A: 2 equiv. DPE; 3a, 72%
1a

2a Conditions B: 8 equiv. DPE; 3a, 63% 3a

Conditions A: In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (1a)
(0.3 mmol, 71.4 mg), 2-phenylacetophenone (2a) (0.2 mmol, 39.2 mg), Cu(OAc), (0.2
mmol, 36.2 mg), TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32 mmol), and radical-
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scavenger DPE (0.4 mmol, 72.1 mg) were dissolved in MeCN (2 mL) under a nitrogen
atmosphere. The reaction mixture was then heated at 100 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction equilibrium, the mixture was poured into ethyl
acetate and washed with saturated brine (1 x 40 mL). The combined organic layers were
dried over anhydrous Na,SO,. The filtrate was concentrated in vacuo and purified by a
silica gel packed flash chromatography column with petroleum ether/ethyl acetate
(15:1) as the eluent to afford the desired products 3a in a 72% yield.

Conditions B: In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (1a)
(0.3 mmol, 71.4 mg), 2-phenylacetophenone (2a) (0.2 mmol, 39.2 mg), Cu(OAc), (0.2
mmol, 36.2 mg), TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32 mmol), and radical-

scavenger DPE (1.6 mmol, 288.4 mg) were dissolved in MeCN (2 mL) under a nitrogen

atmosphere. The reaction mixture was then heated at 100 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction equilibrium, the mixture was poured into ethyl
acetate and washed with saturated brine (1 x 40 mL). The combined organic layers were
dried over anhydrous Na,SO,. The filtrate was concentrated in vacuo and purified by a
silica gel packed flash chromatography column with petroleum ether/ethyl acetate
(15:1) as the eluent to afford the desired products 3a in a 63% yield. These results
revealed that radical process might not be involved in this cascade annulation.

7.1.2. Deuterium-labeling experiments.

H/D
)C\H3 H Q Ph Ph
X N Ph standard conditions N
PRTNTY + Ph)l\/Ph > I
o D,O (10 equiv) NN ph
1a, 0.3 mmol 2a, 0.2 mmol D =38% 3a(d-3a), 69%

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (1a) (0.3 mmol, 71.4
mg), 2-phenylacetophenone (2a) (0.2 mmol, 39.2 mg), Cu(OAc), (0.2 mmol, 36.2 mg),
TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32 mmol) and D,0O (2 mmol, 40 mg) were

dissolved in MeCN (2 mL) under a nitrogen atmosphere. The reaction mixture was then
heated at 100 °C (oil bath) with vigorous stirring for 12 hours. After the reaction
equilibrium, the mixture was poured into ethyl acetate and washed with saturated brine

(1 x 40 mL). The combined organic layers were dried over anhydrous Na,SO,. The
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filtrate was concentrated in vacuo and purified by a silica gel packed flash
chromatography column with petroleum ether/ethyl acetate (15:1) as the eluent to

afford the desired pyridazine product 3a(d-3a) in a 69% yield. It was found that a 38%

deuteration was detected on the C-H bond of pyridazine aromatic ring, revealing that

the C(sp?)-H bond cleavage of acylhydrazone was reversible.
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Figure S1. The 'HNMR spectrum of pyridazine product 3a(d-3a) from the model reaction in the
presence of D,O

Ph N Ph standard conditions Ph N Ph
| > |
N, = . N, =
N Ph D,0 (10 equiv) N Ph
3a, recovered
3a, 0.2 mmol no deuteration

In a 25 mL Schlenk reaction tube with a stir bar, pyridazine product (3a) (0.2 mmol,
71.4 mg), Cu(OAc), (0.2 mmol, 36.2 mg), TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32

mmol) and D,O (2 mmol, 40 mg) were dissolved in MeCN (2 mL) under a nitrogen

atmosphere. The reaction mixture was then heated at 100 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction equilibrium, the mixture was poured into ethyl
acetate and washed with saturated brine (1 x 40 mL). The combined organic layers were
dried over anhydrous Na,SO,. The filtrate was concentrated in vacuo and purified by a

silica gel packed flash chromatography column with petroleum ether/ethyl acetate
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(15:1) as the eluent to afford the pyridazine product 3a. It was found that no deuteration

was detected on the C(sp?)-H bond of pyridazine aromatic ring.

T T T T T T T T T T T T T T T T T T
9.5 9.0 8.5 8. 7.0 6.5 6.0 5.5 5.0 4.0 3.3 3.0 2.5 2.0 1.5 Lo 0.5 0.0 -0.5

.5
1 (ppm)

Figure S2: 'H NMR spectrum of product 3a with the treatment of D,0O under standard conditions

CHa/CD; o o H/D o
X NH_ _Ph standard conditions N
PN * Ph)l\/Ph > P
o) t=1h N7 Ph
1a, 0.15 mmol 2a, 0.2 mmol KIE = Ki/Kp = 1.5 3a(d-3a), 15%
dsz-1a, 0.15 mmol D =40%

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (1a) (0.15 mmol, 35.7
mg), deuterated acylhydrazone (d3-1a)'! (0.15 mmol, 36.2 mg), 2-phenylacetophenone
(2a) (0.2 mmol, 39.2 mg), Cu(OAc);, (0.2 mmol, 36.2 mg), TEMPO (0.4 mmol, 62.4
mg), HOAc (0.32 mmol) were dissolved in MeCN (2 mL) under a nitrogen atmosphere.
The reaction mixture was then heated at 100 °C (oil bath) with vigorous stirring for 1
hour. After the reaction equilibrium, the mixture was poured into ethyl acetate and
washed with saturated brine (1 x 40 mL). The combined organic layers were dried over
anhydrous Na,SOy. The filtrate was concentrated in vacuo and purified by a silica gel
packed flash chromatography column with petroleum ether/ethyl acetate (15:1) as the
eluent to afford the desired pyridazine product 3a(d-3a) in a 15% yield. It was found

that the value of competitive kinetic isotope effect of acylhydrazone equals 1.5,
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suggesting the cleavage of C(sp3)-H bond on the acylhydrazone might not be the rate-

determining step for the synthesis of 3.4.6-trisubstituted pyridazine.
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Figure S3. The 'HNMR spectrum of pyridazine 3a(d-3a) from the competitive kinetic isotope effect experiment

7.1.3. Control experiments.

Cu(OAc), (100 mol %)
\N«NHz TEMPO (2 equiv)
HOACc (1.6 equiv)
MeCN, 100 °C, N, 12 h

1i, 0.3 mmol 2a, 0.2 mmol not detected

In a 25 mL Schlenk reaction tube with a stir bar, (£)-(1-phenylethylidene)hydrazine
(1i) (0.3 mmol, 40.2 mg), 2-phenylacetophenone (2a) (0.2 mmol, 39.2 mg), Cu(OAc),
(0.2 mmol, 36.2 mg), TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32 mmol, 1.6 equiv)
were dissolved in MeCN (2 mL) under a nitrogen atmosphere. The reaction mixture
was then heated at 100 °C (oil bath) with vigorous stirring for 12 hours. After the
reaction completion, the mixture was monitored by TLC, and it was found that no
desired pyridazine product 3a was formed during the reaction course, revealing that

(E)-(1-phenylethylidene)hydrazine was not the possible intermediate and benzoyl

substituent was crucial for this [4+2] annulation reaction.
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Cu(OAG); (100 mol %) O O
TEMPO (2 equiv) N
|

v

HOAC (1.6 equiv) N\?
MeCN, 100 °C, Ny, 12 h O
3a
not detected

1a, 0.3 mmol 0.2 mmol

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (1a) (0.3 mmol, 71.4
mg), benzil (0.2 mmol, 39.2 mg), Cu(OAc); (0.2 mmol, 36.2 mg), TEMPO (0.4 mmol,
62.4 mg), HOAc (0.32 mmol) were dissolved in MeCN (2 mL) under a nitrogen
atmosphere. The reaction mixture was then heated at 100 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction completion, the mixture was monitored by TLC,
and it was found that no desired pyridazine product 3a was detected. These results

indicated that benzil was not the key intermediate for the synthesis of pyridazine.

; g “wsbem L K
@)\\N,N\"/Ph . O - | N
o O OH HOAc (1.6 equiv) N\?
MeCN, 100 °C, Ny, 12 h 3a O
not detected

1a, 0.3 mmol 0.2 mmol

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (1a) (0.3 mmol, 71.4
mg), benzoin (0.2 mmol, 42.4 mg), Cu(OAc), (0.2 mmol, 36.2 mg), TEMPO (0.4
mmol, 62.4 mg), HOAc (0.32 mmol) were dissolved in MeCN (2 mL) under a nitrogen
atmosphere. The reaction mixture was then heated at 100 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction completion, the mixture was monitored by TLC,
and it was found that no desired pyridazine product 3a was detected._These results

indicated that benzoin was not the key intermediate for the synthesis of pyridazine.

o Cu(OAG), (100 mol %) O O
s NH. Ph O TEMPO (2 equiv) N PhCOOH
©)\N N + ‘)\’ » N| P + M = 122.0
lo) O AcOH (1.6 equiv) SN detected by GC -M.
MeCN, 100 °C, Ny, 12 h s
a

1a, 0.3 mmol 2a, 0.2 mmol

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (1a) (0.3 mmol, 71.4
mg), 2-phenylacetophenone (2a) (0.2 mmol, 39.2 mg), Cu(OAc), (0.2 mmol, 36.2 mg),
TEMPO (0.4 mmol, 62.4 mg), HOAc (0.32 mmol, 1.6 equiv) were dissolved in MeCN
(2 mL) under a nitrogen atmosphere. The reaction mixture was then heated at 100 °C
(oil bath) with vigorous stirring for 12 hours. After the reaction completion, the mixture

was detected by GC-MS, and it was found that benzoic acid was formed during the
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reaction course.
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Figure S4. The detection of benzoic acid by GC-MS from the crude model reaction mixture
7.2. Mechanistic studies for the synthesis of 3,5-disubstituted pyridazines.

7.2.1. Competitive experiment.

o Cu(OAC); (150 mol %) MeO/F;C
8, -NHBoe TEMPO (2 equiv) O Q
+ >
6,6 -dimethyldipyridine (60 mol %) S O
F4C/MeO N 7

"C4HgCOOH (2 equiv) N
LiOAc (2 equiv)
4d, 0.25 mmol .
4g. 0.25 mmol 5a, 0.2 mmol DMF, 130 °C, air, 12 h 6m, 28%; 6j, trace

In a 25 mL Schlenk reaction tube with a stir bar, acylhyrazones (4d) (0.25 mmol, 66.0
mg) and (4g) (0.25 mmol, 75.5 mg), 4'-methylpropiophenone (5a) (0.2 mmol, 26.8 mg),
Cu(OAc); (0.3 mmol, 54.3 mg), 6,6’-dimethylpyridine (0.12 mmol, 22.0 mg), TEMPO
(0.4 mmol, 62.4 mg), LiOAc (0.4 mmol, 25.6 mg), "C,HoCOOH (0.4 mmol, 40.8 mg)
were dissolved in DMF (2 mL) under air atmosphere. The reaction mixture was then
heated at 130 °C (oil bath) with vigorous stirring for 12 hours. After the reaction
equilibrium, the mixture was poured into ethyl acetate and was washed with saturated
brine (3 x 10 mL). After the aqueous layer was extracted with ethyl acetate, the
combined organic layers were dried over anhydrous Na,SO, and evaporated under
vacuum. The residue was purified by a silica gel packed flash chromatography column
with petroleum ether/ethyl acetate (12:1) as the eluent to afford the desired pyridazine
products. The results revealed that pyridazine 6m was isolated in a 28% yield, in

contrast, only a trace amount of pyridazine 6j was detected, which underlined that

electron-deficient acylhydrazone facilitated this tandem annulation reaction better.

7.2.2. Radical-trapping experiment.
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H (0] B Cl o
X N _OBu standard conditions
N + > N
al (0] Conditions A: 6 equiv. BHT; 6a, trace Nl P O

Conditions B: 6 equiv. DPE; 6a, 21% °N
4a 5a 6a

Conditions A: In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (4a)
(0.25 mmol, 67.0 mg), 4'-methylpropiophenone (5a) (0.2 mmol, 26.8 mg), Cu(OAc),
(0.3 mmol, 54.3 mg), TEMPO (0.4 mmol, 62.4 mg), 6,6-dimethylpyridine (0.12 mmol,
22.1 mg), LiOAc (0.4 mmol, 25.6 mg), "C4HyCOOH (0.4 mmol, 40.8 mg), and radical-

scavenger BHT (1.2 mmol, 264.3 mg) were dissolved in DMF (2 mL) under air

atmosphere. The reaction mixture was then heated at 130 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction completion, the mixture was detected by TLC,
and it was found that the desired pyridazine product 6a was not detected, revealing that

this transformation might involve radical process.

Conditions B: In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (4a)
(0.25 mmol, 67.0 mg), 4'-methylpropiophenone (5a) (0.2 mmol, 26.8 mg), Cu(OAc),
(0.3 mmol, 54.3 mg), TEMPO (0.4 mmol, 62.4 mg), 6,6-dimethylpyridine (0.12 mmol,
22.1 mg), LiOAc (0.4 mmol, 25.6 mg), "C4HyCOOH (0.4 mmol, 40.8 mg) and radical-

scavenger DPE (1.2 mmol, 216.3 mg) were dissolved in DMF (2 mL) under air

atmosphere. The reaction mixture was then heated at 130 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction completion, the mixture was poured into ethyl
acetate and washed with saturated brine (1 x 40 mL). The combined organic layers were
dried over anhydrous Na,SO,. The filtrate was concentrated in vacuo and purified by a
silica gel packed flash chromatography column with petroleum ether/ethyl acetate
(12:1) as the eluent to afford the desired 3,5-disubstituted pyridazine product 6a. The
results indicated that the yield of targeted products 6a was drastically decreased to 21%,

revealing that radical process might be involved in this cascade annulation.

7.2.3. Control experiments.

H e c 0
X N _OBu standard conditions
N’ \n/ + F > S
al (0] Conditions A: w/o TEMPO and Cu(OAc),, trace Nl _ O

Conditions B: w/o Cu(OAc),, trace °N
4a 5h Conditions C: w/o TEMPO, 25% 6b, 62%

Conditions A: In a 25 mL Schlenk reaction tube with a stir bar, acyldrazone (4a) (0.25

S31



mmol, 67.0 mg), 1-phenyl-2-propen-l-one (5h) (0.2 mmol, 26.4 mg), 6.6-
dimethylpyridine (0.12 mmol, 22.1 mg), LiOAc (0.4 mmol, 25.6 mg) and "C,H,COOH

(0.4 mmol, 40.8 mg) were dissolved in DMF (2 mL) under air atmosphere. The reaction

mixture was then heated at 130 °C (oil bath) with vigorous stirring for 12 hours. After
the reaction completion, the mixture was monitored by TLC, and it was found that only
trace of desired product 6b was detected.

Conditions B: In a 25 mL Schlenk reaction tube with a stir bar, acyldrazone (4a) (0.25
mmol, 67.0 mg), 1-phenyl-2-propen-1-one (5h) (0.2 mmol, 26.4 mg), TEMPO (0.4
mmol, 62.4 mg). 6,6-dimethylpyridine (0.12 mmol, 22.1 mg), LiOAc (0.4 mmol, 25.6

mg) and "C,HyCOOH (0.4 mmol, 40.8 mg) were dissolved in DMF (2 mL) under air

atmosphere. The reaction mixture was then heated at 130 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction completion, the mixture was monitored by TLC,
and it was found that only trace of the desired product 6b was detected.

Conditions C: In a 25 mL Schlenk reaction tube with a stir bar, acyldrazone (4a) (0.25
mmol, 67.0 mg), 1-phenyl-2-propen-1-one (Sh) (0.2 mmol, 26.4 mg), Cu(OAc), (0.3
mmol, 54.3 mg), 6,6-dimethylpyridine (0.12 mmol, 22.1 mg), LiOAc (0.4 mmol, 25.6

mg) and "C4HyCOOH(0.4 mmol, 40.8 mg) were dissolved in DMF (2 mL) under air

atmosphere. The reaction mixture was then heated at 130 °C (oil bath) with vigorous
stirring for 12 hours. After the reaction completion, the mixture was poured into ethyl
acetate and was washed with saturated brine (3 X 10 mL). After the aqueous layer was
extracted with ethyl acetate, the combined organic layers were dried over anhydrous
Na,S0,. The filtrate was concentrated in vacuo and purified by a silica gel packed flash
chromatography column with petroleum ether/ethyl acetate (12:1) as the eluent to
afford the desired pyridazine product 6b within a 25% yield.

The aforementioned results indicated that 1-phenyl-2-propen-1-one (5h) was the indeed

intermediate formed from propiophenone, and the subsequent annulation of 1-phenyl-

2-propen-1-one with acylhydrazone was promoted by Cu(OAc), and TEMPO.
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(0]
H 0 Cu(OAG); (100 mol %) O
\N,N\n,O’Bu . TEMPO (2 equiv) o O
- N.
O PivOH (2 equiv) N
DMF, 110 °C,15 h, air OJ\OtBu
4a 5a 6s, 18% yield

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (4a) (0.25 mmol), 1-(p-
tolyl)propan-1-one (5a) (0.2 mmol), Cu(OAc), (0.2 mmol, 36.2 mg), Tempo (0.4
mmol, 62.4 mg), PivOH (0.4 mmol, 40.8 mg) were dissolved in DMF (2 mL) under air
atmosphere. The reaction mixture was then heated at 110 °C (oil bath) with vigorous
stirring for 15 hours. After the reaction equilibrium, the mixture was poured into ethyl
acetate, which was washed with saturated brine (3 x 10 mL). After the reaction
equilibrium, the mixture was poured into ethyl acetate and washed with saturated brine
(3 x 10 mL). The combined organic layers were dried over anhydrous Na,SO, and
evaporated under vacuum. The residue was purified by a silica gel packed flash
chromatography column with petroleum ether/ethyl acetate (12:1) as the eluent to
afford the desired 1,6-dihydropyridazine motif (6s) in a 18% yield.

tert-butyl 5-(4-methylbenzoyl)-3-phenylpyridazine-1(6 H)-carboxylate (6s):

A

o)

O'Bu

Yellow liquid. Column chromatography on silica gel (Eluent: petroleum ether/ethyl
acetate, 12/1). '"H NMR (500 MHz, CDCl;) 7.74-7.73 (m, 2H), 7.68 (d, J = 7.0 Hz,
2H), 7.37-7.36 (m, 3H), 7.30 (d, J = 7.5 Hz, 2H), 6.94 (s, 1H), 4.66 (s, 2H), 2.43 (s,
3H), 1.60 (s, 9H). 3C NMR (125 MHz, CDCIl;) 6 193.6, 135.0, 134.9, 133.9, 130.0,
129.4, 129.3, 128.9, 128.1, 126.2, 126.0, 125.0, 82.7, 40.9, 38.5, 21.7. HRMS (ESI-
TOF) m/z: [M + H]* Caled for C,3H»sN,0O5 377.1860, Found 377.1871.

)\ DMF, 130 °C, air, 12 h N. 2
07 ~OBu

6s, 0.2 mmol 6h, 78%
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In a 25 mL Schlenk reaction tube with a stir bar, 1,6-dihydropyridazine (6s) (0.2 mmol,
75.2 mg) were dissolved in DMF (2 mL) under air atmosphere. The reaction mixture
was then heated at 130 °C (oil bath) with vigorous stirring for 12 hours. After the
reaction equilibrium, the mixture was poured into ethyl acetate and was washed with
saturated brine (3 < 10 mL). After the aqueous layer was extracted with ethyl acetate,
the combined organic layers were dried over anhydrous Na,SO,. The filtrate was
concentrated in vacuo and purified by a silica gel packed flash chromatography column

with petroleum ether/ethyl acetate (12:1) as the eluent to afford the desired pyridazine

product 6h smoothly within a 78% yield. These results streamlined that 1.6-

dihydropyridazine was the key intermediate of this reaction, and it could be transformed

into the targeted pyridazine 6h just in DMF solution without any Cu(OAc), and

TEMPO.

7.2.4. Deuterium labeling experiments.

X H OB i tandard conditi '
N° \ﬂ/ u N standard conditions - \
o) D,0 (10 equiv) | 45
N‘N
4b, 0.25 mmol 5a, 0.2 mmol 6h(d-6h); D = 33%

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (4b) (0.25 mmol, 58.5
mg), 4'-methylpropiophenone (5a) (0.2 mmol, 26.8 mg), Cu(OAc), (0.3 mmol, 54.3
mg), TEMPO (0.4 mmol, 62.4 mg), 6,6-dimethyl-2,2’-dipyridine (0.12 mmol, 22.1
mg), LiOAc (0.4 mmol, 25.6 mg), "C4HyCOOH (0.4 mmol, 40.8 mg) and D,O (2 mmol,
40 mg) were dissolved in DMF (2 mL) under air atmosphere. The reaction mixture was
then heated at 130 °C (oil bath) with vigorous stirring for 12 hours. After the reaction
completion, the mixture was poured into ethyl acetate and washed with saturated brine
(1 x 10 mL). The combined organic layers were dried over anhydrous Na,SO,. The
filtrate was concentrated in vacuo and purified by a silica gel packed flash
chromatography column with petroleum ether/ethyl acetate (12:1) as the eluent to

afford the desired 3,5-disubstituted pyridazine product 6h(d-6h). It was found that a

33% deuteration was detected on the C-H bond of pyridazine skeleton, revealing that

the C-H bond cleavage of the methyl group on the acylhydrazone might be the

reversible process.
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Figure S5. The 'HNMR spectrum of 3,5-disubstituted pyridazine 6h(d-6h) from the model

(0]
Ph N Ar’
N. %
N
6h, 0.2 mmol

reaction treated by D,O

standard conditions

D50 (10 equiv)

Ph

N

N. %

6h, recovered
no deuteration

(0]
Ar’

In a 25 mL Schlenk reaction tube with a stir bar, pyridazine product (6h) (0.2 mmol,

26.8 mg), Cu(OAc); (0.3 mmol, 54.3 mg), TEMPO (0.4 mmol, 62.4 mg), 6,6-dimethyl-

2,2’-dipyridine (0.12 mmol, 22.1 mg), LiOAc (0.4 mmol, 25.6 mg), "C4H,COOH (0.4

mmol, 40.8 mg) and D,O (2 mmol, 40 mg) were dissolved in DMF (2 mL) under air

atmosphere. The reaction mixture was then heated at 130 °C (oil bath) with vigorous

stirring for 12 hours. After the reaction completion, the mixture was poured into ethyl

acetate and washed with saturated brine (1 x 10 mL). The combined organic layers were

dried over anhydrous Na,SO,. The filtrate was concentrated in vacuo and purified by a

silica gel packed flash chromatography column with petroleum ether/ethyl acetate

(12:1) as the eluent to afford the desired 3,5-disubstituted pyridazine product 6h. It was

found that no deuteration was detected on the C-H bond of pyridazine skeleton.
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Figure S6: 'H NMR spectrum of product 6h with the treatment of D,0O under standard conditions

CHa/CD; 0 WD O
X, NH__OBu standard conditions
N ‘l]" + > X
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t=1h N. ‘:(5

KIE = Ky/Kp = 2.85 N
4b, 0.125 mmol 53, 0.2 mmol 6h and d-6h, 18%
ds-4b, 0.125 mmol D =26%

\

In a 25 mL Schlenk reaction tube with a stir bar, acylhydrazone (4b) (0.125 mmol,
29.25 mg), deuterated acylhydrazone (d;-4b)!' (0.125 mmol, 29.63 mg), 4'-
methylpropiophenone (5a) (0.2 mmol, 26.8 mg), Cu(OAc), (0.3 mmol, 54.3 mg),
TEMPO (0.4 mmol, 62.4 mg), 6,6-dimethyl-2,2’-dipyridine (0.12 mmol, 22.1 mg),
LiOAc (0.4 mmol, 25.6 mg), and "C4,HyCOOH (0.4 mmol, 40.8 mg) were dissolved in
DMF (2 mL) under air atmosphere. The reaction mixture was then heated at 130 °C (oil
bath) with vigorous stirring for 1 hour. After the reaction completion, the mixture was
poured into ethyl acetate and washed with saturated brine (1 x 40 mL). The combined
organic layers were dried over anhydrous Na,SO,. The filtrate was concentrated in
vacuo and purified by a silica gel packed flash chromatography column with petroleum
ether/ethyl acetate (12:1) as the eluent to afford the desired 3,5-disubstituted pyridazine

product 6h and d-6h. It was found that the value of competitive kinetic isotope effect
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equals 2.85, which suggesting the aliphatic C-H bond cleavage of methyl on the
acylhydrazone might be the rate-determining step for the synthesis of 3,5-disubstituted

pyridazine.
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Figure S7. The 'HNMR spectrum of 6h(d-6h) from the competitive kinetic isotope experiment
7.2.5. XRD Detection of Cu(0) species from the crude model reaction to 3,5-

disubstituted pyridazine.

'ri' OB i tandard conditi 0
X, . u Standard conditions
N \n/ + \ > | N
o) N‘N 45
6h

Cu(0) species
4b, 6.25 mmol 5a, 5 mmol

In a 100 mL round-bottom flask with a stir bar, acylhydrazone (4b) (6.25 mmol, 1.462
g), 4'-methylpropiophenone (5a) (5 mmol, 670 mg), Cu(OAc), (7.5 mmol, 1.357 g),
TEMPO (10 mmol, 1.56 g), 6,6-dimethyl-2,2’-dipyridine (3 mmol, 552.5 mg), LiOAc
(10 mmol, 640 mg), and "C4HyCOOH (10 mmol, 1020 mg) were dissolved in DMF (50
mL) under air atmosphere. The reaction mixture was then heated at 130 °C (oil bath)
with vigorous stirring for 12 hours. After the reaction completion, the mixture was

filtered directly, and residue was detected by XRD. It was found that Cu(0) species was
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generated during the reaction course.
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Figure S8. PXRD pattern of the scaled-up model reaction mixture for the synthesis of 3,5-disubstituted pyridazine

7.3. Probable mechanisms for the synthesis of polysubstituted pyridazines.

7.3.1 The possible pathways for the synthesis of 3,4,6-trisubstituted pyridazines.

Path A
H disproportionation
o J\\N Ph OAC)z Icu" or oxidation Cu"'
T —, N
Ph
C(sp°)-H activation cu'
1a | ||
detected by GC-MS
g, \ PhCOOH Ph._0O Ph.__O
; NN PN 5 TOH [0] TOH
: L : N ph N Ph
L PhT, Ph: elimination L aromatization |
R I ‘ Phi Ph Ph Ph
\'/] v
Path B o)
Ph
M _rn
s .N__Ph u(OAc) ~N._Ph 0”7 NH
Ph” N —> P N —_— fle
12 O dehydrogenation vii O 1 4-addition
Phy,, Ph

o N
Ph M
Ph_) cuM" 0
I
ligand P, N~
exchange 0 Ph
reductive

elimination

T o

nucleophilic
addition Ph Ph
1\
N’N\ Phi
— .
Ph ¢ Ph 34 Ph

7.3.2 The possible pathways for the synthesis of 3,5-disubstituted pyridazines.
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9. X-Ray Crystallographic Data for Product 3n.

Figure S9. X-ray crystal structure of product 3n with 30% ellipsoid probability
X-ray structure determination. Single crystals suitable for X-ray diffraction were
obtained by slow evaporation of the solvent from a deuterated chloroform solution of
product 3n (CCDC 2227388) within several days under aerobic conditions. Crystal
data collection and refinement parameters of 3m are summarized below. X-ray
diffraction data for 3n was collected on a SMART APEX CCD diffractometer
(graphite-monochromated MoK radiation, ¢-m scan technique, A = 0.71073 A). The
intensity data were integrated by means of the SAINT program. SADABS was used to
perform area-detector scaling and absorption corrections. The structure was solved by
direct methods and was refined against F 2 using all reflections with the aid of the
SHELXTL package. All non-hydrogen atoms were found from the difference Fourier
syntheses and refined anisotropically. The H atoms were included in calculated

positions with isotropic thermal parameters related to those of the supporting carbon
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atoms but were not included in the refinement. All calculations were performed using

the Bruker Smart program.

Crystal data and structure refinement for product 3n.

Identification code product 3n
Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

V4

Density (calculated)

Absorption coefficient
F(000)
Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [[>2sigma(])]
R indices (all data)
Extinction coefficient

Largest diff. peak and hole

Cyu HisFN;
326.36

2132) K
0.71073 A
Triclinic

P-1
a=28.757(4) A
b=9.973(4) A
c=11.506(4) A

a=103.314(11)°.
b= 100.861(12)°.
g=113.664(11)°.
850.1(6) A3

2

1.275 Mg/m3

0.083 mm-1
340

0.200 x 0.150 x 0.120 mm3

2.371 to 25.496°.

-10<=h<=10, -12<=k<=12, -13<=I<=13
11393

3083 [R(int) = 0.0694]

97.8 %

Semi-empirical from equivalents
0.7456 and 0.5125

Full-matrix least-squares on F2

3083/0/227

1.055

R1=0.0673, wR2=0.1716
R1=0.0952, wR2 = 0.1990
0.062(12)

0.282 and -0.247 e.A-3
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10. NMR Spectra for All Products.
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Figure S10. "TH NMR (500 MHz, CDCl3) of compound 3a
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Figure S33. 3C NMR (125 MHz, CDCls) of compound 31
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Figure S35. 3C NMR (100 MHz, CDCl3) of compound 3m
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Figure S47. 3C NMR (125 MHz, CDCls) of compound 6¢
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Figure S48. "TH NMR (400 MHz, CDCl;) of compound 6d
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Figure S49. 3C NMR (125 MHz, CDCls) of compound 6d
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Figure S51. 3C NMR (125 MHz, CDCls) of compound 6e
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Figure S68. 'TH NMR (500 MHz, CDCls) of compound 6n
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Figure S69. 3C NMR (125 MHz, CDCl3) of compound 6n
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Figure S70. "TH NMR (500 MHz, CDCls) of compound 60
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Figure S71. 3C NMR (125 MHz, CDCls) of compound 60
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Figure S73. 3C NMR (125 MHz, CDCls) of compound 6p
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Figure S74. "TH NMR (400 MHz, CDCls) of compound 6q
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Figure S75. 3C NMR (125 MHz, CDCls) of compound 6q
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Figure S76. "TH NMR (400 MHz, CDCls) of compound 3q
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Figure S77. 3C NMR (100 MHz, CDCls) of compound 3q
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Figure S78. 'TH NMR (400 MHz, CDCls) of compound 6r
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Figure S79. 3C NMR (100 MHz, CDCls) of compound 6r
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Figure S80. 'TH NMR (500 MHz, CDCl3) of compound 6s
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Figure S81. 3C NMR (125 MHz, CDCls) of compound 6s
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