Supporting Information

Concise synthesis of chiral γ-butenolides via an allylation/lactonization cascade

Zheng Tan, Aying Yihuo, Zhao Wu, Fei Wang, Shunxi Dong,* and Xiaoming Feng*

E-mail: dongs@scu.edu.cn; xmfeng@scu.edu.cn

Table of Content

(A) General information	3
(B) Characterization of the substrates	3
(C) General procedures for the preparation of racemic products	7
(D) General procedures for the preparation of chiral products	7
(E) Optimization of reaction conditions	8
(F) Gram-scale synthesis of compound C11	.1
(G) Transformation of compound C11	.2
(H). Biological activity study1	.3
(I). X-ray crystallography data1	.5
(J) Characterization of the products1	.7
(K) Copies of NMR spectra5	2
(L) References	2

(A) General information

¹H NMR spectra were recorded on Bruker ASCEND[™] operating at 400 MHz. Chemical shifts were recorded in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Data were reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constants (Hz),integration. ¹³C{¹H} NMR data were collected on commercial instruments (101 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0). ¹⁹F{¹H} NMR spectra were collected on a bruker ASCEND[™] 400M (376 MHz) in CDCl₃ with complete proton decoupling. Enantiomeric excesses (ee) were determined by HPLC analysis by using the corresponding commercial chiralpak column as stated in the experimental procedures at 25 °C. Optical rotations were reported as follows: $[\alpha]_{\lambda}^{T} = (c = g/100 \text{ mL}, \text{ in CH}_{2}\text{Cl}_{2}, \text{ unless})$ otherwise noted, λ = 589 nm). IR was detected by Bruker Tensor II spectrometer with Plantium ATR accessory. HRMS was recorded on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (ESI). All reactions were carried out in flame-dried reaction flasks, and all reactions involving air-sensitive reagents were performed under nitrogen atmosphere. Solvents were dried and distilled prior to use according to the standard methods. Metal salts obtained from commercial sources were used without further purification. The chiral N, N'-dioxide ligands¹, potassium allyltrifluoroborate², and enone diesters³ were synthesized by the same procedure in the literature.

(B) Characterization of the substrates

All the substrates were synthesized according to the methods reported in the literature^{2,3}, and the NMR of the known substrates was also consistent with the literature reports, and the NMR characterization of the other new compounds (the blue-marked ones) were as follows:

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.93 – 7.88 (m, 2H), 7.85 (s, 1H), 7.37 – 7.30 (m, 2H), 4.34 (q, *J* = 7.2 Hz, 2H), 4.30 (q, *J* = 7.2 Hz, 2H), 2.65 – 2.53 (m, 1H), 1.94 – 1.80 (m, 4H), 1.80 – 1.72 (m, 1H), 1.50 – 1.38 (m, 4H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.29–1.26 (m, 1H), 1.25 (t, *J* = 7.2 Hz, 4H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 188.57, 164.66, 162.96, 155.16, 136.26, 135.43,

133.99, 129.09, 127.45, 62.39, 61.91, 44.80, 34.00, 26.65, 25.97, 14.03, 13.75; **ESI-HRMS** calcd for $[C_{21}H_{26}NO_5+Na^+]$: 381.1673, found 381.1667;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.33 – 7.17 (m, 10H), 4.61 – 4.02 (m, 4H), 1.55 – 1.00 (m, 6H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 188.57, 164.64, 162.94, 146.91, 139.52, 136.55, 135.23, 134.81, 129.48, 129.06, 128.59, 127.56, 127.34, 62.50, 62.03, 14.07, 13.81; **ESI-HRMS** calcd for [C₂₁H₂₀NO₅+Na⁺]: 375.1203, found 375.1195;

¹H NMR (400 MHz, Chloroform-*d*): δ 8.08 – 8.00 (m, 2H), 7.81 (s, 1H), 7.38 – 7.30 (m, 2H), 4.33 (dq, *J* = 19.1, 7.1 Hz, 4H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 187.68, 164.31, 162.69, 153.34 (q, *J*_{*F*-*C*} = 1.8 Hz), 136.99, 134.66, 134.20, 130.91, 120.22 (q, *J*_{*F*-*C*} = 259.3 Hz), 116.36, 62.55, 62.06, 13.97, 13.70;

¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) δ –57.65; ESI-HRMS calcd for [C₁₆H₁₅F₃O₆+Na⁺]: 383.0713, found 383.0708;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.92 – 7.82 (m, 2H), 7.78 (s, 1H), 7.72 – 7.64 (m, 2H), 4.33 (dq, *J* = 18.4, 7.1 Hz, 4H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 188.48, 164.38, 162.75, 138.32, 136.93, 135.31, 134.60, 130.03, 102.71, 62.58, 62.09, 14.04, 13.79; ESI-HRMS calcd for [C₁₅H₁₅IO₅+Na⁺]: 424.9857, found 424.9849;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.12 – 8.06 (m, 2H), 7.82 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 4.34 (dq, *J* = 21.7, 7.1 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 1H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 188.36, 164.20, 162.62, 138.64, 137.36, 135.27 (q, *J*_{F-C} = 32.9 Hz), 134.45, 129.12, 126.00 (q, *J* = 3.8 Hz), 123.40 (q, *J* = 272.8 Hz), 62.65, 62.15, 13.98, 13.72;

ESI-HRMS calcd for [C₁₆H₁₅F₃O₅+Na⁺]: 367.0764, found 367.0757;

¹H NMR (400 MHz, Chloroform-*d*): δ 8.20 – 8.13 (m, 2H), 8.06 – 7.99 (m, 2H), 7.83 (s, 1H), 4.33 (dq, *J* = 25.4, 7.1 Hz, 4H), 3.97 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 188.75, 165.97, 164.29, 162.71, 139.14, 137.11, 134.78, 134.72, 130.10, 128.71, 62.62, 62.13, 52.62, 14.04, 13.77; ESI-

HRMS calcd for [C₁₈H₁₈O₇+Na⁺]: 357.0945, found 357.0939;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.40 – 8.33 (m, 2H), 8.20 – 8.08 (m, 2H), 7.81 (s, 1H), 4.35 (dq, *J* = 21.6, 7.1 Hz, 4H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 187.88, 164.04, 162.49, 150.82, 140.34, 137.80, 134.07, 129.81, 124.16, 62.78, 62.28, 14.02, 13.79; **ESI-HRMS** calcd for [C₁₅H₁₅NO₇+Na⁺]: 344.0741,

found 344.0735; **ESI-HRMS** calcd for [C₁₅H₁₅NO₇+Na⁺]: 344.0741, found 344.0735;

¹H NMR (400 MHz, Chloroform-*d*): δ 7.94 (t, *J* = 1.9 Hz, 1H), 7.88 – 7.81 (m, 1H), 7.78 (s, 1H), 7.60 (ddd, *J* = 8.0, 2.1, 1.0 Hz, 1H), 7.46 (t, *J* = 7.9 Hz, 1H), 4.33 (dq, *J* = 20.1, 7.2 Hz, 4H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 187.98, 164.29, 162.69, 137.52, 137.14, 135.36, 134.56, 134.13, 130.31, 128.73, 126.92, 62.61,

62.12, 14.03, 13.76; **ESI-HRMS** calcd for [C₁₅H₁₅ClO₅+Na⁺]: 333.0501, 335.0471, found 333.0495, 335.0463;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.80 (t, *J* = 2.0 Hz, 1H), 8.50 (ddd, *J* = 8.2, 2.3, 1.1 Hz, 1H), 8.31 (dt, *J* = 7.9, 1.4 Hz, 1H), 7.83 (s, 1H), 7.76 (t, *J* = 8.0 Hz, 1H), 4.36 (dq, *J* = 20.5, 7.2 Hz, 4H), 1.38 (t, *J* = 7.2 Hz, 3H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 187.24, 164.11, 162.49, 148.59, 138.03, 137.27, 134.19, 133.73, 130.34, 128.33, 123.57,

62.80, 62.28, 14.03, 13.80; ESI-HRMS calcd for [C15H15NO7+Na⁺]: 344.0741, found 344.0736;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.82 (dd, J = 7.8, 1.8 Hz, 1H), 7.71 (s, 1H), 7.60 (ddd, J = 8.3, 7.4, 1.8 Hz, 1H), 7.34 (td, J = 7.6, 1.1 Hz, 1H), 7.24 (dd, J = 8.3, 1.2 Hz, 1H), 6.60 (t, $J_{F-H} = 72.9$ Hz, 1H), 4.31 (dq, J = 17.1, 7.1 Hz, 4H), 1.34 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³**C**{¹H} **NMR** (101 MHz, Chloroform-*d*): δ 188.99, 164.52, 162.89, 149.97 (t, J = 2.8 Hz), 138.07, 134.78, 134.75, 131.14, 129.76, 125.95, 120.04, 115.79 (t, J = 262.6 Hz), 62.35, 61.99, 13.97,

13.76; ¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) *δ*-81.19; ESI-HRMS calcd for [C₁₆H₁₆F₂O₆+Na⁺]: 365.0808, found 365.0802;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.87 (td, J = 7.6, 1.9 Hz, 1H), 7.77 (d, J = 3.9 Hz, 1H), 7.65 – 7.55 (m, 1H), 7.32 – 7.24 (m, 1H), 7.22 – 7.14 (m, 1H), 4.34 (qd, J = 7.1, 1.8 Hz, 4H), 1.33 (dt, J = 15.1, 7.2 Hz, 6H); ¹³**C**{¹**H**} **NMR** (101 MHz, Chloroform-*d*): δ 186.86, 186.83, 164.64, 162.87, 162.07 (d, $J_{F-C} = 256.4$ Hz), 137.01 (d, $J_{F-C} = 7.1$ Hz), 136.09 (d, $J_{F-C} = 1.8$ Hz), 135.89 (d, $J_{F-C} = 9.1$ Hz), 131.09 (d, $J_{F-C} = 1.8$ Hz), 124.95 (d, $J_{F-C} = 11.6$ Hz), 124.83 (d, $J_{F-C} = 3.4$ Hz),

116.85 (d, $J_{F-C} = 22.9$ Hz), 62.43, 62.01, 14.01, 13.81; ¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) δ –108.90; ESI-HRMS calcd for [C₁₅H₁₅FO₅+Na⁺]: 317.0796, found 317.0792;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.18 (dd, J = 8.2, 1.2 Hz, 1H), 7.82 – 7.76 (m, 1H), 7.74 – 7.68 (m, 1H), 7.56 – 7.51 (m, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.22 (q, J = 7.2 Hz, 2H), 1.31 (td, J = 7.2, 1.2 Hz, 6H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 189.68, 164.19, 162.45, 146.18, 136.07, 135.31, 134.59, 134.48, 131.85, 129.16, 124.38, 62.67, 62.18, 13.95, 13.78; **ESI-HRMS** calcd for [C₁₅H₁₅NO₇+Na⁺]: 344.0741, found 344.0735;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.82 (s, 1H), 7.51 – 7.42 (m, 1H), 7.30 – 7.20 (m, 1H), 7.01 – 6.91 (m, 1H), 4.33 (q, *J* = 7.1 Hz, 4H), 3.91 (s, 3H), 1.33 (dt, *J* = 13.9, 7.1 Hz, 6H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 188.56 (d, *J*_{F-C} = 1.8 Hz), 164.92, 163.25, 156.88 (d, *J*_{F-C} = 241.2 Hz), 155.77 (d, *J*_{F-C} = 2.0 Hz), 138.66, 133.97, 127.30 (d, *J*_{F-C} = 6.3 Hz), 121.73 (d, *J*_{F-C} = 23.6 Hz), 116.97 (d, *J*_{F-C} = 24.3 Hz), 113.37 (d, *J*_{F-C} = 7.5 Hz) 62.21, 61.86, 56.44, 14.02,

13.82; ¹⁹**F NMR**{¹**H**} (377 MHz, Chloroform-*d*) *δ* –122.56; **ESI-HRMS** calcd for [C₁₆H₁₇FO₆+Na⁺]: 347.0902, found 347.0895;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.94 (td, J = 8.6, 6.4 Hz, 1H), 7.73 (d, J = 4.0 Hz, 1H), 7.07 – 6.97 (m, 1H), 6.93 (ddd, J = 11.0, 8.6, 2.4 Hz, 1H), 4.34 (qd, J = 7.2, 3.1 Hz, 1H), 1.33 (dt, J = 14.1, 7.1 Hz, 1H) ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 185.35 (d, $J_{F-C} = 3.1$ Hz), 167.89 (d, $J_{F-C} = 12.4$ Hz), 165.31 (d, $J_{F-C} = 12.3$ Hz), 164.54, 164.21 (d, $J_{F-C} = 12.7$ Hz), 162.76, 161.64 (d, $J_{F-C} = 12.8$ Hz), 136.71 (d, $J_{F-C} = 7.4$ Hz), 136.39 (d, $J_{F-C} = 1.9$ Hz), 133.17

(dd, $J_{F-C} = 10.8$, 3.4 Hz), 121.56 (dd, $J_{F-C} = 11.8$, 3.5 Hz), 112.76 (dd, $J_{F-C} = 21.7$, 3.4 Hz), 105.05 (dd, $J_{F-C} = 26.8$, 25.5 Hz), 62.48, 62.03, 13.98, 13.80; ¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -98.99, -99.02, -103.98, -104.01; **ESI-HRMS** calcd for [C₁₅H₁₄F₂O₅+Na⁺]: 335.0702, found 335.0895;

¹H NMR (400 MHz, Chloroform-*d*): δ 7.87 (s, 1H), 7.30 (d, J = 3.2 Hz, 1H), 7.11 (dd, J = 9.1, 3.2 Hz, 1H), 6.94 (d, J = 9.1 Hz, 1H), 4.33 (qd, J = 7.2, 2.8 Hz, 4H), 3.88 (s, 3H), 3.79 (s, 3H), 1.33 (dt, J = 11.9, 7.2 Hz, 6H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 189.33, 165.15, 163.41, 154.22, 153.73, 139.34, 133.48, 126.69, 122.53, 113.64, 113.60, 62.11, 61.78, 56.40, 55.83, 14.03, 13.86; **ESI-HRMS** calcd for [C₁₇H₂₀O₇+Na⁺]: 359.1102,

found 359.1094;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.85 (dd, J = 3.8, 1.2 Hz, 1H), 7.79 (dd, J = 4.9, 1.1 Hz, 1H), 7.74 (s, 1H), 7.20 (dd, J = 4.9, 3.9 Hz, 1H), 4.36 (dq, J = 10.4, 7.1 Hz, 4H), 1.34 (dt, J = 9.5, 7.1 Hz, 6H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 180.24, 164.72, 162.75, 143.91, 137.15, 136.34, 133.86, 132.94, 128.72, 62.56, 62.06, 14.00, 13.84; **ESI-HRMS** calcd for [C₁₃H₁₄O₅S+Na⁺]: 305.0455,

found 305.0450;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 7.27 (s, 1H), 4.33 (dq, *J* = 15.8, 7.1 Hz, 4H), 2.13 (tt, *J* = 7.8, 4.5 Hz, 1H), 1.33 (td, *J* = 7.2, 1.6 Hz, 6H), 1.25 – 1.15 (m, 2H), 1.14 – 1.02 (m, 2H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 198.62, 164.84, 162.86, 135.50, 135.00, 62.41, 61.95, 22.33, 13.97, 13.86, 12.98; **ESI-HRMS** calcd for [C₁₂H₁₆O₅+Na⁺]: 263.0890, found 263.0886;

¹**H NMR** (600 MHz, Chloroform-*d*): δ 7.71 (s, 1H), 4.42 – 4.30 (m, 6H), 1.39 (t, *J* = 7.2 Hz, 3H), 1.35 (td, *J* = 7.2, 4.0 Hz, 6H); ¹³C{¹H} NMR (151 MHz, Chloroform*d*): δ 181.45, 163.92, 162.12, 159.80, 139.31, 131.14, 63.28, 62.78, 62.45, 13.97, 13.82; **ESI-HRMS** calcd for [C₁₂H₁₆O₇+Na⁺]: 295.0789, found 295.0783;

¹H NMR (400 MHz, Chloroform-*d*): δ 7.24 (s, 1H), 4.40 – 4.25 (m, 4H), 4.15 – 4.02 (m, 2H), 2.85 (t, *J* = 12.8 Hz, 2H), 2.72 – 2.62 (m, 2H), 1.96 – 1.80 (m, 2H), 1.62 – 1.52 (m, 2H), 1.45 (s, 9H), 1.33 (td, *J* = 7.1, 3.0 Hz, 6H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 199.76, 164.61, 162.56, 154.54, 136.49, 134.49, 79.69, 79.67, 62.47, 61.99, 48.54, 48.52, 28.35, 26.68, 13.93, 13.82;

ESI-HRMS calcd for [C₁₉H₂₉NO₇+Na⁺]: 406.1837, found 406.1830;

(C) General procedures for the preparation of racemic products

1. General procedure for the racemic allylboration/lactonization.

 $In(OTf)_3$ (10 mol%, 5.6 mg), enone diesters **A** (0.10 mmol) and potassium allyltrifluoroborate **B** (0.20 mmol) were stirred in 1.0 mL of ethyl acetate (EA) at 35 °C in water bath till substrate **A** was fully consumed. The reaction mixture was directly subjected to flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to afford the racemic product **C**.

(D) General procedures for the preparation of chiral products

1. Representative experimental procedure for the reaction of trifluoroacetophenone A1 and allyltrifluoroborate B1

L₃-PiEt₂ (11 mol%, 6.5 mg), $In(OTf)_3$ (10 mol%, 5.6 mg) and enone diesters **A1** (0.10 mmol, 25 µL) were stirred in 1.0 mL of EA at 35 °C for 30 minutes under N₂ atmosphere. Then potassium allyltrifluoroborate **B1** (0.20 mmol, 30.0 mg) was added in the glovebox as one portion and the mixture was stirred at 35 °C

for another 10 minutes. The above steps and the reactions must be carried out under N₂ atmosphere. After the reaction was completed, the mixture was directly subjected to flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (4/1, v/v) to afford the desired product **C1** as colorless oil.

(E) Optimization of reaction conditions

1. Optimization of the reaction conditions of allylation between enone diesters A1 and potassium allyltrifluoroborate B1

O CO ₂	Et	Metal salts (1:1 10	s /L₃-PiPr₂ mol%)	0
Ph	O ₂ Et	THF,	35 °C EtC	P ₂ C Ph
A1	B1			C1
entry ^a	metal salts	reaction time	yield (%) ^b	ee (%) ^c
1	-	48 h	NR	-
2	Ni(OTf)2	48 h	NR	-
3	Cu(OTf) ₂	48 h	94	20
4	Co(OTf) ₂	48 h	NR	-
5	Mg(OTf) ₂	48 h	NR	-
6	Zn(OTf) ₂	48 h	78	13
7	Sc(OTf)₃	48 h	NR	-
8	In(OTf)₃	2 h	99	62
9	Ga(OTf)₃	48 h	trace	-
10	Al(OTf)₃	48 h	trace	-
11	Yb(OTf)₃	48 h	NR	-

Table S1. Screening of the metal salts.

^aAll reactions were performed with **A1** (0.10 mmol), **B1** (0.20 mmol), metal salt (10 mol%), **L₃-PiPr₂** (10 mol%) and THF (1.0 mL) at 35 °C for indicated time. ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

Table S2. Screening of the ligands.

entryª	L		ee (%) ^c
1	L ₃ -PiPr ₂	99	62
2	L ₃ -RaPr ₂	78	85
3	L ₃ -PrPr ₂	76	25
4	L ₃ -PePr ₂	96	34
5	L ₃ -TQPr ₂	99	0
6	L₃-PiPh	99	40
7	L ₃ -PiMe ₂	99	90
8	L ₃ -PiEt ₂	99	93
9	L ₃ -PiPr ₃	99	58
10 ^d	L₃-PiPh	99	56
11 ^d	L ₃ -PiMe ₂	99	90
12 ^d	L ₃ -PiEt ₂	99	93
13 ^d	L ₃ -PrEt ₂	99	14
14 ^d	L ₃ -PeEt ₂	99	9
15 ^d	L ₃ -TQEt ₂	99	48
13 ^d	L ₃ -PiMe ₃	99	76
14 ^d	L ₃ -PiEt ₂ Me	99	78

15 ^d	L ₃ -PiF ₂	99	12
16 ^d	L ₂ -PiMe ₂	99	18
17 ^d	L ₂ -PiEt ₂	99	84
18 ^d	L ₃ -Pi(OMe) ₂	99	19
19 ^d	L ₃ -Pi(OEt) ₂	99	48
20 ^d	L ₃ -Pi(OiPr) ₂	99	76
21 ^d	L ₃ -PiAd	99	76
22 ^d	L₃-Pi ^t Bu	99	72
23 ^d	L₃-RaPh	99	30
24 ^d	L ₃ -RaMe ₂	99	69
25 ^d	L ₃ -RaEt ₂	99	58
26 ^d	L₃-RaEt₂Me	99	70
27 ^d	L₃-RaEt₃	74	45
28 ^d	L ₃ -RaMe ₂ Ad	88	58

^a All reactions were performed with **A1** (0.10 mmol), **B1** (0.20 mmol), metal salt (10 mol%), **L₃-PiPr₂** (10 mol%) and THF (1.0 mL) at 35 °C and work up after the **A1** was fully consumed (monitored by TLC). ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID. ^d Metal salt/Ligand = 1: 1.1 (10 mol%).

Table S3.	Screening	of the	solvents.
-----------	-----------	--------	-----------

	D ₂ Et	In(OTf) ₃ / L₃-PiEt (1:1.1 10 mol%)	2 O	0.
Ph	CO ₂ Et	solvent, 35 °C	EtO ₂ C	≈∕ Ph
A1	B1			C1
entry ^a	solvent	reaction time	yield (%) ^b	ee (%) ^c
1	DCM	4 h	99	95
2	THF	2 h	99	93
3	toluene	8 h	99	95
4	Et ₂ O	8 h	99	95
5	EA	10 min	99	95
6	MeCN	mess	-	-
7	1,4-dioxane	10 min	99	94
8	MTBE	8 h	99	94
9	2-Me-THF	2 h	99	94
10	DME	10 min	99	95
11	DMF	24 h	99	42

^aAll reactions were performed with **A1** (0.10 mmol), **B1** (0.20 mmol), metal salt (10 mol%), **L₃-PiEt₂** (11 mol%) and solvent (1.0 mL) at 35 °C and work up after the **A1** was fully consumed (monitored by TLC). ^{*b*} Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

 Table S4.
 Screening of the reaction temperature.

0	CO ₂ Et	∧ BF₀K	In(OTf) ₃ /L ₃ -PiEt ₂ (1:1.1 10 mol%)	°~°~
Ph	CO ₂ Et		EA, T °C	EtO ₂ C
A1		B1		C1
entry ^a	T (°C)	t	yield (%) ^b	ee (%) ^c
1	35	10 min	99	95
2	20	2 h	99	95
3	10	2 h	99	94
4	0	3 h	99	94
5	-10	5 h	99	95

^a All reactions were performed with **A1** (0.10 mmol), **B1** (0.20 mmol), metal salt (10 mol%), **L₃-PiEt₂** (11 mol%) and solvent (1.0 mL) at T °C and work up after the **A1** was fully consumed (monitored by TLC). ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

 Table S5.
 Screening of the catalyst loading.

O II	CO ₂ Et	∽ BF₂K	In(OTf) ₃ /L ₃ -PiEt ₂ (1:1.1, x mol%)	0
Ph	CO ₂ Et		EA, 35 °C	EtO ₂ C
A	1	B1		C1
entry ^a	x	t	Yield (%) ^b	<i>ee</i> (%) ^c
1	10	10 min	99	95
2	8	2 h	99	95
3	5	12 h	72	94
4	2	12 h	Trace	-
5	1	12 h	Trace	-

^a All reactions were performed with **A1** (0.10 mmol), **B1** (0.20 mmol), metal salt (10 mol%), **L₃-PiEt₂** (11 mol%) and solvent (1.0 mL) at 35 °C and work up after the **A1** was fully consumed (monitored by TLC). ^b Isolated yield. ^c Determined by HPLC analysis on Daicel chiralpak ID.

(F) Gram-scale synthesis of compound C1.

L₃-PiEt₂ (11 mol%, 260 mg), $ln(OTf)_3$ (10 mol%, 224 mg) and enone diesters A1 (4 mmol, 1.104 g) were stirred in 40 mL of EA at 35 °C in water bath for 30 minutes under N₂ atmosphere. Then potassium

allyltrifluoroborate **B1** (8 mmol, 1.184 g) was added in the glovebox as one portion and the mixture was stirred at 35 °C for another 30 minutes. The above steps and the reactions must be carried out under N₂ atmosphere. After the reaction was completed, the solvent was removed under vacuum and the mixture was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (4/1, v/v) to afford the desired product **C1** as colorless oil.

(G) Scope Limitation

(H) Transformation of compound C1

The products **C1** (0.2 mmol) and LiCl (2 mmol, 10 equiv) were added sequentially to the pre-dried reaction tube, then 2.0 mL of dimethyl sulfoxide (DMSO) was added, and the reaction was stirred in at 150 °C in an oil bath for 2 h. When the **C1** is fully consumed, the mixture was cooled to room temperature, and then extracted by ethyl acetate (3* 3 ML). the organic phase was combined and dried over Na₂SO₄, the product **D1** was obtained by column chromatography (petroleum ether/ethyl acetate = $9/1 \sim 4/1$, v/v).

The catalytic reaction (0.1 mmol scale) was carried out under standard reaction conditions, and after the reaction was completed, 0.2 mL of methanol was added to the reaction system, and the reaction was cooled in an ice water bath at 0 °C, and NaBH₄ (1.5 equiv) was added to the reaction system. After the reaction was completed (about 30 minutes), the reduction product **E1** was obtained directly by column chromatography separation (elute: petroleum ether/ethyl acetate = 6/1, v/v).

(I). Biological activity study

Anti-HCCLM3 cell proliferative activity assay

HCCLM3 cells were cultured to higher than 80% fusion rate in 10 mm dishes, trypsin-digested cells were diluted to the appropriate concentration and inoculated in 96-well plates. After 12-16 h of incubation in 37° C, 5% CO₂ incubator, the medium was aspirated, washed twice with phosphate buffered saline (PBS), and new medium was added, followed by the addition of the compound (20 µM) and dimethyl sulfoxide (DMSO) as a control. The medium was aspirated after 24 h, and a blank medium containing 10% (v/v) Cell Counting Kit-8 reagent (Selleck) was added for 1 h of incubation. Absorbance was then measured at 450 nm using a Varioskan Flash Multimode Reader (Thermo Fisher Scientific) and cell viability was calculated by GraphPad Prism 8.0, the data is represented as mean ± standard deviation (SD).

	, , , , , , , , , , , , , , , , , , ,		
compound	HCCLM3 cell viability (% of control)	compound	HCCLM3 cell viability (% of control)
sorafeinb	20.70476	C18	120.5925
C1	140.8507	C19	116.0756
C2	137.5647	C20	104.8728
C3	65.44189	C21	133.3856
C4	63.67407	C22	135.5473
C5	95.99829	C23	140.0133
C6	123.491	C24	122.4767
C7	132.8001	C25	110.2258
C8	132.3812	C26	115.407
C9	123.0938	C27	116.0941
C10	107.3269	C28	125.4862
C11	116.404	C29	128.5559
C12	119.8826	C30	119.5556

Table S6. Structures	and activities	of synthetic	compounds
----------------------	----------------	--------------	-----------

C13	114.2488	C31	124.0899	
C14	140.6541	C32	132.3831	
C15	133.9822	C33	107.7849	
C16	143.9308	D1	105.4745	
C17	118.8482	E1	117.5245	

Table S7 IC₅₀ of C3 and C4

optry	IC ₅₀ (μΜ)		
entry	HCCLM3	MHCC97L	
C3	9.19	93.51	
C4	14.99	121	

(J). X-ray crystallography data

The absolute configuration of product **C26** and the newly generated chiral center was determined to be (*S*) by X-ray chromatography analysis. Single crystal of **C26** [$C_{20}H_{18}O_4$] was obtained by recrystallization in DCM at room temperature with slow vaporization. CCDC 2331720 (**C26**) contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Center.

For CCDC 2331720 (**C26**), The colourless crystal in rod-shape, with approximate dimensions of 0.228 × 0.441 × 0.530 mm³, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2)K equipped with micro-focus Cu radiation source ($K\alpha = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{4a, 4b, 4c, 4d}The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^{4e}.

Formula	$C_{20}H_{18}O_4$
Formula mass (amu)	322.36
Space group	P212121
<i>a</i> (Å)	6.3415(1)
b (Å)	8.4205(2)
<i>c</i> (Å)	30.8465(7)
α (deg)	90
β (deg)	90
γ (deg)	90
V (Å ³)	1647.16(6)
Z	4
λ (Å)	1.54178
<i>Т</i> (К)	173(2)

$ ho_{calcd}$ (g cm ⁻³)	1.300
$m{s}\mu$ (mm ⁻¹)	0.735
Transmission factors	0.730-0.910
θ_{\max} (deg)	68.267
No. of unique data, including $F_{o}^2 < 0$	3013
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	2993
No. of variables	219
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0257
$R_{\rm w}(F_{ m o}^2)$ ^b	0.0664
Goodness of fit	1.095

^a $R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

 ${}^{b} R_{w}(F_{o}{}^{2}) = \left[\sum[w(F_{o}{}^{2} - F_{c}{}^{2})^{2}\right] / \sum wF_{o}{}^{4}]^{1/2}; w{}^{-1} = \left[\sigma^{2}(F_{o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}\right] / 3.$

(K) Characterization of the products

Ethyl (S)-5-allyl-2-oxo-5-phenyl-2,5-dihydrofuran-3-carboxylate (C1)

Results: colorless oil, 99% yield, 95 % *ee*; $[\alpha]^{22}D = -92.9$ (*c* = 0.95 g/100 mL, $\lambda = 589$ nm, in DCM), HPLC (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, $\lambda = 210$ nm, $t_{R(minor)} = 8.16$ min, $t_{R(major)} = 8.93$ min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.33 (s, 1H), 7.45 – 7.30 (m, 5H), 5.61 (m, 1H), 5.20 – 5.10(m, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 2.92 (ddt, *J* = 14.4, 7.2, 1.1 Hz, 1H), 2.84 (ddt, *J* = 14.3, 7.0, 1.1 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.59, 164.94, 160.06, 137.23, 129.63, 129.06, 128.74, 125.16, 124.68, 121.23, 87.88, 61.85, 43.86, 14.14;

IR (film): \tilde{v} (cm⁻¹) 3083, 2983, 2981, 1774, 1721, 1641, 1448, 1370, 1335, 1258, 1066,1030, 799, 764, 700;

ESI-HRMS calcd for $[C_{16}H_{16}O_4+Na^+]$: 295.0941, fou nd 295.0938;

	Retention Time	Area	% Area	Height
1	8.164	228198	2.52	21984
2	8.930	8829116	97.48	675128

Ethyl (S)-5-allyl-2-oxo-5-(p-tolyl)-2,5-dihydrofuran-3-carboxylate (C2)

Results: colorless oil, 99% yield, 93 % *ee*; $[\alpha]^{23}_{D}$ = -98.5 (*c* = 0.62 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 10.43 min, $t_{R(major)}$ = 12.67 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.30 (s, 1H), 7.41 – 7.01 (m, 4H), 5.68 – 5.52 (m, 1H), 5.18 – 5.10 (m, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 2.90 (ddt, *J* = 14.4, 7.3, 1.1 Hz, 1H), 2.82 (ddt, *J* = 14.3, 7.0, 1.1 Hz, 1H), 2.35 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.70, 165.14, 160.12, 138.71, 134.19, 129.77, 129.70, 125.10, 124.50, 121.10, 87.89, 61.81, 43.76, 21.09, 14.14;

IR (film): \tilde{v} (cm⁻¹) 2985, 2923, 1780, 1722, 1642, 1264, 1075,1032, 800, 735, 702;

ESI-HRMS calcd for [C₁₇H₁₈O₄+Na⁺]: 309.1098, found 295. 309.1093;

	Retention Time	Area	% Area	Height
1	10.426	1368298	3.52	81847
2	12.666	37498867	96.48	1611753

Results: colorless oil, 98% yield, 92 % *ee*; $[\alpha]^{22}_{D} = 92.2$ (*c* = 1.10 g/100 mL, $\lambda = 589$ nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, $\lambda = 210$ nm, $t_{R(minor)} = 8.41$ min, $t_{R(major)} = 9.53$ min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.30 (s, 1H), 7.36 – 7.18 (m, 4H), 5.67 – 5.53 (m, 1H), 5.17 (s, 1H), 5.15 – 5.12 (m, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 2.92 (ddt, *J* = 14.3, 7.2, 1.1 Hz, 1H), 2.83 (ddt, *J* = 14.4, 7.2, 1.1 Hz, 1H), 2.50 (m, 1H), 1.89 – 1.65 (m, 6H), 1.46 – 1.38 (m, 4H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.75, 165.20, 160.13, 148.82, 134.49, 129.78, 127.48, 125.13, 124.49, 121.10, 87.91, 61.80, 44.19, 43.71, 34.32, 34.31, 26.79, 26.06, 14.14;

IR (film): \tilde{v} (cm⁻¹) 2924, 2850, 1782, 1723, 1448, 1370, 1314, 1074, 1032, 828, 799;

ESI-HRMS calcd for [C₂₂H₂₆O₄+Na⁺]: 377.1724, found 377.1717;

	Retention Time	Area	% Area	Height
1	8.406	264158	3.91	17588
2	9.533	6483818	96.09	362040

Ethyl (S)-5-([1,1'-biphenyl]-4-yl)-5-allyl-2-oxo-2,5-dihydrofuran-3-carboxylate (C4)

Results: white solid, 99% yield, 94 % *ee*; $[\alpha]^{23}_{D}$ = -129.9 (*c* = 0.668 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 13.82 min, $t_{R(major)}$ = 15.88 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.35 (s, 1H), 7.67 – 7.52 (m, 4H), 7.52 – 7.41 (m, 4H), 7.38 – 7.33 (m, 1H), 5.71-5.57 (m, 1H), 5.20 (s, 1H), 5.19 – 5.14 (m, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.96 (ddt, *J* = 14.3, 7.3, 1.1 Hz, 1H), 2.87 (ddt, *J* = 14.4, 7.1, 1.1 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.61, 164.87, 160.07, 141.72, 140.03, 136.09, 129.62, 128.93, 127.80, 127.74, 127.12, 125.66, 124.72, 121.33, 87.81, 61.88, 43.79, 29.72, 14.16;

IR (film): \tilde{v} (cm⁻¹) 3081, 2982, 2919, 1776, 1721, 1486, 1374, 1370, 1337, 1255, 1075, 1031, 840, 799, 767, 732, 697;

ESI-HRMS calcd for [C₂₂H₂₀O₄+Na⁺]: 371.1254, found 371.1248;

Ethyl (S)-5-allyl-2-oxo-5-(4-(trifluoromethoxy)phenyl)-2,5-dihydrofuran-3-carboxylate (C5)

Results: colorless oil, 99% yield, 96 % *ee*; $[\alpha]^{23}_{D} = -73.8$ (*c* = 1.31 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, λ = 210 nm, $t_{R(major)} = 7.26$ min, $t_{R(minor)} = 8.62$ min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.31 (s, 1H), 7.50 – 7.40 (m, 2H), 7.30 – 7.22 (m, 2H), 5.67 – 5.53 (m, 1H), 5.24 – 5.11 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.91 (ddt, *J* = 14.3, 7.3, 1.1 Hz, 1H), 2.83 (ddt, *J* = 14.3, 7.1, 1.2 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.22, 164.19, 159.87, 149.29 (d, *J*_{*F*-*C*} = 2.0 Hz), 135.92, 129.21, 126.87, 125.03, 121.64, 121.43, 119.07, 87.28, 61.97, 43.89, 14.10;

¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) δ -57.90.

IR (film): \tilde{v} (cm⁻¹) 3085, 2985, 2917, 1778, 1723, 1510, 1255, 1212, 1165, 1032, 800, 691;

ESI-HRMS calcd for [C₁₇H₁₅F₃O₅+Na⁺]: 379.0764, found 379.0758;

	Time			
1	7.262	21870145	98.05	1271550
2	8.615	434847	1.95	21213

Ethyl (S)-5-allyl-5-(4-methoxyphenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C6)

Results: colorless oil, 99% yield, 94 % *ee*; $[\alpha]^{23}_{D}$ = -104.8 (*c* = 0.546 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 12.94 min, $t_{R(major)}$ = 17.00 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.29 (s, 1H), 7.38 – 7.20 (m, 2H), 6.98 – 6.79 (m, 2H), 5.67 – 5.53 (m, 1H), 5.19 – 5.09 (m, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.89 (ddt, *J* = 14.3, 7.2, 1.1 Hz, 1H), 2.82 (ddt, *J* = 14.3, 7.0, 1.2 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.71, 165.12, 160.14, 159.78, 129.81, 129.03, 126.56, 124.45, 121.08, 114.36, 87.71, 61.81, 55.37, 43.74, 14.14;

IR (film): \tilde{v} (cm⁻¹) 3082, 2983, 2935, 1778, 1722, 1514, 1255, 1072, 1032, 800, 750; **ESI-HRMS** calcd for [C₁₇H₁₈O₅+Na⁺]: 325.1047, found 325.1041;

Results: colorless oil, 91% yield, 96 % ee; $[\alpha]^{23}_{D}$ = -80.8 (*c* = 0.500 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 7.72 min, $t_{R(major)}$ = 8.57 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.30 (s, 1H), 7.43 – 7.32 (m, 2H), 7.16 – 7.04 (m, 2H), 5.66 – 5.52 (m, 1H), 5.21 – 5.07 (m, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.89 (ddt, J = 14.3, 7.4, 1.1 Hz, 1H), 2.81 (ddt, J = 14.3, 7.0, 1.1 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.35, 164.51, 162.67 (d, $J_{F-C} = 248.7$ Hz) 159.97, 133.07 (d, $J_{F-C} = 3.3$ Hz), 129.42, 127.14 (d, $J_{F-C} = 8.3$ Hz), 124.87, 121.45, 116.05 (d, $J_{F-C} = 21.8$ Hz), 87.41, 61.93, 43.96, 14.12;

¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*): *δ* -112.58;

IR (film): \tilde{v} (cm⁻¹) 3083, 2985, 2929, 1781, 1723, 1511, 1275, 1260, 1075, 1032, 837, 800, 750; **ESI-HRMS** calcd for [C₁₆H₁₅FO₄+Na⁺]: 313.0847, found 313.0843;

S23

Ethyl (S)-5-allyl-5-(4-chlorophenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C8)

Results: colorless oil, 99% yield, 95 % *ee*; $[\alpha]^{19}_{D}$ = -105.5 (*c* = 0.584 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 8.51 min, $t_{R(major)}$ = 9.61 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.29 (s, 1H), 7.44 – 7.29 (m, 4H), 5.66 – 5.52 (m, 1H), 5.21 – 5.09 (m, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.89 (ddt, J = 14.3, 7.3, 1.1 Hz, 1H), 2.80 (ddt, J = 14.3, 7.0, 1.1 Hz, 1H), 1.36 (t, J = 7.2 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.27, 164.28, 159.91, 135.73, 134.80, 129.29, 129.25, 126.64, 124.93, 121.55, 87.37, 61.95, 43.83, 14.12;

IR (film): \tilde{v} (cm⁻¹) 3084, 2983, 2927, 1777, 1722, 1493, 1371, 1314, 1275, 1260, 1093, 1070, 1031, 828, 799, 750;

ESI-HRMS calcd for $[C_{16}H_{15}{}^{35}CIO_4+Na^+]$: 329.0552, found 329.0547; calcd for $[C_{16}H_{15}{}^{37}CIO_4+Na^+]$: 331.0522, found 331.0514;

		Time		,	
ſ	1	8.507	285714	2.33	22688
	2	9.613	11997296	97.67	725595

Ethyl (S)-5-allyl-5-(4-bromophenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C9)

Results: colorless oil, 99% yield, 96 % ee; $[\alpha]^{23}_{D}$ = -96.0 (c = 0.650 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, $\lambda = 210$ nm, $t_{R(minor)} = 9.02$ min, $t_{R(major)} = 10.25$ min;

¹H NMR (400 MHz, Chloroform-*d*): δ 8.28 (s, 1H), 7.59 – 7.50 (m, 2H), 7.33 – 7.23 (m, 2H), 5.65 – 5.51 (m, 1H), 5.21 – 5.09 (m, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.88 (ddt, J = 14.3, 7.4, 1.1 Hz, 1H), 2.80 (ddt, J = 14.3, 7.0, 1.1 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.25, 164.20, 159.89, 136.27, 132.21, 129.26, 126.92, 124.95, 122.94, 121.58, 87.39, 61.96, 43.78, 14.13;

IR (film): v (cm⁻¹) 3085, 2983, 2928, 1778, 1722, 1488, 1396, 1370, 1314, 1275, 1259, 1074, 1030, 1010, 824, 799, 749;

ESI-HRMS calcd for [C₁₆H₁₅⁷⁹BrO₄+Na⁺]: 373.0046, found 373.0041; calcd for [C₁₆H₁₅³⁷ClO₄+Na⁺]: 375.0026, found 375.0020;

24642580

98.15

1371240

10.252

Results: colorless oil, 99% yield, 96 % ee; $[\alpha]^{23}_{D}$ = -98.9 (*c* = 0.750 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 9.79 min, $t_{R(major)}$ = 11.14 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.27 (s, 1H), 7.79 – 7.68 (m, 2H), 7.20 – 7.10 (m, 2H), 5.65 -5.51 (m, 1H), 5.21 – 5.08 (m, 2H), 4.33 (q, J = 7.1 Hz, 2H), 2.88 (ddt, J = 14.3, 7.3, 1.1 Hz, 1H), 2.79 (ddt, J = 14.4, 7.0, 1.1 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.25, 164.20, 159.88, 138.16, 136.96, 129.26, 127.05, 124.93, 121.58, 94.60, 87.45, 61.95, 43.72, 14.13;

IR (film): \tilde{v} (cm⁻¹) 3083, 2982, 2927, 1778, 1722, 1486, 1393, 1370, 1314, 1275, 1259, 1066, 1031, 1005, 821, 799, 750;

ESI-HRMS calcd for [C₁₆H₁₅IO₄+Na⁺]: 420.9908, found 420.9899;

Ethyl (S)-5-allyl-2-oxo-5-(4-(trifluoromethyl)phenyl)-2,5-dihydrofuran-3-carboxylate (C11)

Results: colorless oil, 99% yield, 96 % *ee*; $[\alpha]^{23}_{D}$ = -77.8 (*c* = 0.636 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 7.46 min, $t_{R(major)}$ = 8.13 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.32 (s, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 5.67 – 5.53 (m, 1H), 5.23 – 5.11 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.92 (ddt, *J* = 14.3, 7.3, 1.1 Hz, 1H), 2.84 (ddt, *J* = 14.3, 7.0, 1.1 Hz, 1H), 1.36 (t, *J* = 7.2 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.07, 163.84, 159.78, 141.20, 131.00 (d, J_{F-C} = 32.8 Hz), 129.02, 126.07 (q, J_{F-C} = 3.7 Hz), 125.69, 125.24, 123.68 (d, J_{F-C} = 272.2 Hz), 121.81, 87.36, 62.02, 43.89, 14.10;

¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*): δ -62.81;

IR (film): \tilde{v} (cm⁻¹) 3085, 2985, 2916, 1778, 1723, 1323, 1276, 1260, 1166, 1123, 1069, 1031, 1017, 842, 800, 750;

ESI-HRMS calcd for [C17H15F3O4+Na⁺]: 363.0815, found 363.0808;

	Retention Time	Area	% Area	Height
1	7.459	349526	2.14	28612
2	8.133	16009566	97.86	1157037

Results: colorless oil, 99% yield, 95 % *ee*; $[\alpha]^{23}_{D}$ = -106.9 (*c* = 0.598 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 16.46 min, $t_{R(major)}$ = 25.43 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.33 (s, 1H), 8.11 – 8.02 (m, 2H), 7.53 – 7.44 (m, 2H), 5.66 – 5.52 (m, 1H), 5.21 – 5.09 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 4H), 2.92 (ddt, *J* = 14.3, 7.3, 1.1 Hz, 1H), 2.83 (ddt, *J* = 14.4, 7.0, 1.1 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.28, 166.19, 164.04, 159.86, 141.97, 130.52, 130.29, 129.16, 125.27, 125.12, 121.65, 87.62, 61.98, 52.36, 43.89, 14.12;

IR (film): \tilde{v} (cm⁻¹) 3083, 2985, 2954, 1782, 1722, 1436, 1279, 1190, 1112, 1070, 1032, 859, 800, 750; **ESI-HRMS** calcd for [C₁₈H₁₈O₆+Na⁺]: 353.0996, found 353.0991;

1	16.460	628630	2.52	18843
2	25.433	24282732	97.48	474155

Ethyl (S)-5-allyl-5-(4-nitrophenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C13)

Results: colorless oil, 99% yield, 96% *ee*; $[\alpha]^{22}_{D}$ = -110.5 (*c* = 0.570 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 13.22 min, $t_{R(major)}$ = 14.91 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.35 (s, 1H), 8.33 – 8.22 (m, 2H), 7.66 – 7.58 (m, 2H), 5.66 -5.55 (m, 1H), 5.31 – 5.04 (m, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.94 (dd, *J* = 14.3, 7.5 Hz, 1H), 2.85 (dd, *J* = 14.3, 7.0 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 165.78, 163.20, 159.63, 147.91, 144.15, 128.71, 126.38, 125.54, 124.26, 122.15, 87.21, 62.13, 43.95, 14.10;

IR (film): \tilde{v} (cm⁻¹) 3085, 2983, 2928, 1781, 1722, 1521, 1349, 1315, 1067, 1030, 856, 799, 697; **ESI-HRMS** calcd for [C₁₆H₁₅NO₆+Na⁺]: 340.0792, found 340.0787;

	Retention Time	Area	% Area	Height
1	13.219	343107	1.90	15113
2	14.911	17709344	98.10	635365

Results: colorless oil, 99% yield, 92% *ee*; $[\alpha]^{23}_{D}$ = -81.6 (*c* = 0.564 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 12.80 min, $t_{R(minor)}$ = 13.87 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.29 (s, 1H), 7.43 – 7.23 (m, 4H), 5.66 - 5.51 (m, 1H), 5.24 – 5.11 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.90 (ddt, *J* = 14.3, 7.3, 1.1 Hz, 1H), 2.81 (ddt, *J* = 14.3, 7.0, 1.1 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.21, 164.10, 159.86, 139.20, 135.09, 130.36, 129.18, 128.95, 125.50, 125.03, 123.37, 121.64, 87.23, 61.97, 43.80, 14.12;

IR (film): \tilde{v} (cm⁻¹) 3084, 2983, 2927, 1780, 1723, 1371, 1338, 1315, 1259, 1069, 1137, 1032, 799, 749, 697;

ESI-HRMS calcd for $[C_{16}H_{15}{}^{35}CIO_4+Na^+]$: 329.0552, found 329.0562; calcd for $[C_{16}H_{15}{}^{37}CIO_4+Na^+]$: 331.0522, found 331.0530

Results: colorless oil, 97% yield, 90% *ee*; $[\alpha]^{23}_{D}$ = -80.4 (*c* = 1.020 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak AYH, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 9.90 min, $t_{R(major)}$ = 13.18 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.30 (s, 1H), 7.35 - 7.29 (m, 1H), 6.98 - 6.84 (m, 3H), 5.60 (m, 1H), 5.20 - 5.10 (m, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 2.91 (ddt, *J* = 14.3, 7.2, 1.1 Hz, 1H), 2.81 (ddt, *J* = 14.3, 7.1, 1.1 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.58, 164.86, 160.06, 160.04, 138.73, 130.10, 129.61, 124.58, 121.21, 117.36, 113.98, 111.05, 87.78, 61.85, 55.42, 43.88, 14.14;

IR (film): \tilde{v} (cm⁻¹) 3082, 2982, 2938, 1774, 1721, 1371, 1601, 1293, 1260, 1030, 991, 798, 750, 700; **ESI-HRMS** calcd for [C₁₇H₁₈O₅+Na⁺]: 325.1047, found 325.1042;

Results: colorless oil, 99% yield, 96% *ee*; $[\alpha]^{23}_{D} = -87.1$ (*c* = 0.510 g/100 mL, $\lambda = 589$ nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, $\lambda = 210$ nm, $t_{R(major)} = 20.07$ min, $t_{R(minor)} = 23.61$ min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.39 (s, 1H), 8.30 – 8.21 (m, 2H), 7.82 - 7.76 (m, 1H), 7.64 (t, *J* = 8.0 Hz, 1H), 5.68 - 5.55 (m, 1H), 5.25 – 5.13 (m, 2H), 4.35 (q, *J* = 7.2 Hz, 2H), 2.95 (ddt, *J* = 14.4, 7.5, 1.1 Hz, 1H), 2.88 (ddt, *J* = 14.3, 6.9, 1.1 Hz, 1H), 1.37 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 165.82, 163.24, 159.65, 148.45, 139.49, 131.30, 130.33, 128.76, 125.57, 123.74, 122.19, 120.50, 86.96, 62.12, 43.96, 14.11;

IR (film): \tilde{v} (cm⁻¹) 3088, 2984, 2922, 1779, 1722, 1530, 1348, 1275, 1259, 1067, 1030, 993, 799, 749, 690; **ESI-HRMS** calcd for [C₁₆H₁₅NO₆+Na⁺]: 340.0792, found 340.0786;

	Retention Time	Area	% Area	Height
1	20.069	14926667	97.96	442305
2	23.610	310644	2.04	9953

Ethyl (S)-5-allyl-2-oxo-5-(o-tolyl)-2,5-dihydrofuran-3-carboxylate (C17)

Results: colorless oil, 99% yield, 64% *ee*; $[\alpha]^{23}_{D}$ = -14.1 (*c* = 1.038 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 8.56 min, $t_{R(major)}$ = 9.50 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.57 (s, 1H), 7.36 – 7.14 (m, 4H), 5.64 – 5.49 (m, 1H), 5.19 – 5.08 (m, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.96 (ddt, *J* = 14.4, 7.4, 1.1 Hz, 1H), 2.90 (ddt, *J* = 14.4, 7.1, 1.2 Hz, 1H), 2.58 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.24, 164.26, 160.17, 135.56, 135.11, 133.01, 129.84, 128.81, 126.69, 126.35, 125.37, 121.01, 89.07, 61.88, 42.82, 21.85, 14.16;

IR (film): \tilde{v} (cm⁻¹) 3083, 2981, 2917, 2849, 1775, 1722, 1370, 1340, 1314, 1272, 1067, 1027, 799, 763, 725;

ESI-HRMS calcd for [C₁₇H₁₈O₄+Na⁺]: 309.1098, found 309.1092;

	Retention Time	Area	% Area	Height
1	8.558	3521507	17.78	261806
2	9.503	16284902	82.22	1054212

Ethyl (S)-5-allyl-5-(2-(difluoromethoxy)phenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C18)

Results: colorless oil, 99% yield, 98% *ee*; $[\alpha]^{23}_{D}$ = -113.2 (*c* = 0.608 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 8.33 min, $t_{R(minor)}$ = 9.22 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.61 (s, 1H), 7.64 (dd, J = 7.9, 1.7 Hz, 1H), 7.44 – 7.33 (m, 1H), 7.23 (td, J = 7.7, 1.1 Hz, 1H), 7.10 (dd, J = 8.2, 1.2 Hz, 1H), 6.69 (t, J = 72.9 Hz, 1H), 5.68 – 5.50 (m, 1H), 5.16 – 5.06 (m, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.00 (ddt, J = 14.4, 7.7, 1.1 Hz, 1H), 2.84 (ddt, J = 14.4, 6.9, 1.2 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H);

¹³C{¹H}NMR (101 MHz, Chloroform-*d*): δ 166.26, 163.83, 160.06, 147.88 (t, $J_{F-C} = 2.4$ Hz), 130.46, 129.77, 127.79, 127.63, 125.74, 124.74, 120.97, 116.61, 116.05 (t, $J_{F-C} = 259.1$ Hz), 87.03, 61.87, 41.89, 14.11; ¹⁹F{¹H}NMR (377 MHz, Chloroform-*d*) δ -79.35 ~ -80.31 (m, 2F).

IR (film): \tilde{v} (cm⁻¹) 3083, 2985, 2917, 2849, 1784, 1724, 1372, 1339, 1316, 1276, 1226, 1117, 1048, 1030, 799, 762;

ESI-HRMS calcd for [C₁₇H₁₆F₂O₅+Na⁺]: 361.0858, found 361.0851;

Results: colorless oil, 97% yield, 98% *ee*; $[\alpha]^{23}_{D}$ = -167.8 (*c* = 0.522 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 10.42 min, $t_{R(minor)}$ = 11.58 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.71 (s, 1H), 7.56 – 7.48 (m, 1H), 7.36 – 7.30 (m, 1H), 7.03 – 6.96 (m, 1H), 6.95 – 6.91 (m, 1H), 5.65 - 5.53 (m, 1H), 5.13 – 5.03 (m, 2H), 4.33 (qd, *J* = 7.1, 0.8 Hz, 2H), 3.94 (s, 3H), 3.00 (ddt, *J* = 14.3, 7.4, 1.1 Hz, 1H), 2.89 (ddt, *J* = 14.3, 7.0, 1.1 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.80, 165.37, 160.49, 155.10, 130.44, 130.09, 126.55, 125.51, 124.03, 121.45, 120.38, 111.01, 87.89, 61.69, 55.49, 41.12, 14.17;

IR (film): \tilde{v} (cm⁻¹) 3079, 2981, 2918, 2847, 1783, 1723, 1489, 1370, 1336, 1241, 1053, 1030, 799, 756; **ESI-HRMS** calcd for [C₁₇H₁₈O₅+Na⁺]: 325.1047, found 325.1042;

Results: colorless oil, 99% yield, 96% *ee*; $[\alpha]^{23}_{D}$ = -92.6 (*c* = 0.568 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 9.33 min, $t_{R(minor)}$ = 9.97 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.52 (d, *J* = 3.4 Hz, 1H), 7.57 - 7.51 (m, 1H), 7.40 - 7.32 (m, 1H), 7.21 - 7.16 (m, 1H), 7.14 - 7.07 (m, 1H), 5.68 - 5.53 (m, 1H), 5.18 - 5.06 (m, 2H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.02 - 2.91 (m, 1H), 2.88 - 2.78 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.28, 163.63 (d, $J_{F-C} = 6.6$ Hz), 159.98, 158.66 (d, $J_{F-C} = 245.3$ Hz), 130.75 (d, $J_{F-C} = 8.5$ Hz), 129.49, 127.11 (d, $J_{F-C} = 3.5$ Hz), 125.13 (d, $J_{F-C} = 3.2$ Hz), 124.76 (d, $J_{F-C} = 12.4$ Hz), 124.70, 121.25, 116.06 (d, $J_{F-C} = 22.1$ Hz), 86.27 (d, $J_{F-C} = 4.0$ Hz), 61.87, 42.29 (d, $J_{F-C} = 3.1$ Hz), 14.13;

¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) δ -114.18;

IR (film): \tilde{v} (cm⁻¹) 3083, 2982, 2920, 2850, 1787, 1724, 1486, 1370, 1337, 1316, 1221, 1039, 1028, 799, 763;

ESI-HRMS calcd for [C₁₆H₁₅FO₄+Na⁺]: 313.0847, found 313.0842;

Ethyl (S)-5-allyl-5-(2-nitrophenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C21)

Results: colorless oil, 99% yield, 90% ee; $[\alpha]^{19}_{D}$ = +19.5 (*c* = 0.514 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak ADH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 12.96 min, $t_{R(minor)}$ = 15.77 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.64 (s, 1H), 7.69 – 7.62 (m, 1H), 7.57 – 7.51 (m, 1H), 5.68 – 5.53 (m, 1H), 5.19 – 5.10 (m, 3H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.04 (dd, *J* = 14.5, 7.9 Hz, 1H), 2.91 (dd, *J* = 14.5, 6.6 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 165.56, 163.38, 159.72, 148.38, 133.54, 131.04, 130.03, 129.32, 128.47, 125.81, 125.56, 121.77, 87.51, 62.02, 42.17, 14.11;

IR (film): *ṽ* (cm⁻¹) 3089, 2985, 1787, 1725, 1536, 1371, 1260, 1067, 1028, 799, 750; **ESI-HRMS** calcd for [C₁₆H₁₅NO₆+Na⁺]: 340.0792, found 340.0788;

	Retention Time	Area	% Area	Height
1	12.957	7071941	95.05	287859
2	15.766	368598	4.95	12768

Ethyl (S)-5-allyl-5-(5-fluoro-2-methoxyphenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C22)

Results: colorless oil, 94% yield, 91% ee; $[\alpha]^{23}_{D}$ = -151.3 (*c* = 0.538 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 14.27 min, $t_{R(major)}$ = 15.52 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.67 (s, 1H), 7.30 – 7.23 (m, 1H), 7.05 – 6.97 (m, 1H), 6.86 (dd, J = 9.0, 4.3 Hz, 1H), 5.65 - 5.51 (m, 1H), 5.13 – 5.03 (m, 2H), 4.33 (qd, J = 7.1, 1.3 Hz, 2H), 3.93 (s, 3H), 2.99 (ddt, J = 14.2, 7.5, 1.1 Hz, 1H), 2.85 (ddt, J = 14.2, 7.0, 1.1 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.39, 164.62, 160.33, 157.23 (d, $J_{F-C} = 240.4$ Hz), 151.18 (d, $J_{F-C} = 2.2$ Hz), 130.07, 127.08 (d, $J_{F-C} = 7.2$ Hz), 124.38, 120.71, 115.88 (d, $J_{F-C} = 23.0$ Hz), 114.03 (d, $J_{F-C} = 26.3$ Hz), 111.94 (d, $J_{F-C} = 8.0$ Hz), 87.29, 61.80, 56.00, 40.97, 14.15;

IR (film): \tilde{v} (cm⁻¹) 2982, 1786, 1725, 1496, 1274, 1249, 1031, 799, 749;

ESI-HRMS calcd for [C₁₇H₁₇FO₅+Na⁺]: 343.0953, found 343.0947;

	Retention Time	Area	% Area	Height
1	14.268	821756	4.01	40510
2	15.516	19655736	95.99	772038

Ethyl (S)-5-allyl-5-(5-fluoro-2-methoxyphenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C23)

Results: colorless oil, 99% yield, 98% *ee*; $[\alpha]^{23}_{D}$ = -91.3 (*c* = 0.528 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 8.48 min, $t_{R(minor)}$ = 9.30 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.48 (d, J = 3.5 Hz, 1H), 7.53 (td, J = 8.8, 6.2 Hz, 1H), 7.04 – 6.77 (m, 2H), 5.67 – 5.52 (m, 1H), 5.18 – 5.08 (m, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.98 – 2.87 (m, 1H), 2.85 – 2.74 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.03, 164.44 (d, $J_{F-C} = 12.3$ Hz), 163.24 (d, $J_{F-C} = 6.5$ Hz), 161.94 (d, $J_{F-C} = 12.2$ Hz), 159.99 (d, $J_{F-C} = 11.9$ Hz), 159.88, 157.52 (d, $J_{F-C} = 11.9$ Hz), 129.28, 128.31 (dd, $J_{F-C} = 9.7$, 5.2 Hz), 124.90, 121.45, 120.88 (dd, $J_{F-C} = 12.9$, 3.9 Hz), 112.25 (dd, $J_{F-C} = 21.2$, 3.4 Hz), 104.63 (t, $J_{F-C} = 26.0$ Hz), 85.88 (d, $J_{F-C} = 4.2$ Hz), 61.95, 42.39 (d, $J_{F-C} = 3.0$ Hz), 14.12;

¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -108.53 (d, *J* = 7.9 Hz), -110.26 (d, *J* = 8.2 Hz);

IR (film): \tilde{v} (cm⁻¹) 3083, 2985, 2928, 1788, 1724, 1501, 1299, 1275, 1030, 799, 750;

ESI-HRMS calcd for [C₁₆H₁₄F₂O₄+Na⁺]: 331.0753, found 331.0746;

Ethyl (S)-5-allyl-5-(2,5-dimethoxyphenyl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C24)

Results: colorless oil, 90% yield, 84% *ee*; $[\alpha]^{23}_{D}$ = -100.3 (*c* = 0.574 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 11.86 min, $t_{R(minor)}$ = 15.98 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.69 (s, 1H), 7.10 – 7.07 (m, 1H), 6.88 – 6.82 (m, 2H), 5.66 – 5.51 (m, 1H), 5.14 – 5.04 (m, 2H), 4.33 (qd, *J* = 7.1, 1.1 Hz, 2H), 3.89 (s, 3H), 3.76 (s, 3H), 2.99 (ddt, *J* = 14.3, 7.3, 1.1 Hz, 1H), 2.88 (ddt, *J* = 14.3, 7.1, 1.1 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H). ;

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.76, 165.27, 160.45, 154.06, 149.12, 130.35, 126.27, 124.02, 120.46, 114.87, 112.10, 112.05, 87.75, 61.70, 55.84, 41.11, 29.71, 14.16;

IR (film): \tilde{v} (cm⁻¹) 2980, 2917, 2837, 1783, 1724, 1498, 1277, 1224, 1032, 799, 749;

ESI-HRMS calcd for [C₁₈H₂₀O₆+Na⁺]: 355.1153, found 355.1147;

2

15.976

1407213

8.00

47642

Results: colorless oil, 99% yield, 81% *ee*; $[\alpha]^{23}_{D}$ = -39.1 (*c* = 1.040 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IG, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 12.85 min, $t_{R(major)}$ = 14.24 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.21 (s, 1H), 7.35 (dd, *J* = 4.9, 1.4 Hz, 1H), 7.07 – 6.99 (m, 2H), 5.72 – 5.57 (m, 1H), 5.25 – 5.16 (m, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.99 (dq, *J* = 14.3, 7.2 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.16, 163.75, 159.95, 139.53, 129.30, 127.35, 126.47, 125.39, 124.96, 121.65, 85.63, 61.97, 43.69, 14.13;

IR (film): \tilde{v} (cm⁻¹) 3083, 2982, 2917, 2837, 1777, 1722, 1641, 1370, 1336, 1311, 1252, 1062, 1024, 799, 708;

ESI-HRMS calcd for [C14H14O4S +Na⁺]: 301.0505, found 301.0503;

	Retention	Area	% Area	Height
	Time			
1	12.849	1349241	9.48	77479
2	14.242	12882167	90.52	622682

Ethyl (S)-5-allyl-5-(naphthalen-2-yl)-2-oxo-2,5-dihydrofuran-3-carboxylate (C26)

Results: white solid, 99% yield, 90% *ee*; $[\alpha]^{23}_{D}$ = -107.8 (*c* = 0.476 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak OXH, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 10.74 min, $t_{R(minor)}$ = 12.24 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.44 (s, 1H), 7.92 – 7.79 (m, 4H), 7.57 – 7.43 (m, 3H), 5.70 – 5.56 (m, 1H), 5.22 – 5.11 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.01 (ddt, *J* = 14.4, 7.3, 1.2 Hz, 1H), 2.93 (ddt, *J* = 14.3, 7.0, 1.1 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.68, 164.93, 160.09, 134.43, 133.09, 132.99, 129.65, 129.03, 128.25, 127.70, 126.94, 126.91, 124.74, 124.51, 122.56, 121.29, 88.09, 61.89, 43.75, 14.15;

IR (film): \tilde{v} (cm⁻¹) 3082, 2983, 2931, 1777, 1722, 1641, 1370, 1275, 1260, 1069, 1032, 994,800, 750; **ESI-HRMS** calcd for [C₂₀H₁₈O₄ +Na⁺]: 345.1098, found 345.1092;

	Retention	Area	% Area	Height
	Time			
1	10.740	26361096	94.82	1650524
2	12.240	1439308	5.18	89778

Results: colorless oil, 99% yield, 68% *ee*; $[\alpha]^{24}_{D}$ = +22.8 (*c* = 0.316 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak AZH, *n*-hexane/*i*-PrOH 85/15, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 10.64 min, $t_{R(major)}$ = 11.24 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.05 (s, 1H), 5.66 (ddt, *J* = 17.5, 10.3, 7.3 Hz, 1H), 5.20 – 5.11 (m, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.53 (dt, *J* = 7.4, 1.1 Hz, 1H), 1.50 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.75, 166.33, 160.22, 130.23, 125.33, 120.93, 85.26, 61.77, 42.63, 23.13, 14.13;

IR (film): $\tilde{\nu}$ (cm⁻¹) 3082, 2984, 2919, 1776, 1722, 1642, 1450, 1338, 1314, 1275, 1260, 1036,800, 764, 750; **ESI-HRMS** calcd for [C₁₁H₁₄O₄+Na⁺]: 233.0785, found 233.0782;

	Time			
1	10.640	1193109	16.00	81434
2	11.243	6264700	84.00	407738

Results: colorless oil, 99% yield, 86% *ee*; $[\alpha]^{24}_{D}$ = +24.6 (*c* = 0.390 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IC, *n*-hexane/*i*-PrOH 95/5, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 57.79 min, $t_{R(minor)}$ = 62.72 min;

¹H NMR (400 MHz, Chloroform-*d*): δ 8.02 (s, 1H), 5.78 – 5.62 (m, 1H), 5.23 – 5.13 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.67 (d, *J* = 7.3 Hz, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 0.66 – 0.43 (m, 3H), 0.31 – 0.21 (m, 1H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.09, 164.45, 159.28, 129.33, 124.60, 119.85, 85.30, 60.93,

41.14, 15.88, 13.29, 1.16, 0.00;

IR (film): \tilde{v} (cm⁻¹) 3082, 3006, 2986, 2917, 2349, 1777, 1722, 1275, 1260, 1048, 995, 764, 750; **ESI-HRMS** calcd for [C₁₃H₁₆O₄+Na⁺]: 259.0941, found 259.0938;

	Retention Time	Area	% Area	Height
1	57.793	12998197	92.98	159771
2	62.720	982096	7.02	12190

Diethyl (S)-2-allyl-5-oxo-2,5-dihydrofuran-2,4-dicarboxylate (C29)

Results: colorless oil, 97% yield, 81% *ee*; $[\alpha]^{24}_{D}$ = -80.6 (*c* = 0.360 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IC, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 21.51 min, $t_{R(minor)}$ = 26.58 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.08 (s, 1H), 5.73 – 5.61 (m, 1H), 5.28 – 5.18 (m, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 4.26 (q, *J* = 7.1 Hz, 3H), 2.92 (dd, *J* = 14.2, 7.6 Hz, 1H), 2.77 (dd, *J* = 14.3, 6.9 Hz, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.31 (t, *J* = 7.2 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.08, 165.81, 160.18, 159.50, 128.53, 126.55, 121.92, 86.56, 63.18, 62.08, 39.74, 14.09, 14.07;

IR (film): \tilde{v} (cm⁻¹) 3087, 2985, 2937, 1792, 1722, 1643, 1370, 1336, 1259, 1032, 764, 750; **ESI-HRMS** calcd for [C₁₃H₁₆O₆+Na⁺]: 291.0840, found 291.0834;

	Retention Time	Area	% Area	Height
1	21.506	3566549	90.64	99022
2	26.583	368120	9.36	8504

tert-Butyl (*R*)-4-(2-allyl-4-(ethoxycarbonyl)-5-oxo-2,5-dihydrofuran-2-yl)piperidine-1-carboxylate (C30)

Results: colorless oil, 88% yield, 86% *ee*; $[\alpha]^{24}_{D}$ = -19.6 (*c* = 0.628 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak IC, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 210 nm, $t_{R(minor)}$ = 31.46 min, $t_{R(major)}$ = 42.03 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.03 (s, 1H), 5.68 - 5.56 (m, 1H), 5.23 - 5.12 (m, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 4.19 (s, 3H), 2.69 - 2.50 (m, 4H), 2.03 - 1.91 (m, 1H), 1.85 - 1.62 (m, 2H), 1.45 (s, 9H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.33 - 1.22 (m, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.64, 164.60, 159.87, 154.46, 129.63, 126.64, 121.12, 89.20, 79.80, 61.87, 42.13, 38.80, 28.41, 26.84, 26.05, 14.13;

IR (film): \tilde{v} (cm⁻¹) 2982, 1778, 1689, 1425, 1275, 1260, 1167, 764, 750;

ESI-HRMS calcd for [C₂₀H₂₉NO₆+Na⁺]: 402.1888, found 402.1881;

	Retention Time	Area	% Area	Height
1	31.461	431040	6.97	6541
2	42.029	5755563	93.03	56630

Ethyl (S, E)-5-(but-2-en-1-yl)-2-oxo-5-phenyl-2,5-dihydrofuran-3-carboxylate (C31)

Results: colorless oil, 99% yield, 95% *ee*; $[\alpha]^{24}_{D} = -75.4$ (*c* = 0.516 g/100 mL, $\lambda = 589$ nm, in DCM), HPLC (Daicel Chiralpak OJH, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, $\lambda = 210$ nm, $t_{R(major)} = 8.61$ min, $t_{R(minor)} = 12.48$ min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.32 (s, 1H), 7.45 – 7.29 (m, 5H), 5.63 – 5.49 (m, 1H), 5.29 – 5.15 (m, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.81 (qdt, *J* = 14.3, 7.2, 1.2 Hz, 2H), 1.66 – 1.54 (m, 3H), 1.35 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.73, 165.28, 160.15, 137.47, 132.17, 128.99, 128.63, 125.19, 124.58, 121.94, 88.27, 61.81, 42.93, 18.05, 14.15;

IR (film): \tilde{v} (cm⁻¹) 3086, 2984, 2918, 1778, 1723, 1371, 1334, 1315, 1275, 1065, 1032, 800, 750, 700; **ESI-HRMS** calcd for [C₁₇H₁₈O₄+Na⁺]: 309.1098, found 309.1092;

	Retention Time	Area	% Area	Height
1	8.611	20600220	97.48	1259664
2	12.479	533189	2.52	21878

Ethyl (S, E)-5-(hex-2-en-1-yl)-2-oxo-5-phenyl-2,5-dihydrofuran-3-carboxylate (C32)

Results: colorless oil, 99% yield, 95% *ee*; $[\alpha]^{24}_{D}$ = -60.8 (*c* = 0.592 g/100 mL, λ = 589 nm, in DCM), HPLC (Daicel Chiralpak OJH, *n*-hexane/*i*-PrOH 75/25, 1.0 mL/min, λ = 210 nm, $t_{R(major)}$ = 7.30 min, $t_{R(minor)}$ = 9.40 min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.31 (s, 1H), 7.44 – 7.29 (m, 5H), 5.60 – 5.45 (m, 1H), 5.27 – 5.15 (m, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 2.95 – 2.72 (m, 2H), 1.92 (q, *J* = 7.1 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.29 (q, *J* = 7.3 Hz, 2H), 0.80 (t, *J* = 7.3 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.71, 165.29, 160.12, 137.60, 137.48, 128.97, 128.61, 125.19, 124.63, 120.99, 88.34, 61.78, 42.96, 34.55, 22.25, 14.15, 13.50;

IR (film): \tilde{v} (cm⁻¹) 3086, 2959, 2928, 2871, 1779, 1723, 1370, 1334, 1314, 1260, 1066, 1032, 800, 763, 750, 700;

ESI-HRMS calcd for [C₁₉H₂₂O₄+Na⁺]: 337.1411, found 337.1405;

	Retention	Alea	70 Alea	rieigin
	Time			
1	7.299	3979218	97.25	282076
2	9.403	112554	2.75	5920

Ethyl (S)-5-cinnamyl-2-oxo-5-phenyl-2,5-dihydrofuran-3-carboxylate (C33)

Results: white solid, 84% yield, 94% *ee*; $[\alpha]^{24}_{D} = -52.6$ (*c* = 0.542 g/100 mL, $\lambda = 589$ nm, in DCM), HPLC (Daicel Chiralpak ADH, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, $\lambda = 210$ nm, $t_{R(minor)} = 7.74$ min, $t_{R(major)} = 8.57$ min;

¹**H NMR** (400 MHz, Chloroform-*d*): δ 8.39 (s, 1H), 7.47 – 7.33 (m, 5H), 7.31 – 7.19 (m, 5H), 6.45 (d, *J* = 15.8 Hz, 1H), 5.96 (dt, *J* = 15.7, 7.3 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.06 (ddd, *J* = 14.3, 7.4, 1.3 Hz, 1H), 2.98 (ddd, *J* = 14.4, 7.2, 1.3 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 166.54, 165.05, 160.05, 137.21, 136.48, 135.81, 129.11, 128.80, 128.59, 127.84, 126.38, 125.23, 124.69, 120.86, 88.24, 61.88, 43.38, 14.13;

IR (film): \tilde{v} (cm⁻¹) 3083, 3029, 2982, 2928, 1777, 1722, 1494, 1448, 1370, 1315, 1274, 1068, 1031, 800, 749, 700;

ESI-HRMS calcd for [C₂₂H₂₀O₄+Na⁺]: 371.1254, found 371.1247;

34687598

97.17

2437532

8.566

2

(S)-5-AllyI-5-phenylfuran-2(5H)-one (D1)

Results: colorless oil, 40% yield, 93% *ee*; $[\alpha]^{24}_{D} = -128.5$ (*c* = 0.474 g/100 mL, $\lambda = 589$ nm, in DCM), UPC² (Daicel Chiralpak IG, CO₂/MeOH 90/10, 1.5 mL/min, $\lambda = 210$ nm, $t_{R(minor)} = 3.37$ min, $t_{R(major)} = 4.51$ min; ¹H NMR (400 MHz, Chloroform-*d*): δ 7.65 (d, *J* = 5.6 Hz, 1H), 7.47 – 7.29 (m, 5H), 6.10 (d, *J* = 5.6 Hz, 1H), 5.61 (ddt, *J* = 16.6, 10.7, 7.2 Hz, 1H), 5.17 – 5.07 (m, 2H), 2.89 (ddt, *J* = 14.3, 7.2, 1.2 Hz, 1H), 2.79 (ddt, *J* = 14.3, 7.0, 1.1 Hz, 1H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): δ 172.08, 158.68, 138.58, 130.41, 128.83, 128.35, 125.12, 120.61, 120.47, 90.73, 44.05;

IR (film): \tilde{v} (cm⁻¹) 3006, 2988, 1761, 1722, 1275, 1260, 1197, 930, 764, 750; **ESI-HRMS** calcd for [C₁₃H₁₂O₂+Na⁺]: 223.0730, found 223.0727;

	Retention	Area	% Area	Height
	Time			
1	3.372	204929	3.60	32945
2	4.513	5479843	96.40	536495

Results: colorless oil, 99% yield, 1.1/1 dr, 91/95% ee; $[\alpha]^{24}D = -17.5$ (c = 0.514 g/100 mL, $\lambda = 589$ nm, in DCM), UPC² (Daicel Chiralpak IG, CO₂/MeOH 90/10, 1.5 mL/min, $\lambda = 210$ nm, $t_{R(minor)} = 1.99$ min, $t_{R(minor)} = 2.93$ min $t_{R(major)} = 3.24$ min, $t_{R(major)} = 3.55$ min;

¹**H NMR** (400 MHz, Chloroform-*d*): diastereomer mixture, δ 7.43 – 7.26 (m, 5H), 5.73 – 5.56 (m, 1H), 5.20 – 5.05 (m, 2H), 4.26 (qd, *J* = 7.2, 1.6 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.78 (t, *J* = 9.4 Hz, 1H), 3.47 (dd, *J* = 11.4, 8.8 Hz, 1H), 2.96 – 2.57 (m, 4H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 3H);

¹³C{¹H} NMR (101 MHz, Chloroform-*d*): diastereomer mixture δ 171.26, 171.08, 167.62, 167.36, 142.90, 141.68, 131.17, 131.09, 128.70, 128.50, 128.07, 127.86, 124.73, 124.56, 120.80, 120.14, 87.52, 87.42, 62.24, 62.21, 47.41, 46.92, 46.63, 46.46, 37.63, 36.78, 14.09, 13.94;

IR (film): \tilde{v} (cm⁻¹) 2983, 2928, 1777, 1734, 1275, 1260, 1177, 1019, 969, 764, 750, 702; **ESI-HRMS** calcd for [C₁₆H₁₈O₄+Na⁺]: 297.1098, found 297.1094;

	Time			
1	1.986	66986	2.26	8689
2	2.925	31899	1.08	5877
3	3.242	1302012	43.90	165046
4	3.554	1564683	52.76	191612

(K) Copies of NMR spectra

-10 fl (ppm)

-10 f1 (ppm)

-70 -210 -22 20 10 0 -10 -20 -100 f1 (ppm) -30 -40 -50 -60 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

-10 f1 (ppm)

Parameter Title Solvent Temperature Number of Scans Spectrometer Value as-20230706-TZ-2F.9.fid CDCl3 294.9 16 376.51

-210 -22 20 0 -10 -20 -100 f1 (ppm) 10 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

f1 (ppm) -10

S68

S69

S71

20 -80 -22 10 0 -10 -20 -30 -40 -50 -60 -70 -130 -150 -160 -200 -90 -100 f1 (ppm) -110 -120 -140 -170 -180 -190 -210

---112.58

Parameter Title Solvent Temperature Number of Scans Spectrometer Frequency Value as-20230622-TZ-130.3.fid CDCl3 295.0 16 376.51

20 -100 f1 (ppm) -22 10 10 -20 -40 -120 -130 -140 -160 -170 -180 -190 -200 -210 0 -30 -50 -60 70 80 -90 -110 -150

-80 20 -120 -22 10 Ó -10 -20 -30 -40 -50 -60 -70 -130 -160 -90 -100 f1 (ppm) -110 -140 -150 -170 -180 -190 -200 -210

S89

_ _ _ _

Parameter Title Solvent Temperature Number of Scans Spectrometer Frequency Value as-20230902-TZ-157.3.fid CDCl3 294.0 16 376.51

C22

-100 f1 (ppm) 20 10 0 -10 -20 -120 -130 -170 -190 -200 -210 -22 -30 -40 -50 -60 -70 80 -90 -110 -140 -150 -160 -180

---121.58

-22 20 10 0 -20 -70 -10 -30 -40 -50 -60 -80 -90 -100 f1 (ppm) -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

-10 f1 (ppm)

S109

S110

(L) References

[1] Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, Synlett, 2005, 16, 2445–2448.

[2] Wu, Q. Shao, G. Yang and W. Zhang, *Chem. Eur. J.*, 2018, **24**, 1241–1245.

[3] M. Wu, Z. Han, H. Ni, N. Wang, K. Ding and Y. Lu, *Chem. Sci.*, 2022, **13**, 3161–3168.

[4] (a) G. M. Sheldrick, Acta Cryst. 2008, A64, 112–122. (b) G. M. Sheldrick, Acta Cryst. 2015, A71, 3–8.

(c) G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8. (d) O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J. A. K.

Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341. (e) A. L. Spek, J. Appl. Cryst. 2003, 36, 7–13.