Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

# **Electronic Supplementary Information**

# Organo Photocatalytic Access to C-Glycosides: Multicomponent Coupling Reactions Using Glycosyl Bromides

Naoya Sawada,<sup>a</sup> Ziyi Yu,<sup>a</sup> Hiryu Takinami,<sup>a</sup> Daichi Inoue,<sup>a</sup> Titli Ghosh,<sup>a</sup> Norihiko Sasaki,<sup>a,b</sup> Toshiki Nokami,<sup>\*a,b</sup> Tsuyoshi Taniguchi,<sup>c</sup> Manabu Abe<sup>\*d</sup>, and Takashi Koike<sup>e</sup>

<sup>a</sup>Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamachominami, Tottori city, 680-8552 Tottori, Japan

 <sup>b</sup>Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamachominami, Tottori city, 680-8552 Tottori, Japan
<sup>c</sup>Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba city, Ibaraki, 305-8565, Japan
<sup>d</sup>Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima city, Hiroshima, 739-8526, Japan
<sup>e</sup>Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, E24-315, 4-1 Gakuendai, Miyashiro-Machi, Minamisaitama-Gun, 345-8501 Saitama, Japan

E-mail: tnokami@tottori-u.ac.jp, mabe@hiroshima-u.ac.jp

### Contents

| 1. | General                                                          | S2  |
|----|------------------------------------------------------------------|-----|
| 2. | Photochemical multi-components reactions                         | S2  |
| 3. | Cyclic Voltammetry                                               | S19 |
| 4. | Stern-Volmer Plots                                               | S20 |
| 5. | Control experiment in the presence of TEMPO                      | S21 |
| 6. | References                                                       | S22 |
| 7. | <sup>1</sup> H, <sup>13</sup> C, and <sup>19</sup> F NMR spectra | S23 |

### 1. General

The NMR spectra were recorded on Bruker AVANCE II. 600 (<sup>1</sup>H NMR; 600 MHz, <sup>13</sup>C NMR; 150 MHz) and JEOL JNM-ECZ600 (<sup>1</sup>H NMR; 600 MHz, <sup>13</sup>C NMR; 150 MHz, <sup>19</sup>F NMR; 565 MHz) at room temperature using chloroform-d as the deuterated solvent and chloroform as the internal standard for <sup>1</sup>H (7.26 ppm) and <sup>13</sup>C (77.0 ppm) and hexafluorobenzene as the internal standard for <sup>19</sup>F (0 ppm). NMR yields were based on 1,1,2,2-tetrachloroethane as an internal standard. Fourier transform mass spectrometry (ESI) was measured on Thermo Fisher SCIENTIFIC Exactive-Orbitrap MS1.1. Cyclic voltammetry and transient absorption spectra were recorded on UNISOKU picoTAS and BAS model 700E electrochemical analyzer, respectively. Silica gel (KANTO, spherical, neutral, 63-210 µm) was used for purification by column chromatography. 1,1-Diphenylethylene was washed with 0.5 M NaOH aqueous solution to remove a polymerization inhibitor, and other styrene derivatives were distilled under reduced pressure. Glycosyl bromides **1a-c<sup>1</sup>** and **2e<sup>2</sup>** were synthesized according to the reported procedure. Techno Sigma PER-AMP and LED ramps (365 nm, 507 mW) were used for photoirradiation.

#### 2. Photochemical multi-components reactions

2-1-1. Two-component coupling reaction between 1a and 2a



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL) and 1,1-diphenylethylene (**2a**) (2.0 mmol, 0.35 mL) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **3aa** (99%). **3aa** was isolated by silica gel column (eluent: Hexane/EtOAc = 4:1) and preparative GPC (eluent: CHCl<sub>3</sub>). (**2***R*,**3***R*,**4***R*,**5***R*,**6***R*)-**2**-((benzoyloxy)methyl)-6-(2,2-diphenylvinyl)tetrahydro-2*H*-pyran-**3**,**4**,**5**-triyl tribenzoate (**3aa**) TLC (Hexane/EtOAc 3:1): Rf = 0.43. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.10 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.99 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.97 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.81 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.58–7.51 (m, 3 H), 7.50–7.45 (m, 1 H), 7.43–7.27 (m, 18 H), 6.47 (d, *J* = 9.0 Hz, 1 H), 6.03 (*pseudo*-t, *J* = 7.2 Hz, 1 H), 5.99 (dd, *J* = 9.0, 3.0 Hz, 1 H), 5.82 (*pseudo*-t, *J* = 3.0 Hz, 1 H), 4.85 (dd, *J* = 9.0, 3.6 Hz, 1 H), 4.56-4.51 (m, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.2, 165.6, 165.3,

150.5, 141.6, 138.2, 133.4, 133.30, 133.26, 133.0, 129.73, 129.70, 129.4, 129.0, 128.9, 128.44, 128.42, 128.38, 128.31, 128.30, 128.1, 128.0, 120.2, 72,3, 71.5, 71.3, 70.1, 67.9, 63.0; HRMS (ESI) *m/z* calc for C<sub>48</sub>H<sub>38</sub>KO<sub>9</sub> [M+K]<sup>+</sup> 797.2147; found 797.2162.

2-1-2. Two-component coupling reaction between 1a and 2c



Glycosyl bromide 1a (0.20 mmol, 132 mg), organic photocatalytic BDB (0.001 mmol, 0.41 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL) and 4-methoxystyrene 2c (0.4 mmol, 54  $\mu$ L) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **3ac** (72%). **3ac** was isolated by silica gel column (eluent: Hexane/EtOAc = 3:1) and preparative GPC (eluent: CHCl<sub>3</sub>). (2R,3R,4R,5R,6R)-2-((benzoyloxy)methyl)-6-((E)-4-methoxystyryl)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (3ac) TLC (Hexane/EtOAc 3:1):  $R_f 0.32$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.13 (d, J = 7.8 Hz, 2 H), 8.08 (d, J = 7.8 Hz, 2 H), 7.97 (d, J = 7.8 Hz, 2 H), 7.87 (d, J = 7.8 Hz, 2 H), 7.59 (t, J = 7.2 Hz, 2 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.48–7.38 (m, 7 H), 7.35 (t, J = 7.8 Hz, 2 H), 7.30 (t, J = 7.8 Hz, 2 H), 6.94–6.89 (m, 3 H), 6.29 (dd, *J* = 16.2, 4.2 Hz, 1 H), 6.17 (t, *J* = 9.6 Hz, 1 H), 5.99 (s, 1 H), 5.79 (dd, *J* = 9.6, 2.4 Hz, 1 H), 5.04–4.99 (m, 1 H), 4.73 (d, J = 12.0 Hz, 1 H), 4.54 (dd, J = 12.0, 4.2 Hz, 1 H), 4.49–4.44 (m, 1 H), 3.85 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 169.5, 166.2, 165.6, 165.5, 165.4, 138.0, 133.9, 133.47, 133.41, 133.3, 133.1, 129.81, 129.79, 129.74, 129.65, 129.23, 129.16, 128.79, 128.76, 128.48, 128.47, 128.42, 128.35, 72.4, 71.6, 70.6, 70.3, 67.1, 63.1, 50.5, 34.2, 23.2; HRMS (ESI) m/z calc for C<sub>44</sub>H<sub>36</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 751.1940; found 751.1950.

2-1-3. Two-component coupling reaction between 1b and 2a



Glycosyl bromide 1b (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL) and 1,1-diphenylethylene (2a) (2.0 mmol, 0.35 mL) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of 3ba (67%). 3ba was isolated by silica gel column (eluent: Hexane/EtOAc = 4:1) and preparative GPC (eluent: CHCl<sub>3</sub>). (2R,3*S*,4*R*,5*S*,6*R*)-2-((benzoyloxy)methyl)-6-(2,2-diphenylvinyl)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (3ba) TLC (Hexane/EtOAc 3:1): Rf 0.39. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.03 (t, J = 9.0 Hz, 4 H), 7.97 (d, J = 7.2 Hz, 2 H), 7.81 (d, J = 7.2 Hz, 2 H), 7.61–7.58 (m, 1 H), 7.56–7.51 (m, 2 H), 7.49–7.44 (m, 3 H), 7.42-7.37 (m, 4 H), 7.34-7.22 (m, 10 H), 7.17 (d, J = 6.6 Hz, 2 H), 6.53 (d, J = 9.0 Hz, 2 H)1 H), 6.08–6.03 (m, 2 H), 5.80 (dd, J = 9.0, 5.4 Hz, 1 H), 5.12 (dd, J = 9.6, 6.0 Hz, 1 H), 4.68  $(pseudo-t, J = 6.0 \text{ Hz}, 1 \text{ H}), 4.60 \text{ (dd}, J = 11.4, 7.2 \text{ Hz}, 1 \text{ H}), 4.33 \text{ (dd}, J = 11.4, 7.2 \text{ Hz}, 1 \text{ H}); {}^{13}\text{C}$ NMR (CDCl<sub>3</sub>, 150 MHz) δ 166.0, 165.6, 165.5, 165.3, 151.5, 141.7, 138.3, 133.5, 133.4, 133.3, 133.1, 129.9, 129.7, 129.63, 129.61, 129.5, 129.12, 129.06, 128.9, 128.5, 128.4, 128.35, 128.29, 128.24, 128.19, 128.0, 127.9, 127.8, 70.7, 69.4, 69.2, 69.1, 68.7, 62.2; HRMS (ESI) m/z calc for C<sub>49</sub>H<sub>42</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 797.2147; found 797.2140.

2-1-4. Two-component coupling reaction between 1a and 2h



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL) and 1-Phenyl-1-trimethylsiloxyethylene (**2h**) (2.0 mmol, 0.41 mL) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light

(wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **3ah** (89%). **3ah** was isolated by silica gel column (eluent: Hexane/EtOAc = 3:2). (*2R*,*3R*,*4R*,*5S*,*6R*)-2-((benzoyloxy)methyl)-6-(2-oxo-2-phenylethyl)tetrahydro-2*H*-pyran-3,4,5-triyl tribenzoate (3ah) TLC (Hexane/EtOAc 3:1): Rf 0.20. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.04 (dd, *J* = 8.4, 1.2 Hz, 2 H), 8.02 (dd, *J* = 7.8, 1.8 Hz, 2 H), 8.01 (dd, *J* = 7.8, 1.2 Hz, 2 H), 7.95 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.91 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.59–7.53 (m, 4 H), 7.50 (t, *J* = 7.8 Hz, 4 H), 7.45 (t, *J* = 7.8 Hz, 2 H), 7.43–7.38 (m, 6 H), 7.35 (t, *J* = 7.8 Hz, 2 H), 5.93 (*pseudo*-t, *J* = 7.8 Hz, 1 H), 5.90 (dd, *J* = 8.4, 3.6 Hz, 1 H), 5.78 (dd, *J* = 4.2, 3.0 Hz, 1 H), 5.06 (dt, *J* = 6.6, 3.6 Hz, 1H), 3.65 (dd, *J* = 16.2, 9.0 Hz, 1 H), 3.41 (dd, *J* = 16.2, 5.4 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  195.6, 166.1, 165.6, 165.4, 165.3, 136.3, 133.51, 133.49, 133.44, 133.40, 133.0, 129.8, 129.7, 129.3, 128.9, 128.8, 128.7, 128.48, 128.46, 128.44, 128.3, 128.2, 71.6, 70.9, 69.6, 67.8, 62.5, 38.5; HRMS (ESI) *m*/z calc for C<sub>42</sub>H<sub>34</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 737.1784; found 737.1746.

2-2-1. Three-component coupling reaction between 1a, 2a and water



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.004 mmol, 1.7 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL), 1,1-diphenylethylene (**2a**) (0.4 mmol, 70  $\mu$ l) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **5aaa** (56%). **5aaa** was isolated by silica gel column (eluent: Hexane/EtOAc = 5:1) and preparative GPC (eluent: CHCl<sub>3</sub>). (*2R,3R,4R,5R,6R)-2-((benzoyloxy)methyl)-6-(2-hydroxy-2,2-diphenylethyl)tetrahydro-2H-***pyran-3,4,5-triyl tribenzoate (5aaa)** TLC (Hexane/EtOAc 3:1): Rf 0.40. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600

MHz)  $\delta$  8.17 (d, J = 7.2 Hz, 2 H), 8.01 (d, J = 7.2 Hz, 2 H), 7.95 (d, J = 7.8 Hz, 2 H), 7.79 (d, J = 7.8 Hz, 2 H), 7.62–7.54 (m, 3 H), 7.53–7.45 (m, 7 H), 7.44–7.37 (m, 4 H), 7.36–7.29 (m, 6 H), 7.27–7.20 (m, 2 H), 5.84–5.81 (m, 2 H), 5.68 (d, J = 2.4 Hz, 1 H), 4.63–4.59 (m, 1 H), 4.54–4.47

(m, 3 H), 4.29 (s, 1 H), 2.93 (dd, J = 15.0, 10.8 Hz, 1 H), 2.82 (dd, J = 15.0, 1.8 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.1, 165.4, 165.3, 165.2, 146.6, 145.4, 133.6, 133.4, 133.2, 129.83, 129.81, 129.73, 129.67, 129.55, 129.2, 128.8, 128.5, 128.46, 128.3, 127.07, 127.05, 126.0, 125.5, 78.3, 72.5, 71.7, 71.3, 69.4, 67.7, 62.7, 39.3; HRMS (ESI) *m*/*z* calc for C<sub>48</sub>H<sub>40</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 815.2253; found 815.2209.

2-2-2. Three-component coupling reaction between 1a, 2a and methanol



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL), 1,1-diphenylethylene (**2a**) (0.4 mmol, 70  $\mu$ l) and dry MeOH (2.0 mmol, 81  $\mu$ L) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **5aab** (67%). **5aab** was isolated by silica gel column (eluent: Hexane/EtOAc = 4:1) and preparative GPC (eluent: CHCl<sub>3</sub>).

(2*R*,3*R*,4*R*,5*R*,6*R*)-2-((benzoyloxy)methyl)-6-(2-methoxy-2,2-diphenylethyl)tetrahydro-2*H*pyran-3,4,5-triyl tribenzoate (5aab) TLC (Hexane/EtOAc 3:1):  $R_f = 0.50$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.04 (d, *J* = 7.8 Hz, 2 H), 7.99 (d, *J* = 7.2 Hz, 2 H), 7.94 (d, *J* = 7.8 Hz, 2 H), 7.81 (d, *J* = 7.8 Hz, 2 H), 7.59–7.44 (m, 5 H), 7.42 (d, *J* = 7.8 Hz, 4 H), 7.39–7.23 (m, 12 H), 7.12 (t, *J* = 7.2 Hz, 1 H), 6.00 (*pseudo*-t, *J* = 9.0 Hz, 1 H), 5.82 (dd, *J* = 9.0, 3.0 Hz, 1 H), 5.49–5.47 (m, 1 H), 4.51–4.47 (m, 1 H), 4.23 (dd, *J* = 12.0, 4.2 Hz, 1 H), 4.06–4.02 (m, 2 H), 3.13 (s, 3 H), 3.03 (dd, *J* = 15.0, 7.8 Hz, 1 H), 2.85 (dd, *J* = 15.0, 3.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.1, 165.7, 165.3, 165.2, 144.9, 144.1, 133.33, 133.26, 133.2, 132.9, 129.9, 129.8, 129.71, 129.67, 129.6, 129.0, 128.9, 128.42, 128.37, 128.34, 128.31, 128.30, 128.0, 127.3, 127.1, 126.8, 126.6, 81.3, 72.5, 71.7, 70.7, 70.3, 67.5, 62.7, 50.8, 34.0; HRMS (ESI) *m/z* calc for C<sub>49</sub>H<sub>42</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 829.2410; found 829.2383. 2-2-3. Three-component coupling reaction between 1a, 2a, and ethanol



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL), 1,1-diphenylethylene (**2a**) (0.4 mmol, 70  $\mu$ l), and dry EtOH (2.0 mmol, 117  $\mu$ L) were added, and the mixture was stirred. The LED ramp was then attached to the Schrenk tube using a Teflon joint, and freeze degassing was performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photoirradiation, the reaction mixture was diluted with CHCl<sub>3</sub> and concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **5aac** (58%). **5aac** was isolated by silica gel column (eluent: Hexane/EtOAc = 3:1). (**2***R*,**3***R*,**4***R*,**5***R*,**6***R*)-**2-((benzoyloxy)methyl)-6-(2-ethoxy-2,2-diphenylethyl)tetrahydro-2H-pyran-3,4,5-triyl** 

tribenzoate (5aac) TLC (Hexane/EtOAc 3:1):  $R_f = 0.33$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.03 (dd, J = 8.4, 1.2 Hz, 2 H), 8.01 (dd, J = 8.4, 1.2 Hz, 2 H), 7.93 (dd, J = 8.4, 1.2 Hz, 2 H), 7.80 (dd, J = 8.4, 1.2 Hz, 2 H), 7.57 (*pseudo-*t, J = 7.8 Hz, 1 H), 7.54 (*pseudo-*t, J = 7.8 Hz, 1 H), 7.50 (*pseudo-*t, J = 7.2 Hz, 1 H), 7.45–7.43 (m, 5 H), 7.39–7.31 (m, 8 H), 7.30–7.27 (m, 4 H), 7.24 (*pseudo-*t, J = 7.2 Hz, 1 H), 7.19 (*pseudo-*t, J = 7.2 Hz, 1 H), 6.02 (*pseudo-*t, J = 9.0 Hz, 1 H), 5.82 (dd, J = 9.6, 3.0 Hz, 1 H), 5.46 (*pseudo-*t, J = 3.0 Hz, 1 H), 4.51–4.49 (m, 1 H), 4.18 (dd, J = 12.0, 3.6 Hz, 1 H), 4.02–3.97 (m, 2 H), 3.28–3.20 (m, 2 H), 3.01 (dd, J = 14.4, 1.2 Hz, 1 H), 2.86 (dd, J = 14.4, 4.2 Hz, 1 H), 1.20 (t, J = 6.6 Hz, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 166.1, 165.7, 165.28, 165.25, 145.2, 144.6, 133.3, 133.24, 133.19, 132.9, 129.9, 129.8, 129.72, 129.68, 129.6, 129.1, 128.9, 128.43, 128.37, 128.32, 128.30, 128.2, 128.0, 127.2, 127.0, 126.7, 126.6, 80.8, 72.6, 72.0, 70.5, 70.4, 67.5, 62.9, 58.2, 34.7, 15.3; HRMS (ESI) *m/z* calc for C<sub>50</sub>H<sub>44</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 843.2566; found 843.2537.

2-2-4. Three-component coupling reaction between 1a, 2d and water



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.004 mmol, 1.7 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry

MeCN (2.0 mL),  $\alpha$ -methylstyrene (2d) (0.4 mmol, 52  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **5ada** (79%, major/minor = 54:46). Isomers of **5ada** was isolated by silica gel column (eluent: Hexane/EtOAc = 4:1) and preparative TLC (eluent: Hexane/EtOAc = 2:1). (2R, 3R, 4R, 5R, 6R)-2-((benzoyloxy)methyl)-6-(2-hydroxy-2phenylpropyl)tetrahydro-2*H*-pyran-3,4,5-triyl tribenzoate (5ada) major isomer: TLC (Hexane/EtOAc 3:1):  $R_f = 0.33$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.14 (d, J = 7.8 Hz, 2 H), 8.03 (d, *J* = 8.4 Hz, 2 H), 7.92 (d, *J* = 7.8 Hz, 2 H), 7.77 (d, *J* = 7.8 Hz, 2 H), 7.61–7.55 (m, 3 H), 7.52– 7.46 (m, 3 H), 7.43–7.41 (m, 4 H), 7.38 (pseudo-t, J = 7.8 Hz, 2 H), 7.34–7.31 (m, 4 H), 7.27-7.25 (m, 1 H), 5.80 (dd, J = 8.4, 3.0 Hz, 1 H), 5.78 (pseudo-t, J = 8.4 Hz, 1 H), 5.57 (dd, J = 4.2, 3.0 Hz, 1 H), 4.59 (dd, J = 10.8, 6.0 Hz, 1 H), 4.52–4.47 (m, 2 H), 4.25 (dd, J = 9.6, 3.0 Hz, 1 H), 3.72 (s, 1 H), 2.58 (dd, J = 15.0, 11.4 Hz, 1 H), 2.32 (d, J = 14.4 Hz, 1 H), 1.60 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) & 166.1, 165.4, 165.27, 165.25, 146.8, 133.6, 133.4, 133.2, 129.9, 129.8, 129.73, 129.67, 129.6, 129.2, 128.82, 128.78, 128.53, 128.51, 128.48, 128.47, 126.8, 124.7, 75.1, 72.1, 71.7, 71.0, 69.2, 67.9, 62.8, 40.8, 31.6; HRMS (ESI) m/z calc for C<sub>43</sub>H<sub>38</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 753.2097; found 753.2086.

**5ada** minor isomer: TLC (Hexane/EtOAc 3:1):  $R_f = 0.27$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.11 (d, J = 7.2 Hz, 2H), 8.04 (d, J = 7.8 Hz, 2H), 7.96 (d, J = 7.8 Hz, 2H), 7.85 (d, J = 7.8 Hz, 2H), 7.60–7.56 (m, 2H), 7.54–7.51 (m, 2H), 7.47–7.36 (m, 9H), 7.31–7.26 (m, 3H), 6.00 (*pseudo-t*, J = 9.0 Hz, 1H), 5.79 (dd, J = 9.6, 3.6 Hz, 1H), 5.68 (s, 1H), 4.61 (dt, J = 9.6, 3.6 Hz, 1H), 4.50–4.42 (m, 2H), 4.37 (ddd, J = 9.0, 5.4, 3.0 Hz, 1H), 3.01 (s, 1H), 2.60 (dd, J = 15.0, 10.2 Hz, 1H), 2.22 (dd, J = 14.4, 3.0 Hz, 1H), 1.72 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 166.2, 165.6, 165.3, 165.25, 147.3, 133.5, 133.4, 133.3, 133.1, 129.80, 129.78, 129.76, 129.71, 129.68, 129.4, 128.9, 128.5, 128.51, 128.44, 128.41, 128.37, 128.35, 126.9, 124.5, 73.7, 73.3, 72.4, 70.8, 69.9, 67.4, 63.0, 41.6, 29.8; HRMS (ESI) *m/z* calc for C<sub>43</sub>H<sub>38</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 753.2097; found 753.2082.

2-2-5. Three-component coupling reaction between 1a, 2b and water



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.004 mmol, 1.7 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry

MeCN (2.0 mL), styrene (**2b**) (0.4 mmol, 46  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **5aba** (56%, major/minor = 63:37). **5aba** was isolated by silica gel column (eluent: Hexane/EtOAc = 3:1) and preparative GPC (eluent: CHCl<sub>3</sub>).

**3,4,5-triyl tribenzoate (5aba)** major isomer: TLC (Hexane/EtOAc 3:1):  $R_f = 0.23$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.11 (dd, J = 8.4, 1.2 Hz, 2 H), 8.02–8.00 (m, 4 H), 7.91 (dd, J = 8.4, 1.2 Hz, 2 H), 7.60–7.49 (m, 4 H), 7.45–7.38 (m, 6 H), 7.37–7.32 (m, 6 H), 7.31–7.26 (m, 1 H), 5.86 (*pseudo*-t, J = 7.2 Hz, 1 H), 5.82 (dd, J = 7.8 Hz, 1 H), 5.69 (dd, J = 10.2, 3.0 Hz, 1 H), 4.95–4.91 (m, 2 H), 4.72 (dt, J = 10.8, 4.2 Hz, 1 H), 4.52 (dd, J = 12.0, 3.0 Hz, 1 H), 4.41 (td, J = 6.6, 3.0 Hz, 1 H), 2.79 (d, J = 3.6 Hz, 1 H), 2.28 (ddd, J = 13.2, 10.8, 2.4 Hz, 1 H), 2.17 (ddd, J = 14.4, 9.6, 3.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.6, 165.5, 165.43, 165.38, 143.9, 133.6, 133.42, 133.35, 133.3, 129.9, 129.81, 129.75, 129.73, 129.6, 129.4, 128.9, 128.6, 128.5, 127.7, 125.6, 72.0, 71.3, 70.8, 69.9, 69.4, 68.2, 62.6, 38.8; HRMS (ESI) *m*/*z* calc for C<sub>42</sub>H<sub>36</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 739.1940; found 739.1935.

**5aba** minor isomer: TLC (Hexane/EtOAc 3:1):  $R_f = 0.17$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.12 (dd, J = 8.4, 1.2 Hz, 2 H), 8.01 (dd, J = 8.4, 1.2 Hz, 2 H), 8.00 (dd, J = 8.4, 1.2 Hz, 2 H), 7.86 (dd, J = 8.4, 1.2 Hz, 2 H), 7.60–7.53 (m, 3 H), 7.49–7.47 (m, 1 H), 7.44–7.36 (m, 10 H), 7.33–7.29 (m, 3 H), 5.96 (*pseudo-t*, J = 9.0 Hz, 1 H), 5.81 (dd, J = 9.0, 3.0 Hz, 1 H), 5.66 (*pseudo-t*, J = 3.0 Hz, 1 H), 5.05–5.02 (m, 1 H), 4.69 (dd, J = 12.0, 6.0 Hz, 1 H), 4.63 (dd, J = 12.0, 2.4 Hz, 1 H), 4.55 (ddd, J = 9.0, 6.6, 3.0 Hz, 1 H), 4.50 (dt, J = 10.8, 3.6 Hz, 1 H), 2.94 (d, J = 1.8 Hz, 1 H), 2.56 (ddd, J = 14.4, 4.8, 2.4 Hz, 1 H), 2.14 (dt, J = 14.4, 4.2 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 166.3, 165.54, 165.51, 165.37, 143.21, 133.6, 133.43, 133.38, 133.17, 129.83, 129.79, 129.74, 129.72, 129.6, 129.3, 128.8, 128.6, 128.53, 128.50, 128.48, 128.42, 127.9, 125.8, 74.4, 73.0, 71.5, 71.2, 69.7, 67.6, 63.0, 37.9; HRMS (ESI) *m/z* calc for C<sub>42</sub>H<sub>36</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 739.1940; found 739.1949.

2-2-6. Three-component coupling reaction between 1b, 2b and water



Glycosyl bromide 1b (0.20 mmol, 132 mg), organic photocatalytic BDB (0.004 mmol, 1.7 mg), and

potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry acetone (2.0 mL), styrene (**2b**) (0.4 mmol, 46  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **5bba** (57%, major/minor = 67:33). **5bba** was isolated by silica gel column (eluent: Hexane/EtOAc = 3:1) and preparative GPC (eluent: CHCl<sub>3</sub>).

#### (2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-(2-hydroxy-2-phenylethyl)tetrahydro-2H-pyran-

**3,4,5-triyl tribenzoate (5bba)** major isomer : TLC (Hexane/EtOAc 3:1):  $R_f = 0.27$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.09 (dd, J = 8.4, 1.2 Hz, 2 H), 8.04–7.96 (m, 6 H), 7.61–7.54 (m, 4 H), 7.46–7.39 (m, 8 H), 7.31–7.28 (m, 4 H), 7.25–7.22 (m, 1 H), 5.96 (*pseudo-t*, J = 4.2 Hz, 1 H), 5.80 (dd, J = 7.2, 3.6 Hz, 1 H), 5.69 (dd, J = 6.6, 3.6 Hz, 1 H), 5.28 (s, 1 H), 4.93 (dt, J = 10.8, 2.4 Hz, 1 H), 4.88–4.83 (m, 1 H), 4.70–4.65 (m, 1 H), 4.36 (dd, J = 12.0, 3.0 Hz, 1 H), 3.19 (s, 1 H), 2.17 (ddd, J = 13.8, 10.8, 2.4 Hz, 1 H), 1.99–1.93 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  167.0, 165.3, 165.23, 165.20, 144.1, 133.6, 133.5, 133.46, 129.84, 129.83, 129.75, 129.73, 129.4, 128.94, 128.91, 128.59, 128.57, 128.54, 128.5, 128.48, 127.43, 125.5, 70.9, 70.1, 69.6, 68.5, 67.8, 67.4, 61.5, 37.5; HRMS (ESI) *m/z* calc for C<sub>42</sub>H<sub>36</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 739.1940; found 739.1915.

**5bba** minor isomer : TLC (Hexane/EtOAc 3:1):  $R_f = 0.22$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.09 (d, J = 7.2 Hz, 2 H), 8.01 (d, J = 7.2 Hz, 2 H), 7.99 (d, J = 7.8 Hz, 2 H), 7.78 (d, J = 7.8 Hz, 2 H), 7.60 (t, J = 7.8 Hz, 1 H), 7.55 (d, J = 7.8 Hz, 2 H), 7.51 (t, J = 7.2 Hz, 1 H), 7.47–7.39 (m, 6 H), 7.36–7.25 (m, 7 H), 6.00 (m, 1 H), 5.81 (dd, J = 8.0, 3.4 Hz, 1 H), 5.74 (dd, J = 8.0, 4.8 Hz, 1 H), 4.97 (*pseudo*-t, J = 6.0 Hz, 1 H), 4.90–4.84 (m, 1 H), 4.80–4.75 (m, 1 H), 4.68 (dd, J = 11.4, 3.6 Hz, 1 H), 4.48 (dd, J = 12.0, 3.6 Hz, 1 H), 2.95 (s, 1 H), 2.49–2.42 (m, 1 H), 1.99 (dd, J = 15.0, 3.0 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.4, 165.4, 165.53, 165.33, 165.32, 143.37, 133.61, 133.59, 133.4, 133.3, 129.9, 129.8, 128.92, 128.88, 128.83, 128.61, 128.55, 128.49, 128.46, 127.8, 125.8, 73.1, 71.5, 69.9, 69.3, 68.6, 68.1, 62.2, 35.9; HRMS (ESI) *m/z* calc for C<sub>42</sub>H<sub>36</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 739.1940; found 739.1920.

2-2-7. Three-component coupling reaction between 1c, 2b and water



Glycosyl bromide **1c** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry

MeCN (2.0 mL), styrene (**2b**) (0.4 mmol, 46  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in water bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **5cba** (67%, major/minor = 66:34). **5cba** was isolated by silica gel column (eluent: Hexane/EtOAc = 3:1) and preparative GPC (eluent: CHCl<sub>3</sub>).

**3,4,5-triyl tribenzoate (5cba)** major isomer: TLC (Hexane/EtOAc 3:1):  $R_f = 0.25$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.09 (d, J = 7.8 Hz, 2 H), 8.02 (d, J = 7.8 Hz, 2 H), 7.97 (d, J = 7.2 Hz, 2 H), 7.90 (d, J = 7.8 Hz, 2 H), 7.59–7.51 (m, 3 H), 7.48 (t, J = 7.2 Hz, 1 H), 7.45–7.36 (m, 6 H), 7.33–7.28 (m, 4 H), 7.27–7.24 (m, 3 H), 5.84 (*pseudo-t*, J = 6.6 Hz, 1 H), 5.48–5.44 (m, 2 H), 4.98 (dd, J = 12.0, 7.8 Hz, 1 H), 4.90–4.85 (m, 2 H), 4.50–4.46 (m, 1 H), 4.44 (dd, J = 12.0, 3.0 Hz, 1 H), 2.81 (d, J = 3.0 Hz, 1 H), 2.34–2.28 (m, 1 H), 2.04–1.97 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.7, 165.4, 165.3, 165.1, 144.1, 133.5, 133.4, 129.93, 129.85, 129.93, 129.85, 129.76, 129.73, 129.4, 129.1, 128.81, 128.78, 128.54, 128.51, 128.4, 128.3, 127.6, 125.6, 71.8, 70.1, 69.6, 69.2, 68.5, 67.8, 62.4, 37.2; HRMS (ESI) *m/z* calc for C<sub>42</sub>H<sub>36</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 739.1940; found 739.1925.

**5cba** minor isomer: TLC (Hexane/EtOAc 3:1):  $R_f = 0.20$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.10 (d, J = 7.8 Hz, 2 H), 7.97 (d, J = 8.4 Hz, 2 H), 7.93 (d, J = 8.4 Hz, 2 H), 7.91 (d, J = 8.4 Hz, 2 H), 7.56–7.47 (m, 4 H), 7.43 (t, J = 7.8 Hz, 2 H), 7.40–7.29 (m,10 H), 7.28–7.24 (m, 1 H), 5.92 (*pseudo-t*, J = 7.8 Hz, 1 H), 5.53 (*pseudo-t*, J = 7.2 Hz, 1 H), 5.45 (dd, J = 7.8, 4.8 Hz, 1 H), 4.96 (dd, J = 7.8, 5.4 Hz, 1 H), 4.69 (dd, J = 12.0, 7.2 Hz, 1 H), 4.66–4.55 (m, 3 H), 2.91 (s, 1 H), 2.59–2.51 (m, 1 H), 2.03–1.98 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.3, 165.4, 165.3, 165.25, 143.4, 133.54, 133.48, 133.4, 133.2, 129.9, 129.8, 129.5, 128.82, 128.78, 128.6, 128.51, 128.47, 128.44, 128.39, 127.8, 125.8, 73.2, 71.7, 70.8, 70.3, 69.7, 68.9, 62.9, 35.9; HRMS (ESI) *m/z* calc for C<sub>42</sub>H<sub>36</sub>KO<sub>10</sub> [M+K]<sup>+</sup> 739.1940; found 739.1920.

2-3-1. Four-component coupling reaction between 1a, 2b, acetonitrile, and water



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL), styrene (**2b**) (0.4 mmol, 46  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were

performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of 6aba (96%, major/minor = 71:29). 6aba was isolated by silica gel column (eluent: Hexane/EtOAc =  $3:1 \rightarrow 2:1 \rightarrow 3:2$ ) and preparative GPC (eluent: (2R,3R,4R,5R,6R)-2-(2-acetamido-2-phenylethyl)-6-((benzoyloxy)methyl)tetrahydro-CHCl<sub>3</sub>). 2H-pyran-3,4,5-triyl tribenzoate (6aba) major isomer: TLC (Hexane/EtOAc 1:1): R<sub>f</sub> = 0.36; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.13 (d, J = 7.2 Hz, 2 H), 7.99 (dd, J = 8.4, 1.8 Hz, 2 H), 7.95 (d, J = 7.2 Hz, 2 H), 7.79 (d, J = 7.8 Hz, 2 H), 7.59–7.55 (m, 2 H), 7.53 (t, J = 7.2 Hz, 1 H), 7.49 (t, J = 7.8 Hz, 2 H), 7.59 (t, J = 7.8 Hz, 2 Hz, 2 H), 7.59 (t, J = 7.8 Hz, 2 Hz, 1 H), 7.44 (t, J = 7.8 Hz, 2 H), 7.40–7.27 (m, 11 H), 6.41 (br, 1 H), 5.90 (t, J = 7.2 Hz, 1 H), 5.76 (dd, J = 8.4, 3.0 Hz, 1 H), 5.64–5.62 (m, 1 H), 5.38–5.33 (m, 1 H), 5.38–5.33 (m, 1 H), 4.58–4.51 (m, 2 H), 4.40–4.32 (m, 2 H), 2.52–2.46 (m, 1 H), 2.29 (ddd, *J* = 14.4, 7.2, 3.0 Hz, 1 H), 1.96 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 169.6, 166.1, 165.4, 165.3, 165.2, 141.3, 133.4, 133.33, 133.30, 133.1, 129.65, 129.58, 129.56, 129.1, 128.73, 128.69, 128.41, 128.40, 128.3, 127.4, 126.2, 71.9, 71.2, 69.6, 67.6, 62.7, 50.7, 34.6, 23.2; HRMS (ESI) m/z calc for C44H39KNO10 [M+K]<sup>+</sup> 780.2206; found 780.2179.

**6aba** minor isomer: TLC (Hexane/EtOAc 1:1):  $R_f = 0.30$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.18 (d, J = 8.4 Hz, 2 H), 7.99 (d, J = 7.8 Hz, 2 H), 7.97 (d, J = 7.8 Hz, 2 H), 7.82 (d, J = 8.4 Hz, 2 H), 7.59–7.49 (m, 3 H), 7.46–7.40 (m, 3 H), 7.40–7.24 (m, 11 H), 6.06 (t, J = 9.0 Hz, 1 H), 6.00–5.94 (m, 1 H), 5.81 (dd, J = 9.6, 3.0 Hz, 1 H), 5.60 (s, 1 H), 5.23–5.17 (m, 1 H), 4.75–4.67 (m, 2 H), 4.62 (dd, J = 12.0, 5.4 Hz, 1 H), 3.93 (d, J = 12.0 Hz, 1 H), 2.94 (td, J = 14.4, 4.2 Hz, 1 H), 2.11–2.04 (m, 1 H), 2.01 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  169.5, 166.2, 165.6, 165.5, 165.4, 139.3, 133.4, 133.3, 133.2, 133.0, 129.9, 129.81, 129.79, 129.73, 129.65, 129.3, 129.1, 128.9, 128.42, 128.37, 128.3, 128.2, 127.1, 72.7, 71.8, 70.44, 70.38, 67.1, 63.2, 51.1, 34.1, 23.3; HRMS (ESI) *m/z* calc for C<sub>44</sub>H<sub>39</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 780.2206; found 780.2183.





Glycosyl bromide **1b** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL), styrene (**2b**) (0.4 mmol, 46  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were

performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of 6bba (79%, major/minor = 78:22). 6bba was isolated by silica gel column (eluent: Hexane/EtOAc =  $3:2 \rightarrow 5:4$ ) and preparative GPC (eluent: (2R,3S,4R,5S,6R)-2-(2-acetamido-2-phenylethyl)-6-((benzoyloxy)methyl)tetrahydro-CHCl<sub>3</sub>). 2H-pyran-3,4,5-triyl tribenzoate (6bba) major isomer: TLC (Hexane/EtOAc 1:1): R<sub>f</sub> = 0.27; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.09 (d, J = 7.8 Hz, 2 H), 8.05 (d, J = 7.8 Hz, 2 H), 7.92 (d, J = 7.8 Hz, 2 H), 7.81 (d, J = 7.8 Hz, 2 H), 7.62–7.56 (m, 3 H), 7.54 (t, J = 7.8 Hz, 1 H), 7.49–7.40 (m, 6 H), 7.37 (t, J = 7.8 Hz, 2 H), 7.31–7.21 (m, 5 H), 6.67 (d, J = 6.6 Hz, 1 H), 5.95 (s, 1 H), 5.72 (dd, J = 7.2, 3.0 Hz, 1 H), 5.55–5.48 (m, 1 H), 5.40–5.34 (m, 1 H), 4.73–4.66 (m, 2 H), 4.49 (d, J = 10.2 Hz, 1 H), 4.47–  $4.42 \text{ (m, 1 H)}, 2.38-2.31 \text{ (m, 1 H)}, 2.11 \text{ (dd, } J = 15.0, 6.6 \text{ Hz}, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; {}^{13}\text{C} \text{ NMR} \text{ (cDCl}_3, 1 \text{ H)}, 1.92 \text{ (s, 3 H)}; 1.92 \text$ 150 MHz) & 169.2, 166.2, 165.3, 165.2, 165.0, 141.0, 133.6, 133.5133.4, 133.3, 129.8, 129.7, 129.57, 129.56, 129.3, 128.70, 128.69, 128.66, 128.6, 128.50, 128.46, 128.4, 127.2, 125.9, 70.6, 70.1, 68.6, 68.4, 67.5, 50.4, 33.4, 23.2; HRMS (ESI) m/z calc for C44H39KNO10 [M+K]<sup>+</sup> 780.2206; found 780.2190.

**6bba** (minor): TLC (Hexane/EtOAc 1:1):  $R_f = 0.20$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.13 (d, J = 7.8 Hz, 2 H), 8.00 (d, J = 7.8 Hz, 2 H), 7.97 (d, J = 7.8 Hz, 2 H), 7.81 (d, J = 7.8 Hz, 2 H), 7.60–7.52 (m, 3 H), 7.49–7.39 (m, 7 H), 7.31–7.25 (m, 5 H), 7.21–7.17 (m, 2 H), 6.00 (s, 1 H), 5.89–5.82 (m, 2 H), 5.73 (dd, J = 9.0, 5.4 Hz, 1 H), 5.21–5.14 (m, 1H), 4.90–4.84 (m, 1 H), 4.80 (dd, J = 11.4, 7.8 Hz, 1 H), 4.39 (dd, J = 11.4, 4.8 Hz, 1 H), 4.32–4.25 (m, 1 H), 2.75–2.65 (m, 1 H), 2.03–1.94 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  169.2, 166.3, 165.43, 165.36, 165.3, 139.8, 133.50, 133.49, 133.3, 133.1, 129.87, 129.86, 129.8, 129.7, 129.6, 129.04, 128.96, 128.6, 128.5, 128.4, 128.3, 128.1, 126.9, 69.7, 69.3, 69.2, 68.8, 68.6, 62.6, 51.2, 32.0, 23.3; HRMS (ESI) *m*/*z* calc for C<sub>44</sub>H<sub>39</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 780.2206; found 780.2191.





Glycosyl bromide 1c (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL), styrene (2b) (0.4 mmol, 46  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were

performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of 6cba (66%, major/minor = 76:24). 6cba was isolated by silica gel column (eluent: Hexane/EtOAc = 7:4) (2R,3S,4R,5R,6R)-2-(2-acetamido-2phenylethyl)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (6cba) major isomer: TLC (Hexane/EtOAc 1:1):  $R_f = 0.23$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.10 (dd, J = 8.4, 1.2 Hz, 2 H), 8.03 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.90 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.83 (dd, *J* = 8.4, 1.2 Hz, 2 H), □ 7.58 (dd, J = 13.8, 7.8 Hz, 2 H), 7.49 (dd, J = 13.8, 7.2 Hz, 2 H), 7.46–7.41 (m, 4 H), 7.35 (pseudo-t, J = 7.8 Hz, 2 H), 7.28–7.21 (m, 7 H), 6.45 (d, J = 8.4 Hz, 1 H), 5.79 (pseudo-t, J = 7.2 Hz, 1 H), 5.30 (dd, J = 7.2, 4.2 Hz, 1 H), 5.37 (td, J = 7.8, 3.6 Hz, 1 H), 5.48 (*pseudo-t*, J = 6.6 Hz, 1 H), 4.55–4.52 (m, 2 H), 4.48 (ddd, J = 11.4, 5.4 Hz, 1 H), 4.44 (dd, J = 11.4, 5.4 Hz, 1 H), 2.48 (ddd, J = 14.4, 10.2, 10.2)3.6 Hz, 1 H), 2.31 (ddd, J = 15.0, 7.2, 1.6 Hz, 1 H), 1.94 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$ 169.3, 166.3, 165.3, 165.2, 165.1, 141.0, 133.6, 133.5, 133.4, 133.3, 129.94, 129.86, 129.75, 129.69, 129.5, 128.9, 128.8, 128.7, 128.6, 128.51, 128.46, 128.3, 127.4, 126.1, 71.4, 70.4, 69.3, 68.7, 68.5, 62.6, 50.4, 33.3, 23.4; HRMS (ESI) *m/z* calc for C<sub>44</sub>H<sub>39</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 780.2206; found 780.2208. **6cba** minor isomer: TLC (Hexane/EtOAc 1:1):  $R_f = 0.23$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.14 (d, J =9.0 Hz, 2 H), 7.96–7.94 (m, 4 H), 7.87 (d, J = 9.0 Hz, 2 H), 7.59–7.27 (m, 15 H), 7.23–7.20 (m, 2 H), 5.98 (pseudo-t, J = 9.0 Hz, 1 H), 5.81 (d, J = 7.2 Hz, 1 H), 5.59 (pseudo-t, J = 9.0 Hz, 1 H), 5.41 (dd, *J* = 9.6, 5.4 Hz, 1 H), 5.18 (ddd, *J* = 11.4, 7.2, 4.8 Hz, 1 H), 4.73 (ddd, *J* = 9.0, 6.0, 3.0 Hz, 1 H), 4.64 (dd, *J* = 12.0, 6.0 Hz, 1 H), 4.57 (dd, *J* = 12.0, 6.0 Hz, 1 H), 4.42 (ddd, *J* = 12.0, 6.0, 3.0 Hz, 1 H), 2.82 (ddd, J = 14.4, 12.0, 4.8 Hz, 1 H), 2.07–2.04 (m, 1 H), 2.02 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) 8 169.4, 166.3, 165.7, 165.3, 165.1, 139.5, 133.45, 133.37, 133.2, 133.0, 129.91, 129.85, 129.80, 129.75, 129.67, 129.1, 128.9, 128.7, 128.6, 128.5, 128.37, 128.33, 128.31, 128.1, 127.0, 126.0, 70.9, 70.5, 69.9, 69.8, 69.2, 63.2, 51.0, 31.8, 29.7, 23.3; HRMS (ESI) m/z calc for C<sub>44</sub>H<sub>39</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 780.2206; found 780.2182.

2-3-4. Four-component coupling reaction between 1a, 2b, propionitrile, and water



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry propionitrile (2.0 mL), styrene (**2b**) (0.4 mmol, 46  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing

were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with  $CHCl_3$ , concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **6abb** (78%, major/minor = 71:29). **6abb** was isolated by silica gel column (eluent: Hexane/EtOAc = 1:1) and preparative GPC (eluent:  $CHCl_3$ ).

(2*R*,3*R*,4*R*,5*R*,6*R*)-2-((benzoyloxy)methyl)-6-(2-phenyl-2-propionamidoethyl)tetrahydro-2*H*pyran-3,4,5-triyl tribenzoate (6abb) major isomer: TLC (Hexane/EtOAc 1:1):  $R_f = 0.43$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.12 (d, *J* = 7.2 Hz, 2 H), 7.99 (d, *J* = 7.2 Hz, 2 H), 7.95 (d, *J* = 7.8 Hz, 2 H), 7.80 (d, *J* = 7.2 Hz, 2 H), 7.61–7.52 (m, 3 H), 7.49 (t, *J* = 7.8 Hz, 1 H), 7.46–7.27 (m, 13 H), 6.30 (d, *J* = 7.2 Hz, 1 H), 5.90 (t, *J* = 7.8 Hz, 1 H), 5.76 (dd, *J* = 8.4, 3.0 Hz, 1 H), 5.64–5.60 (m, 1 H), 5.39– 5.33 (m, 1 H), 4.56 (dd, *J* = 12.0, 5.4 Hz, 1 H), 4.51 (dd, *J* = 12.0, 2.4 Hz, 1 H), 4.40–4.31 (m, 2 H), 2.53–2.45 (m, 1 H), 2.29 (ddd, *J* = 14.4, 7.2, 2.4 Hz, 1 H), 2.26–2.14 (m, 2 H), 1.11 (t, *J* = 7.8 Hz, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 173.1, 166.2, 165.42, 165.37, 165.3, 141.2, 133.6, 133.4, 133.2, 129.82, 129.75, 129.73, 129.67, 129.2, 128.84, 128.78, 128.5, 128.4, 127.6, 126.3, 71.6, 71.0, 69.5, 67.8, 62.6, 50.7, 34.9, 29.7, 9.7; HRMS (ESI) *m/z* calc for C<sub>45</sub>H<sub>41</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 794.2362; found 780.2376.

**6abb** minor isomer: TLC (Hexane/EtOAc 1:1):  $R_f = 0.42$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.18 (d, J = 7.8 Hz, 2 H), 7.99 (d, J = 7.8 Hz 2 H), 7.97 (d, J = 7.8 Hz 2 H), 7.81 (d, J = 7.2 Hz, 2 H), 7.59–7.51 (m, 3 H), 7.45–7.27 (m, 14 H), 6.06 (*pseudo-t*, J = 9.6 Hz, 1 H), 5.81–5.79 (m, 2 H), 5.59 (*pseudo-t*, J = 3.0 Hz, 1 H), 5.20 (ddd, J = 10.8, 6.6, 4.2 Hz, 1 H), 4.72 (ddd, J = 9.6, 5.4, 3.0 Hz, 1 H), 4.69 (dd, J = 12.0 Hz, 2.4 Hz 1 H), 4.62 (dd, J = 12.0 Hz, 5.4 Hz 1 H), 3.92–3.89 (dt, J = 11.4, 3.0 Hz, 1 H), 3.00–2.95 (m, 1 H), 2.23–2.21 (m, 2 H), 2.06 (ddd, J = 12.6, 10.8, 3.0 Hz, 1 H), 1.20 (t, J = 7.8 Hz, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 173.1, 166.3, 165.7, 165.53, 165.46, 139.4, 129.91, 129.87, 129.8, 129.7, 129.4, 129.2, 128.9, 128.46, 128.42, 128.39, 128.3, 127.2, 72.9, 71.9, 70.52, 70.50, 67.1, 63.3, 51.2, 34.1. 29.7, 9.7; HRMS (ESI) *m/z* calc for C<sub>45</sub>H<sub>41</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 794.2362; found 794.2340.





Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry

MeCN (2.0 mL) and 4-fluorostyrene (2e) (0.4 mmol, 48 µL) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **6aea** (77%, major/minor = 79:21). **6aea** was isolated by silica gel column (eluent: Hexane/EtOAc =  $2:1 \rightarrow 3:2 \rightarrow 1:1$ ) and preparative GPC (eluent: CHCl<sub>3</sub>). (2R,3R,4R,5R,6R)-2-(2-acetamido-2-(4-fluorophenyl)ethyl)-6-((benzoyloxy)methyl)tetrahydro-**2H-pyran-3,4,5-trivl tribenzoate (6aea)** major isomer: TLC (Hexane/EtOAc 1:1):  $R_f = 0.33$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.12 (d, J = 7.2 Hz, 2 H), 8.01 (d, J = 7.2 Hz, 2 H), 7.93 (d, J = 7.2 Hz, 2 H), 7.61–7.53 (m, 3 H), 7.51 (t, J = 7.2 Hz, 1 H), 7.46–7.32 (m, 8 H), 7.02 (t, J = 8.4 Hz, 1 H), 6.45– 6.38 (m, 1 H), 5.86 (t, J = 7.2 Hz, 1 H), 5.77 (dd, J = 7.8, 3.0 Hz, 1 H), 5.63–5.58 (m, 1 H), 5.36–5.30 (m, 1 H), 4.64 (dd, J = 12.0, 6.0 Hz, 1 H), 4.57 (dd, J = 12.0, 3.0 Hz, 1 H), 4.42–4.37 (m, 1 H), 4.36– 4.31 (m, 1 H), 2.48–2.40 (m, 1 H), 2.25 (ddd, J = 15.0, 7.8, 3.0 Hz, 1 H), 1.95 (s, 3 H); <sup>13</sup>C NMR  $(CDCl_3, 150 \text{ MHz}) \delta 169.6, 166.2, 165.4, 165.2, 162.0 \text{ (d}, J = 246.0 \text{ Hz}), 137.1, 133.49 \text{ (d}, J = 10.5 \text{ Hz})$ Hz), 133.47, 133.3, 129.74, 129.69, 129.67, 129.59, 129.55, 129.1, 128.8, 128.7, 128.5, 128.4, 115.6 (d, J = 21.0 Hz), 71.6, 71.4, 71.0, 69.5, 67.8, 62.7, 50.1, 34.8, 23.2; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 565 MHz) δ 46.9 (tt, J = 8.5, 5.1 Hz); HRMS (ESI) m/z calc for C<sub>44</sub>H<sub>38</sub>FKNO<sub>10</sub> [M+K]<sup>+</sup> 798.2111; found 798.2099. **6aea** minor isomer: TLC (Hexane/EtOAc 1:1):  $R_f = 0.23$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.17 (d, J = 7.8 Hz, 2 H), 7.99 (d, J = 7.8 Hz, 2 H), 7.97 (d, J = 7.8 Hz, 2 H), 7.83 (d, J = 7.2 Hz, 2 H), 7.60–7.50 (m, 3 H), 7.48–7.41 (m, 3 H), 7.40–7.35 (m, 4 H), 7.31–7.25 (m, 4 H), 7.01 (t, J = 8.4 Hz, 2 H), 6.04 (t, J = 9.0 Hz, 1 H), 5.91–5.87 (br, 1 H), 5.79 (dd, J = 9.6, 3.0 Hz, 1 H), 5.60–5.57 (m, 1 H), 5.21–5.16 (m, 1 H), 4.71–4.61 (m, 3 H), 3.93 (d, J = 11.4 Hz, 1 H), 2.94 (td, J = 14.4, 4.8 Hz, 1 H), 2.08–2.01 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  169.5, 166.2, 165.6, 165.5, 165.4, 162.3 (d, J = 246.0 Hz), 135.25, 133.4 (d, J = 9.0 Hz), 133.3, 133.0, 129.87, 129.83, 129.80, 129.74, 129.66, 129.2, 128.85, 128.83, 128.80, 128.5, 128.4, 128.3, 116.0 (d, *J* = 22.5 Hz), 72.5, 71.7, 70.6, 70.32, 67.2, 63.2, 50.5, 34.3, 23.3; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 565 MHz)  $\delta$  48.2 (tt, J = 8.5, 5.1 Hz); HRMS (ESI) m/z calc for C<sub>44</sub>H<sub>38</sub>FKNO<sub>10</sub> [M+K]<sup>+</sup> 798.2111; found 798.2096.

2-3-6. Four-component coupling reaction between 1a, 2f, acetonitrile, and water



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry acetonitrile (2.0 mL), 4-chlorostyrene (**2f**) (0.4 mmol, 51  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **6afa** (84%, major/minor = 73:27). **6afa** was isolated by silica gel column (eluent: Hexane/EtOAc = 2:1 $\rightarrow$ 3:2 $\rightarrow$ 1:1) and preparative GPC (eluent: CHCl<sub>3</sub>). (**2R**,**3R**,**4R**,**5R**,**6R**)-**2-(2-acetamido-2-(4-chlorophenyl)ethyl)-6-**

((benzoyloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (6afa) major isomer: TLC (Hexane/EtOAc 1:1)  $R_f = 0.28$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.12 (d, J = 8.4 Hz, 2 H), 7.99 (d, J =7.2 Hz, 2 H), 7.91 (d, J = 8.4 Hz, 2 H), 7.83 (d, J = 7.8 Hz, 2 H), 7.61–7.49 (m, 4 H), 7.45 (t, J = 7.8 Hz, 2 H), 7.42–7.33 (m, 6 H), 7.30 (d, J = 8.4 Hz, 2 H), 7.22 (d, J = 8.4 Hz, 2 H), 6.58–6.52 (m, 1 H), 5.86 (t, J = 7.2 Hz, 1 H), 5.79–5.74 (m, 1 H), 5.62–5.88 (br, 1 H), 5.34–5.28 (m, 1 H), 4.65 (dd, J = 12.6, 6.6 Hz, 1 H), 4.57 (dd, J = 12.0 Hz, 1 H), 4.43-4.38 (m, 1 H), 4.37-4.31 (m, 1 H), 2.48-2.40 (m, 1 H), 2.24 (ddd, J = 15.0, 7.8, 2.4 Hz, 1 H), 1.93 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 169.7, 166.1, 165.39, 165.35, 165.2, 140.0, 133.5, 133.44, 133.42, 133.2, 133.1, 129.67, 129.64, 129.61, 129.52, 129.47, 129.0, 128.76, 128.66, 128.57, 128.45, 128.42, 128.37, 127.6, 71.4, 70.9, 69.5, 67.7, 62.6, 50.0, 34.5, 23.1; HRMS (ESI) *m/z* calc for C<sub>44</sub>H<sub>38</sub>ClKNO<sub>10</sub> [M+K]<sup>+</sup> 814.1816; found 814.1797. **6afa** minor isomer: TLC (Hexane/EtOAc 1:1)  $R_f = 0.16$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.16 (d, J = 8.4 Hz, 2 H), 7.99 (d, J = 7.8 Hz, 2 H), 7.97 (d, J = 8.4 Hz, 2 H), 7.83 (d, J = 7.8 Hz, 2 H), 7.60–7.54 (m, 2 H), 7.45 (t, J = 7.8 Hz, 1 H), 7.48–7.42 (m, 3 H), 7.40–7.35 (m, 4 H), 7.32–7.27 (m, 4 H), 7.24 (d, J = 8.4 Hz, 2 H), 6.03 (t, J = 9.0 Hz, 1 H), 5.99 (d, J = 6.6 Hz, 1 H), 5.80 (dd, J = 9.6, 3.0 Hz, 1 H), 5.59 (s, 1 H), 5.21–5.15 (m, 1 H), 4.71–4.63 (m, 3 H), 3.95 (d, J = 11.4 Hz, 1 H), 2.86 (td, J = 14.4, 4.2 Hz, 1 H), 2.08–1.99 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 169.5, 166.2, 165.6, 165.5, 165.4, 138.0, 133.9, 133.47, 133.41, 133.3, 133.1, 129.81, 129.79, 129.74, 129.65, 129.23, 129.16, 128.79, 128.76, 128.48, 128.47, 128.42, 128.35, 72.4, 71.6, 70.6, 70.3, 67.1, 63.1, 50.5, 34.2, 23.2; HRMS (ESI) *m/z* calc for C<sub>44</sub>H<sub>38</sub>ClKNO<sub>10</sub> [M+K]<sup>+</sup> 814.1816; found 814.1774.

2-3-7. Four-component coupling reaction between 1a, 2g, acetonitrile, and water



Glycosyl bromide 1a (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry acetonitrile (2.0 mL), 4-methylstyrene (2g) (0.4 mmol, 54  $\mu$ L) and water (1.0 mmol, 18  $\mu$ l) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of 6aga (67%, major/minor = 81:19). 6aga was isolated by silica gel column (eluent: Hexane/EtOAc =  $3:2 \rightarrow 1:1$ ) and preparative GPC (eluent: CHCl<sub>3</sub>). (2R,3R,4R,5R,6R)-2-(2-acetamido-2-(p-tolyl)ethyl)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (6aga) major isomer: TLC (Hexane/EtOAc 1:1) R<sub>f</sub> = 0.32.<sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.12 (d, *J* = 7.8 Hz, 2 H), 8.00–7.94 (m, 4 H), 7.81 (d, *J* = 7.8 Hz, 2 H), 7.60– 7.55 (m, 2 H), 7.53 (t, J = 7.2 Hz, 1 H), 7.48 (t, J = 7.8 Hz, 1 H), 7.44 (t, J = 7.8 Hz, 2 H), 7.41–7.36 (m, 4 H), 7.31 (t, J = 7.8 Hz, 2 H), 7.20 (d, J = 8.4 Hz, 2 H), 7.15 (d, J = 7.8 Hz, 2 H), 6.28 (d, J = 7.8 Hz, 2 Hz, 2 H), 6.28 (d, J = 7.8 Hz, 2 Hz, 2 H), 6.28 (d, J = 7.8 Hz, 2 Hz, Hz, 1 H), 5.93 (t, J = 7.8 Hz, 1 H), 5.76 (dd, J = 8.4, 2.4 Hz, 1 H), 5.66–5.62 (m, 1 H), 5.35–5.29 (m, 1 H), 4.58–4.50 (m, 2 H), 4.40–4.35 (m, 1 H), 4.35–4.30 (m, 1 H), 2.54–2.46 (m, 1 H), 2.33 (s, 3 H), 2.28 (ddd, J = 14.4, 7.2, 3.0 Hz, 1 H), 1.96 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 169.5, 166.1, 165.41, 165.36, 165.2, 138.3, 137.1, 133.4, 133.31, 133.27, 133.0, 129.7, 129.61, 129.58, 129.4, 129.2, 128.8, 128.7, 128.41, 128.39, 128.33, 128.30, 126.2, 72.2, 71.3, 71.0, 69.7, 67.6, 62.8, 50.4, 34.6, 23.2, 21.0; HRMS (ESI) *m/z* calc for C<sub>45</sub>H<sub>41</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 794.2362; found 794.2350.

**6aga** minor isomer: TLC (Hexane/EtOAc 1:1)  $R_f = 0.19$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 8.18 (d, J = 7.8 Hz, 2 H), 7.98 (t, J = 8.4 Hz, 4 H), 7.82 (d, J = 7.2 Hz, 2 H), 7.59–7.53 (m, 2 H), 7.51 (t, J = 7.2 Hz, 1 H), 7.46–7.41 (m, 3 H), 7.37 (dd, J = 17.4, 8.4 Hz, 4 H), 7.29–7.24 (m, 2 H), 7.20 (d, J = 7.8 Hz, 2 H), 7.13 (d, J = 7.8 Hz, 2 H), 6.07 (t, J = 9.6 Hz, 1 H), 5.88 (br, 1 H), 5.80 (dd, J = 10.2, 3.0 Hz, 1 H), 5.60 (s, 1 H), 5.20–5.12 (m, 1 H), 4.77–4.67 (m, 2 H), 4.62 (dd, J = 12.0, 4.8 Hz, 1 H), 3.92 (d, J = 12.0 Hz, 1 H), 3.01–2.91 (m, 1 H), 2.30 (s, 3 H), 2.08–1.98 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 169.4, 166.2, 165.7, 165.5, 165.4, 138.1, 136.2, 133.4, 133.3, 133.2, 132.9, 130.0, 129.9, 129.83, 129.76, 129.7, 129.4, 128.9, 128.43, 128.39, 128.37, 128.3, 127.1, 72.9, 71.9, 70.5, 70.3, 67.1, 63.3, 50.9, 33.9, 23.4, 21.1; HRMS (ESI) *m/z* calc for C<sub>45</sub>H<sub>41</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 794.2362; found 794.2353.

# 3. Cyclic Voltammetry

Cyclic voltammetry was measured in 0.1 M Bu<sub>4</sub>NPF<sub>6</sub>/CH<sub>3</sub>CN under argon atmosphere at room temperature (ca 25 °C) using glassy carbon (GC) working electrode, platinum wire counter electrode, and standard calomel electrode (SCE) as a reference electrode. Concentrations of glycosyl bromides



**1a-c** were 10 mM. Reduction potentials ( $E_{red}$ ) of **1a-c** were determined from the first reduction peaks (**1a**: -1.87 V vs. SCE, **1b**: -1.93 V vs. SCE, **1c**: -1.93 V vs. SCE). Redox potential of ferrocene was obtained using the same electrolyte (0.43 V vs. SCE) and  $E_{red}$ of **1a-c** were corrected ( $E_{red}$  (Fc/Fc<sup>+</sup>) =  $E_{red}$  (SCE) - 0.43).

Figure S1. Cyclic voltammetry of glycosyl bromides.

# 4. Stern-Volmer Plots

BDB (4.5 mg, 0.011 mmol) was dissolved in dry acetone (10 mL). Transient absorption spectra were recorded at variable concentrations of glycosyl bromides **1** (0.02-0.01 mM for **1a**, 0.03-0.075 mM for **1b** and **1c**). Quenching rate constants of glycosyl bromides **1** were calculated as follows (mannosyl bromide **1a**:  $3.23 \times 10^{10}$  s<sup>-1</sup> mol<sup>-1</sup> L, galactosyl bromide **1b**:  $2.38 \times 10^{10}$  s<sup>-1</sup> mol<sup>-1</sup> L, glucosyl bromide **1c**: Observ <sup>10</sup> s<sup>-1</sup> mol<sup>-1</sup> L).







Figure S3. Stern-Volmer plot of variable concentrations of galactosyl bromide 1b.



Figure S4. Stern-Volmer plot of variable concentrations of glucosyl bromide 1c.

## 5. Control experiment in the presence of TEMPO



Glycosyl bromide **1a** (0.20 mmol, 132 mg), organic photocatalytic BDB (0.02 mmol, 8.3 mg), and potassium carbonate (0.40 mmol, 55.3 mg) were added to the dried Schrenk tube under argon. Dry MeCN (2.0 mL), styrene (**2b**) (0.4 mmol, 46  $\mu$ L), and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) (0.4 mmol, 63 mg) were added and stirred. Then the LED ramp was attached to the Schrenk tube using a Teflon joint, and freeze degassing were performed using liquid nitrogen. The reaction was performed by irradiating LED light (wavelength: 365 nm) for 3 h in ice bath. After photo irradiation the reaction mixture was diluted with CHCl<sub>3</sub>, concentrated under vacuum. Tetrachloroethane was added as an internal standard and <sup>1</sup>H NMR measurement was performed to determine NMR yield of **8a** (81%). **8a** was isolated by silica gel column (eluent: Hexane/EtOAc = 5:1). (**2R,3R,4S,5S,6R)-2-**((benzoyloxy)methyl)-6-((**2,2,6,6-tetramethylpiperidin-1-yl)oxy)tetrahydro-2H-pyran-3,4,5-**triyl tribenzoate (**8a**) TLC (Hexane/EtOAc 3:1) R<sub>f</sub> = 0.52; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  8.09 (d, *J* = 7.8 Hz, 2 H), 8.07 (d, *J* = 7.8 Hz, 2 H), 8.00 (d, *J* = 7.8 Hz, 2 H), 7.88 (d, *J* = 7.8 Hz, 2 H), 7.61–7.54

(m, 2 H), 7.51 (t, J = 7.2 Hz, 1 H), 7.44 (t, J = 7.8 Hz, 1 H), 7.42–7.36 (m, 6 H), 7.29 (t, J = 7.8 Hz, 2 H), 6.20 (t, J = 10.2 Hz, 1 H), 5.99 (s, 1 H), 5.86 (dd, J = 10.2, 3.0 Hz, 1 H), 5.44 (s, 1 H), 4.72–4.67 (m, 1 H), 4.59–4.54 (m, 1 H), 4.49 (dd, J = 12.0, 4.8 Hz, 1 H), 1.67–1.45 (m, 5H), 1.40–1.21 (m, 13 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  166.2, 165.7, 165.5, 165.4, 133.4, 133.3, 133.2, 133.0, 129.84, 129.80, 129.74, 129.72, 129.1, 129.0, 128.52, 128.39, 128.30, 128.29, 103.2, 70.4, 69.9, 69.7, 66.6, 61.0, 59.8, 40.5, 40.2, 33.67, 33.53, 20.9, 20.3, 17.0; HRMS (ESI) *m/z* calc for C<sub>44</sub>H<sub>45</sub>KNO<sub>10</sub> [M+K]<sup>+</sup> 774.2675; found, .774.2659.

#### **6.** References

- 1. L. M. Doyle, S. O'Sullivan, C. Di Sarvo, M. McKinney, P. McArdle, P. V. Murphy, Org. Lett. 2017, 19, 5802.
- 2. S. Alazet, F. Le Vaillant, S. Nicolai, T. Courant, J. Waser, Chem. Eur. J. 2017, 40, 9501.



<sup>1</sup>H NMR spectra 3aa



<sup>1</sup>H NMR spectra **3ac** 



<sup>1</sup>H NMR spectra **3ba** 











<sup>1</sup>H NMR spectra 5aaa



<sup>1</sup>H NMR spectra 5aab





<sup>1</sup>H NMR spectra **5ada** major







<sup>1</sup>H NMR spectra **5aba** major







<sup>1</sup>H NMR spectra **5bba** major



<sup>1</sup>H NMR spectra **5bba** minor



<sup>1</sup>H NMR spectra **5cba** major



<sup>1</sup>H NMR spectra **5cba** minor



S37

<sup>1</sup>H NMR spectra 6aba-major



<sup>1</sup>H NMR spectra 6aba-minor



<sup>1</sup>H NMR spectra **6abb** major



## <sup>1</sup>H NMR spectra **6abb** minor



<sup>13</sup>C NMR spectra 6abb minor



<sup>1</sup>H NMR spectra 6aea major





## <sup>1</sup>H NMR spectra 6aea minor



<sup>13</sup>C NMR spectra 6aea minor







<sup>1</sup>H NMR spectra 6afa major



<sup>1</sup>H NMR spectra 6afa minor



<sup>1</sup>H NMR spectra **6aga** major



S47

<sup>1</sup>H NMR spectra 6aga minor



<sup>1</sup>H NMR spectra **6bba** major



<sup>1</sup>H NMR spectra **6bba** minor



# <sup>1</sup>H NMR spectra 6cba major



<sup>13</sup>C NMR spectra **6cba** major



<sup>1</sup>H NMR spectra 6cba minor



<sup>13</sup>C NMR spectra **6cba** minor



<sup>1</sup>H NMR spectra 8a

