Supporting Information

Catalytic Asymmetric Construction of Bridged Bicyclo[m.3.1] Rings by Intramolecular Diels-Alder Reaction

Kai Li^b, Zhengxing Zhao^b, Wenling Qin^b, Yidong Liu,*^b and Hailong Yan*^{ab}

^aChongqing University FuLing Hospital, Chongqing University Chongqing 408000, P. R. China;

^bChongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.

*Corresponding authors. E-mails: *yidong@cqu.edu.cn, *yhl198151@cqu.edu.cn

Table of Contents

I.	General information	2				
II.	General procedure for the synthesis of the substrates	2				
III.	Optimization of the reaction conditions (Table S1)	5				
IV.	General procedure for asymmetric reaction	7				
V.	General procedure for initial experimental	7				
VI.	¹ H, ¹³ C NMR and HRMS data of compounds (1a-1x)	7				
VII.	¹ H, ¹³ C NMR and HRMS data of compounds (2a-4a)	С				
VIII.	Mechanistic studies	С				
1)	Control experiments	C				
2)	Density Functional Theory (DFT) Experiments	3				
IX.	Gram-scale preparation and transformations	9				
X.	Thermal stability experiments	9				
XI.	¹ H and ¹³ C NMR spectra80	С				
XII.	X-ray crystallographic information	2				
Refere	References					

I. General information

¹H and ¹³C NMR spectra were recorded on Agilent 400MR DD2 (400 MHz) spectrometer and Agilent 600MR DD2 (600 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and tetramethylsilane or the residual solvent peak was used as an internal reference: CDCl₃ (¹H NMR tetramethylsilane δ 0.00, ¹³C NMR δ 77.00), data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad or as a combination of them), coupling constants (Hz) and integration. Enantiomeric excesses (ee) were determined by HPLC analysis on Hitachi Chromaster using DAICEL CHIRALCEL AD-H, 4.6mm Φ ×250mm, DAICEL CHIRALCEL AS-H, 4.6mm Φ ×250mm, DAICEL CHIRALCEL OD-H, 4.6mm Φ ×250mm, DAICEL CHIRALCEL IB-H, 4.6mm Φ ×250mm. High resolution mass spectra (HRMS) were performed on Bruker Solarix 7.0 T and ThermoFisher Q Exactive Plus. X-ray crystallography analysis of single crystal was performed on an Agilent SuperNova-CCD X-Ray diffractometer. Optical rotations were measured on a Rudolph Autopol I polarimeter and are reported as follows: [α]_D²⁵ (*c* in g per 100 mL solvent). Unless otherwise stated, all reagents were purchased from commercial suppliers (Adamas, J&K, Sigma-Aldrich, TCI) and used without further purification.

II. General procedure for the synthesis of the substrates

Method A: (1a-1n, 1s-1v)

General procedure for the synthesis of S2:

This step was carried out according to a literature method^[1] with some modifications. To a solution of **S1** (8.0 mmol, 1.0 equiv.) in THF (20 mL) were added $PdCl_2(PPh_3)_2$ (112 mg, 0.16 mmol, 0.02 equiv.), CuI (76 mg, 0.40 mmol, 0.05 equiv.), trimethylsilylacetylene (1.4 mL, 8.8 mmol, 1.1 equiv.) and Et₃N (20 mL) under a nitrogen atmosphere at room temperature. After being stirred for 12 h, the mixture was quenched by addition of saturated aqueous NH₄Cl and

extracted with hexane. The extract was washed with water and brine, dried and concentrated to dryness. Purification by flash chromatography eluting with hexane to give S2 (70-90% yield).

General procedure for the synthesis of S3:

This step was carried out according to a literature method^[2] with some modifications. **S2** (8 mmol, 1.0 equiv.) was dissolved in dry THF (20 ml) and placed in a pressure vessel. Alkenyl magnesium bromide (16 mL, 1.0 M in THF, 2.0 equiv) was added dropwise under a nitrogen atmosphere. After completion of the addition, Pd-catalyst (2 mol%) was added. The flask was sealed and heated at 70 °C for 12 h. The reaction was carefully quenched with water. The mixture is extracted

with EA and the combined organic layers were passed through $MgSO_4$ plug to remove residual water. After evaporation of solvents the crude product was purified by flash chromatography eluting with hexane to give **S3** (65-87% yield).

General procedure for the synthesis of S4:

This step was carried out according to a literature method^[3] with some modifications. To a stirred solution of **S3** (6.0 mmol, 1.0 equiv) in MeOH (15 mL) and THF (15 mL) was added KF (1.04 g, 18.0 mmol, 3.0 equiv). The reaction mixture was stirred for 4 hours at room temperature. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl and extracted with EA. The organic phase was dried (Na₂SO₄) and concentrated. Purification by flash chromatography eluting with hexane to give **S4** (68-83% yield).

General procedure for the synthesis of S6:

This step was carried out according to a literature method^[4] with some modifications. **S5** (2 mmol, 1.0 equiv), $PdCl_2(PPh_3)_2$ (28 mg, 0.04 mmol, 0.02 equiv) and CuI (19.1 mg, 0.1 mmol, 0.05 equiv) were weighed and added into an oven dried flask, evacuated and backfilled with nitrogen (3 times). Et₃N (4 mL) and THF (4 mL) was injected into the flask. Then **S4** (310 mg, 2.2 mmol, 1.1 equiv) was added. The resulting mixture kept stirring for 24 h. Then the mixture was filtered through a pad of celite and washed with EA. Removal of solvent under reduced pressure, purified by column chromatography on silica gel (PE/EA = 20:1) to afford **S6** (60-78% yield).

General procedure for the synthesis of 1:

This step was carried out according to a literature method^[3] with some modifications. To a stirred solution of **S6** (1.5 mmol, 1.0 equiv) in THF (10 mL) was added hydrazine monohydrate (0.73 mL, 7.5 mmol, 5.0 equiv, 50%) dropwise at rt. Then, the resulting solution was kept stirring until **S6** was consumed. Quenched with sat. aq. NH₄Cl, extracted with EA, washed with brine, dried over Na₂SO₄ and filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (PE/EA = 20:1) to afford the desired product **1** (70-88% yield).

Method B: (1a-3(1o), 1p-1r)

<u>General procedure for the synthesis of S7:</u>

This step was carried out according to a literature method^[5] with some modifications. O-iodophenol (2.2 g, 10 mmol, 1.0 equiv.) was weighed and added into a round bottom flask. Acetone (50ml) was sequentially added. Slowly add 1, 2-dibromoethane (4.3 ml, 50 mmol, 5.0 equiv.). Finally, add potassium carbonate (2.76 g, 20 mmol, 2.0 equiv.), stir at room temperature for 14 hours, then the reaction was stirred at reflux for 6 hours. Quenched with sat. aq. NH₄Cl, the organic phase is extracted

with EA, concentrated and passed through the column to obtain the product. Dissolve the obtained product in dimethyl

sulfoxide, add potassium tert-butoxide (15 mL, 1.0 M in THF, 1.5 equiv.). React at room temperature for 24 hours, add water to quench the reaction at the end of the reaction. The organic phase is extracted with hexane, concentrated and passed through a column for separation to obtain S7(1.89 g, 7.7 mmol, 77% yield) as a orange oil.

Compound S8 was prepared according to the general procedure as described for S3.

Compound 1a-3(10), 1p-1r was prepared according to the general procedure as described for 1.

Method C: (1w)

This step was carried out according to a literature method^[6] with some modifications. To a solution of **S2** (2.53 g, 10 mmol) in THF (20 mL) was added dropwise *n*-BuLi (2.5 M in hexane, 12 mmol, 1.2 equiv.) at -78 °C. After stirring at -78 °C for 1 h, allylchlorodimethylsilane (2.03 g, 15 mmol, 1.5 equiv.) was added dropwise to the mixture. The reaction mixture was stirred at -78 °C for 1 h, and then allowed to warm to room temperature. The volatile materials were removed in vacuo, and the residue was subjected to column chromatography on silica gel (PE/EA = 100:1) to give **S9**(1.77 g, 6.5 mmol, 65% yield) as a pale yellow oil.

Compound 1w was prepared according to the general procedure as described for 1.

Method D: (1a-1 (Z))

2-(2-bromophenyl)acetaldehyde(S10)

This step was carried out according to a literature method^{7]} with some modifications. A mixture of 2-(2-bromophenyl)ethanol(6.0 g, 29.8 mmol, 1.0 equiv.) and Dess-Martin periodinane (13.9 g, 32.8 mmol, 1.1 equiv.) in DCM (60 mL) was stirred at room temperature for 2 hours. Solvent was removed in vacuo, and the residue was purified by silica gel column (PE/EA = 10:1) to give **S10** (4.5g, 22.6 mmol, 76% yield) as a colorless oil.

1-bromo-2-(3-methoxyallyl)benzene(S11)

This step was carried out according to a literature method^[8] with some modifications. (Methoxymethyl)triphenylphosphonium chloride (5.70 g, 16.6 mmol, 1.1 equiv.) was weighed and added into a round bottom flask, evacuated and backfilled with nitrogen (3 times). THF (20 mL) was injected into the flask. Potassium tert-butoxide (2.02 g, 18.1 mmol, 1.2 equiv.) was added in portions at 0 °C. The color of the mixture turned from dark orange to red. After stiring for 40 min at 0 °C the reaction was allowed to

warm up to room temperature. Then a solution of **S8**(3.0 g, 15.1 mmol, 1.0 equiv.) in THF (10 mL) was added dropwise and the mixture was stirred overnight. The reaction was quenched by addition of sat. aq. NH₄Cl solution and the aqueous phase was extracted with EA. The combined organic layers were dried over MgSO₄ and the solvents were evaporated. Chromatographic purification (PE/EA = 10:1) of the crude material to give **S11** (2.50 g, 11 mmol, 73% yield) as a yellow oil.

1-((2-(3-methoxyallyl)phenyl)ethynyl)naphthalen-2-yl acetate (S12)

This step was carried out according to a literature method^[4] with some modifications. $PdCl_2(PPh_3)_2$ (140 mg, 0.2 mmol, 0.02 equiv) and CuI (95 mg, 0.5 mmol, 0.05 equiv) were weighed and added into an oven dried flask, evacuated and backfilled with nitrogen (3 times). Triethylamine (15 mL) was injected into the flask. **S11** (2.26 g, 10 mmol, 1.0 equiv) dissolved in THF (15 mL) was added. The mixture was stirred for 30 min at 70 °C. After that, the alkyne (2.31 g, 11 mmol, 1.1 equiv) dissolved in THF (10 mL) was added slowly. The resulting mixture kept stirring for 2 h at 70 °C. Then the mixture was filtered through a pad of celite and washed with EA. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel

(PE/EA = 15:1) to afford S12 (2.56 g, 7.2 mmol, 72% yield) as a yellow oil.

$(Z) - 1 - ((2 - (3 - methoxyallyl)phenyl)ethynyl)naphthalen - 2 - ol\ (1a - 1(Z))$

This step was carried out according to a literature method^[3] with some modifications. To a stirred solution of **S12** (2.56 g, 7.2 mmol, 1.0 equiv) in THF (20 mL) was added hydrazine monohydrate (3.5 mL, 36 mmol, 5.0 equiv, 50%) dropwise at rt. Then, the resulting solution was kept stirring until **S12** was consumed. Quenched with sat. aq. NH₄Cl, extracted with EA, washed with brine, dried over Na₂SO₄ and filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (PE/EA = 30:1 to 15:1) to afford the desired product **1a-Z** (815 mg, 2.59 mmol, 36% yield) as an orange oil.

III. Optimization of the reaction conditions (Table S1^a)

	(HO HO 1a-2		Br ⁺ Catalyst Solvent <i>T</i>	→ Br Contraction of the second secon	+	a a a a a a a a a a a a a a a a a a a	
Catalyst MeO, H ⁻				GCF ₃ MeO F ₃	H N C3	CF _{3 MeO} H	C4: AI C5: AI C6: AI C7: AI	$= C_{6}H_{5}$ = 2-CF ₃ C ₆ H ₅ = 4-CF ₃ C ₆ H ₅ = 3,5 ⁻ (CF ₃) ₂ C ₆ H ₅
Entry	Catalyst	Solvent	T (°C)	Br^+	Yield ^b of $3a$ (%)	ee^{c} (%) of 3a	ee^d (%) of 4a	3a/4a ^e
1	C1	DCM	-40	NBS	30	92	90	57/43
2	C2	DCM	-40	NBS	28	-73	-65	60/40
3	C3	DCM	-40	NBS	30	-10	-7	58/42
4	C4	DCM	-40	NBS	29	72	58	60/40
5	C5	DCM	-40	NBS	33	85	2	58/42
6	C6	DCM	-40	NBS	34	92	93	64/36
7	C7	DCM	-40	NBS	30	89	80	62/38
8	C6	toluene	-40	NBS	31	95	90	62/38
9	C6	acetone	-40	NBS	40	52	45	80/20
10	C6	THF	-40	NBS	45	41	25	80/20
11	C6	CHCl ₃	-40	NBS	35	60	88	67/33
12	C6	EA	-40	NBS	55	90	69	87/13
13	C6	EA	-60	NBS	60	93	91	88/12
14	C6	EA	-78	NBS	62	95	93	90/10
15	C6	EA	-78	NBP	63	85	83	88/12
16	C6	EA	-78	DBDMH	57	65	75	88/12
17 ^f	C6	EA	-78	NBS	60	93	96	90/10
18 ^g	C6	EA	-78	NBS	65	97	92	91/9
19 ^h	C6	EA	-78	NBS	65	92	91	91/9

^{*a*}Reaction conditions: **1a-2** (0.025 mmol, 1.0 equiv), catalyst (0.0025 mmol, 10 mol%) in solvent (1 mL) at corresponding temperature for 30 min, then brominating reagents (1.05 equiv) at corresponding temperature, 0.5-6 h. ^{*b*}Isolated yield of **3a**. ^{*c*}Enantiomeric excess (ee) of **3a** determined by HPLC. ^{*d*} Enantiomeric excess (ee) of **4a** determined by HPLC. ^{*c*}The ratio of (**3a:4a**) were determined by the ¹H NMR analysis. ^{*f*}Reaction in EA (0.5 mL). ^{*s*}Reaction in EA (2 mL). ^{*h*}Reaction in EA (3.0 mL).

IV. General procedure for asymmetric reaction

Condition[A]:

A solution of **1** (1.0 equiv) and **catalyst-6** (10 mol%) in EA (0.0125M) was stirred at -78 °C for 30 min, then NBS (1.05 equiv) was added. After stirring at -78 °C for 6-24 h, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography using PE/EA eluent (60:1 to 50:1) to afford the annulation product **3**.

V. General procedure for initial experimental

Condition[B]:

A solution of **1** (1.0 equiv.) and **catalyst-6** (10 mol%) in DCM (0.025M) was stirred at -40 °C for 30 min, then NBS (1.05 equiv) was added. After stirring at -40 °C for 6 h, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography using PE/EA eluent (60:1 to 50:1) to afford the annulation product **2**, **3**, **4**.

VI. ¹ H, ¹³ C NMR and HRMS data of compounds (1a-1x)

(Z)-1-((2-(3-methoxyallyl)phenyl)ethynyl)naphthalen-2-ol (1a-1 (Z))

Compound **1a-1** (**Z**) is an unknown compound. The compound was synthesized in 36% yield (815 mg, 2.59 mmol) following the general procedure (**Method D**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Yellow oil. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 8.3 Hz, 1H), 7.77 (t, J = 8.4 Hz, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.27 – 7.21 (m, 2H), 6.58 (s, 1H), 6.02 (d, J = 6.1 Hz, 1H), 4.61 (q, J = 7.0 Hz, 1H), 3.73 (d, J = 6.6 Hz, 2H), 3.61 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.97, 146.80, 142.96, 133.63, 132.39, 130.51, 128.92, 128.88, 128.43, 128.22, 127.31, 126.05, 124.94, 123.97, 122.19, 116.65, 104.65, 103.22, 99.85, 85.52, 59.80, 29.60.
HRMS (ESI) m/z Calcd for C₂₂H₁₇O₂⁻[M - H]⁻: 313.1234, Found: 313.1219.

1-((2-allylphenyl)ethynyl)naphthalen-2-ol (1a-2)

Compound **1a-2** is an unknown compound. The compound was synthesized in 85% yield (363 mg, 1.28 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA = 5:1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.3 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 9.0 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.24 (d, J = 7.2 Hz, 1H), 7.22 – 7.14 (m, 3H), 6.31 (s, 1H), 6.07 (ddt, J = 16.4, 10.1, 6.0 Hz, 1H), 5.20 – 5.10 (m, 1H), 5.10 – 4.98 (m, 1H), 3.64 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 155.99, 141.06, 136.26, 133.40, 132.24, 130.58, 129.25, 128.92, 128.32, 128.19, 127.28, 126.30, 124.75, 123.92, 122.33, 116.36, 116.31, 102.89, 99.66, 85.38, 38.72.

HRMS (ESI) *m/z* Calcd for C₂₁H₁₅O⁻[M - H]⁻: 283.1128, Found: 283.1115.

1a-3 (1o)

1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1a-3 (1o))

Compound **1a-3** (**1o**) is an unknown compound. The compound was synthesized in 88% yield (378 mg, 1.32 mmol) following the general procedure (**Method B**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.22 (d, *J* = 8.3 Hz, 1H), 7.77 (t, *J* = 7.7 Hz, 2H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.24 (d, *J* = 8.7 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 6.84 (s, 1H), 6.76 (dd, *J* = 13.7, 6.0 Hz, 1H), 4.97 (dd, *J* = 13.7, 2.0 Hz, 1H), 4.61 (dd, *J* = 6.0, 2.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 156.80, 156.58, 147.65, 133.05, 132.03, 130.71, 129.82, 128.33, 128.22, 127.31, 124.98, 123.98, 123.38, 116.46, 116.04, 113.93, 102.96, 96.95, 96.40, 87.81.

HRMS (ESI) *m/z* Calcd for C₂₀H₁₃O₂⁻[M - H]⁻: 285.0921, Found: 285.0909.

1-((2-allyl-4-methylphenyl)ethynyl)naphthalen-2-ol (1b)

Compound **1b** is an unknown compound. The compound was synthesized in 78% yield (349 mg, 1.17 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Yellow solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 7.77 (t, *J* = 8.7 Hz, 2H), 7.58 – 7.51 (m, 2H), 7.42 – 7.34 (m, 1H), 7.22 (d, *J* = 8.9 Hz, 1H), 7.12 – 7.07 (m, 2H), 6.26 (s, 1H), 6.12 (ddt, *J* = 16.5, 9.8, 6.0 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.9 Hz, 1H), 5.08 (dd, *J* = 17.1, 2.0 Hz, 1H), 3.67 (d, *J* = 5.8 Hz, 2H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.95, 141.13, 139.37, 136.47, 133.47, 132.28, 130.48, 130.19, 128.43, 128.26, 127.33, 127.26, 124.91, 124.00, 119.40, 116.36, 103.15, 99.99, 84.59, 38.83, 21.54.

HRMS (ESI) *m/z* Calcd for C₂₂H₁₇O⁻[M - H]⁻: 297.1285, Found: 297.1276.

1-((2-allyl-4-fluorophenyl)ethynyl)naphthalen-2-ol (1c)

Compound 1c is an unknown compound. The compound was synthesized in 79% yield (358 mg, 1.19 mmol) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.78 (t, *J* = 7.1 Hz, 2H), 7.68 – 7.47 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.26 – 7.19 (m, 1H), 7.12 – 6.86 (m, 2H), 6.20 (s, 1H), 6.08 (ddt, *J* = 16.6, 11.3, 6.2 Hz, 1H), 5.21 (d, *J* = 10.2 Hz, 1H), 5.10 (d, *J* = 17.1 Hz, 1H), 3.69 (d, *J* = 6.0 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.83 (d, J = 250.7 Hz), 156.07, 144.14 (d, J = 7.7 Hz), 135.43, 134.12 (d, J = 8.4 Hz), 133.45, 130.78, 128.43, 128.32, 127.43, 124.78, 124.09, 118.51 (d, J = 3.0 Hz), 117.13, 116.45(d, J = 22.2 Hz), 116.41, 113.76 (d, J = 21.9 Hz), 102.76, 98.64, 85.07, 38.76.

HRMS (ESI) m/z Calcd for C₂₁H₁₄FO⁻[M - H]⁻: 301.1034, Found: 301.1027.

1-((2-allyl-5-methylphenyl)ethynyl)naphthalen-2-ol (1d)

Compound 1d is an unknown compound. The compound was synthesized in 82% yield (367 mg, 1.23 mmol) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 7.76 (t, *J* = 8.5 Hz, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.46 (s, 1H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.24 – 7.12 (m, 3H), 6.18 – 6.01 (m, 1H), 5.22 – 5.11 (m, 1H), 5.11 – 4.99 (m, 1H), 3.66 (d, *J* = 5.8 Hz, 2H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.00, 138.10, 136.57, 135.94, 133.42, 132.71, 130.52, 129.91, 129.24, 128.35, 128.21, 127.28, 124.82, 123.94, 122.14, 116.32, 116.17, 102.99, 99.96, 84.93, 38.36, 20.75.

HRMS (ESI) *m*/*z* Calcd for C₂₂H₁₇O⁻[M - H]⁻: 297.1285, Found: 297.1274.

1-((2-allylphenyl)ethynyl)-6-ethylnaphthalen-2-ol (1e)

Compound 1e is an unknown compound. The compound was synthesized in 80% yield (375 mg, 1.2 mmol) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 8.9 Hz, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.55 (s, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 7.30 – 7.30 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 7.30 – 7.30 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 8.9 Hz, 1H), 6.18 (s, 1H), 6.16 – 6.04 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (m, 2H), 7.

1H), 5.17 (d, *J* = 10.2 Hz, 1H), 5.07 (d, *J* = 17.1 Hz, 1H), 3.70 (d, *J* = 5.9 Hz, 2H), 2.78 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.52, 141.23, 139.91, 136.33, 132.34, 131.81, 130.22, 129.37, 129.01, 128.63, 128.54, 126.41, 126.07, 124.82, 122.51, 116.44, 116.27, 102.76, 99.50, 85.57, 38.85, 28.69, 15.57.

HRMS (ESI) *m/z* Calcd for C₂₃H₁₉O⁻[M - H]⁻: 311.1441, Found: 311.1432.

1-((2-allylphenyl)ethynyl)-6-phenylnaphthalen-2-ol (1f)

Compound **1f** is an unknown compound. The compound was synthesized in 88% yield (476 mg, 1.32mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H** NMR (600 MHz, CDCl₃) δ 8.24 (d, J = 8.1 Hz, 1H), 7.98 (s, 1H), 7.81 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 7.6 Hz, 2H), 7.66 (d, J = 6.7 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.41 – 7.33 (m, 2H), 7.33 – 7.26 (m, 2H), 7.24 (d, J = 8.7 Hz, 1H), 6.20 – 6.07 (m, 1H), 5.18 (d, J = 10.3 Hz, 1H), 5.09 (d, J = 17.1 Hz, 1H), 3.73 (d, J = 9.1 Hz, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 156.17, 141.33, 140.82, 136.88, 136.35, 132.70, 132.42, 130.94, 129.43, 129.14, 128.85, 128.72, 127.24, 127.22, 127.01, 126.46, 126.19, 125.45, 122.44, 116.86, 116.49, 102.93, 99.78, 85.34, 38.89. **HRMS (ESI)** *m*/*z* Calcd for C₂₇H₁₉O⁻[M - H]⁻: 359.1441, Found: 359.1434.

1-((2-allylphenyl)ethynyl)-6-bromonaphthalen-2-ol (1g)

Compound **1g** is an unknown compound. The compound was synthesized in 81% yield (441 mg, 1.22 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 1H), 7.92 (s, 1H), 7.71 – 7.55 (m, 3H), 7.40 – 7.33 (m, 1H), 7.33 – 7.26 (m, 2H), 7.25 – 7.20 (m, 1H), 6.28 (s, 1H), 6.11 (ddt, *J* = 16.4, 10.1, 5.9 Hz, 1H), 5.23 – 5.12 (m, 1H), 5.12 – 5.00 (m, 1H), 3.69 (d, *J* = 5.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 156.24, 141.28, 136.28, 132.41, 132.02, 130.54, 130.18, 129.58, 129.49, 129.30, 126.69, 126.49, 122.16, 117.73, 117.54, 116.52, 103.25, 100.09, 84.69, 38.83.

HRMS (ESI) *m/z* Calcd for C₂₁H₁₄BrO⁻[M - H]⁻: 361.0234, Found: 361.0225.

1-((2-allylphenyl)ethynyl)-6-(phenylethynyl)naphthalen-2-ol (1h)

Compound **1h** is an unknown compound. The compound was synthesized in 83% yield (479 mg, 1.25 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. ($R_f = 0.4$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.6 Hz, 1H), 7.98 (s, 1H), 7.72 (d, *J* = 8.9 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.61 – 7.53 (m, 2H), 7.41 – 7.31 (m, 4H), 7.29 (d, *J* = 7.7 Hz, 2H), 7.21 (s, 1H), 6.30 (s, 1H), 6.12 (ddt, *J* = 16.2, 10.1, 6.0 Hz, 1H), 5.22 – 5.13 (m, 1H), 5.12 – 5.01 (m, 1H), 3.70 (d, *J* = 5.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 156.66, 141.27, 136.30, 132.97, 132.42, 131.73, 131.58, 130.49, 129.98, 129.45, 129.22, 128.34, 128.22, 128.05, 126.47, 125.01, 123.26, 122.26, 118.76, 117.11, 116.50, 103.24, 99.98, 89.59, 89.47, 84.91, 38.84. **HRMS (ESI)** *m*/*z* Calcd for C₂₉H₁₉O⁻[M - H]⁻: 383.1441, Found: 3831.1436.

1-((2-allylphenyl)ethynyl)-7-phenylnaphthalen-2-ol (1i)

Compound **1i** is an unknown compound. The compound was synthesized in 80% yield (433 mg, 1.20 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.4$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.88 – 7.69 (m, 4H), 7.63 (d, J = 8.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.41 – 7.23 (m, 4H), 7.20 (d, J = 8.0 Hz, 1H), 6.28 (s, 1H), 6.20 – 6.02 (m, 1H), 5.23 – 4.95 (m, 2H), 3.73 (d, J = 6.0 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.44, 141.35, 141.03, 140.12, 136.27, 133.79, 132.32, 130.38, 129.32, 129.08, 128.84, 128.81, 127.63, 127.49, 126.43, 123.74, 122.91, 122.43, 116.54, 116.39, 103.25, 100.11, 85.40, 38.88.

HRMS (**ESI**) *m*/*z* Calcd for C₂₇H₁₉O⁻[M - H]⁻: 359.1441, Found: 359.1437.

1-((2-allyl-4-methylphenyl)ethynyl)-6-phenylnaphthalen-2-ol (1j)

Compound **1j** is an unknown compound. The compound was synthesized in 82% yield (461 mg, 1.23 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.6 Hz, 1H), 7.98 (s, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.26 - 7.22 (m, 1H), 7.11 (d, *J* = 9.9 Hz, 2H), 6.29 (s, 1H), 6.13 (ddt, *J* = 16.5, 10.7, 6.0 Hz, 1H), 5.23 - 5.14 (m, 1H), 5.13 - 5.03 (m, 1H), 3.69 (d, *J* = 5.8 Hz, 2H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.01, 141.16, 140.83, 139.42, 136.79, 136.49, 132.67, 132.30, 130.73, 130.20, 128.84, 128.69, 127.27, 127.21, 126.94, 126.16, 125.49, 119.37, 116.81, 116.38, 100.01, 84.57, 38.86, 21.55.

HRMS (ESI) *m/z* Calcd for C₂₈H₂₁O⁻[M - H]⁻⁺: 373.1598, Found: 373.1589.

1-((2-allyl-4-methylphenyl)ethynyl)-6-bromonaphthalen-2-ol (1k)

Compound 1k is an unknown compound. The compound was synthesized in 75% yield (424 mg, 1.13 mmol) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.7 Hz, 1H), 7.90 (s, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.21 (d, J = 8.7 Hz, 1H), 7.14 – 7.02 (m, 2H), 6.27 (s, 1H), 6.18 – 6.01 (m, 1H), 5.17 (d, J = 10.0 Hz, 1H), 5.06 (d, J = 17.1 Hz, 1H), 3.64 (d, J = 4.5 Hz, 2H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.09, 141.13, 139.59, 136.41, 132.29, 132.00, 130.45, 130.24, 130.14, 129.50, 129.35, 127.29, 126.72, 119.11, 117.68, 117.48, 116.40, 103.46, 100.36, 83.98, 38.80, 21.55.
HRMS (ESI) *m*/*z* Calcd for C₂₂H₁₆BrO⁻[M - H]⁻: 375.0390, Found: 375.0382.

1-((2-allyl-4-fluorophenyl)ethynyl)-6-(phenylethynyl)naphthalen-2-ol (11)

Compound **11** is an unknown compound. The compound was synthesized in 77% yield (465 mg, 1.16 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.6 Hz, 1H), 8.00 (s, 1H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.69 – 7.60 (m, 2H), 7.60 – 7.52 (m, 2H), 7.42 – 7.29 (m, 3H), 7.24 – 7.17 (m, 1H), 7.08 – 6.93 (m, 2H), 6.25 (s, 1H), 6.08 (ddt, *J* = 16.4, 11.8, 6.0 Hz, 1H), 5.22 (dd, *J* = 10.2, 1.9 Hz, 1H), 5.15 – 5.04 (m, 1H), 3.69 (d, *J* = 5.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.90 (d, J = 250.9 Hz), 156.65, 144.19 (d, J = 8.0 Hz), 135.41, 134.19 (d, J = 8.6 Hz), 132.95, 131.76, 131.58, 130.58, 130.03, 128.36, 128.26, 128.06, 124.94, 123.22, 118.82, 118.34, 117.15 (d, J = 4.0 Hz), 116.52 (d, J = 22.1 Hz), 113.81 (d, J = 22.1 Hz), 103.07, 98.87, 89.52, 84.63, 38.74.

HRMS (ESI) *m*/*z* Calcd for C₂₉H₁₈FO⁻[M - H]⁻: 401.1347, Found: 401.1329.

1-((2-allyl-4-methylphenyl)ethynyl)-7-phenylnaphthalen-2-ol (1m)

Compound **1m** is an unknown compound. The compound was synthesized in 79% yield (444 mg, 1.19 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.81 – 7.71 (m, 3H), 7.67 – 7.61 (m, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 8.9 Hz, 1H), 7.15 – 7.04 (m, 2H), 6.29 (s, 1H), 6.12 (m, 1H), 5.20 – 5.11 (m, 1H), 5.12 – 5.03 (m, 1H), 3.70 (d, *J* = 6.0 Hz, 2H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.28, 141.22, 141.04, 140.03, 139.39, 136.41, 133.76, 132.22, 130.18, 130.11, 128.83, 128.79, 127.62, 127.49, 127.25, 123.70, 122.96, 119.36, 116.43, 116.36, 103.44, 100.32, 84.62, 38.87, 21.55.

HRMS (ESI) *m*/*z* Calcd for C₂₈H₂₁O⁻[M - H]⁻: 373.1598, Found: 373.1588.

1-((2-allyl-4-methylphenyl)ethynyl)-7-(2-methoxyphenyl)naphthalen-2-ol (1n)

Compound **1n** is an unknown compound. The compound was synthesized in 70% yield (425 mg, 1.05 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

colorless oil. ($R_f = 0.4$, PE/EA= 5:1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.81 – 7.70 (m, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 5.7 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 7.10 – 7.01 (m, 3H), 6.99 (d, J = 8.2 Hz, 1H), 6.27 (s, 1H), 6.06 (ddt, J = 16.5, 9.9, 6.0 Hz, 1H), 5.12 – 4.97 (m, 2H), 3.80 (s, 3H), 3.64 (d, J = 6.0 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.60, 156.02, 141.13, 139.22, 137.83, 136.40, 133.51, 132.18, 131.15, 130.61, 130.14, 130.06, 128.83, 127.52, 127.40, 127.17, 126.26, 125.24, 120.90, 119.43, 116.30, 116.17, 111.19, 103.33, 100.04, 84.80, 55.53, 38.79, 21.50.

HRMS (ESI) *m*/*z* Calcd for C₂₉H₂₃O₂⁻[M - H]⁻: 403.1704, Found: 403.1700.

1o(1a-3)

1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1o (1a-3))

Compound **1a-3** (10) is an unknown compound. The compound was synthesized in 88% yield (378 mg, 1.32 mmol) following the general procedure (**Method B**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.22 (d, *J* = 8.3 Hz, 1H), 7.77 (t, *J* = 7.7 Hz, 2H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.24 (d, *J* = 8.7 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 6.84 (s, 1H), 6.76 (dd, *J* = 13.7, 6.0 Hz, 1H), 4.97 (dd, *J* = 13.7, 2.0 Hz, 1H), 4.61 (dd, *J* = 6.0, 2.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 156.80, 156.58, 147.65, 133.05, 132.03, 130.71, 129.82, 128.33, 128.22, 127.31, 124.98, 123.98, 123.38, 116.46, 116.04, 113.93, 102.96, 96.95, 96.40, 87.81.

HRMS (ESI) *m/z* Calcd for C₂₀H₁₃O₂⁻[M - H]⁻: 285.0921, Found: 285.0909.

6-phenyl-1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1p)

Compound **1p** is an unknown compound. The compound was synthesized in 85% yield (462 mg, 1.28 mmol) following the general procedure (**Method B**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (d, J = 8.6 Hz, 1H), 7.97 (s, 1H), 7.81 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 7.6 Hz, 2H), 7.63 (d, J = 7.1 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.42 – 7.30 (m, 2H), 7.26 (d, J = 8.9 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 6.86 (s, 1H), 6.77 (dd, J = 13.7, 6.0 Hz, 1H), 4.99 (dd, J = 13.7, 2.0 Hz, 1H), 4.62 (dd, J = 6.0, 2.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 156.87, 156.62, 147.64, 140.90, 136.81, 132.23, 132.05, 130.96, 129.87, 128.84, 128.59, 127.22, 126.93, 126.14, 125.55, 123.39, 116.89, 116.03, 113.88, 102.92, 96.99, 96.45, 87.77.

HRMS (ESI) m/z Calcd for C₂₆H₁₇O₂⁻[M - H]⁻: 361.1234, Found: 361.1231.

6-bromo-1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1q)

Compound 1q is an unknown compound. The compound was synthesized in 86% yield (471 mg, 1.29 mmol) following the general procedure (**Method B**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Gray solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 8.9 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.36 (td, *J* = 7.9, 1.7 Hz, 1H), 7.24 (d, *J* = 7.7 Hz, 1H), 7.14 (td, *J* = 7.6, 1.1 Hz, 1H), 7.11 – 7.04 (m, 1H), 6.84 (s, 1H), 6.76 (dd, *J* = 13.7, 6.0 Hz, 1H), 4.97 (dd, *J* = 13.6, 2.0 Hz, 1H), 4.62 (dd, *J* = 6.0, 2.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 156.93, 156.67, 147.54, 132.02, 131.57, 130.47, 130.15, 130.06, 129.59, 129.44, 126.81, 123.40, 117.67, 117.58, 115.97, 113.59, 103.29, 97.37, 96.58, 87.17.

HRMS (ESI) *m/z* Calcd for C₂₀H₁₂BrO₂⁻[M - H]⁻: 363.0026, Found: 363.0012.

7-methoxy-1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1r)

Compound 1r is an unknown compound. The compound was synthesized in 83% yield (394 mg, 1.25 mmol) following the general procedure (Method B) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Gray solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.64 (m, 2H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 2.6 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 2.6 Hz, 1H), 7.07 (d, *J* = 2.1 Hz, 1H), 7.03 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.80 (s, 1H), 6.76 (dd, *J* = 13.7, 6.0 Hz, 1H), 4.96 (dd, *J* = 13.7, 2.0 Hz, 1H), 4.62 (dd, *J* = 6.0, 2.0 Hz, 1H), 3.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.14, 157.29, 156.50, 147.60, 134.61, 132.01, 130.53, 129.81, 129.77, 123.58, 123.33, 116.21, 116.01, 113.86, 113.80, 103.89, 102.14, 97.03, 96.65, 87.84, 55.35.

HRMS (ESI) *m*/*z* Calcd for C₂₀H₁₅O₃⁻[M - H]⁻: 315.1027, Found: 315.1014.

1-((2-(but-3-en-1-yl)phenyl)ethynyl)naphthalen-2-ol (1s)

Compound **1s** is an unknown compound. The compound was synthesized in 80% yield (358 mg, 1.2 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. ($R_f = 0.6$, PE/EA= 5:1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.3 Hz, 1H), 7.78 (t, *J* = 7.4 Hz, 2H), 7.63 (d, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.26 – 7.21 (m, 2H), 6.18 (s, 1H), 5.94 (ddt, *J* = 13.2, 10.2, 6.5 Hz, 1H), 5.07 (dd, *J* = 29.5, 13.7 Hz, 2H), 3.06 (t, *J* = 8.0 Hz, 2H), 2.52 (q, *J* = 7.2, 6.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 155.83, 143.43, 137.70, 133.50, 132.37, 130.65, 129.07, 128.94, 128.47, 128.31, 127.43, 126.13, 124.87, 124.08, 122.09, 116.38, 115.31, 103.07, 100.02, 85.04, 34.83, 34.45.

HRMS (ESI) *m/z* Calcd for C₂₂H₁₇O⁻[M - H]⁻: 297.1285, Found: 297.1276.

1-((2-(but-3-en-1-yl)-4-methylphenyl)ethynyl)naphthalen-2-ol (1t)

Compound 1t is an unknown compound. The compound was synthesized in 79% yield (370 mg, 1.19 mmol) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. ($R_f = 0.6$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.3 Hz, 1H), 7.87 – 7.78 (m, 2H), 7.65 – 7.56 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.9 Hz, 1H), 7.16 (s, 1H), 7.11 (d, *J* = 7.9 Hz, 1H), 6.34 (s, 1H), 6.12 – 5.97 (m, 1H), 5.19 (dd, *J* = 30.7, 13.7 Hz, 2H), 3.09 (t, *J* = 8.0 Hz, 2H), 2.60 (q, *J* = 7.5 Hz, 2H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.63, 143.22, 139.03, 137.76, 133.45, 132.17, 130.35, 129.76, 128.41, 128.22, 127.28, 126.89, 124.86, 123.94, 119.00, 116.29, 115.13, 103.26, 100.23, 84.35, 34.86, 34.34, 21.48.

HRMS (ESI) m/z Calcd for C₂₃H₁₉O⁻[M - H]⁻: 311.1441, Found: 311.1432.

6-bromo-1-((2-(but-3-en-1-yl)phenyl)ethynyl)naphthalen-2-ol (1u)

Compound **1u** is an unknown compound. The compound was synthesized in 71% yield (402 mg, 1.07 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 2.0 Hz, 1H), 7.68 (d, *J* = 9.0 Hz, 1H), 7.66 – 7.54 (m, 2H), 7.39 – 7.26 (m, 3H), 7.26 – 7.22 (m, 1H), 6.19 (s, 1H), 5.93 (ddt, *J* = 16.8, 10.0, 6.5 Hz, 1H), 5.16 – 5.00 (m, 2H), 3.09 – 3.00 (m, 2H), 2.51 (q, *J* = 7.6, 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 155.92, 143.43, 137.60, 132.35, 131.98, 130.53, 130.18, 129.50, 129.11, 129.05, 126.63, 126.14, 121.75, 117.74, 117.46, 115.33, 103.34, 100.36, 84.39, 34.78, 34.35.

HRMS (ESI) *m/z* Calcd for C₂₂H₁₆BrO⁻[M - H]⁻: 375.0390, Found: 375.0372.

1-((2-(but-3-en-1-yl)phenyl)ethynyl)-7-(phenylethynyl)naphthalen-2-ol (1v)

Compound 1v is an unknown compound. The compound was synthesized in 76% yield (454 mg, 1.14 mmol) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. ($R_f = 0.6$, PE/EA= 5:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.37 (s, 1H), 7.76 (dd, *J* = 8.7, 3.4 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.1 Hz, 2H), 7.50 (d, *J* = 8.3 Hz, 1H), 7.38 – 7.33 (m, 4H), 7.31 (d, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.5 Hz, 1H), 6.21 (s, 1H), 6.01 – 5.92 (m, 1H), 5.10 (d, *J* = 17.0 Hz, 1H), 4.99 (d, *J* = 10.2 Hz, 1H), 3.08 (t, *J* = 7.9 Hz, 2H), 2.56 (q, *J* = 7.4 Hz, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 156.31, 143.52, 137.55, 133.24, 132.47, 131.67, 130.32, 129.09, 129.04, 128.33, 127.85, 126.79, 126.12, 123.21, 122.22, 121.95, 117.02, 115.53, 103.02, 100.50, 90.46, 89.92, 84.67, 34.85, 34.50. **HRMS (ESI)** *m*/*z* Calcd for C₃₀H₂₁O⁻[M - H]⁻: 397.1598, Found: 397.1584.

1w

1-((2-(allyldimethylsilyl)phenyl)ethynyl)naphthalen-2-ol (1w)

Compound 1w is an unknown compound. The compound was synthesized in 74% yield (380 mg, 1.11 mmol) following the general procedure (Method C) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Orange oil. ($R_f = 0.4$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 1H), 7.78 (dd, J = 8.6, 5.2 Hz, 2H), 7.69 (d, J = 7.1 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.44 – 7.34 (m, 3H), 7.26 – 7.20 (m, 1H), 6.19 (s, 1H), 5.79 (td, J = 17.7, 8.1 Hz, 1H), 4.91 – 4.79 (m, 2H), 2.00 (d, J = 8.1 Hz, 2H), 0.44 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 156.12, 140.66, 134.54, 134.36, 133.64, 133.47, 130.77, 129.09, 128.50, 128.33, 128.07, 127.69, 127.40, 124.83, 124.06, 116.45, 113.76, 102.80, 102.27, 84.49, 23.14, -2.92.

HRMS (ESI) *m/z* Calcd for C₂₃H₂₁OSi⁻[M - H]⁻: 341.1367, Found: 341.1354.

1-((2-(pent-4-en-1-yl)phenyl)ethynyl)naphthalen-2-ol (1x)

Compound **1x** is an unknown compound. The compound was synthesized in 70% yield (718 mg, 2.3 mmol) following the general procedure (**Method A**) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent. Pale yellow oil. (Rf = 0.6, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 9.0 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.31 – 7.10 (m, 4H), 6.20 (s, 1H), 5.83 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.04 (d, J = 17.1 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 3.00 – 2.83 (m, 2H), 2.17 (q, J = 7.1 Hz, 2H), 1.85 (p, J = 7.6 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 155.82, 144.07, 138.25, 133.53, 132.41, 130.60, 128.98, 128.90, 128.49, 128.31, 127.36, 125.97, 124.81, 124.04, 122.03, 116.36, 115.03, 103.13, 100.11, 84.94, 34.45, 33.50, 29.88. **HRMS** (ESI) m/z Calcd for C₂₃H₁₉O⁻[M - H]⁻: 311.1441, Found: 311.1434.

VII.¹ H, ¹³ C NMR and HRMS data of compounds (2a-4a)

14-bromo-8-methoxy-8a,9-dihydro-8H-benzo[f]naphtho[2,3-c] chromene (2a)

Compound **2a** was synthesized in 49% yield (116 mg, 0.6 mmol scale) under condition [B]. **2a** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.5 Hz, 1H), 7.85 – 7.74 (m, 3H), 7.49 (t, *J* = 7.0 Hz, 1H), 7.37 (t, *J* = 6.9 Hz, 1H), 7.30 – 7.17 (m, 2H), 7.18 – 7.11 (m, 2H), 4.97 (d, *J* = 3.8 Hz, 1H), 3.54 (s, 3H), 3.37 (dd, *J* = 16.3, 8.8 Hz, 1H), 3.27 – 3.20 (m, 1H), 3.14 (dd, *J* = 16.3, 6.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.26, 133.99, 133.53, 130.25, 129.34, 129.11, 128.16, 128.10, 127.78, 127.66, 127.08, 126.53, 125.48, 123.73, 120.57, 120.08, 117.83, 104.09, 57.12, 42.15, 26.94.

HRMS (ESI) *m/z* Calcd for C₂₂H₁₇BrNaO₂⁺[M + Na]⁺: 415.0304, Found: 415.0305

(S)-14-bromo-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3a)

Compound **3a** was synthesized in 65% yield (142 mg, 0.6 mmol scale) under condition [A]. **3a** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.5$, PE/EA= 30:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.41 – 7.32 (m, 2H), 7.27 – 7.20 (m, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 8.9 Hz, 1H), 5.34 – 5.25 (m, 1H), 3.26 – 3.11 (m, 2H), 2.81 (d, *J* = 12.1 Hz, 1H), 2.54 (dd, *J* = 12.2, 3.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 151.65, 141.39, 136.09, 135.20, 130.13, 129.40, 129.24, 128.95, 128.64, 128.42, 127.92, 127.79, 126.70, 125.74, 123.46, 121.41, 118.12, 115.01, 84.01, 40.58, 35.24.

HRMS (APCI) *m/z* Calcd for C₂₁H₁₆BrO⁺[M + H]⁺: 363.0379, Found: 363.0366.

Optical Rotation: $[\alpha]_D^{25} = -360.4^\circ (c = 0.9, DCM).$

HPLC analysis: Chiralcel ADAD-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 11.179 min (major), t_R = 12.278 min (minor), 97% ee.

13-(bromomethyl)-12,13-dihydrodinaphtho[1,2-b:1',2'-d] furan (4a)

Compound **4a** was synthesized in 19% yield (41 mg, 0.6 mmol scale) under condition [B]. **4a** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.6$, PE/EA= 30:1)

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.79 – 7.68 (m, 3H), 7.68 – 7.61 (m, 1H), 7.52 (td, J = 7.4, 6.9, 1.2 Hz, 1H), 7.41 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 4.07 – 3.97 (m, 1H), 3.76 – 3.68 (m, 1H), 3.55 (dd, J = 16.3, 1.5 Hz, 1H), 3.39 (dd, J = 16.2, 6.9 Hz, 1H), 3.24 (t, J = 10.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.83, 151.33, 132.40, 130.80, 129.32, 129.18, 128.14, 127.79, 127.27, 126.76, 126.65, 125.62, 124.62, 122.79, 120.97, 120.48, 115.96, 112.54, 35.48, 33.63, 31.67.

HRMS (APCI) *m/z* Calcd for C₂₁H₁₆BrO⁺[M + H]⁺: 363.0379, Found: 363.0366.

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 99:1, flow rate = 1.0 mL/min, wave length = 254 nm), $t_R = 6.167$ min (major), $t_R = 7.227$ min (minor), 93% ee.

(S)-14-bromo-11-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3b)

Compound **3b** was synthesized in 65% yield (147 mg, 0.6 mmol scale) under condition [A]. **3b** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.5$, PE/EA= 30:1)

¹**H** NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.7 Hz, 1H), 7.08 (d, J = 8.9 Hz, 1H), 6.97 (s, 1H), 5.35 – 5.24 (m, 1H), 3.19 – 3.12 (m, 2H), 2.82 (d, J = 12.1 Hz, 1H), 2.53 (dd, J = 12.2, 3.6 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 151.62, 139.03, 138.56, 135.95, 134.76, 130.07, 129.99, 129.31, 128.74, 128.47, 128.36, 127.90, 126.78, 125.69, 123.44, 121.54, 118.11, 115.34, 84.03, 40.62, 35.33, 21.39. HRMS (APCI) *m/z* Calcd for C₂₂H₁₈BrO⁺[M + H]⁺: 377.0536, Found: 377.0525.

Optical Rotation: $[\alpha]_D^{25} = -290.4^\circ (c = 0.5, acetone).$

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 4.277 min (major), t_R = 4.733 min (minor), 94% ee.

(S) - 14 - bromo - 11 - fluoro - 8, 9 - dihydro - 8, 15 - methanobenzo [f] naphtho [2, 1 - b] oxonine (3c)

Compound 3c was synthesized in 66% yield (151 mg, 0.6 mmol scale) under condition [A]. 3c was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Pale yellow solid. ($R_f = 0.4$, PE/EA = 30:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.85 – 7.63 (m, 2H), 7.64 – 7.43 (m, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.9 Hz, 1H), 5.36 – 5.23 (m, 1H), 3.26 – 3.06 (m, 2H), 2.78 (d, *J* = 12.1 Hz, 1H), 2.56 (d, *J* = 12.1 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.17 (d, *J* = 249.6 Hz), 151.50, 138.71 (d, *J* = 7.9 Hz), 137.37 (d, *J* = 3.1 Hz), 135.50, 131.96 (d, *J* = 8.8 Hz), 129.52, 128.59, 128.47, 127.95, 126.64, 125.80, 123.54, 121.26, 118.07, 116.40 (d, *J* = 21.9 Hz), 114.55 (d, *J* = 21.7 Hz), 114.10, 83.54, 40.64, 35.26.

HRMS (APCI) m/z Calcd for C₂₁H₁₅BrFO⁺[M + H]⁺: 381.0285, Found: 381.0276.

Optical Rotation: $[\alpha]_D^{25} = -335.8^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 5.747 min (major), t_R = 6.239 min (minor), 95% **ee**.

(S)-14-bromo-12-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3d)

Compound **3d** was synthesized in 62% yield (140 mg, 0.6 mmol scale) under condition [A]. **3d** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.6$, PE/EA = 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.9 Hz, 1H), 7.52 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.40 (s, 1H), 7.38 – 7.33 (m, 1H), 7.15 – 6.97 (m, 3H), 5.34 – 5.23 (m, 1H), 3.16 (qd, J = 14.5, 7.2 Hz, 2H), 2.82 (dd, J = 12.1, 1.8 Hz, 1H), 2.54 (dd, J = 12.1, 3.7 Hz, 1H), 2.40 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 151.69, 141.21, 137.55, 135.04, 133.06, 130.77, 129.67, 129.35, 129.08, 128.71, 128.47, 127.92, 126.73, 125.71, 123.44, 121.53, 118.14, 115.29, 84.05, 40.18, 35.31, 21.12.

HRMS (APCI) m/z Calcd for C₂₂H₁₈BrO⁺[M + H]⁺: 377.0536, Found: 377.0523.

Optical Rotation: $[\alpha]_D^{25} = -271.4^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel OD-H (Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 5.037 \text{ min}$ (major), $t_R = 5.743 \text{ min}$ (minor), 92% ee.

(S)-14-bromo-3-ethyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(3e)

Compound **3e** was synthesized in 63% yield (148 mg, 0.6 mmol scale) under condition [A]. **3e** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.4$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 7.93 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 8.9 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.43 – 7.35 (m, 2H), 7.27 – 7.23 (m, 1H), 7.15 (d, J = 7.4 Hz, 1H), 7.06 (d, J = 8.8 Hz, 1H), 5.33 – 5.27 (m, 1H), 3.24 – 3.15 (m, 2H), 2.84 – 2.78 (m, 3H), 2.54 (dd, J = 12.6, 2.9 Hz, 1H), 1.34 (t, J = 7.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 151.11, 141.50, 139.27, 136.23, 135.46, 130.16, 129.24, 128.93, 128.72, 127.78, 127.06, 127.01, 126.67, 125.64, 121.39, 118.03, 114.84, 83.94, 40.65, 35.34, 28.76, 15.45.

HRMS (APCI) m/z Calcd for C₂₃H₂₀BrO⁺[M + H]⁺: 391.0692, Found: 391.0678.

Optical Rotation: $[\alpha]_D^{25} = -299.8^{\circ}$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm, t_R = 5.767 min (major), t_R = 6.721 min (minor), 95% **ee**.

(S)-14-bromo-3-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3f)

Compound **3f** was synthesized in 55% yield (145 mg, 0.6 mmol scale) under condition [A]. **3f** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.6$, PE/EA = 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 8.6 Hz, 1H), 7.98 (s, 1H), 7.83 – 7.77 (m, 2H), 7.74 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.43 – 7.33 (m, 2H), 7.29 – 7.25 (m, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.12 (d, J = 8.8 Hz, 1H), 5.39 – 5.29 (m, 1H), 3.27 – 3.17 (m, 2H), 2.84 (d, J = 12.2 Hz, 1H), 2.58 (dd, J = 12.2, 3.5 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 151.84, 141.43, 141.15, 136.21, 136.16, 135.19, 130.20, 129.74, 129.28, 129.02, 128.80, 128.75, 127.91, 127.85, 127.27, 127.24, 127.23, 127.06, 125.84, 125.47, 121.40, 118.59, 115.19, 84.14, 40.63, 35.32.

HRMS (APCI) *m/z* Calcd for C₂₇H₂₀BrO⁺[M + H]⁺: 439.0692, Found: 439.0690.

Optical Rotation: $[\alpha]_D^{25} = -131.4^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), $t_R = 6.118$ min (major), $t_R = 7.532$ min (minor), 90% ee.

(S)-3,14-dibromo-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3g)

Compound **3g** was synthesized in 59% yield (157 mg, 0.6 mmol scale) under condition [A]. **3g** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.4$, PE/EA = 20:1)

¹**H** NMR (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.40 (t, J = 7.6 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.11 (d, J = 8.9 Hz, 1H), 5.37 – 5.27 (m, 1H), 3.23 (dd, J = 14.6, 8.3 Hz, 1H), 3.16 (dd, J = 14.7, 6.3 Hz, 1H), 2.83 (d, J = 12.2 Hz, 1H), 2.55 (dd, J = 12.2, 3.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 151.98, 141.22, 135.99, 134.66, 130.18, 129.83, 129.58, 129.29, 129.12, 129.04, 128.48, 128.43, 127.89, 127.24, 121.60, 119.26, 117.12, 115.59, 84.23, 40.55, 35.17.

HRMS (APCI) *m/z* Calcd for Chemical Formula: C₂₁H₁₅Br₂O⁺ [M + H]⁺: 442.9464, Found: 442.9456.

Optical Rotation: $[\alpha]_D^{25} = -320.4^\circ (c = 0.5, acetone).$

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 6.784 min (major), t_R = 8.009 min (minor), 91% **ee**.

Ph 3h

(S) - 14 - bromo - 3 - (phenylethynyl) - 8, 9 - dihydro - 8, 15 - methanobenzo [f]naphtho [2, 1 - b]oxonine (3h)

Compound **3h** was synthesized in 61% yield (170 mg, 0.6 mmol scale) under condition [A]. **3h** was purified by silica gel column chromatography using PE : EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.4$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.03 – 7.92 (m, 2H), 7.68 (d, *J* = 8.9 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.61 – 7.52 (m, 3H), 7.42 – 7.30 (m, 4H), 7.25 (t, *J* = 7.9 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 5.36 – 5.27 (m, 1H), 3.24 – 3.13 (m, 2H), 2.81 (d, *J* = 12.3 Hz, 1H), 2.55 (dd, *J* = 12.3, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.45, 141.25, 135.98, 134.78, 131.57, 131.50, 130.16, 129.30, 129.26, 129.04, 128.36, 128.33, 128.16, 128.09, 128.03, 127.85, 126.83, 123.45, 121.57, 118.85, 118.00, 115.44, 90.04, 89.16, 84.24, 40.53, 35.16.

HRMS (APCI) *m/z* Calcd for C₂₉H₂₀BrO⁺ [M + H]⁺: 463.0692, Found: 463.0683.

Optical Rotation: $[\alpha]_D^{25} = -431.0^\circ$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 9.516 min (major), t_R = 10.381 min (minor), 93% ee.

(S)-14-bromo-2-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3i)

Compound **3i** was synthesized in 57% yield (150 mg, 0.6 mmol scale) under condition [A]. **3i** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/DCM = 1:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.21 (s, 1H), 7.88 – 7.80 (m, 3H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.63 (t, *J* = 8.4 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 6.4 Hz, 2H), 7.25 (d, *J* = 7.7 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 8.8 Hz, 1H), 5.35 – 5.30 (m, 1H), 3.24 – 3.20 (m, 2H), 2.84 (d, *J* = 12.2 Hz, 1H), 2.58 (dd, *J* = 12.2, 3.6 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 152.07, 141.46, 141.44, 138.54, 136.17, 135.24, 130.29, 129.26, 129.15, 129.01, 128.90, 128.78, 128.43, 127.83, 127.67, 127.58, 127.29, 124.90, 123.25, 121.69, 118.19, 115.23, 84.12, 40.63, 35.35.

HRMS (APCI) *m/z* Calcd for C₂₇H₂₀BrO⁺[M + H]⁺: 439.0692, Found: 439.0683.

Optical Rotation: $[\alpha]_D^{25} = -276.2^\circ (c = 0.5, \text{ acetone}).$

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 7.133 min (major), t_R = 8.056 min (minor), 90% ee.

(S) - 14 - bromo - 11 - methyl - 3 - phenyl - 8, 9 - dihydro - 8, 15 - methanobenzo [f] naphtho [2, 1 - b] oxonine (3j) - 12 - brown - 12 - brown

Compound **3j** was synthesized in 64% yield (174 mg, 0.6 mmol scale) under condition [A]. **3j** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.6$, PE/EA = 15:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.6 Hz, 1H), 7.97 (s, 1H), 7.80 – 7.76 (m, 2H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.50 – 7.44 (m, 3H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 8.8 Hz, 1H), 6.98 (s, 1H), 5.33 – 5.29 (m, 1H), 3.18 – 3.16 (m, 2H), 2.83 (d, *J* = 12.1 Hz, 1H), 2.55 (dd, *J* = 12.1, 3.2 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 151.76, 141.15, 139.07, 138.52, 136.14, 135.95, 134.69, 130.09, 130.02, 129.64, 128.77, 128.72, 128.38, 127.95, 127.32, 127.29, 127.21, 127.03, 125.80, 125.39, 121.46, 118.56, 115.46, 84.11, 40.61, 35.34, 21.39.

HRMS (APCI) *m/z* Calcd for C₂₈H₂₂BrO⁺[M + H]⁺: 453.0849, Found: 453.0837.

Optical Rotation: $[\alpha]_D^{25} = -298.8^{\circ}$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 6.209 min (major), t_R = 7.791 min (minor), 94% ee.

(S)-3,14-dibromo-11-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3k)

Compound **3k** was synthesized in 52% yield (142 mg, 0.6 mmol scale) under condition [A]. **3k** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA = 20:1)

R

3k

¹**H NMR** (600 MHz, CDCl) δ 7.91 (s, 1H), 7.87 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 8.9 Hz, 1H), 7.57 (d, *J* = 8.8 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 8.9 Hz, 1H), 6.98 (s, 1H), 5.34 – 5.27 (m, 1H), 3.20 – 3.08 (m, 2H), 2.82 (d, *J* = 12.3 Hz, 1H), 2.52 (d, *J* = 12.1 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl) δ 151.92, 139.23, 138.33, 135.81, 134.18, 130.12, 130.11, 130.02, 129.80, 129.57, 128.97, 128.55, 128.45, 128.34, 127.29, 121.69, 119.24, 117.09, 115.88, 84.21, 40.53, 35.20, 21.39.

HRMS (APCI) m/z Calcd for $C_{22}H_{17}Br_2O^+[M + H]^+$: 456.9620, Found: 456.9612.

Optical Rotation: $[\alpha]_D^{25} = -221^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 6.083 min (major), t_R = 6.910 min (minor), 93% ee.

Compound **31** was synthesized in 66% yield (191 mg, 0.6 mmol scale) under condition [A]. **31** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.6$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 7.99 (s, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 8.7 Hz, 1H), 7.61 – 7.52 (m, 3H), 7.44 – 7.28 (m, 3H), 7.15 – 7.04 (m, 2H), 6.90 (dd, J = 9.1, 2.6 Hz, 1H), 5.36 – 5.29 (m, 1H), 3.23 – 3.12 (m, 2H), 2.80 (d, J = 12.3 Hz, 1H), 2.58 (dd, J = 12.3, 3.6 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 162.26 (d, *J* = 250.2 Hz), 152.30, 138.64 (d, *J* = 7.9 Hz), 137.28 (d, *J* = 3.2 Hz), 135.10, 132.02 (d, *J* = 8.7 Hz), 131.59, 131.52, 129.44, 128.45, 128.35, 128.13, 126.78, 123.47, 121.46, 118.82, 118.15, 116.45 (d, *J* = 21.9 Hz), 114.65 (d, *J* = 21.8 Hz), 114.55, 89.97, 89.23, 83.79, 40.62, 35.20.

HRMS (APCI) *m/z* Calcd for C₂₉H₁₉BrFO⁺[M + H]⁺: 481.0598, Found: 481.0587.

Optical Rotation: $[\alpha]_D^{25} = -223.8^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel OD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), $t_R = 15.877$ min (major), $t_R = 18.989$ min (minor), 94% ee.

H₃C H₃C

(S)-14-bromo-11-methyl-2-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3m)
Compound **3m** was synthesized in 65% yield (177 mg, 0.6 mmol scale) under condition [A]. **3m** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.5$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.21 (d, *J* = 1.7 Hz, 1H), 7.85 – 7.82 (m, 3H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.62 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.53 – 7.49 (m, 3H), 7.41 – 7.37 (m, 1H), 7.21 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.99 (d, *J* = 1.7 Hz, 1H), 5.33 – 5.30 (m, 1H), 3.18 (d, *J* = 7.3 Hz, 2H), 2.84 (dd, *J* = 12.2, 1.7 Hz, 1H), 2.57 – 2.55 (m, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 152.00, 141.46, 139.09, 138.55, 138.45, 135.98, 134.74, 130.11, 130.09, 129.06, 128.94, 128.77, 128.39, 127.66, 127.57, 127.27, 124.97, 123.20, 121.76, 118.16, 115.51, 84.10, 40.61, 35.38, 21.39.

HRMS (APCI) *m*/*z* Calcd for C₂₈H₂₂BrO⁺ [M + H] ⁺: 453.0849, Found: 453.0839.

Optical Rotation: $[\alpha]_D^{25} = -457.4^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 6.358 min (major), t_R = 7.395 min (minor), 93% ee.

(S)-14-bromo-2-(2-methoxyphenyl)-11-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3n)

Compound **3n** synthesized in 62% yield (180 mg, 0.6 mmol scale) under condition [A]. **3n** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.5$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 2H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 8.8 Hz, 1H), 7.03 (d, *J* = 8.3 Hz, 1H), 6.98 (s, 1H), 5.33 – 5.27 (m, 1H), 3.85 (s, 3H), 3.17 (d, *J* = 7.2 Hz, 2H), 2.80 (d, *J* = 12.1 Hz, 1H), 2.52 (dd, *J* = 12.2, 3.5 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 156.76, 151.68, 138.99, 138.59, 136.41, 136.00, 134.88, 131.47, 131.11, 130.06, 130.02, 129.02, 128.84, 128.67, 128.33, 127.48, 127.08, 126.93, 125.81, 121.77, 120.89, 117.96, 115.31, 111.24, 84.03, 55.59, 40.66, 35.32, 21.38.

HRMS (APCI) *m*/*z* Calcd for C₂₉H₂₄BrO₂⁺[M + H]⁺: 483.0954, Found: 483.0941.

Optical Rotation: $[\alpha]_D^{25} = -343.8^{\circ}$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 7.791 min (major), t_R = 11.510 min (minor), 97% ee.

(S)-14-bromo-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3o (3a-3))

Compound **30 (3a-3)** was synthesized in 85% yield (186 mg, 0.6 mmol scale) under condition [A]. **30 (3a-3)** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.12 (d, J = 8.0 Hz, 1H), 6.62 (s, 1H), 3.08 (d, J = 13.3 Hz, 1H), 2.53 (d, J = 13.3 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 151.42, 148.35, 133.63, 131.82, 131.35, 130.75, 129.36, 129.17, 128.42, 128.04, 126.65, 126.05, 124.58, 124.14, 123.77, 122.00, 117.40, 115.75, 110.81, 34.94.

HRMS (APCI) m/z Calcd for C₂₀H₁₄BrO₂⁺[M + H]⁺: 365.0172, Found: 365.0160.

Optical Rotation: $[\alpha]_D^{25} = -388^\circ$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 5.530 min (major), t_R = 6.333 min (minor), 96% **ee**.

(S)-14-bromo-3-phenyl-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3p)

Compound **3p** was synthesized in 85% yield (225 mg, 0.6 mmol scale) under condition [A]. **3p** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Pale yellow solid. ($R_f = 0.4$, PE/DCM = 1:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.6 Hz, 1H), 8.01 (s, 1H), 7.83 (d, *J* = 8.6 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.41 – 7.30 (m, 2H), 7.29 – 7.24 (m, 2H), 7.12 (d, *J* = 8.1 Hz, 1H), 6.62 (s, 1H), 3.08 (d, *J* = 13.2 Hz, 1H), 2.53 (d, *J* = 13.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 151.41, 148.45, 140.99, 136.89, 133.59, 131.75, 131.35, 130.78, 129.65, 129.42, 128.82, 127.59, 127.27, 127.21, 127.17, 125.91, 125.80, 124.60, 123.68, 122.01, 117.83, 115.86, 110.85, 34.93.

HRMS (APCI) *m/z* Calcd for C₂₆H₁₈BrO₂⁺[M + H]⁺: 441.0485, Found: 441.0478.

Optical Rotation: $[\alpha]_D^{25} = -265.4^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel AS-H (Hexane/*i*-PrOH = 94:6, flow rate = 1.0 mL/min, wave length = 254 nm), $t_R = 10.868 \text{ min}$ (major), $t_R = 14.490 \text{ min}$ (minor), 93% **ee**.

3q

(S)-3,14-dibromo-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3q)

Compound **3q** was synthesized in 79% yield (211 mg, 0.6 mmol scale) under condition [A]. **3q** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Gray solid. ($R_f = 0.6$, PE/EA = 20:1)

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.89 (d, *J* = 8.9 Hz, 1H), 7.68 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.61 (s, 1H), 3.07 (d, *J* = 13.2 Hz, 1H), 2.51 (d, *J* = 13.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 151.31, 148.61, 133.42, 131.35, 131.19, 130.91, 130.21, 129.96, 129.38, 128.38, 126.95, 124.69, 123.89, 122.02, 118.51, 117.90, 116.28, 110.83, 34.79.

HRMS (APCI) *m*/*z* Calcd for C₂₀H₁₃Br₂O₂⁺[M + H]⁺: 444.9256, Found: 444.9247

Optical Rotation: $[\alpha]_D^{25} = -345.4^\circ (c = 0.5, acetone).$

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 8.791 min (major), t_R = 13.349 min (minor), 96% ee.

Br MeO

(S)-14-bromo-2-methoxy-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3r)

Compound **3r** was synthesized in 84% yield (199 mg, 0.6 mmol scale) under condition [A]. **3r** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA= 20:1)

¹**H** NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.9 Hz, 2H), 7.64 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.37 – 7.30 (m, 1H), 7.30 – 7.26 (m, 1H), 7.25 (s, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 7.10 – 7.02 (m, 2H), 6.61 (d, *J* = 1.9 Hz, 1H), 4.00 (s, 3H), 3.07 (d, *J* = 13.2 Hz, 1H), 2.53 (dd, *J* = 13.2, 2.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 157.97, 151.51, 148.98, 133.67, 132.04, 131.29, 130.74, 129.66, 129.47, 129.07, 124.61, 124.53, 122.91, 122.02, 116.99, 115.57, 114.83, 110.75, 105.20, 55.47, 35.14.

HRMS (**APCI**) *m*/*z* Calcd for C₂₁H₁₆BrO₃⁺[M + H]⁺: 395.0277, Found: 395.0265.

Optical Rotation: $[\alpha]_D^{25} = -199.6^{\circ}$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 8.998 min (major), t_R = 11.038 min (minor), 93% ee.

(S, Z)-15-bromo-9,10-dihydro-8H-8,16-methanobenzo[f]naphtho[2,1-b]oxecine (3s)

Compound **3s** was synthesized in 33% yield (75 mg, 0.6 mmol scale) under condition [A]. **3s** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.5$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.18 (d, *J* = 8.8 Hz, 1H), 4.73 – 4.70 (m, 1H), 3.07 (t, *J* = 13.5 Hz, 1H), 2.72 – 2.67 (m, 1H), 2.63 (d, *J* = 12.6 Hz, 1H), 2.52 – 2.43 (m, 2H), 1.81 – 1.74 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 152.97, 141.81, 140.15, 130.40, 129.49, 129.45, 129.18, 128.92, 128.59, 128.38, 128.15, 126.50, 126.48, 125.73, 123.54, 122.59, 118.64, 118.43, 73.90, 36.14, 35.34, 27.53.

HRMS (APCI) *m*/*z* Calcd for C₂₂H₁₈BrO⁺[M + H]⁺: 377.0536, Found: 377.0521.

Optical Rotation: $[\alpha]_D^{25} = -442.4^{\circ}$ (*c* = 0.55, DCM).

HPLC analysis: Chiralcel OD-H (Hexane/*i*-PrOH = 99:1, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 8.891 min (major), t_R = 12.790 min (minor), 93% ee.

(S, Z)-15-bromo-12-methyl-9,10-dihydro-8H-8,16-methanobenzo[f]naphtho[2,1-b]oxecine (3t)

Compound **3t** was synthesized in 35% yield (82 mg, 0.6 mmol scale) under condition [A]. **3t** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. ($R_f = 0.5$, PE/EA = 20:1)

3Ť

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.38 (t, 1H), 7.18 (d, J = 8.8 Hz, 1H), 7.16 – 7.09 (m, 2H), 4.73 – 4.69 (m, 1H), 3.03 (t, J = 13.5 Hz, 1H), 2.67 – 2.62 (m, 2H), 2.50 – 2.42 (m, 2H), 2.38 (s, 3H), 1.76 (t, J = 14.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 152.99, 141.67, 139.08, 137.42, 130.17, 130.13, 129.41, 128.91, 128.44, 128.41, 128.12, 127.29, 126.54, 125.67, 123.50, 122.70, 118.91, 118.43, 74.02, 36.12, 35.39, 27.50, 21.34.

HRMS (APCI) *m*/*z* Calcd for C₂₃H₂₀BrO⁺[M + H]⁺: 391.0692, Found: 391.0683.

Optical Rotation: $[\alpha]_D^{25} = -266.6^{\circ} (c = 0.5, DCM).$

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 4.950 min (major), t_R = 5.573 min (minor), 94% ee.

(S, Z)-3,15-dibromo-9,10-dihydro-8H-8,16-methanobenzo[f]naphtho[2,1-b]oxecine (3u)

Compound **3u** was synthesized in 32% yield (88 mg, 0.6 mmol scale) under condition [A]. **3u** was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.02 – 7.86 (m, 2H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.61 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.37 – 7.28 (m, 3H), 7.19 (d, *J* = 8.8 Hz, 1H), 4.75 – 4.70 (m, 1H), 3.03 (t, *J* = 13.5 Hz, 1H), 2.69 (dd, *J* = 14.1,

7.0 Hz, 1H), 2.63 (d, *J* = 12.7 Hz, 1H), 2.49 (dd, *J* = 15.2, 6.9 Hz, 1H), 2.44 (dd, *J* = 12.7, 8.7 Hz, 1H), 1.78 (t, *J* = 14.1 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 153.29, 141.71, 139.93, 130.04, 130.01, 129.92, 129.48, 129.31, 129.01, 128.55, 128.53, 128.27, 126.93, 126.56, 122.66, 119.56, 119.13, 117.23, 74.09, 36.08, 35.18, 27.49.

HRMS (APCI) *m/z* Calcd for C₂₂H₁₇Br₂O⁺[M + H]⁺: 456.9620, Found: 456.9609.

Optical Rotation: $[\alpha]_D^{25} = -388^\circ (c = 0.3, DCM).$

HPLC analysis: Chiralcel ADAD-H (Hexane/*i*-PrOH = 99:1, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 16.659 min (minor), t_R = 19.382 min (major), 93% **ee**.

Ph

 $(S, Z) \textbf{-15-bromo-2-(phenylethynyl)-9, 10-dihydro-8H-8, 16-methanobenzo[f]naphtho[2, 1-b] oxecine (3v) and a standard structure (3v) and (3v) and (3v) and (3v) are structure (3v) and (3v) are structure (3v) are structur$

Compound 3v was synthesized in 33% yield (95 mg, 0.6 mmol scale) under condition [A]. 3v was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA = 20:1)

¹**H** NMR (600 MHz, CDCl₃) δ 8.27 (s, 1H), 7.76 (dd, *J* = 16.8, 8.6 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 3H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.41 – 7.35 (m, 3H), 7.33 (d, *J* = 5.7 Hz, 3H), 7.19 (d, *J* = 8.7 Hz, 1H), 4.74 – 4.72 (m, 1H), 3.05 (s, 1H), 2.70 (d, *J* = 7.1 Hz, 1H), 2.64 (s, 1H), 2.51 – 2.45 (m, 2H), 1.79 (d, *J* = 14.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 153.56, 141.71, 140.05, 131.75, 129.98, 129.93, 129.44, 129.29, 129.24, 128.73, 128.35, 128.29, 128.24, 128.13, 126.54, 126.24, 123.47, 122.45, 120.55, 119.18, 119.08, 90.39, 89.63, 74.07, 36.14, 35.21, 27.50. **HRMS (APCI)** *m*/*z* Calcd for C₃₀H₂₂BrO⁺[M + H]⁺: 477.0849, Found: 477.0841.

Optical Rotation: $[\alpha]_D^{25} = -411.4^{\circ}$ (*c* = 0.5, DCM).

HPLC analysis: Chiralcel ADAD-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 10.129 min (major), t_R = 10.547 min (minor), 92% **ee**.

(R,Z) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 6, 7 - dihydro - 5H - 7, 15 - methanobenzo[e]naphtho[1,2-i][1,4] oxasilecine (3w) - 16 - bromo - 5, 5 - dimethyl - 5, 7 - dihydro - 5, 7 - d

Compound 3w was synthesized in 52% yield (131 mg, 0.6 mmol scale) under condition [A]. 3w was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. ($R_f = 0.5$, PE/EA = 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.88 – 7.70 (m, 2H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.41 – 7.28 (m, 2H), 7.10 (d, *J* = 8.8 Hz, 1H), 4.99 – 4.90 (m, 1H), 2.88 (d, *J* = 12.6 Hz, 1H), 2.54 (dd, *J* = 12.6, 5.9 Hz, 1H), 1.51 (dd, *J* = 14.7, 7.4 Hz, 1H), 1.29 (dd, *J* = 14.7, 4.9 Hz, 1H), 0.39 (s, 3H), 0.24 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 152.28, 145.87, 138.59, 133.85, 130.36, 130.33, 129.36, 129.03, 128.82, 128.71, 128.18, 127.77, 126.60, 125.66, 123.32, 121.63, 119.10, 118.58, 75.09, 35.96, 23.81, -0.93, -1.74.

HRMS (APCI) *m/z* Calcd for C₂₃H₂₂BrOSi⁺[M + H]⁺: 421.0618, Found: 421.0607.

Optical Rotation: $[\alpha]_D^{25} = -323.3^{\circ}$ (*c* = 0.75, DCM).

HPLC analysis: Chiralcel ADAD-H (Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 7.426 min (major), t_R = 7.768 min (minor), 97% **ee**.

Unsuccessful attempt for the construction of the [6.3.1] ring system

We synthesized substrate 1x and evaluated the construction of the [6.3.1] ring system under the standard reaction conditions. Unfortunately, we did not observe the trace of the generation of the [6.3.1] ring system.

VIII. Mechanistic studies

1) Control experiments

Compound 12 was prepared according to the general procedure. The control experiment was carried out following the general procedure (Condition [A]).

1-((2-allylphenyl)ethynyl)naphthalen-2-yl acetate (12)

Compound **12** is an unknown compound, and was synthesized in 43% yield (280 mg, 2 mmol scale) following the general procedure (**Method A**).

yellow solid. ($R_f = 0.5$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.4 Hz, 1H), 7.76 – 7.66 (m, 2H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.27 – 7.12 (m, 4H), 6.06 (ddt, *J* = 16.8, 10.1, 6.6 Hz, 1H), 5.19 – 5.03 (m, 2H), 3.70 (d, *J* = 6.7 Hz, 2H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.66, 149.94, 141.54, 136.14, 133.53, 132.18, 131.00, 129.45, 128.74, 128.69, 128.01, 127.14, 126.04, 125.93, 125.83, 122.39, 121.00, 116.20, 113.07, 97.85, 86.26, 38.57, 20.75.

HRMS (ESI) *m/z* Calcd for C₂₃H₁₆NaO₂⁺[M + Na]⁺: 349.1199, Found: 349.1186.

Compound 13 was prepared according to the general procedure as described for S6. The control experiment was carried out following the general procedure (Condition [A]).

1-((2-allylphenyl)ethynyl)-2-naphthaldehyde (13)

Compound 13 was synthesized following the general procedure (Method A).

Pale yellow solid. ($R_f = 0.6$, PE/EA= 10:1)

¹**H** NMR (400 MHz, CDCl₃) δ 10.88 (s, 1H), 8.61 (dd, J = 6.3, 3.4 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.93 – 7.82 (m, 2H), 7.74 – 7.62 (m, 3H), 7.39 (t, J = 7.4 Hz, 1H), 7.31 (dd, J = 13.9, 7.1 Hz, 2H), 6.16 – 6.03 (m, 1H), 5.20 – 5.01 (m, 2H), 3.75 (d, J = 6.0 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 192.09, 142.12, 136.16, 135.79, 134.19, 133.14, 132.71, 129.59, 129.34, 129.31, 128.86, 128.47, 127.67, 127.56, 127.27, 126.43, 122.08, 121.99, 116.56, 101.05, 86.57, 38.89.

HRMS (ESI) *m/z* Calcd for C₂₂H₁₆NaO⁺[M + Na]⁺: 319.1093, Found: 319.1105.

Compound 14 was prepared according to the general procedure as following. The control experiment was carried out following the general procedure (Condition [A]).

General procedure for the synthesis of 14:

To a solution of the **13** (1.48 g, 5.0 mmol, 1.0 equiv.) in methanol (0.5 M) was added NaBH₄ (190 mg, 5 mmol, 1.0 equiv.) under a nitrogen atmosphere at 0°C. After 30 min, the mixture was quenched with saturated aqueous NHCl₄ solution, extracted with EA, and then washed 3 times with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (PE/EA = 10:1) to afford compound **14** (90% yield).

(1-((2-allylphenyl)ethynyl)naphthalen-2-yl)methanol (14)

Pale yellow solid. ($R_f = 0.4$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.3 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.71 – 7.44 (m, 4H), 7.36 – 7.19 (m, 3H), 6.18 – 6.02 (m, 1H), 5.26 – 4.96 (m, 4H), 3.73 (d, *J* = 6.3 Hz, 2H), 2.28 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.59, 141.19, 136.44, 133.27, 132.54, 132.48, 129.12, 128.90, 128.80, 128.18, 126.97, 126.27, 126.14, 125.11, 122.69, 118.40, 116.28, 98.30, 88.55, 64.32, 38.82.

HRMS (ESI) *m/z* Calcd for C₂₂H₁₇O⁻[M - H]⁻: 297.1285, Found: 297.1279.

2) Density Functional Theory (DFT) Experiments

Computational Methods.

All density functional theory (DFT) calculations were performed with the Gaussian 09^1 software package. Geometries were optimized in toluene with the SMD solvation model² using the B3-LYP-D3³ functional and a basis set of $6-31G(d)^4$. Vibrational frequencies were computed at the same level to evaluate its zero-point vibrational energy and thermal corrections at 298 K, and to check whether each optimized structure is a transition state or not. The single-point energies and solvent effects in ethylethanoate were computed at the M06-2X level of theory with the $6-311+G(d,p)^5$ basis set, using the solvent-phase optimized structures. Intrinsic reaction coordinate (IRC) calculations have demonstrated that the transition state connects two corresponding intermediates along the reaction coordinate.

B3-LYP-D3 and M06-2X calculated absolute energies, and free energies of all structures

Geometry	$E_{(elec-B3-LYP-D3)}^{1}$	$G_{\left(\text{corr-B3-LYP-D3}\right)^2}$	$H_{(corr-B3-LYP-D3)}^{3}$	$E_{(solv-M06-2X)}^4$	IF^5
VQM	-3495.19	0.2686	0.3444	-3497.78	
TS1	-5193.34	0.7559	0.8985	-5195.68	-326.12 i
TS2	-3495.17	0.2717	0.3429	-3497.75	-382.09 <i>i</i>
TS3	-3495.17	0.2733	0.3431	-3497.74	-388.57 i
P1	-3495.25	0.2818	0.3482	-3497.85	
P2	-3495.27	0.2813	0.3482	-3497.86	
cat	-1698.13	0.4576	0.5532	-1697.90	
int1	-5193.35	0.7493	0.9001	-5195.70	
OMe-TS2	-3609.70	0.3035	0.3786	-3612.27	-368.24 i
OMe-TS3	-3609.71	0.3026	0.3792	-3612.28	-184.53 i
O-TS2	-3531.07	0.2470	0.3185	-3533.66	-314.23 i
O-TS3	-3531.06	0.2486	0.3182	-3533.65	-406.59 i

¹The electronic energy calculated by B3-LYP-D3 in ethylethanoate solvent. ²The thermal correction to Gibbs free energy calculated by B3-LYP-D3 in ethylethanoate solvent. ³The thermal correction to enthalpy calculated by B3-LYP-D3 in ethylethanoate solvent. ⁴The electronic energy calculated by M06-2X in ethylethanoate solvent. ⁵The B3-LYP-D3 calculated imaginary frequencies for the transition states.

TS1

TS2

b. Optimized transition state structures associated with pathway A-1 and pathway A-2 for three different substituted VQM intermediates

References:

- 9 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J.Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R.Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F.Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C.Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- 2. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 3. A. D. Becke, J. Chem. Phys. 1993, 98, 5648 5652; (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. (b) Hariharan, P. C.; Pople, J. A. *Theor. Chim. Acta* 1973, 28, 213-222. (c) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
- 5. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.

Cartesian coordinates of the structures

C	-3.91548500	2.42402200	-0.33569900
С	-4.33148900	1.68027000	1.79159100
С	-3.88788000	0.35060000	1.48183400
С	-3.43897100	0.09423400	0.14069200
С	-3.45294800	1.14849900	-0.74692000
Н	-5.10344000	2.97636700	3.32356600
Н	-3.92324900	3.24256100	-1.05508700
С	-4.77237700	1.96460300	3.10779800
С	-3.89984000	-0.62801400	2.50307700
Н	-3.11172600	1.03191100	-1.76876700
С	-4.33690100	-0.31699000	3.78212100
С	-4.77854100	0.99746200	4.08879200
Н	-3.55391400	-1.63954500	2.32039900
Н	-5.11817400	1.24972100	5.08650900
Ν	-4.34385900	2.69894100	0.87801500
0	-4.30884800	-1.33418500	4.68596000
С	-4.70411400	-1.07190600	6.03042500
Н	-5.75394900	-0.75668800	6.09189200
Н	-4.58462400	-2.01743000	6.56392700
Н	-4.06618800	-0.31160800	6.49935900
С	-2.89089800	-1.28422800	-0.21692500
Н	-3.53042800	-2.04362600	0.23683800
Ν	-1.57586500	-1.41550500	0.40109300
Н	-0.85416200	-0.87034000	-0.07127300
С	-1.21237700	-2.51422700	1.10860700
С	-2.79908600	-1.55622100	-1.73387700
С	-4.18896100	-1.53567800	-2.43298000
Н	-2.15553900	-0.78450900	-2.16072300
С	-2.96590600	-3.99258700	-1.78650400
С	-1.69909400	-2.81092000	-3.44299500
С	-4.19540000	-2.64543000	-3.50173500
Н	-4.99479200	-1.71869500	-1.70966500
Н	-4.38105700	-0.55835400	-2.88469300
Н	-2.35329400	-4.89462500	-1.89408400
Н	-3.29809700	-3.96435700	-0.74590100
С	-4.16646700	-4.00650600	-2.78082400
С	-2.91402900	-2.52273000	-4.38252800
Н	-1.26898600	-3.79058800	-3.67776500
Н	-0.90022700	-2.07638600	-3.57235300

Н	-5.08832800	-2.56276300	-4.13198300
Н	-4.06466100	-4.81752600	-3.51324700
Н	-5.11203800	-4.16765200	-2.24884300
Н	-2.97505400	-3.31366600	-5.14408700
Ν	-2.09061800	-2.82639700	-2.02092500
С	-2.89739700	-1.20476900	-5.12294800
С	-2.04567000	-0.18372800	-4.98800400
Н	-3.71627500	-1.09553500	-5.83794700
Н	-2.15943300	0.72167200	-5.58014900
Н	-1.20556300	-0.20371500	-4.29868100
0	-2.00169900	-3.39200700	1.47728100
С	0.25688800	-2.59977700	1.42201400
С	1.04546400	-1.46488400	1.65082800
С	0.85030700	-3.86938100	1.43803200
С	2.41788600	-1.59234200	1.85569600
Н	0.59878600	-0.47620400	1.66037600
С	2.22238800	-3.99995200	1.62382600
Н	0.22726500	-4.74298700	1.27696300
С	3.00579700	-2.85655500	1.82232500
Н	3.02686400	-0.70964500	2.00744600
Н	2.68779900	-4.98068300	1.60159500
С	4.48741400	-3.01737600	2.00423800
F	5.01441200	-3.85450900	1.07401300
F	4.79523000	-3.55614900	3.21187300
F	5.15474100	-1.84737500	1.91438500
Br	2.21562200	2.18078200	1.80542400
0	0.10410300	0.06628800	-1.40140700
С	1.36165700	4.08953600	-0.21277300
С	1.27215600	-0.41958000	-1.40649100
С	3.76870900	-0.08545200	-1.17658600
С	1.86849600	2.71190800	-0.05405300
С	2.01466300	5.16223700	0.41490100
Н	2.89795300	4.96794400	1.01567700
С	2.10367700	1.76458600	-0.94318100
С	1.58573200	2.56148500	-2.83390400
Н	2.09974500	1.91140400	-3.53583400
Н	2.10425400	3.48340800	-2.58399700
С	4.90071700	0.71326600	-0.91149900
Н	4.76489300	1.77120300	-0.70489600

С	1.52805700	-1.82291800	-1.67111000
Н	0.66172100	-2.46233800	-1.81188800
С	0.23173500	2.43827200	-2.66245200
Н	-0.31134700	1.66187100	-3.19008500
С	2.41826800	0.43585700	-1.13960200
С	1.54873700	6.46474600	0.27560600
Н	2.07759400	7.27877900	0.76500600
С	3.95067000	-1.47479800	-1.43591800
С	5.25269400	-2.01476800	-1.42381400
Н	5.38096000	-3.07808300	-1.60733600
С	-0.55357000	3.22661700	-1.66378700
Н	-1.46645500	3.61331900	-2.13437300
Н	-0.89419900	2.48922000	-0.91868600
С	6.17263300	0.15883000	-0.90720400
Н	7.03335000	0.78832900	-0.69765700
С	0.40230500	6.73703400	-0.48425200
С	-0.13632100	8.14117900	-0.60212000
Н	-0.80249200	8.37485800	0.23954300
Н	-0.71442800	8.27485700	-1.52277000
Н	0.67075000	8.88215300	-0.59176100
С	0.20281100	4.34417000	-0.98290900
С	2.79729600	-2.31026500	-1.67305100
Н	2.97069000	-3.37081400	-1.84236400
С	6.35343200	-1.21188400	-1.16412500
Н	7.35111700	-1.64135500	-1.15134300
С	-0.24612300	5.66276900	-1.10470700
Н	-1.13834900	5.85514100	-1.69665800

Br	0.28872400	-1.66783500	1.72118600
0	-1.02579100	2.60678300	1.20027400
С	2.15794200	-0.28984800	-0.03773800

C	-1.94173900	1.88058900	0.74676900
С	-2.69250400	-0.19122500	-0.51956400
С	0.72977600	-0.35260800	0.33304800
С	2.87213700	-1.46600300	-0.32193800
Н	2.36267900	-2.42287300	-0.26151400
С	-0.30210100	0.35023400	-0.10045500
С	0.40895500	1.67792600	-1.54598300
Н	-0.47970500	1.95101900	-2.10738700
Н	1.01184400	0.88839900	-1.98706100
С	-2.42881400	-1.40032200	-1.19917000
Н	-1.39940500	-1.72775800	-1.31337500
С	-3.34883100	2.25619400	0.83315300
Н	-3.57590000	3.18936200	1.34116300
С	0.95080800	2.57274500	-0.65910000
Н	0.45733600	3.52090700	-0.47599300
С	-1.64413600	0.62080400	0.06349700
С	4.21484800	-1.42085800	-0.67575000
Н	4.74381600	-2.34486900	-0.89691500
С	-4.04568900	0.22908300	-0.36837200
С	-5.08173900	-0.57069900	-0.89194800
Н	-6.11125000	-0.24263600	-0.76696000
С	2.11921500	2.25123400	0.21888200
Н	2.82875400	3.08818500	0.21446200
Н	1.70519800	2.21463100	1.24032100
С	-3.46481700	-2.16734400	-1.71228300
Н	-3.24099400	-3.09442300	-2.23366700
С	4.89620400	-0.19636800	-0.74572700
С	6.35948600	-0.15243400	-1.11039000
Н	6.97147800	-0.64225800	-0.34180200
Н	6.71849300	0.87614300	-1.21835600
Н	6.54924000	-0.67987800	-2.05336100
С	2.82862300	0.95355500	-0.09919200
С	-4.32819700	1.46819600	0.31891300
Н	-5.37117400	1.76538000	0.41229000
С	-4.80076100	-1.75503000	-1.55855800
Н	-5.60821400	-2.36187400	-1.95878800
С	4.18196500	0.97105800	-0.45696300
Н	4.69502300	1.92923100	-0.50355700

Br	0.26080300	-1.57895800	1.88228900
0	-1.53935800	2.79123000	1.14372500
С	2.13581100	-0.23925700	0.07896200
С	-2.25243400	1.88518700	0.63075000
С	-2.45029500	-0.34268800	-0.54866100
С	0.73475500	-0.21370200	0.53633600
С	2.82838300	-1.44687700	-0.09141500
Н	2.33835800	-2.38494100	0.14734100
С	-0.26884400	0.56947900	0.18651000
С	-0.11814500	3.39713900	-0.52203100
Н	-0.97347500	3.58213500	-1.16230100
Н	0.13989000	4.18105600	0.18096900
С	-1.90771100	-1.52611700	-1.09280600
Н	-0.83678100	-1.69004900	-1.05094700
С	-3.68562100	2.04624300	0.46538400
Н	-4.12492800	2.96348500	0.84637600
С	0.73144100	2.34153700	-0.75438000
С	-1.63786000	0.66928600	0.12216900
С	4.13760700	-1.45951700	-0.56730500
Н	4.64868600	-2.41014500	-0.69816800
С	-3.85865600	-0.13890100	-0.63286200
С	-4.66913400	-1.12339900	-1.23591400
Н	-5.74234900	-0.95607200	-1.28884800
С	2.06758200	2.28349300	-0.04133000
Н	2.70685900	3.10047000	-0.39870900
Н	1.89511600	2.46292400	1.02943100
С	-2.72398700	-2.47805200	-1.68683400
Н	-2.28189700	-3.38076300	-2.09991700
С	4.80126700	-0.26617200	-0.87449700

С	6.23132100	-0.26161600	-1.35537100
Н	6.91714100	0.01941700	-0.54455600
Н	6.37956200	0.46117000	-2.16628000
Н	6.53710100	-1.24897000	-1.71728300
С	2.78916600	0.97315300	-0.22994700
С	-4.43965500	1.07383700	-0.10866500
Н	-5.51737300	1.19619500	-0.19573900
С	-4.11399700	-2.28207500	-1.75720000
Н	-4.74865600	-3.03258700	-2.22016200
С	4.10267200	0.93698600	-0.69794600
Н	4.59992000	1.87682900	-0.93050900
Н	0.64760400	1.80571900	-1.69830300

Cat 6

С	3.43183000	1.53371400	2.78828200
С	2.63589800	3.19858400	1.42754300
С	2.01109900	2.26134400	0.53722400
С	2.15325400	0.86316800	0.83997400
С	2.86007300	0.52399200	1.97347000
Н	3.00697200	5.27756100	1.83232000
Н	3.99048700	1.24512300	3.67806700
С	2.52440300	4.58388100	1.14999000
С	1.29525800	2.75372500	-0.57892900
Н	3.00148500	-0.51058700	2.26551600
С	1.20324600	4.11643700	-0.82122000
С	1.82745700	5.04399500	0.05469000
Н	0.79278600	2.08545400	-1.26944600
Н	1.76097700	6.10989500	-0.12908300
Ν	3.33779300	2.82296900	2.53991100
0	0.49372300	4.47890400	-1.92361200
С	0.37277100	5.86415900	-2.24073400
Н	1.35220400	6.32611800	-2.42009900
Н	-0.21581600	5.90766800	-3.15956900

Н	-0.15290400	6.41623400	-1.45094500
С	1.48573500	-0.17334700	-0.05838200
Н	1.59828000	0.14991000	-1.09413800
Ν	0.04856200	-0.16853800	0.20617100
Н	-0.23926500	-0.53611500	1.10413900
С	-0.87961400	-0.06811800	-0.78222000
С	2.07603400	-1.59389100	0.06136200
С	3.57849600	-1.64035400	-0.35036700
Н	1.97554000	-1.91370600	1.10494500
С	1.53913600	-2.44890600	-2.16485600
С	1.69834300	-3.92655200	-0.28309600
С	3.80056500	-2.91052400	-1.19329900
Н	3.84721900	-0.75723300	-0.94473200
Н	4.22230400	-1.63792200	0.53352500
Н	0.86134400	-3.14278400	-2.67442100
Н	1.24697600	-1.44371600	-2.47708900
С	3.02578500	-2.75877100	-2.51473900
С	3.23994000	-4.14888900	-0.42912000
Н	1.15636900	-4.64988700	-0.90137400
Н	1.36067700	-4.07571600	0.74693600
Н	4.86984700	-3.05015900	-1.38990800
Н	3.10934100	-3.68004500	-3.10479300
Н	3.46427100	-1.95034100	-3.11258600
Н	3.41384400	-5.02245400	-1.07382100
Ν	1.28765400	-2.57712700	-0.71363300
С	4.02167000	-4.38565800	0.84177400
С	3.61101600	-4.28881500	2.10908600
Н	5.06882100	-4.64180800	0.66454900
Н	4.29635800	-4.47155900	2.93373800
Н	2.59045000	-4.03648500	2.38527000
0	-0.59022100	0.17270100	-1.95893000
С	-2.31404500	-0.23944900	-0.36142100
С	-2.76786600	0.03672800	0.93668200
С	-3.22735300	-0.66716200	-1.33388500
С	-4.11230800	-0.12912100	1.26091800
Н	-2.08405900	0.40887700	1.69356500
С	-4.57015300	-0.84318000	-1.01251800
Н	-2.87028100	-0.86083100	-2.33970600
С	-5.00984200	-0.57622400	0.28726500

Н	-4.46214600	0.08901300	2.26486600
Н	-5.27190300	-1.18812000	-1.76452400
С	-6.46713100	-0.70179000	0.63237200
F	-7.11292700	-1.57379700	-0.17429400
F	-7.11397900	0.48561900	0.52020800
F	-6.65069900	-1.12006800	1.90707600

OMe-TS2

Br	0.42836000	2.35337200	-1.23070500
0	-0.88520400	-1.99667900	-2.02577300
С	2.23774500	0.42317500	0.00262100
С	-1.82651000	-1.42389200	-1.40893100
С	-2.61357200	0.29224600	0.26729500
С	0.82204000	0.64090200	-0.34958500
С	2.98252200	1.40851500	0.67112200
Н	2.50836700	2.35383700	0.91704100
С	-0.20151200	-0.18012500	-0.19023400
С	0.39252400	-1.88677800	0.73748100
Н	1.03133700	-1.32494700	1.41903300
С	-2.37420000	1.33552300	1.19151900
Н	-1.35221100	1.65623700	1.36980300
С	-3.21710300	-1.81923700	-1.57339600
Н	-3.42132700	-2.62663400	-2.27109700
С	0.93496600	-2.46427900	-0.40090900
Н	0.48737100	-3.36384800	-0.80249800
С	-1.55144600	-0.35756400	-0.46310900
С	4.30983300	1.18880100	1.01917200
Н	4.86370400	1.96462400	1.54250600
С	-3.95935600	-0.11485700	0.02743900
С	-5.01033600	0.53206500	0.71173600
Н	-6.03315000	0.21607400	0.51858400
С	2.12275600	-1.88378800	-1.09512200
Н	2.81149300	-2.69410400	-1.36340800
Н	1.74207300	-1.48306800	-2.04899500

S63

С	-3.42371800	1.94977900	1.85718300
Н	-3.21854900	2.74989400	2.56375600
С	4.94359100	-0.02216600	0.70150200
С	6.39183700	-0.24799300	1.05950600
Н	7.05005500	0.38340300	0.44800400
Н	6.68995000	-1.28962400	0.90162600
Н	6.58696500	0.00770400	2.10799900
С	2.86249000	-0.79961700	-0.33473900
С	-4.21680800	-1.18219300	-0.90721200
Н	-5.25295400	-1.47537300	-1.06600500
С	-4.75232200	1.54954100	1.61779400
Н	-5.57087600	2.03845600	2.13879700
С	4.19971300	-0.99728800	0.02825400
Н	4.67653000	-1.93946500	-0.23326300
0	-0.69158100	-2.49665900	1.28291800
С	-1.10418900	-1.95721900	2.54330100
Н	-1.27990800	-0.87791500	2.47774300
Н	-2.03882600	-2.45733300	2.80441800
Н	-0.35202600	-2.16055100	3.31735300

	OMe-TS3		
Br	-0.74218600	-2.14861300	-1.65862900
0	1.59308600	1.83733000	-1.96851600
С	-2.35449200	-0.26608400	-0.08413000
С	2.21948900	1.03937200	-1.23913600
С	2.26330700	-0.76613700	0.55926400
С	-0.97602700	-0.52080200	-0.55121800
С	-3.22067800	-1.32853400	0.21591100
Н	-2.88419900	-2.35004500	0.07683600
С	0.15480200	0.11989500	-0.34991600
С	0.42615700	2.97411900	0.17051500
Н	0.38665700	3.63934400	-0.68782200
С	1.63123700	-1.65469500	1.45239800
Н	0.54718900	-1.68081700	1.49779900
С	3.67871200	1.00625200	-1.20859600
Н	4.19466500	1.68458500	-1.88213900

С	-0.61048800	2.16040500	0.51814900
С	1.51773700	0.10765600	-0.34460000
С	-4.51019200	-1.09869300	0.69108200
Н	-5.15246200	-1.94553300	0.91994600
С	3.68570400	-0.73921800	0.51858300
С	4.42235700	-1.59723800	1.35918300
Н	5.50868600	-1.56813400	1.31498400
С	-1.93204200	2.24087800	-0.20719600
Н	-2.46736000	3.16035400	0.06237700
Н	-1.74015800	2.29102900	-1.28816300
С	2.37636300	-2.48995400	2.27478200
Н	1.86647600	-3.16605100	2.95601700
С	-4.98434700	0.20359200	0.87490600
С	-6.37669100	0.47772900	1.38728500
Н	-6.94622400	1.09378700	0.67988700
Н	-6.34830100	1.02684000	2.33728700
Н	-6.93472500	-0.44972700	1.55178500
С	-2.81982800	1.05745500	0.09914900
С	4.35617000	0.16581600	-0.38794100
Н	5.44460500	0.15817800	-0.39159200
С	3.77992900	-2.46607300	2.23045900
Н	4.35860300	-3.12280900	2.87407400
С	-4.11695800	1.26213400	0.56999600
Н	-4.46483500	2.28475600	0.70386800
Н	-0.57777600	1.67805700	1.49193100
0	1.57274300	2.91959300	0.85325400
С	2.60118600	3.82602900	0.41728800
Н	2.34606300	4.85166200	0.70799800
Н	3.51780000	3.51527800	0.91986300
Н	2.72676800	3.76192200	-0.66811800

	O-TS2		
Br	0.33193300	-1.59755000	1.84853100
0	-1.18336700	2.60709400	1.31243900
С	2.12891400	-0.25721400	0.00214100

С	-2.04707000	1.84690100	0.82757500
С	-2.68077800	-0.20436700	-0.54856600
С	0.71724900	-0.30507300	0.42608100
С	2.86996200	-1.43439400	-0.20921100
Н	2.38407000	-2.39195300	-0.05294900
С	-0.33729000	0.36353700	-0.00305300
С	0.44031300	1.71173600	-1.51840400
Н	-0.47122300	2.08713100	-1.96716500
Н	0.96909500	0.93173500	-2.05572900
С	-2.35179100	-1.36116300	-1.28673100
Н	-1.30882500	-1.64976300	-1.38220600
С	-3.47552900	2.14701800	0.89957400
Н	-3.75642600	3.04385400	1.44474000
С	1.05045700	2.49178300	-0.57894300
Н	0.61562900	3.40202200	-0.18761300
С	-1.68071200	0.61136900	0.11962300
С	4.19951900	-1.39509500	-0.60864600
Н	4.73612100	-2.32655500	-0.76930900
С	-4.05221100	0.16096200	-0.42892900
С	-5.03939100	-0.63698500	-1.04039400
Н	-6.08320000	-0.34872300	-0.93808700
С	-3.34062300	-2.12828700	-1.88759100
Н	-3.06378800	-3.01337900	-2.45449200
С	4.86192500	-0.17225800	-0.80396300
С	6.30757600	-0.13970600	-1.23032200
Н	6.94548300	-0.64041300	-0.49127900
Н	6.67044100	0.88562200	-1.35113600
Н	6.44755000	-0.66505600	-2.18324900
С	2.80522700	0.95938900	-0.20029100
С	-4.40492700	1.34895200	0.31572700
Н	-5.46179900	1.59889000	0.39147500
С	-4.69410400	-1.76970200	-1.76499100
Н	-5.46452400	-2.37536900	-2.23394800
С	4.14103400	1.00524900	-0.59102500
Н	4.60680400	1.97718500	-0.72231600
0	2.19717200	2.18579200	0.05214800

	O-TS3		
Br	0.26446900	-1.78877300	1.67717500
0	-1.35148100	2.70206700	1.31214600
С	2.12968500	-0.28824900	0.00201900
С	-2.14739900	1.87398100	0.78674100
С	-2.53273100	-0.25441500	-0.52229400
С	0.72735800	-0.32532700	0.44182300
С	2.92221600	-1.44010600	-0.12853000
Н	2.48462100	-2.40895600	0.08565000
С	-0.27003300	0.49195700	0.16287600
С	0.04361200	3.30094000	-0.38083800
Н	-0.83471400	3.53622100	-0.96646600
Н	0.41354300	4.04243600	0.31542500
С	-2.08493900	-1.42764800	-1.16600600
Н	-1.02467900	-1.65510000	-1.18119400
С	-3.57321900	2.12965400	0.70007600
Н	-3.93922000	3.04364800	1.15835600
С	0.80501300	2.20773500	-0.71064300
С	-1.63391000	0.65915500	0.17403100
С	4.25550500	-1.36308900	-0.51974400
Н	4.83500000	-2.27739600	-0.61588300
С	-3.92839300	0.03570700	-0.52544200
С	-4.82137000	-0.85817300	-1.15264300
Н	-5.88406300	-0.62764000	-1.14457600
С	-2.98145400	-2.28866700	-1.78213000
Н	-2.61332500	-3.18570600	-2.27271000
С	4.86214800	-0.12598300	-0.78003900
С	6.31968800	-0.03253800	-1.15580400
Н	6.94249200	0.11921000	-0.26377300
Н	6.50831600	0.81033200	-1.82961200
Н	6.66658100	-0.94901100	-1.64501600
С	2.74263100	0.94699400	-0.28252000
С	-4.41040600	1.24224300	0.10277900
Н	-5.48139500	1.43245200	0.07652600

С	-4.35900800	-2.00815000	-1.77420400
Н	-5.05701900	-2.68782400	-2.25496700
С	4.07913600	1.02806200	-0.66120300
Н	4.49849100	2.01066200	-0.85740100
Н	0.69919500	1.70803200	-1.67188400
0	2.05960300	2.13183500	-0.13757800

IX. Gram-scale preparation and transformations

A solution of **1a-2** (1.0 g, 3.52 mmol, 1.0 equiv.) and **C6** (10 mol%) in EA (0.0125M) was stirred at -78 °C for 30 min, then NBS (660 mg, 3.70 mmol, 1.05 equiv.) was added in 10 portions. After stirring at -78 °C for 12 h, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography using PE/EA eluent (30:1 to 15:1) to afford the product **3a** (831 mg, 65% yield) as a pale yellow solid.

3a (73 mg, 0.2 mmol, 1.0 equiv.) was dissolved in freshly distilled THF (2mL) at room temperature under nitrogen atmosphere. The solution was cooled to -78 °C. Titrated *n*-BuLi (0.25 mmol, 1.25 equiv.) was added dropwise. After stirred for 30 min at -78 °C, the reaction was allowed to warm to room temperature. Solvent was removed under reduced pressure. The product was then dried under vacuum and flash chromatography on a silica column (PE: EA = 20:1) to afforded compound **5** as a yellow oil in 65% yield.

8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(5)

Yellow oil. ($R_f = 0.6$, PE/EA= 20:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.19 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.52 (t, *J* = 7.0 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.31 (t, *J* = 6.4 Hz, 1H), 7.20 – 7.16 (m, 2H), 7.09 (d, *J* = 8.8 Hz, 1H), 6.76 (s, 1H), 5.54 – 5.40 (m, 1H), 3.18 (dd, *J* = 14.2, 6.3 Hz, 1H), 3.10 (dd, *J* = 14.1, 8.3 Hz, 1H), 2.97 (d, *J* = 11.5 Hz, 1H), 2.47 (d, *J* = 11.6 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 151.28, 139.53, 137.72, 137.49, 129.81, 129.63, 128.63, 128.28, 128.20, 127.82, 127.33, 127.26, 126.44, 125.69, 123.68, 123.43, 121.86, 118.41, 85.99, 40.97, 32.66.

HRMS (APCI) m/z Calcd for C₂₁H₁₇O⁺[M + H]⁺: 285.1274, Found: 285.1265.

Optical Rotation: $[\alpha]_D^{25} = -126.4^\circ$ (c = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 5.213min (major), t_R = 5.934 min (minor), 96% **ee**.

3a (73 mg, 0.2 mmol, 1.0 equiv.) and *m*-CPBA (138 mg, 0.8 mmol, 4 equiv.) was dissolved in DCM (4 mL). The mixture was stirred overnight at room temperature. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel (PE/EA = 5:1) to afford the product **6** (45.5 mg, 0.12 mmol, 60% yield) as a white solid.

White solid. ($R_f = 0.4$, PE/EA= 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 8.6 Hz, 1H), 7.60 (dd, J = 8.0, 1.4 Hz, 1H), 7.55 (d, J = 9.0 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.32 – 7.27 (m, 1H), 7.21 (dd, J = 7.6, 1.5 Hz, 1H), 7.07 (td, J = 7.5, 1.4 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.95 – 6.84 (m, 2H), 4.87 – 4.81 (m, 1H), 3.65 – 3.57 (m, 1H), 3.36 – 3.29 (m, 1H), 3.27 – 3.18 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 199.59, 151.79, 136.97, 132.59, 131.99, 131.58, 131.10, 130.05, 129.37, 128.81, 128.41, 126.90, 126.03, 125.29, 123.72, 118.84, 114.02, 71.42, 65.39, 43.45, 40.98.

HRMS (ESI) m/z Calcd for C₂₁H₁₅BrNaO₂⁺[M + Na]⁺: 401.0148, Found: 401.0148.

Optical Rotation: $[\alpha]_D^{25} = +34.6^\circ$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 8.899 min (major), t_R = 10.046 min (minor), 99% ee.

 $Pd(PPh_3)_4$ (12 mg, 0.01 mmol, 0.05 equiv.), K_2CO_3 (138 mg, 1 mmol, 5.0 equiv.), **3a** (73 mg, 0.2 mmol, 1.0 equiv.) and the boronic acid (0.24 mmol, 1.2 equiv.) was dissolved in THF (2 mL) and H_2O (0.5 mL) under nitrogen atmosphere. The mixture was stirred for 4 hours at 70 °C. Then the mixture was filtered through a pad of celite and washed with EA. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel (PE/EA = 20:1) to afford the product.

(S)-14-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(7)

White solid. ($R_f = 0.5$, PE/EA = 15:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 – 7.54 (m, 3H), 7.51 (d, J = 8.4 Hz, 1H), 7.29 (t, J = 7.4 Hz, 1H), 7.22 – 7.13 (m, 4H), 7.09 (t, J = 10.2 Hz, 2H), 7.05 – 6.90 (m, 4H), 5.51 – 5.42 (m, 1H), 3.38 (dd, J = 14.4, 6.3 Hz, 1H), 3.25 (dd, J = 14.4, 8.1 Hz, 1H), 2.94 (d, J = 11.9 Hz, 1H), 2.49 (d, J = 11.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.19, 142.50, 141.10, 136.68, 134.75, 132.04, 129.55, 128.85, 128.76, 128.41, 128.13, 127.99, 127.79, 127.48, 127.29, 126.49, 125.41, 125.08, 122.86, 121.23, 118.11, 84.83, 41.53, 34.27.

HRMS (ESI) m/z Calcd for $C_{27}H_{21}O^{+}[M + H]^{+}$: 361.1587, Found: 361.1595.

Optical Rotation: $[\alpha]_D^{25} = -176.6^{\circ}$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 8.421 min (minor), t_R = 9.627 min (major), 98% ee.

(S)-14-(anthracen-9-yl)-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(8)

White solid. ($R_f = 0.5$, PE/EA = 15:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (d, *J* = 8.7 Hz, 1H), 8.19 (s, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.79 – 7.71 (m, 1H), 7.70 – 7.49 (m, 3H), 7.42 – 7.29 (m, 2H), 7.23 (t, 2H), 7.19 – 6.88 (m, 6H), 6.71 (t, *J* = 7.4 Hz, 1H), 6.20 (t, *J* = 7.6 Hz, 1H), 5.80 – 5.70 (m, 1H), 3.96 (dd, *J* = 15.8, 4.8 Hz, 1H), 3.61 (dd, *J* = 15.9, 8.9 Hz, 1H), 3.45 (d, *J* = 11.3 Hz, 1H), 2.81 (dd, *J* = 11.5, 4.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.40, 141.76, 138.16, 136.31, 135.94, 134.02, 131.72, 131.62, 131.27, 130.64, 129.85, 128.89, 128.80, 128.67, 128.24, 128.13, 127.82, 127.52, 127.10, 126.88, 126.68, 126.00, 125.70, 125.35, 125.01, 124.79, 124.65, 124.00, 123.66, 122.50, 117.82, 86.68, 44.06, 35.39.

HRMS (ESI) m/z Calcd for C₃₅H₂₄NaO⁺ [M + Na]⁺: 483.1719, Found: 483.1743.

Optical Rotation: $[\alpha]_D^{25} = -307.3^{\circ} (c = 0.3, DCM).$

HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 6.962 min (minor), t_R = 8.522 min (major), 97% ee.

PdCl₂(PPh₃)₂ (7 mg, 0.01 mmol, 0.05 equiv.), CuI (4 mg, 0.02 mmol, 0.1 equiv.), and **3a** (73 mg, 0.2 mmol, 1.0 equiv.) were weighed and added into a schlenk tube, evacuated and backfilled with nitrogen (3 times). THF (1.0 mL) and Et₃N

(1.0 mL) were injected into the flask. Then, the mixture was stirred for 2h at 70 °C. After that, the alkyne (0.22 mmol, 1.1 equiv.) dissolved in THF (1.0 mL) was added. The resulting mixture kept stirring for 4 h at 70 °C. Then the mixture was filtered through a pad of celite. Removal of the solvent under reduced pressure afforded a residue which is purified by chromatography on silica gel (PE/EA = 20:1) to afford the product.

(S)-((8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonin-14-yl)ethynyl)trimethylsilane (9)

Yellow solid. ($R_f = 0.6$, PE/EA = 15:1)

¹**H NMR** (600 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.42 – 7.31 (m, 2H), 7.27 – 7.22 (m, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 8.9 Hz, 1H), 5.45 – 5.37 (m, 1H), 3.23 (dd, *J* = 14.6, 6.5 Hz, 1H), 3.15 (dd, *J* = 14.5, 8.3 Hz, 1H), 2.87 (d, *J* = 11.8 Hz, 1H), 2.57 (dd, *J* = 11.9, 3.7 Hz, 1H), -0.13 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 151.80, 142.24, 140.16, 137.00, 129.40, 129.36, 129.00, 128.93, 128.41, 128.03, 127.66, 127.60, 127.28, 125.26, 123.27, 122.10, 118.37, 117.97, 103.93, 100.57, 84.67, 40.46, 34.10, -0.37.

HRMS (ESI) *m*/*z* Calcd for C₂₆H₂₅OSi⁺[M + H]⁺: 381.1669, Found: 381.1676.

Optical Rotation: $[\alpha]_D^{25} = -146.0^\circ$ (c = 1.0, acetone).

HPLC analysis: Chiralcel IB-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 4.970 min (minor), t_R = 5.742 min (major), 98% ee.

Red solid. ($R_f = 0.6$, PE/EA = 15:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.9 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.20 (d, J = 7.3 Hz, 1H), 7.11 (d, J = 8.9 Hz, 1H), 5.46 – 5.39 (m, 1H), 4.06 – 3.99 (m, 4H), 3.70 (s, 5H), 3.30 – 3.15 (m, 2H), 2.90 (d, J = 13.1 Hz, 1H), 2.57 (dd, J = 11.8, 3.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 151.55, 140.41, 139.10, 136.97, 129.48, 129.40, 129.23, 128.81, 128.56, 128.01, 127.87, 127.66, 127.27, 125.29, 123.38, 122.37, 118.95, 118.31, 94.17, 85.50, 84.77, 71.61, 70.71, 69.91, 68.70, 40.53, 33.81.
HRMS (ESI) *m/z* Calcd for C₃₃H₂₄FeNaO⁺ [M + Na]⁺: 515.1069, Found: 515.1085.

Optical Rotation: $[\alpha]_D^{25} = -171.0^\circ$ (*c* = 0.2, acetone).

HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm), t_R = 6.142 min (major), t_R = 6.744 min (minor), 97% **ee**.

3a (73 mg, 0.2 mmol, 1.0 equiv.) KMnO₄ (126 mg, 0.8 mmol, 4 equiv.) and K_2CO_3 (110 mg, 0.8 mmol, 4 equiv.) was dissolved in THF (2 mL) and MeOH (2 mL). The mixture was stirred overnight at room temperature. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel (PE/EA = 5:1) to afford the product **11** (34.8 mg, 0.11 mmol, 55% yield) as a white solid.

(15S)-15-hydroxy-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonin-14(15H)-one (11)

Yellow solid. ($R_f = 0.5$, PE/EA = 3:1)

¹**H NMR** (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.7 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.9 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 8.5 Hz, 2H), 7.10 – 6.99 (m, 2H), 6.92 – 6.81 (m, 2H), 4.96 (s, 1H), 4.91 – 4.85 (m, 1H), 3.39 (dd, *J* = 16.2, 5.6 Hz, 1H), 3.15 (d, *J* = 16.2 Hz, 1H), 3.04 (dd, *J* = 14.0, 5.7 Hz, 1H), 2.58 (d, *J* = 14.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 206.62, 153.22, 136.41, 133.73, 131.52, 131.14, 130.90, 130.84, 129.14, 128.64, 128.37, 127.00, 126.47, 123.92, 123.01, 118.34, 114.36, 74.51, 71.82, 42.34, 39.75.

HRMS (ESI) m/z Calcd for $C_{21}H_{16}NaO_3^+$ [M + Na]⁺: 339.0992, Found: 339.0990.

Optical Rotation: $[\alpha]_D^{25} = +44.8^{\circ}$ (*c* = 0.5, acetone).

HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm), $t_R = 11.834$ min (major), $t_R = 15.593$ min (minor), 98% **ee**.

X. Thermal stability experiments

Thermal stability of 3a:

A solution of **3a** (5 mg, 99% ee after recrystallization) in DMF (1 mL) was heated at 120 °C. At intervals, the enantiomeric excess was determined by HPLC.

A solution of 3s (5 mg, 98% ee, after recrystallization) in DMF (1 mL) was heated at 120 °C. At intervals, the enantiomeric excess was determined by HPLC.

XI. ¹H and ¹³C NMR spectra

XII. X-ray crystallographic information

The authors thank Mr. Xiangnan Gong (Analytical and Testing Center of Chongqing University) for spectroscopic measurements.

 \equiv

3a

CCDC 2151484

Bond precision:	C-C = 0.0040 A	Wavelength=0.71073		
Cell:	a=15.1076(5)	b=10.0376(5)	c=20.6682(10)	
alpha=90	beta=90	gamma=90		
Temperature:	293 К			
	Calculated	Reported		
Volume	3134.2(2)	3134.2(2)		
Space group	P b c a	Pbca		
Hall group	-P 2ac 2ab	-P 2ac 2ab		
Moiety formula	C21 H15 Br O	C21 H15 Br O		
Sum formula	C21 H15 Br O	C21 H15 Br O		
Mr	363.23	363.24		
Dx,g cm-3	1.540	1.540		
Z	8	8		
Mu (mm-1)	2.625	2.625		
F000	1472.0	1472.0		
F000'	1470.26			
h,k,lmax	20,13,28	20,13,27		
Nref	4202	3707		
Tmin,Tmax	0.437,0.467	0.970,1.000		
Tmin'	0.404			
Correction method= # Reported T Limits: Tmin=0.970 Tmax=1.000				
AbsCorr = MULTI-SCAN				
Data completeness= 0.882	Theta(max)= 29.094			
R(reflections)= 0.0391(2444)	wR2(reflections) = 0.0899(3707)			
S = 1.038	Npar= 208			

4a

CCDC 2151483

Bond precision:	C-C = 0.0083 A	Wavelength=0.71073		
Cell:	a=7.8805(4)	b=11.2373(4)	c=17.8564(12)	
alpha=90	beta=90	gamma=90		
Temperature:	293 K			
	Calculated	Reported		
Volume	1581.28(14)	1581.28(14)		
Space group	P 21 21 21	P 21 21 21		
Hall group	P 2ac 2ab	P 2ac 2ab		
Moiety formula	C21 H15 Br O	C21 H15 Br O		
Sum formula	C21 H15 Br O	C21 H15 Br O		
Mr	363.23	363.24		
Dx,g cm-3	1.526	1.526		
Z	4	4		
Mu (mm-1)	2.601	2.601		
F000	736.0	736.0		
F000'	735.13			
h,k,lmax	10,15,24	10,15,22		
Nref	4242[2425]	3598		
Tmin,Tmax	0.358,0.424	0.770,1.000		
Tmin'	0.331			
Correction method= # Reported T Limits: Tmin=0.770 Tmax=1.000				
AbsCorr = MULTI-SCAN				
Data completeness= 1.48/0.85		Theta(max)= 29.096		
R(reflections)= 0.0487(2126)		wR2(reflections) = 0.1007(359	98)	
S = 0.981		Npar= 208		

 \equiv

3o (3a-3)

Bond precision:	C-C = 0.0076 A	Wavelength=0.7	1073
Cell:	a=8.0085(3)	b=8.9848(6)	c=21.0224(11)
alpha=90	beta=90	gamma=90	
Temperature:	295 K		
	Calculated	Reported	
Volume	1512.66(14)	1512.66(15)	
Space group	P 21 21 21	P 21 21 21	
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C20 H13 Br O2	C20 H13 Br O2	
Sum formula	C20 H13 Br O2	C20 H13 Br O2	
Mr	365.20	365.21	
Dx,g cm-3	1.604	1.604	
Z	4	4	
Mu (mm-1)	2.725	2.725	
F000	736.0	736.0	
F000'	735.16		
h,k,lmax	10,12,28	10,11,28	
Nref	4032[2317]	3463	
Tmin,Tmax	0.435,0.596	0.776,1.000	
Tmin'	0.402		
Correction method= # Report	ted T Limits: Tmin=0.776	5 Tmax=1.000	
AbsCorr = MULTI-SCAN			
Data completeness= 1.49/0.86		Theta(max)= 29.044	
R(reflections)= 0.0439(2759)		wR2(reflections) = 0.0823(3463)	
S = 1.035		Npar= 208	

3b

CCDC 2151486

Bond precision:	C-C = 0.0063 A		Wavelength=0.71073		
Cell:	a=5.5950(3)	b=10.230	b=10.2307(4) c=29.7158(
alpha=90	beta=90	g	gamma=90		
Temperature:	293 K				
	Calculated		Rep	orted	
Volume	1700.96(13)		1700	.96(13)	
Space group	P 21 21 21		P 21	21 21	
Hall group	P 2ac 2ab		P 2ac 2ab		
Moiety formula	C22 H17 Br O		C22 H17 Br O		
Sum formula	C22 H17 Br O		C22 H17 Br O		
Mr	377.26		377.26		
Dx,g cm-3	1.473		1.47	3	
Z	4		4		
Mu (mm-1)	2.421		2.421		
F000	768.0		768	8.0	
F000'	767.13				
h,k,lmax	7,13,40		7,1	3,37	
Nref	4531[2634]		3859		
Tmin,Tmax	0.551,0.559		0.831,1.000		
Tmin'	0.541				
Correction method= # Reported T Limits: Tmin=0.831 Tmax=1.000					
AbsCorr = MULTI-SCAN					
Data completeness= 1.47/0.85		The	ta(max)= 2	9.010	
R(reflections)= 0.0436(2981)		wR	2(reflection	ns) = 0.0772(3859)	
S = 1.065		Npar=218			

 \equiv

3i

Bond precision:	C-C = 0.0082 A	Wavelength=0.71073		
Cell:	a=8.7121(3)	b=8.8820(4)	c=13.2952(6)	
alpha=90	beta=98.023(4)	gamma=90		
Temperature:	293 K			
	Calculated	Repor	rted	
Volume	1018.73(7)	1018	.72(7)	
Space group	P 21	P 1 2	21 1	
Hall group	P 2yb	Р 2у	Ъ	
Moiety formula	C27 H19 Br O	C27 H19 Br O		
Sum formula	C27 H19 Br O	C27	H19 Br O	
Mr	439.32	439.	33	
Dx,g cm-3	1.432	1.43	2	
Z	2	2		
Mu (mm-1)	2.033	2.03	3	
F000	448.0	448	.0	
F000'	447.59			
h,k,lmax	11,12,18	11,	12,17	
Nref	5421[2878]	462	25	
Tmin,Tmax	0.443,0.462	0.9	81,1.000	
Tmin'	0.409			
Correction method= # Reported T Limits: Tmin=0.981 Tmax=1.000				
AbsCorr = MULTI-SCAN				
Data completeness= 1.61/0.85		Theta(max)=29.0	47	
R(reflections)= 0.0420(3735)		wR2(reflection	s) = 0.0842(4625)	
S = 1.053		Npar= 262		

3s

	wavele	Wavelength=0.71073		
Cell: a=7.6693(2) b=1	3.0042(5)	c=17.0867(8)		
alpha=90 beta=90 gamma=90)			
Temperature: 293 K				
Calculated	Reported			
Volume 1704.11(11)	1704.11(11)			
Space group P 21 21 21	P 21 21 21			
Hall group P 2ac 2ab	P 2ac 2ab			
Moiety formula C22 H17 Br O	C22 H17 Br	0		
Sum formula C22 H17 Br O	C22 H17 Br	0		
Mr 377.26	377.26			
Dx,g cm-3 1.470	1.470			
Z 4	4			
Mu (mm-1) 2.417	2.417			
F000 768.0	768.0			
F000' 767.13				
h,k,lmax 10,17,23	10,17,23			
Nref 4526[2582]	3886			
Tmin,Tmax 0.386,0.440	0.824,1.000			
Tmin' 0.357				
Correction method= # Reported T Limits: Tmin=0.824 Tmax=1.000				
AbsCorr = MULTI-SCAN				
Data completeness= 1.51/0.86 Theta(max)= 28.983				
R(reflections)= 0.0458(2775) wR2(reflections)	s) = 0.0841(3886))		
S = 1.040 Npar= 217				

3w

Bond precision:		C-C = 0.005	8 A	Wavelength=0.71073
Cell:	a=8.6383	8(3)	b=12.6159(5)	c=17.6123(7)
alpha=90	beta=90		gamma=90	
Temperature:	293 K			
		Calculated		Reported
Volume		1919.39(13)		1919.39(13)
Space group		P 21 21 21		P 21 21 21
Hall group		P 2ac 2ab		P 2ac 2ab
Moiety formula		C23 H21 Br	O Si	C23 H21 Br O Si
Sum formula		C23 H21 Br	· O Si	C23 H21 Br O Si
Mr		421.39		421.40
Dx,g cm-3		1.458		1.458
Z		4		4
Mu (mm-1)		2.213		2.213
F000		864.0		864.0
F000'		863.46		
h,k,lmax		11,17,24		11,16,23
Nref		5099[2887]		4349
Tmin,Tmax		0.449,0.482		0.806,1.000
Tmin'		0.415		
Correction method= # Reported T Limits: Tmin=0.806 Tmax=1.000				
AbsCorr = MULTI-SCAN				
Data completeness= 1.51/0.85			Theta(max)=	= 28.995
R(reflections)= 0.0398(3532)			wR2(reflecti	ons) = 0.0805(4349)
S = 1.039			Npar= 237	

6

Bond precision:	C-C = 0.0104	А	Wavelength=0.71073	
Cell:	a=8.8697(4)	b=22.6968(7)	c=8.9630(5)	
alpha=90	beta=114.336(6)	gamma=90		
Temperature:	293 K			
	Calculated	Reporte	ed	
Volume	1644.05(15)	1644.05	5(15)	
Space group	P 21	P 1 21	1	
Hall group	P 2yb	P 2yb		
Moiety formula	C21 H15 Br O2	С21 Н	15 Br O2	
Sum formula	C21 H15 Br O2	С21 Н	15 Br O2	
Mr	379.23	379.24	Ļ	
Dx,g cm-3	1.532	1.532		
Z	4	4		
Mu (mm-1)	2.510	2.510)	
F000	768.0	768.0)	
F000'	767.16			
h,k,lmax	12,30,12	12,30),12	
Nref	8758[4487]	7480		
Tmin,Tmax	0.526,0.547	0.664	4,1.000	
Tmin' 0.516				
Correction method= # Reported T Limits: Tmin=0.664 Tmax=1.000				
AbsCorr = MULTI-SCA	N			
Data completeness= 1.67	/0.85	Theta(max)	= 29.012	
R(reflections) = 0.0472(5)	5045)	wR2(reflec	tions) = $0.0867(7480)$	
S = 1.010		Npar= 433		

Bond precision:	C-C = 0.0041 A		Wavelength=1.54184
Cell:	a=7.48375(11) b	=23.7768(5)	c=8.95801(13)
alpha=90	beta=94.0554(14)	gamma=90	
Temperature:	180 K		
	Calculated	Reporte	ed
Volume	1589.99(5)	1589.99	(5)
Space group	P 21	P 1 21 1	
Hall group	P 2yb	P 2yb	
Moiety formula	C21 H16 O3 [+ solve	ent] C21 H	16 O3
Sum formula	C21 H16 O3 [+ solve	ent] C21 H	16 O3
Mr	316.34	316.34	
Dx,g cm-3	1.321	1.321	
Z	4	4	
Mu (mm-1)	0.707	0.707	
F000	664.0	664.0	
F000'	666.03		
h,k,lmax	9,29,11	9,28,1	0
Nref	6209[3184]	5126	
Tmin,Tmax	0.775,0.770	0.334,	,1.000
Tmin'	0.703		
Correction method= # Report	rted T Limits: Tmin=0.334 Tr	nax=1.000	
AbsCorr = MULTI-SCAN			
Data completeness= 1.61/0.5	83	Theta(max)=71	.700
R(reflections)= 0.0354(505	1)	wR2(reflection	s) = 0.0924(5126)
S = 1.057		Npar=435	

References

- S. Jia, Z. Chen, N. Zhang, Y. Tan, Y. Liu, J. Deng and H. Yan, *J. Am. Chem. Soc.*, 2018, 140, 7056–7060.
 S. Doherty, J. G. Knight, C. H. Smyth, R. W. Harrington and W. Clegg, *Organometallics*, 2007, 26, 6453–6461.
 S. Huang, Z. Chen, H. Mao, F. Hu, D. Li, Y. Tan, F. Yang and W. Qin, *Org. Biomol. Chem.*, 2019, 17, 1121–1129.
 T. Ishida, S. Kikuchi, T. Tsubo and T. Yamada, *Org. Lett.*, 2013, 15, 848–851.
 F. Zhou, C. Li, M. Li, Y. Jin, H. Jiang, Y. Zhang and W. Wu, *Chem. Commun.*, 2021, 57, 4799–4802.
 S. Yoshioka, Y. Fujii, H. Tsujino, T. Uno, H. Fujioka and M. Arisawa, *Chem. Commun.*, 2017, 53, 5970–5973.
 N. Kapadia and W. Harding, *Tetrahedron*, 2013, 69, 8914–8920.
 E. Jiménez-Núñez, M. Raducan, T. Lauterbach, K. Malawi, C. R. Solorio and A. M. Echavarren, *Angew. Chem. Int. Ed.*, 2009, 48, 6152–6155.