Supporting Information

Catalytic Asymmetric Construction of Bridged Bicyclo[m.3.1] Rings by Intramolecular Diels-Alder Reaction

Kai Li ${ }^{\text {b }}$, Zhengxing Zhao ${ }^{\text {b }}$, Wenling Qin ${ }^{\text {b }}$, Yidong Liu, ${ }^{* b}$ and Hailong Yan*ab
${ }^{a}$ Chongqing University FuLing Hospital, Chongqing University Chongqing 408000, P. R. China;
${ }^{b}$ Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
*Corresponding authors. E-mails: *yidong@cqu.edu.cn, *yhl198151@cqu.edu.cn

Table of Contents

I. General information 2
II. General procedure for the synthesis of the substrates 2
III. Optimization of the reaction conditions (Table S1) 6
IV. General procedure for asymmetric reaction 7
V. General procedure for initial experimental. 7
VI. $\quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS data of compounds ($\mathbf{1 a - 1 \mathbf { x })}$ 7
VII. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS data of compounds ($\mathbf{2 a}-\mathbf{4 a}$). 20
VIII. Mechanistic studies 50

1) Control experiments 50
2) Density Functional Theory (DFT) Experiments 53
IX. Gram-scale preparation and transformations 69
X. Thermal stability experiments 79
XI. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 80
XII. X-ray crystallographic information 142
References 152

I. General information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Agilent 400MR DD2 (400 MHz) spectrometer and Agilent 600MR DD2 (600 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and tetramethylsilane or the residual solvent peak was used as an internal reference: $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR tetramethylsilane $\delta 0.00,{ }^{13} \mathrm{C}$ NMR $\delta 77.00$), data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad or as a combination of them), coupling constants (Hz) and integration. Enantiomeric excesses (ee) were determined by HPLC analysis on Hitachi Chromaster using DAICEL CHIRALCEL AD-H, $4.6 \mathrm{~mm} \Phi \times 250 \mathrm{~mm}$, DAICEL CHIRALCEL AS-H, $4.6 \mathrm{~mm} \Phi \times 250 \mathrm{~mm}$, DAICEL CHIRALCEL OD-H, $4.6 \mathrm{~mm} \Phi \times 250 \mathrm{~mm}$, DAICEL CHIRALCEL IA-H, $4.6 \mathrm{~mm} \Phi \times 250 \mathrm{~mm}$, DAICEL CHIRALCEL IB-H, $4.6 \mathrm{~mm} \Phi \times 250 \mathrm{~mm}$. High resolution mass spectra (HRMS) were performed on Bruker Solarix 7.0 T and ThermoFisher Q Exactive Plus. X-ray crystallography analysis of single crystal was performed on an Agilent SuperNova-CCD X-Ray diffractometer. Optical rotations were measured on a Rudolph Autopol I polarimeter and are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{25}$ (c in g per 100 mL solvent). Unless otherwise stated, all reagents were purchased from commercial suppliers (Adamas, J\&K, Sigma-Aldrich, TCI) and used without further purification.

II. General procedure for the synthesis of the substrates

Method A: (1a-1n, 1s-1v)

S1

General procedure for the synthesis of S2:

This step was carried out according to a literature method ${ }^{[1]}$ with some modifications. To a solution of $\mathbf{S 1}$ ($8.0 \mathrm{mmol}, 1.0$ equiv.) in THF (20 mL) were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(112 \mathrm{mg}, 0.16$ mmol, 0.02 equiv.), $\mathrm{CuI}(76 \mathrm{mg}, 0.40 \mathrm{mmol}, 0.05$ equiv.), trimethylsilylacetylene ($1.4 \mathrm{~mL}, 8.8$ mmol, 1.1 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mL})$ under a nitrogen atmosphere at room temperature. After being stirred for 12 h , the mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with hexane. The extract was washed with water and brine, dried and concentrated to dryness. Purification by flash chromatography eluting with hexane to give $\mathbf{S} \mathbf{2}$ (70-90\% yield).

General procedure for the synthesis of S3:

This step was carried out according to a literature method ${ }^{[2]}$ with some modifications. $\mathbf{S} 2(8 \mathrm{mmol}$, 1.0 equiv.) was dissolved in dry THF (20 ml) and placed in a pressure vessel. Alkenyl magnesium bromide ($16 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.0 equiv) was added dropwise under a nitrogen atmosphere. After completion of the addition, Pd-catalyst ($2 \mathrm{~mol} \%$) was added. The flask was sealed and heated at $70^{\circ} \mathrm{C}$ for 12 h . The reaction was carefully quenched with water. The mixture is extracted
with EA and the combined organic layers were passed through MgSO_{4} plug to remove residual water. After evaporation of solvents the crude product was purified by flash chromatography eluting with hexane to give $\mathbf{S 3}$ (65-87\% yield).

General procedure for the synthesis of S4:

S4

This step was carried out according to a literature method ${ }^{[3]}$ with some modifications. To a stirred solution of $\mathbf{S 3}$ ($6.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(15 \mathrm{~mL})$ and THF $(15 \mathrm{~mL})$ was added $\mathrm{KF}(1.04 \mathrm{~g}$, $18.0 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred for 4 hours at room temperature. The reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EA. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification by flash chromatography eluting with hexane to give $\mathbf{S 4}$ (68-83\% yield).

General procedure for the synthesis of S6:

This step was carried out according to a literature method ${ }^{[4]}$ with some modifications. $\mathbf{S 5}$ (2 mmol , 1.0 equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.02$ equiv) and $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.05$ equiv) were weighed and added into an oven dried flask, evacuated and backfilled with nitrogen (3 times). $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL})$ and THF (4 mL) was injected into the flask. Then $\mathbf{S} \mathbf{4}(310 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv) was added. The resulting mixture kept stirring for 24 h . Then the mixture was filtered through a pad of celite and washed with EA. Removal of solvent under reduced pressure, purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=20: 1)$ to afford $\mathbf{S 6}$ ($60-78 \%$ yield).

General procedure for the synthesis of 1:

This step was carried out according to a literature method ${ }^{[3]}$ with some modifications. To a stirred solution of $\mathbf{S 6}$ ($1.5 \mathrm{mmol}, 1.0$ equiv) in THF (10 mL) was added hydrazine monohydrate (0.73 mL , $7.5 \mathrm{mmol}, 5.0$ equiv, 50%) dropwise at rt . Then, the resulting solution was kept stirring until $\mathbf{S 6}$ was consumed. Quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EA, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, concentrated under reduced pressure and purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=20: 1)$ to afford the desired product 1 ($70-88 \%$ yield).

Method B: (1a-3(10), 1p-1r)

General procedure for the synthesis of S7:

This step was carried out according to a literature method ${ }^{[5]}$ with some modifications. O-iodophenol (2.2 $\mathrm{g}, 10 \mathrm{mmol}, 1.0$ equiv.) was weighed and added into a round bottom flask. Acetone (50 ml) was sequentially added. Slowly add 1, 2-dibromoethane ($4.3 \mathrm{ml}, 50 \mathrm{mmol}, 5.0$ equiv.). Finally, add potassium carbonate ($2.76 \mathrm{~g}, 20 \mathrm{mmol}, 2.0$ equiv.), stir at room temperature for 14 hours, then the reaction was stirred at reflux for 6 hours. Quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the organic phase is extracted with EA, concentrated and passed through the column to obtain the product. Dissolve the obtained product in dimethyl
sulfoxide, add potassium tert-butoxide ($15 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 1.5 equiv.). React at room temperature for 24 hours, add water to quench the reaction at the end of the reaction. The organic phase is extracted with hexane, concentrated and passed through a column for separation to obtain $\mathbf{S 7}(1.89 \mathrm{~g}, 7.7 \mathrm{mmol}, 77 \%$ yield) as a orange oil.

Compound $\mathbf{S 8}$ was prepared according to the general procedure as described for $\mathbf{S 3}$.
Compound $\mathbf{1 a - 3 (1 0) , ~} \mathbf{1 p - 1 r}$ was prepared according to the general procedure as described for $\mathbf{1}$.

Method C: (1w)

This step was carried out according to a literature method ${ }^{[6]}$ with some modifications. To a solution of $\mathbf{S 2}(2.53 \mathrm{~g}, 10 \mathrm{mmol})$ in THF (20 mL) was added dropwise $n-\mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ in hexane, $12 \mathrm{mmol}, 1.2$ equiv.) at $-78{ }^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h , allylchlorodimethylsilane ($2.03 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv.) was added dropwise to the mixture. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then allowed to warm to room temperature. The volatile materials were removed in vacuo, and the residue was subjected to column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=100: 1$) to give $\mathbf{S 9}(1.77 \mathrm{~g}, 6.5 \mathrm{mmol}, 65 \%$ yield) as a pale yellow oil.

Compound $\mathbf{1 w}$ was prepared according to the general procedure as described for $\mathbf{1}$.

Method D: (1a-1 (Z))

2-(2-bromophenyl)acetaldehyde(S10)

S10

This step was carried out according to a literature method ${ }^{7]}$ with some modifications. A mixture of 2-(2bromophenyl)ethanol($6.0 \mathrm{~g}, 29.8 \mathrm{mmol}, 1.0$ equiv.) and Dess-Martin periodinane ($13.9 \mathrm{~g}, 32.8 \mathrm{mmol}, 1.1$ equiv.) in DCM (60 mL) was stirred at room temperature for 2 hours. Solvent was removed in vacuo, and the residue was purified by silica gel column $(\mathrm{PE} / \mathrm{EA}=10: 1)$ to give $\mathbf{S 1 0}(4.5 \mathrm{~g}, 22.6 \mathrm{mmol}, 76 \%$ yield $)$ as a colorless oil.

1-bromo-2-(3-methoxyallyl)benzene(S11)

S11

This step was carried out according to a literature method ${ }^{[8]}$ with some modifications. (Methoxymethyl)triphenylphosphonium chloride ($5.70 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.1$ equiv.) was weighed and added into a round bottom flask, evacuated and backfilled with nitrogen (3 times). THF (20 mL) was injected into the flask. Potassium tert-butoxide ($2.02 \mathrm{~g}, 18.1 \mathrm{mmol}, 1.2$ equiv.) was added in portions at $0{ }^{\circ} \mathrm{C}$. The color of the mixture turned from dark orange to red. After stiring for 40 min at $0^{\circ} \mathrm{C}$ the reaction was allowed to warm up to room temperature. Then a solution of $\mathbf{S 8}(3.0 \mathrm{~g}, 15.1 \mathrm{mmol}, 1.0$ equiv.) in THF (10 mL) was added dropwise and the mixture was stirred overnight. The reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with EA. The combined organic layers were dried over MgSO_{4} and the solvents were evaporated. Chromatographic purification $(\mathrm{PE} / \mathrm{EA}=10: 1)$ of the crude material to give $\mathbf{S 1 1}(2.50 \mathrm{~g}, 11 \mathrm{mmol}, 73 \%$ yield $)$ as a yellow oil.

1-((2-(3-methoxyallyl)phenyl)ethynyl)naphthalen-2-yl acetate (S12)

This step was carried out according to a literature method ${ }^{[4]}$ with some modifications. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($140 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.02$ equiv) and $\mathrm{CuI}(95 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.05$ equiv) were weighed and added into an oven dried flask, evacuated and backfilled with nitrogen (3 times). Triethylamine (15 mL) was injected into the flask. $\mathbf{S 1 1}(2.26 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) dissolved in THF (15 mL) was added. The mixture was stirred for 30 min at $70^{\circ} \mathrm{C}$. After that, the alkyne (2.31 $\mathrm{g}, 11 \mathrm{mmol}, 1.1$ equiv) dissolved in THF (10 mL) was added slowly. The resulting mixture kept stirring for 2 h at $70^{\circ} \mathrm{C}$. Then the mixture was filtered through a pad of celite and washed with EA. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=15: 1)$ to afford $\mathbf{S 1 2}(2.56 \mathrm{~g}, 7.2 \mathrm{mmol}, 72 \%$ yield $)$ as a yellow oil.
(Z)-1-((2-(3-methoxyallyl)phenyl)ethynyl)naphthalen-2-ol (1a-1(Z))

1a-1(Z)

This step was carried out according to a literature method ${ }^{[3]}$ with some modifications. To a stirred solution of $\mathbf{S 1 2}$ ($2.56 \mathrm{~g}, 7.2 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) was added hydrazine monohydrate ($3.5 \mathrm{~mL}, 36 \mathrm{mmol}, 5.0$ equiv, 50%) dropwise at rt . Then, the resulting solution was kept stirring until $\mathbf{S 1 2}$ was consumed. Quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EA, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, concentrated under reduced pressure and purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=30: 1$ to $15: 1$) to afford the desired product $\mathbf{1 a - Z}(815 \mathrm{mg}$, $2.59 \mathrm{mmol}, 36 \%$ yield) as an orange oil.

III. Optimization of the reaction conditions (Table S1 ${ }^{a}$)

${ }^{a}$ Reaction conditions: 1a-2 ($0.025 \mathrm{mmol}, 1.0$ equiv), catalyst ($0.0025 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in solvent $(1 \mathrm{~mL})$ at corresponding temperature for 30 min , then brominating reagents (1.05 equiv) at corresponding temperature, 0.5-6 $\mathrm{h} .{ }^{b}$ Isolated yield of $\mathbf{3 a}$. ${ }^{c}$ Enantiomeric excess (ee) of 3a determined by HPLC. ${ }^{d}$ Enantiomeric excess (ee) of 4a determined by HPLC. ${ }^{e}$ The ratio of ($\mathbf{3 a}: \mathbf{4 a}$) were determined by the ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{f}$ Reaction in EA (0.5 mL). ${ }^{8}$ Reaction in EA $(2 \mathrm{~mL}) .{ }^{h}$ Reaction in EA (3.0 mL).

IV. General procedure for asymmetric reaction

Condition[A]:

A solution of $\mathbf{1}$ (1.0 equiv) and catalyst- $6(10 \mathrm{~mol} \%)$ in EA $(0.0125 \mathrm{M})$ was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , then NBS $(1.05$ equiv) was added. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $6-24 \mathrm{~h}$, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography using PE/EA eluent ($60: 1$ to $50: 1$) to afford the annulation product $\mathbf{3}$.

V. General procedure for initial experimental

Condition[B]:

A solution of 1 (1.0 equiv.) and catalyst- $6(10 \mathrm{~mol} \%)$ in DCM (0.025 M) was stirred at $-40^{\circ} \mathrm{C}$ for 30 min , then NBS (1.05 equiv) was added. After stirring at $-40^{\circ} \mathrm{C}$ for 6 h , the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography using PE/EA eluent ($60: 1$ to $50: 1$) to afford the annulation product $\mathbf{2}, \mathbf{3}, 4$.

VI. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS data of compounds (1a-1x)

1a-1 (Z)

(Z)-1-((2-(3-methoxyallyl)phenyl)ethynyl)naphthalen-2-ol (1a-1 (Z))

Compound 1a-1 (\mathbf{Z}) is an unknown compound. The compound was synthesized in 36% yield ($815 \mathrm{mg}, 2.59 \mathrm{mmol}$) following the general procedure (Method D) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.
Yellow oil. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.97,146.80,142.96,133.63,132.39,130.51,128.92,128.88,128.43,128.22,127.31$, $126.05,124.94,123.97,122.19,116.65,104.65,103.22,99.85,85.52,59.80,29.60$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2}-[\mathrm{M}-\mathrm{H}]: 313.1234$, Found: 313.1219.

1a-2

1-((2-allylphenyl)ethynyl)naphthalen-2-ol (1a-2)

Compound 1a-2 is an unknown compound. The compound was synthesized in 85% yield ($363 \mathrm{mg}, 1.28 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.07$ (ddt, $J=16.4,10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.99,141.06,136.26,133.40,132.24,130.58,129.25,128.92,128.32,128.19,127.28$, $126.30,124.75,123.92,122.33,116.36,116.31,102.89,99.66,85.38,38.72$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 283.1128$, Found: 283.1115.

1a-3 (10)

1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1a-3 (10))

Compound 1a-3 (10) is an unknown compound. The compound was synthesized in 88% yield ($378 \mathrm{mg}, 1.32 \mathrm{mmol}$) following the general procedure (Method B) and was purified by silica gel column chromatography using PE:EA (30:1 to $15: 1)$ as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.76$ (dd, $J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=13.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.80,156.58,147.65,133.05,132.03,130.71,129.82,128.33,128.22,127.31,124.98$, $123.98,123.38,116.46,116.04,113.93,102.96,96.95,96.40,87.81$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{2}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 285.0921$, Found: 285.0909.

1b

1-((2-allyl-4-methylphenyl)ethynyl)naphthalen-2-ol (1b)

Compound $\mathbf{1 b}$ is an unknown compound. The compound was synthesized in 78% yield ($349 \mathrm{mg}, 1.17 \mathrm{mmol}$) following the general procedure $(\operatorname{Method} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{ddt}, J=16.5,9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{dd}, J=17.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.95,141.13,139.37,136.47,133.47,132.28,130.48,130.19,128.43,128.26,127.33$, 127.26, 124.91, 124.00, 119.40, 116.36, 103.15, 99.99, 84.59, 38.83, 21.54.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]:$: 297.1285, Found: 297.1276.

1c

1-((2-allyl-4-fluorophenyl)ethynyl)naphthalen-2-ol (1c)

Compound $\mathbf{1 c}$ is an unknown compound. The compound was synthesized in 79% yield ($358 \mathrm{mg}, 1.19 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent. White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{ddt}, J=16.6,11.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.83(\mathrm{~d}, J=250.7 \mathrm{~Hz}), 156.07,144.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 135.43,134.12(\mathrm{~d}, J=8.4 \mathrm{~Hz})$, $133.45,130.78,128.43,128.32,127.43,124.78,124.09,118.51(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}), 117.13,116.45(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 116.41$, 113.76 ($\mathrm{d}, \mathrm{J}=21.9 \mathrm{~Hz}$), 102.76, 98.64, 85.07, 38.76.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FO}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 301.1034$, Found: 301.1027.

1-((2-allyl-5-methylphenyl)ethynyl)naphthalen-2-ol (1d)

Compound 1d is an unknown compound. The compound was synthesized in 82% yield ($367 \mathrm{mg}, 1.23 \mathrm{mmol}$) following the general procedure $(\operatorname{Method} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.37$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.18-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.11-4.99(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, 2H), 2.36 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.00,138.10,136.57,135.94,133.42,132.71,130.52,129.91,129.24,128.35,128.21$, $127.28,124.82,123.94,122.14,116.32,116.17,102.99,99.96,84.93,38.36,20.75$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]:: 297.1285$, Found: 297.1274.

1-((2-allylphenyl)ethynyl)-6-ethylnaphthalen-2-ol (1e)

Compound $\mathbf{1 e}$ is an unknown compound. The compound was synthesized in 80% yield ($375 \mathrm{mg}, 1.2 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to $15: 1$) as eluent.

Pale yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 6.16-6.04(\mathrm{~m}$,
$1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.52,141.23,139.91,136.33,132.34,131.81,130.22,129.37,129.01,128.63,128.54$, $126.41,126.07,124.82,122.51,116.44,116.27,102.76,99.50,85.57,38.85,28.69,15.57$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]:$: 311.1441, Found: 311.1432.

1-((2-allylphenyl)ethynyl)-6-phenylnaphthalen-2-ol (1f)

Compound $\mathbf{1 f}$ is an unknown compound. The compound was synthesized in 88% yield ($476 \mathrm{mg}, 1.32 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent. White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-$ $6.07(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.17,141.33,140.82,136.88,136.35,132.70,132.42,130.94,129.43,129.14,128.85$, 128.72, 127.24, 127.22, 127.01, 126.46, 126.19, 125.45, 122.44, 116.86, 116.49, 102.93, 99.78, 85.34, 38.89.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]:$: 359.1441, Found: 359.1434.

1-((2-allylphenyl)ethynyl)-6-bromonaphthalen-2-ol (1g)

Compound $1 \mathbf{g}$ is an unknown compound. The compound was synthesized in 81% yield ($441 \mathrm{mg}, 1.22 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to $15: 1$) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{ddt}, J=16.4,10.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.00(\mathrm{~m}, 1 \mathrm{H})$, 3.69 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.24,141.28,136.28,132.41,132.02,130.54,130.18,129.58,129.49,129.30,126.69$, $126.49,122.16,117.73,117.54,116.52,103.25,100.09,84.69,38.83$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrO}^{-}[\mathrm{M}-\mathrm{H}]:$: 361.0234, Found: 361.0225.

1-((2-allylphenyl)ethynyl)-6-(phenylethynyl)naphthalen-2-ol (1h)

Compound $\mathbf{1 h}$ is an unknown compound. The compound was synthesized in 83% yield ($479 \mathrm{mg}, 1.25 \mathrm{mmol}$) following the general procedure $($ Method $\mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

Pale yellow solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.61-$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{ddt}, J=16.2,10.1,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.66,141.27,136.30,132.97,132.42,131.73,131.58,130.49,129.98,129.45,129.22$, 128.34, 128.22, 128.05, 126.47, 125.01, 123.26, 122.26, 118.76, 117.11, 116.50, 103.24, 99.98, 89.59, 89.47, 84.91, 38.84 . HRMS (ESI) m / z Calcd for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]-: 383.1441$, Found: 3831.1436.

1-((2-allylphenyl)ethynyl)-7-phenylnaphthalen-2-ol (1i)

Compound $1 \mathbf{i}$ is an unknown compound. The compound was synthesized in 80% yield ($433 \mathrm{mg}, 1.20 \mathrm{mmol}$) following the general procedure $(\operatorname{Method} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent. White solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.20-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.23-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.44,141.35,141.03,140.12,136.27,133.79,132.32,130.38,129.32,129.08,128.84$, $128.81,127.63,127.49,126.43,123.74,122.91,122.43,116.54,116.39,103.25,100.11,85.40,38.88$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]:$: 359.1441, Found: 359.1437.

1-((2-allyl-4-methylphenyl)ethynyl)-6-phenylnaphthalen-2-ol (1j)

Compound $\mathbf{1} \mathbf{j}$ is an unknown compound. The compound was synthesized in 82% yield ($461 \mathrm{mg}, 1.23 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{ddt}, J=16.5,10.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.14(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.01,141.16,140.83,139.42,136.79,136.49,132.67,132.30,130.73,130.20,128.84$, $128.69,127.27,127.21,126.94,126.16,125.49,119.37,116.81,116.38,100.01,84.57,38.86,21.55$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]^{-+}: 373.1598$, Found: 373.1589.

1-((2-allyl-4-methylphenyl)ethynyl)-6-bromonaphthalen-2-ol (1k)

Compound $\mathbf{1 k}$ is an unknown compound. The compound was synthesized in 75% yield ($424 \mathrm{mg}, 1.13 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.18-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.09,141.13,139.59,136.41,132.29,132.00,130.45,130.24,130.14,129.50,129.35$, $127.29,126.72,119.11,117.68,117.48,116.40,103.46,100.36,83.98,38.80,21.55$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrO}^{-}[\mathrm{M}-\mathrm{H}]:: 375.0390$, Found: 375.0382.

1-((2-allyl-4-fluorophenyl)ethynyl)-6-(phenylethynyl)naphthalen-2-ol (11)
Compound 11 is an unknown compound. The compound was synthesized in 77% yield ($465 \mathrm{mg}, 1.16 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent. Pale yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ $7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.08-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{ddt}, J=16.4,11.8,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.90(\mathrm{~d}, J=250.9 \mathrm{~Hz}), 156.65,144.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 135.41,134.19(\mathrm{~d}, J=8.6 \mathrm{~Hz})$, $132.95,131.76,131.58,130.58,130.03,128.36,128.26,128.06,124.94,123.22,118.82,118.34,117.15(\mathrm{~d}, J=4.0 \mathrm{~Hz})$, $116.52(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 113.81(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 103.07,98.87,89.52,84.63,38.74$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{FO}^{-}[\mathrm{M}-\mathrm{H}]:$: 401.1347, Found: 401.1329.

1m

1-((2-allyl-4-methylphenyl)ethynyl)-7-phenylnaphthalen-2-ol (1m)

Compound $\mathbf{1 m}$ is an unknown compound. The compound was synthesized in 79% yield ($444 \mathrm{mg}, 1.19 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H})$, $6.12(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.28,141.22,141.04,140.03,139.39,136.41,133.76,132.22,130.18,130.11,128.83$, $128.79,127.62,127.49,127.25,123.70,122.96,119.36,116.43,116.36,103.44,100.32,84.62,38.87,21.55$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]:$: 373.1598, Found: 373.1588.

1-((2-allyl-4-methylphenyl)ethynyl)-7-(2-methoxyphenyl)naphthalen-2-ol (1n)
Compound $\mathbf{1 n}$ is an unknown compound. The compound was synthesized in 70% yield ($425 \mathrm{mg}, 1.05 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.
colorless oil. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (s, 1H), $6.06(\mathrm{ddt}, J=16.5,9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.60,156.02,141.13,139.22,137.83,136.40,133.51,132.18,131.15,130.61,130.14$, $130.06,128.83,127.52,127.40,127.17,126.26,125.24,120.90,119.43,116.30,116.17,111.19,103.33,100.04,84.80$, 55.53, 38.79, 21.50.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{O}_{2}-[\mathrm{M}-\mathrm{H}]:$: 403.1704, Found: 403.1700.

10(1a-3)

1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (10 (1a-3))

Compound 1a-3 (10) is an unknown compound. The compound was synthesized in 88% yield ($378 \mathrm{mg}, 1.32 \mathrm{mmol}$) following the general procedure (Method B) and was purified by silica gel column chromatography using PE:EA (30:1 to $15: 1$) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.76$ $(\mathrm{dd}, J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=13.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.80,156.58,147.65,133.05,132.03,130.71,129.82,128.33,128.22,127.31,124.98$, $123.98,123.38,116.46,116.04,113.93,102.96,96.95,96.40,87.81$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{2}-[\mathrm{M}-\mathrm{H}]:$: 285.0921, Found: 285.0909 .

6-phenyl-1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1p)

Compound $\mathbf{1 p}$ is an unknown compound. The compound was synthesized in 85% yield ($462 \mathrm{mg}, 1.28 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{B})$ and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=13.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=6.0$, $2.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.87,156.62,147.64,140.90,136.81,132.23,132.05,130.96,129.87,128.84,128.59$, 127.22, 126.93, 126.14, 125.55, 123.39, 116.89, 116.03, 113.88, 102.92, 96.99, 96.45, 87.77.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 361.1234$, Found: 361.1231.

6-bromo-1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1q)

Compound $\mathbf{1 q}$ is an unknown compound. The compound was synthesized in 86% yield ($471 \mathrm{mg}, 1.29 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{B})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

Gray solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}$, $2 \mathrm{H}), 7.36(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~s}$, $1 \mathrm{H}), 6.76(\mathrm{dd}, J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=13.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.93,156.67,147.54,132.02,131.57,130.47,130.15,130.06,129.59,129.44,126.81$, 123.40, 117.67, 117.58, 115.97, 113.59, 103.29, 97.37, 96.58, 87.17.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{BrO}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 363.0026$, Found: 363.0012.

7-methoxy-1-((2-(vinyloxy)phenyl)ethynyl)naphthalen-2-ol (1r)

Compound $1 \mathbf{r}$ is an unknown compound. The compound was synthesized in 83% yield ($394 \mathrm{mg}, 1.25 \mathrm{mmol}$) following the general procedure (Method B) and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

Gray solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$, $6.76(\mathrm{dd}, J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=13.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.14,157.29,156.50,147.60,134.61,132.01,130.53,129.81,129.77,123.58,123.33$, $116.21,116.01,113.86,113.80,103.89,102.14,97.03,96.65,87.84,55.35$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]:$: 315.1027, Found: 315.1014.

1s

1-((2-(but-3-en-1-yl)phenyl)ethynyl)naphthalen-2-ol (1s)

Compound 1 s is an unknown compound. The compound was synthesized in 80% yield ($358 \mathrm{mg}, 1.2 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent. Pale yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{ddt}, J=13.2,10.2,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{dd}, J=29.5,13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{q}, J=7.2,6.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.83,143.43,137.70,133.50,132.37,130.65,129.07,128.94,128.47,128.31,127.43$, 126.13, 124.87, 124.08, 122.09, 116.38, 115.31, 103.07, 100.02, 85.04, 34.83, 34.45.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]:$: 297.1285, Found: 297.1276.

1t

1-((2-(but-3-en-1-yl)-4-methylphenyl)ethynyl)naphthalen-2-ol (1t)
Compound $1 \mathbf{t}$ is an unknown compound. The compound was synthesized in 79% yield ($370 \mathrm{mg}, 1.19 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to 15:1) as eluent.

Pale yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.12-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=30.7,13.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.63,143.22,139.03,137.76,133.45,132.17,130.35,129.76,128.41,128.22,127.28$, $126.89,124.86,123.94,119.00,116.29,115.13,103.26,100.23,84.35,34.86,34.34,21.48$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 311.1441$, Found: 311.1432.

6-bromo-1-((2-(but-3-en-1-yl)phenyl)ethynyl)naphthalen-2-ol (1u)

Compound $\mathbf{1 u}$ is an unknown compound. The compound was synthesized in 71% yield ($402 \mathrm{mg}, 1.07 \mathrm{mmol}$) following the general procedure $(\mathbf{M e t h o d} \mathbf{A})$ and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

Pale yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.93$ (ddt, $J=16.8,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.00(\mathrm{~m}, 2 \mathrm{H})$, $3.09-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{q}, J=7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.92,143.43,137.60,132.35,131.98,130.53,130.18,129.50,129.11,129.05,126.63$, $126.14,121.75,117.74,117.46,115.33,103.34,100.36,84.39,34.78,34.35$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrO}^{-}[\mathrm{M}-\mathrm{H}]:: 375.0390$, Found: 375.0372.

1v

1-((2-(but-3-en-1-yl)phenyl)ethynyl)-7-(phenylethynyl)naphthalen-2-ol (1v)

Compound 1v is an unknown compound. The compound was synthesized in 76% yield ($454 \mathrm{mg}, 1.14 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA (30:1 to $15: 1$) as eluent.

Pale yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.01-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.56$ (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.31,143.52,137.55,133.24,132.47,131.67,130.32,129.09,129.04,128.33,127.85$, $126.79,126.12,123.21,122.22,121.95,117.02,115.53,103.02,100.50,90.46,89.92,84.67,34.85,34.50$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 397.1598$, Found: 397.1584.

1w

1-((2-(allyldimethylsilyl)phenyl)ethynyl)naphthalen-2-ol (1w)

Compound $\mathbf{1 w}$ is an unknown compound. The compound was synthesized in 74% yield ($380 \mathrm{mg}, 1.11 \mathrm{mmol}$) following the general procedure (Method \mathbf{C}) and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent.

Orange oil. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.6,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-$ $7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{td}, J=17.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.79(\mathrm{~m}, 2 \mathrm{H})$, $2.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.44(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.12,140.66,134.54,134.36,133.64,133.47,130.77,129.09,128.50,128.33,128.07$, 127.69, 127.40, 124.83, 124.06, 116.45, 113.76, 102.80, 102.27, 84.49, 23.14, -2.92.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{OSi}^{-}[\mathrm{M}-\mathrm{H}]:: 341.1367$, Found: 341.1354.

1-((2-(pent-4-en-1-yl)phenyl)ethynyl)naphthalen-2-ol (1x)

Compound $\mathbf{1 x}$ is an unknown compound. The compound was synthesized in 70% yield ($718 \mathrm{mg}, 2.3 \mathrm{mmol}$) following the general procedure (Method A) and was purified by silica gel column chromatography using PE:EA ($30: 1$ to $15: 1$) as eluent. Pale yellow oil. $(\mathrm{Rf}=0.6, \mathrm{PE} / \mathrm{EA}=5: 1)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.82,144.07,138.25,133.53,132.41,130.60,128.98,128.90,128.49,128.31,127.36$, 125.97, 124.81, 124.04, 122.03, 116.36, 115.03, 103.13, 100.11, 84.94, 34.45, 33.50, 29.88.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 311.1441$, Found: 311.1434.

VII. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS data of compounds (2a-4a)

2a
14-bromo-8-methoxy-8a,9-dihydro-8H-benzo[f]naphtho[2,3-c] chromene (2a)
Compound 2a was synthesized in 49% yield ($116 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [B]. 2a was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=16.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ $-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=16.3,6.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.26,133.99,133.53,130.25,129.34,129.11,128.16,128.10,127.78,127.66,127.08$, $126.53,125.48,123.73,120.57,120.08,117.83,104.09,57.12,42.15,26.94$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 415.0304$, Found: 415.0305

3a

(S)-14-bromo-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3a)

Compound 3a was synthesized in 65% yield ($142 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3a was purified by silica gel column chromatography using PE:EA ($60: 1$ to $50: 1$) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=30: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34-5.25(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=12.2,3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.65,141.39,136.09,135.20,130.13,129.40,129.24,128.95,128.64,128.42,127.92$, $127.79,126.70,125.74,123.46,121.41,118.12,115.01,84.01,40.58,35.24$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 363.0379$, Found: 363.0366.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-360.4^{\circ}(c=0.9, \mathrm{DCM})$.
HPLC analysis: Chiralcel ADAD-H (Hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=11.179$ \min (major), $t_{\mathrm{R}}=12.278 \mathrm{~min}$ (minor), 97% ee.

4a

13-(bromomethyl)-12,13-dihydrodinaphtho[1,2-b:1',2'-d] furan (4a)

Compound $\mathbf{4 a}$ was synthesized in 19% yield ($41 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [B]. 4a was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=30: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.52(\mathrm{td}, J=7.4,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.55$ (dd, $J=16.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=16.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.83,151.33,132.40,130.80,129.32,129.18,128.14,127.79,127.27,126.76,126.65$, $125.62,124.62,122.79,120.97,120.48,115.96,112.54,35.48,33.63,31.67$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 363.0379$, Found: 363.0366.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=6.167 \mathrm{~min}$ (major), $t_{\mathrm{R}}=7.227 \mathrm{~min}$ (minor), 93% ee.

(S)-14-bromo-11-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3b)

Compound 3b was synthesized in 65% yield ($147 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3b was purified by silica gel column chromatography using PE:EA ($60: 1$ to $50: 1$) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=30: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$, $5.35-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.62,139.03,138.56,135.95,134.76,130.07,129.99,129.31,128.74,128.47,128.36$, $127.90,126.78,125.69,123.44,121.54,118.11,115.34,84.03,40.62,35.33,21.39$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 377.0536$, Found: 377.0525 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-290.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=4.277 \mathrm{~min}$ (major), $t_{\mathrm{R}}=4.733 \mathrm{~min}$ (minor), 94% ee.

(S)-14-bromo-11-fluoro-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3c)

Compound $\mathbf{3 c}$ was synthesized in 66% yield ($151 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3c was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Pale yellow solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=30: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.23(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.17(\mathrm{~d}, J=249.6 \mathrm{~Hz}), 151.50,138.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 137.37(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 135.50$, $131.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 129.52,128.59,128.47,127.95,126.64,125.80,123.54,121.26,118.07,116.40(\mathrm{~d}, J=21.9 \mathrm{~Hz})$, $114.55(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 114.10,83.54,40.64,35.26$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrFO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 381.0285$, Found: 381.0276.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-335.8^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel IA-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=5.747 \mathrm{~min}$ (major), $t_{\mathrm{R}}=6.239 \mathrm{~min}$ (minor), 95% ee.

3d

(S)-14-bromo-12-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3d)

Compound 3d was synthesized in 62% yield ($140 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3d was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{ddd}, J=$ $8.4,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.15-6.97(\mathrm{~m}, 3 \mathrm{H}), 5.34-5.23(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{qd}, J=14.5,7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82$ (dd, $J=12.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=12.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 151.69,141.21,137.55,135.04,133.06,130.77,129.67,129.35,129.08,128.71,128.47$, 127.92, 126.73, 125.71, 123.44, 121.53, 118.14, 115.29, 84.05, 40.18, 35.31, 21.12.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 377.0536$, Found: 377.0523 .
Optical Rotation: $[\alpha]_{D^{25}}=-271.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel OD-H (Hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}, t_{\mathrm{R}}=5.037 \mathrm{~min}$ (major), $t_{\mathrm{R}}=5.743 \mathrm{~min}$ (minor), 92% ee.

(S)-14-bromo-3-ethyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(3e)

Compound $\mathbf{3 e}$ was synthesized in 63% yield ($148 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3e was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.84-$ $2.78(\mathrm{~m}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=12.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.11,141.50,139.27,136.23,135.46,130.16,129.24,128.93,128.72,127.78,127.06$, 127.01, 126.67, 125.64, 121.39, 118.03, 114.84, 83.94, 40.65, 35.34, 28.76, 15.45.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 391.0692$, Found: 391.0678 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-299.8^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel IA-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}, t_{\mathrm{R}}=5.767 \mathrm{~min}$ (major), $t_{\mathrm{R}}=6.721 \mathrm{~min}$ (minor), 95% ee.

(S)-14-bromo-3-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3f)

Compound $\mathbf{3 f}$ was synthesized in 55% yield ($145 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3f was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.84,141.43,141.15,136.21,136.16,135.19,130.20,129.74,129.28,129.02,128.80$, $128.75,127.91,127.85,127.27,127.24,127.23,127.06,125.84,125.47,121.40,118.59,115.19,84.14,40.63,35.32$.
HRMS (APCI) m / z Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 439.0692$, Found: 439.0690.
Optical Rotation: $[\alpha]_{D}{ }^{25}=-131.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel IA-H (Hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=6.118 \mathrm{~min}$ (major), $t_{\mathrm{R}}=7.532 \mathrm{~min}$ (minor), 90% ee.

$3 g$

(S)-3,14-dibromo-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3g)

Compound $\mathbf{3 g}$ was synthesized in 59% yield ($157 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. $\mathbf{3 g}$ was purified by silica gel column chromatography using PE:EA (60:1 to $50: 1$) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.40$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}$, $J=14.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.98,141.22,135.99,134.66,130.18,129.83,129.58,129.29,129.12,129.04,128.48$, 128.43, 127.89, 127.24, 121.60, 119.26, 117.12, 115.59, 84.23, 40.55, 35.17.

HRMS (APCI) m / z Calcd for Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 442.9464$, Found: 442.9456.

Optical Rotation: $[\alpha]_{D}{ }^{25}=-320.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\operatorname{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=6.784 \mathrm{~min}$ (major), $t_{\mathrm{R}}=8.009 \min$ (minor), 91% ee.

(S)-14-bromo-3-(phenylethynyl)-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3h)

Compound 3h was synthesized in 61% yield ($170 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3h was purified by silica gel column chromatography using PE : EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.24$ $-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.3,3.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.45,141.25,135.98,134.78,131.57,131.50,130.16,129.30,129.26,129.04,128.36$, 128.33, 128.16, 128.09, 128.03, 127.85, 126.83, 123.45, 121.57, 118.85, 118.00, 115.44, 90.04, 89.16, 84.24, 40.53, 35.16.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 463.0692$, Found: 463.0683.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-431.0^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=9.516 \mathrm{~min}$ (major), $t_{\mathrm{R}}=10.381 \mathrm{~min}$ (minor), 93% ee.

$3 i$
(S)-14-bromo-2-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3i)

Compound $3 \mathbf{i}$ was synthesized in 57% yield ($150 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. $3 \mathbf{i}$ was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{DCM}=1: 1\right)$
${ }^{1} H$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ $-5.30(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.07,141.46,141.44,138.54,136.17,135.24,130.29,129.26,129.15,129.01,128.90$, $128.78,128.43,127.83,127.67,127.58,127.29,124.90,123.25,121.69,118.19,115.23,84.12,40.63,35.35$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 439.0692$, Found: 439.0683
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-276.2^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=7.133 \mathrm{~min}$ (major), $t_{\mathrm{R}}=8.056 \mathrm{~min}$ (minor), 90% ee.

(S)-14-bromo-11-methyl-3-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3j)

Compound $3 \mathbf{j}$ was synthesized in 64% yield ($174 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. $\mathbf{3 j}$ was purified by silica gel column chromatography using PE:EA ($60: 1$ to $50: 1$) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=15: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-$ $7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.29(\mathrm{~m}, 1 \mathrm{H})$, $3.18-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.76,141.15,139.07,138.52,136.14,135.95,134.69,130.09,130.02,129.64,128.77$, $128.72,128.38,127.95,127.32,127.29,127.21,127.03,125.80,125.39,121.46,118.56,115.46,84.11,40.61,35.34,21.39$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 453.0849$, Found: 453.0837 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-298.8^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=6.209 \mathrm{~min}$ (major), $t_{\mathrm{R}}=7.791 \mathrm{~min}$ (minor), 94% ee.

3k

(S)-3,14-dibromo-11-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3k)

Compound $\mathbf{3 k}$ was synthesized in 52% yield ($142 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. $\mathbf{3 k}$ was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H} \operatorname{NMR}(600 \mathrm{MHz}, \mathrm{CDCl}) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 5.34-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.08$ $(\mathrm{m}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, CDCl) $\delta 151.92,139.23,138.33,135.81,134.18,130.12,130.11,130.02,129.80,129.57,128.97$, $128.55,128.45,128.34,127.29,121.69,119.24,117.09,115.88,84.21,40.53,35.20,21.39$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 456.9620$, Found: 456.9612.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-221^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=6.083 \mathrm{~min}$ (major), $t_{\mathrm{R}}=6.910 \mathrm{~min}$ (minor), 93% ee.

31

(S)-14-bromo-11-fluoro-3-(phenylethynyl)-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (31)

Compound 31 was synthesized in 66% yield ($191 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 31 was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} H$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.23-$ $3.12(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=12.3,3.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.26(\mathrm{~d}, J=250.2 \mathrm{~Hz}), 152.30,138.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 137.28(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 135.10$, $132.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.59,131.52,129.44,128.45,128.35,128.13,126.78,123.47,121.46,118.82,118.15,116.45(\mathrm{~d}$, $J=21.9 \mathrm{~Hz}), 114.65(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 114.55,89.97,89.23,83.79,40.62,35.20$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{BrFO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 481.0598$, Found: 481.0587 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-223.8^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel OD-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=15.877$ \min (major), $t_{\mathrm{R}}=18.989 \mathrm{~min}$ (minor), 94% ee.

3m
(S)-14-bromo-11-methyl-2-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3m)

Compound $\mathbf{3 m}$ was synthesized in 65% yield ($177 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. $\mathbf{3 m}$ was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.4$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.30(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=12.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 152.00,141.46,139.09,138.55,138.45,135.98,134.74,130.11,130.09,129.06,128.94$, 128.77, 128.39, 127.66, 127.57, 127.27, 124.97, 123.20, 121.76, 118.16, 115.51, 84.10, 40.61, 35.38, 21.39.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 453.0849$, Found: 453.0839.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-457.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=6.358 \mathrm{~min}$ (major), $t_{\mathrm{R}}=7.395 \mathrm{~min}$ (minor), 93% ee.

(S)-14-bromo-2-(2-methoxyphenyl)-11-methyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine (3n)

Compound $3 \mathbf{n}$ synthesized in 62% yield ($180 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3n was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.76,151.68,138.99,138.59,136.41,136.00,134.88,131.47,131.11,130.06,130.02$, $129.02,128.84,128.67,128.33,127.48,127.08,126.93,125.81,121.77,120.89,117.96,115.31,111.24,84.03,55.59$, 40.66, 35.32, 21.38 .

HRMS (APCI) m / z Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 483.0954$, Found: 483.0941 .
Optical Rotation: $[\alpha]_{D}{ }^{25}=-343.8^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H $($ Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=7.791 \mathrm{~min}$ (major), $t_{\mathrm{R}}=11.510 \mathrm{~min}$ (minor), 97% ee.

(S)-14-bromo-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3o (3a-3))

Compound 30 (3a-3) was synthesized in 85% yield ($186 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3o (3a-3) was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.42,148.35,133.63,131.82,131.35,130.75,129.36,129.17,128.42,128.04,126.65$, $126.05,124.58,124.14,123.77,122.00,117.40,115.75,110.81,34.94$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 365.0172$, Found: 365.0160 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-388^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel IA-H (Hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=5.530 \mathrm{~min}$ (major), $t_{\mathrm{R}}=6.333 \mathrm{~min}$ (minor), 96% ee.

3p

(S)-14-bromo-3-phenyl-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3p)

Compound 3p was synthesized in 85% yield ($225 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3p was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Pale yellow solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{DCM}=1: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (s, 1H), $3.08(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.41,148.45,140.99,136.89,133.59,131.75,131.35,130.78,129.65,129.42,128.82$, 127.59, 127.27, 127.21, 127.17, 125.91, 125.80, 124.60, 123.68, 122.01, 117.83, 115.86, 110.85, 34.93.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 441.0485$, Found: 441.0478 .
Optical Rotation: $[\alpha]_{D}{ }^{25}=-265.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AS-H (Hexane $/ i-\operatorname{PrOH}=94: 6$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=10.868 \mathrm{~min}$ (major), $t_{\mathrm{R}}=14.490 \mathrm{~min}$ (minor), 93% ee.

$3 q$

(S)-3,14-dibromo-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3q)

Compound $\mathbf{3 q}$ was synthesized in 79% yield (211 mg , 0.6 mmol scale) under condition [A]. $\mathbf{3 q}$ was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Gray solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.31,148.61,133.42,131.35,131.19,130.91,130.21,129.96,129.38,128.38,126.95$, 124.69, 123.89, 122.02, 118.51, 117.90, 116.28, 110.83, 34.79.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 444.9256$, Found: 444.9247
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-345.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H $($ Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=8.791 \mathrm{~min}$ (major), $t_{\mathrm{R}}=13.349 \mathrm{~min}$ (minor), 96% ee.

$3 r$

(S)-14-bromo-2-methoxy-8,15-methanobenzo[d]naphtho[1,2-h][1,3]dioxonine (3r)

Compound $\mathbf{3 r}$ was synthesized in 84% yield ($199 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. $\mathbf{3 r}$ was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.97,151.51,148.98,133.67,132.04,131.29,130.74,129.66,129.47,129.07,124.61$, $124.53,122.91,122.02,116.99,115.57,114.83,110.75,105.20,55.47,35.14$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 395.0277$, Found: 395.0265.
Optical Rotation: $[\alpha]_{D}{ }^{25}=-199.6^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=8.998 \mathrm{~min}$ (major), $t_{\mathrm{R}}=11.038 \mathrm{~min}$ (minor), $93 \% \mathbf{e e}$.

(S, Z)-15-bromo-9,10-dihydro-8H-8,16-methanobenzo[f]naphtho[2,1-b]oxecine (3s)

Compound 3 s was synthesized in 33% yield ($75 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3s was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.97,141.81,140.15,130.40,129.49,129.45,129.18,128.92,128.59,128.38,128.15$, $126.50,126.48,125.73,123.54,122.59,118.64,118.43,73.90,36.14,35.34,27.53$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 377.0536$, Found: 377.0521 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-442.4^{\circ}(c=0.55, \mathrm{DCM})$.
HPLC analysis: Chiralcel OD-H (Hexane $/ i-\operatorname{PrOH}=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=8.891 \mathrm{~min}$ (major), $t_{\mathrm{R}}=12.790 \mathrm{~min}$ (minor), 93% ee.

(S, Z)-15-bromo-12-methyl-9,10-dihydro-8H-8,16-methanobenzo[f]naphtho[2,1-b]oxecine (3t)

Compound 3t was synthesized in 35% yield ($82 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3t was purified by silica gel column chromatography using PE:EA ($60: 1$ to $50: 1$) as eluent.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{t}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 152.99,141.67,139.08,137.42,130.17,130.13,129.41,128.91,128.44,128.41,128.12$, $127.29,126.54,125.67,123.50,122.70,118.91,118.43,74.02,36.12,35.39,27.50,21.34$.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 391.0692$, Found: 391.0683.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-266.6^{\circ}(c=0.5, \mathrm{DCM})$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=4.950 \mathrm{~min}$ (major), $t_{\mathrm{R}}=5.573 \mathrm{~min}$ (minor), 94% ee.

(S, Z)-3,15-dibromo-9,10-dihydro-8H-8,16-methanobenzo[f]naphtho[2,1-b]oxecine (3u)

Compound $\mathbf{3 u}$ was synthesized in 32% yield ($88 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3u was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.51$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.1$,
$7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=15.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=12.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{t}, J=14.1$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 153.29,141.71,139.93,130.04,130.01,129.92,129.48,129.31,129.01,128.55,128.53$, 128.27, 126.93, 126.56, 122.66, 119.56, 119.13, 117.23, 74.09, 36.08, 35.18, 27.49.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 456.9620$, Found: 456.9609.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-388^{\circ}(c=0.3, \mathrm{DCM})$.
HPLC analysis: Chiralcel ADAD-H (Hexane $/ i-\mathrm{PrOH}=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=16.659$ \min (minor), $t_{\mathrm{R}}=19.382 \mathrm{~min}$ (major), 93% ee.

UV-WL1

RetTime (min)	Width (min)	Height (Volts)	Area	Area (\%)
16.666	2.74	450935	15879724	49.898
19.563	3.07	289374	15944824	50.102

(S, Z)-15-bromo-2-(phenylethynyl)-9,10-dihydro-8H-8,16-methanobenzo[f]naphtho[2,1-b]oxecine (3v)

Compound $\mathbf{3 v}$ was synthesized in 33% yield ($95 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. 3v was purified by silica gel column chromatography using PE:EA (60:1 to $50: 1$) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=16.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.72(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.56,141.71,140.05,131.75,129.98,129.93,129.44,129.29,129.24,128.73,128.35$, $128.29,128.24,128.13,126.54,126.24,123.47,122.45,120.55,119.18,119.08,90.39,89.63,74.07,36.14,35.21,27.50$. HRMS (APCI) m / z Calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 477.0849$, Found: 477.0841 .

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-411.4^{\circ}(c=0.5, \mathrm{DCM})$.
HPLC analysis: Chiralcel ADAD-H (Hexane $/ i-\operatorname{PrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=10.129$ \min (major), $t_{\mathrm{R}}=10.547 \mathrm{~min}$ (minor), 92% ee.

3w

(R, Z)-16-bromo-5,5-dimethyl-6,7-dihydro-5H-7,15-methanobenzo[e]naphtho[1,2-i][1,4]oxasilecine (3w)

Compound $\mathbf{3 w}$ was synthesized in 52% yield ($131 \mathrm{mg}, 0.6 \mathrm{mmol}$ scale) under condition [A]. $\mathbf{3 w}$ was purified by silica gel column chromatography using PE:EA (60:1 to 50:1) as eluent.

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.90(\mathrm{~m}, 1 \mathrm{H})$, $2.88(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=12.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dd}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{dd}, J=14.7,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 0.39 ($\mathrm{s}, 3 \mathrm{H}$), 0.24 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.28,145.87,138.59,133.85,130.36,130.33,129.36,129.03,128.82,128.71,128.18$, 127.77, 126.60, 125.66, 123.32, 121.63, 119.10, 118.58, 75.09, 35.96, 23.81, -0.93, -1.74.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrOSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 421.0618$, Found: 421.0607 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-323.3^{\circ}(c=0.75, \mathrm{DCM})$.
HPLC analysis: Chiralcel ADAD-H (Hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=7.426$ \min (major), $t_{\mathrm{R}}=7.768 \min$ (minor), 97% ee.

Unsuccessful attempt for the construction of the [6.3.1] ring system

We synthesized substrate $\mathbf{1 x}$ and evaluated the construction of the [6.3.1] ring system under the standard reaction conditions. Unfortunately, we did not observe the trace of the generation of the [6.3.1] ring system.

VIII. Mechanistic studies

1) Control experiments

Compound 12 was prepared according to the general procedure. The control experiment was carried out following the general procedure (Condition [A]).

12

1-((2-allylphenyl)ethynyl)naphthalen-2-yl acetate (12)

Compound $\mathbf{1 2}$ is an unknown compound, and was synthesized in 43% yield ($280 \mathrm{mg}, 2 \mathrm{mmol}$ scale) following the general procedure (Method A).
yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.06(\mathrm{ddt}, J=16.8,10.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.66,149.94,141.54,136.14,133.53,132.18,131.00,129.45,128.74,128.69,128.01$, 127.14, 126.04, 125.93, 125.83, 122.39, 121.00, 116.20, 113.07, 97.85, 86.26, 38.57, 20.75.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 349.1199$, Found: 349.1186.

Compound $\mathbf{1 3}$ was prepared according to the general procedure as described for $\mathbf{S 6}$. The control experiment was carried out following the general procedure (Condition [A]).

13

1-((2-allylphenyl)ethynyl)-2-naphthaldehyde (13)

Compound $\mathbf{1 3}$ was synthesized following the general procedure $(\operatorname{Method} \mathbf{A})$.
Pale yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=10: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{dd}, J=6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.82(\mathrm{~m}, 2 \mathrm{H})$, $7.74-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=13.9,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.16-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.01(\mathrm{~m}, 2 \mathrm{H})$, $3.75(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.09,142.12,136.16,135.79,134.19,133.14,132.71,129.59,129.34,129.31,128.86$, $128.47,127.67,127.56,127.27,126.43,122.08,121.99,116.56,101.05,86.57,38.89$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 319.1093$, Found: 319.1105.

Compound 14 was prepared according to the general procedure as following. The control experiment was carried out following the general procedure (Condition [A]).

General procedure for the synthesis of 14 :
To a solution of the $\mathbf{1 3}$ ($1.48 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.) in methanol (0.5 M) was added NaBH_{4} ($190 \mathrm{mg}, 5 \mathrm{mmol}, 1.0$ equiv.) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$. After 30 min , the mixture was quenched with saturated aqueous NHCl_{4} solution, extracted with EA, and then washed 3 times with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=10: 1$) to afford compound $\mathbf{1 4}$ (90% yield).

14

(1-((2-allylphenyl)ethynyl)naphthalen-2-yl)methanol (14)

Pale yellow solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.19(\mathrm{~m}, 3 \mathrm{H})$, $6.18-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.26-4.96(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.59,141.19,136.44,133.27,132.54,132.48,129.12,128.90,128.80,128.18,126.97$, $126.27,126.14,125.11,122.69,118.40,116.28,98.30,88.55,64.32,38.82$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 297.1285$, Found: 297.1279.

2) Density Functional Theory (DFT) Experiments

Computational Methods.

All density functional theory (DFT) calculations were performed with the Gaussian 09^{1} software package. Geometries were optimized in toluene with the SMD solvation model ${ }^{2}$ using the B3-LYP-D3 ${ }^{3}$ functional and a basis set of $6-31 \mathrm{G}(\mathrm{d})^{4}$. Vibrational frequencies were computed at the same level to evaluate its zero-point vibrational energy and thermal corrections at 298 K , and to check whether each optimized structure is a transition state or not. The single-point energies and solvent effects in ethylethanoate were computed at the M06-2X level of theory with the 6-311+G(d,p $)^{5}$ basis set, using the solvent-phase optimized structures. Intrinsic reaction coordinate (IRC) calculations have demonstrated that the transition state connects two corresponding intermediates along the reaction coordinate.

B3-LYP-D3 and M06-2X calculated absolute energies, and free energies of all structures

Geometry	$\mathrm{E}_{\text {(elec-B3-LYP-D3) }}{ }^{1}$	$\mathrm{G}_{(\text {corr-B3-LYP-D3) }}{ }^{2}$	$\mathrm{H}_{\text {(corr-B3-LYP-D3) }}{ }^{3}$	$\mathrm{E}_{\text {(solv-M06-2X) }}{ }^{4}$	IF^{5}
VQM	-3495.19	0.2686	0.3444	-3497.78	
TS1	-5193.34	0.7559	0.8985	-5195.68	$-326.12 i$
TS2	-3495.17	0.2717	0.3429	-3497.75	$-382.09 i$
TS3	-3495.17	0.2733	0.3431	-3497.74	$-388.57 i$
P1	-3495.25	0.2818	0.3482	-3497.85	
P2	-3495.27	0.2813	0.3482	-3497.86	
cat	-1698.13	0.4576	0.5532	-1697.90	
int1	-5193.35	0.7493	0.9001	-5195.70	
OMe-TS2	-3609.70	0.3035	0.3786	-3612.27	$-368.24 i$
OMe-TS3	-3609.71	0.3026	0.3792	-3612.28	$-184.53 i$
O-TS2	-3531.07	0.2470	0.3185	-3533.66	$-314.23 i$
O-TS3	-3531.06	0.2486	0.3182	-3533.65	$-406.59 i$

${ }^{1}$ The electronic energy calculated by B3-LYP-D3 in ethylethanoate solvent. ${ }^{2}$ The thermal correction to Gibbs free energy calculated by B3-LYP-D3 in ethylethanoate solvent. ${ }^{3}$ The thermal correction to enthalpy calculated by B3-LYP-D3 in ethylethanoate solvent. ${ }^{4}$ The electronic energy calculated by M06-2X in ethylethanoate solvent. ${ }^{5}$ The B3-LYP-D3 calculated imaginary frequencies for the transition states.

TS2
Chirality transfer process

TS1

TS2

TS3

References:

1. 9 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J.Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R.Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F.Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C.Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
2. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
3. A. D. Becke, J. Chem. Phys. 1993, 98, 5648 - 5652; (b) C. Lee, W. Yang,R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
4. (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222. (c) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 22572261.
5. Krishnan, R., Binkley, J. S., Seeger, R. \& Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.

Cartesian coordinates of the structures

TS1

C	-3.91548500	2.42402200	-0.33569900
C	-4.33148900	1.68027000	1.79159100
C	-3.88788000	0.35060000	1.48183400
C	-3.43897100	0.09423400	0.14069200
C	-3.45294800	1.14849900	-0.74692000
H	-5.10344000	2.97636700	3.32356600
H	-3.92324900	3.24256100	-1.05508700
C	-4.77237700	1.96460300	3.10779800
C	-3.89984000	-0.62801400	2.50307700
H	-3.11172600	1.03191100	-1.76876700
C	-4.33690100	-0.31699000	3.78212100
C	-4.77854100	0.99746200	4.08879200
H	-3.55391400	-1.63954500	2.32039900
H	-5.11817400	1.24972100	5.08650900
N	-4.34385900	2.69894100	0.87801500
O	-4.30884800	-1.33418500	4.68596000
C	-4.70411400	-1.07190600	6.03042500
H	-5.75394900	-0.75668800	6.09189200
H	-4.58462400	-2.01743000	6.56392700
H	-4.06618800	-0.31160800	6.49935900
C	-2.89089800	-1.28422800	-0.21692500
H	-3.53042800	-2.04362600	0.23683800
N	-1.57586500	-1.41550500	0.40109300
H	-0.85416200	-0.87034000	-0.07127300
C	-1.21237700	-2.51422700	1.10860700
C	-2.79908600	-1.55622100	-1.73387700
C	-4.18896100	-1.53567800	-2.43298000
H	-2.15553900	-0.78450900	-2.16072300
C	-2.96590600	-3.99258700	-1.78650400
C	-1.69909400	-2.81092000	-3.44299500
C	-4.19540000	-2.64543000	-3.50173500
H	-4.99479200	-1.71869500	-1.70966500
H	-4.38105700	-0.55835400	-2.88469300
H	-2.35329400	-4.89462500	-1.89408400
H	-3.29809700	-3.96435700	-0.74590100
C	-4.16646700	-4.00650600	-2.78082400
C	-2.91402900	-2.52273000	-4.38252800
H	-1.26898600	-3.79058800	-3.67776500
H	-0.90022700	-2.07638600	-3.57235300

 \(-5.08832800-2.56276300-4.13198300\)
 \(4.06466100-4.81752600 \quad-3.51324700\)
 \(-5.11203800-4.16765200-2.24884300\)
 \(-2.97505400-3.31366600-5.14408700\)
 \(-2.09061800-2.82639700-2.02092500\)
 \(-2.89739700-1.20476900-5.12294800\)
 \(-2.04567000-0.18372800-4.98800400\)
 -3.71627500 -1.09553500 -5.83794700
 \(-2.15943300 \quad 0.72167200-5.58014900\)
 \(-1.20556300-0.20371500-4.29868100\)
 \(-2.00169900-3.39200700 \quad 1.47728100\)
 \(\begin{array}{llll}0.25688800 & -2.59977700 & 1.42201400\end{array}\)
 \(1.04546400-1.46488400 \quad 1.65082800\)
 \(0.85030700-3.86938100 \quad 1.43803200\)
 \(2.41788600-1.59234200 \quad 1.85569600\)
 \(0.59878600-0.47620400 \quad 1.66037600\)
 \(2.22238800-3.99995200 \quad 1.62382600\)
 \(0.22726500-4.74298700 \quad 1.27696300\)
 \(3.00579700-2.85655500 \quad 1.82232500\)
 \(3.02686400-0.70964500 \quad 2.00744600\)
 \(2.68779900-4.98068300 \quad 1.60159500\)
 \(4.48741400-3.01737600 \quad 2.00423800\)
 \(5.01441200-3.85450900 \quad 1.07401300\)
 \(4.79523000-3.55614900 \quad 3.21187300\)
 \(5.15474100-1.84737500 \quad 1.91438500\)
 \(\begin{array}{lll}2.21562200 & 2.18078200 & 1.80542400\end{array}\)
 \(0.10410300 \quad 0.06628800-1.40140700\)
 \(1.36165700 \quad 4.08953600-0.21277300\)
 \(1.27215600-0.41958000-1.40649100\)
 \(3.76870900-0.08545200-1.17658600\)
 \(1.86849600 \quad 2.71190800-0.05405300\)
 \(\begin{array}{lll}2.01466300 & 5.16223700 & 0.41490100\end{array}\)
 \(2.89795300 \quad 4.96794400 \quad 1.01567700\)
 \(2.10367700 \quad 1.76458600-0.94318100\)
 \(\begin{array}{llll}1.58573200 & 2.56148500 & -2.83390400\end{array}\)
 \(2.09974500 \quad 1.91140400-3.53583400\)
 \(2.10425400 \quad 3.48340800-2.58399700\)
 \(4.90071700 \quad 0.71326600-0.91149900\)
 \(4.76489300 \quad 1.77120300-0.70489600\)
 | C | 1.52805700 | -1.82291800 | -1.67111000 |
| :---: | :---: | :---: | :---: |
| H | 0.66172100 | -2.46233800 | -1.81188800 |
| C | 0.23173500 | 2.43827200 | -2.66245200 |
| H | -0.31134700 | 1.66187100 | -3.19008500 |
| C | 2.41826800 | 0.43585700 | -1.13960200 |
| C | 1.54873700 | 6.46474600 | 0.27560600 |
| H | 2.07759400 | 7.27877900 | 0.76500600 |
| C | 3.95067000 | -1.47479800 | -1.43591800 |
| C | 5.25269400 | -2.01476800 | -1.42381400 |
| H | 5.38096000 | -3.07808300 | -1.60733600 |
| C | -0.55357000 | 3.22661700 | -1.66378700 |
| H | -1.46645500 | 3.61331900 | -2.13437300 |
| H | -0.89419900 | 2.48922000 | -0.91868600 |
| C | 6.17263300 | 0.15883000 | -0.90720400 |
| H | 7.03335000 | 0.78832900 | -0.69765700 |
| C | 0.40230500 | 6.73703400 | -0.48425200 |
| C | -0.13632100 | 8.14117900 | -0.60212000 |
| H | -0.80249200 | 8.37485800 | 0.23954300 |
| H | -0.71442800 | 8.27485700 | -1.52277000 |
| H | 0.67075000 | 8.88215300 | -0.59176100 |
| C | 0.20281100 | 4.34417000 | -0.98290900 |
| C | 2.79729600 | -2.31026500 | -1.67305100 |
| H | 2.97069000 | -3.37081400 | -1.84236400 |
| C | 6.35343200 | -1.21188400 | -1.16412500 |
| H | 7.35111700 | -1.64135500 | -1.15134300 |
| C | -0.24612300 | 5.66276900 | -1.10470700 |
| H | -1.13834900 | 5.85514100 | -1.69665800 |
| | $\begin{aligned} & \mathrm{C7}-\mathrm{C} 1=2.09 \AA \\ & \mathrm{OB-C2}=2.71 \AA \end{aligned}$ | | |
| | TS2 | | |
| Br | 0.28872400 | -1.66783500 | 1.72118600 |
| O | -1.02579100 | 2.60678300 | 1.20027400 |
| C | 2.15794200 | -0.28984800 | -0.03773800 |

C	-1.94173900	1.88058900	0.74676900
C	-2.69250400	-0.19122500	-0.51956400
C	0.72977600	-0.35260800	0.33304800
C	2.87213700	-1.46600300	-0.32193800
H	2.36267900	-2.42287300	-0.26151400
C	-0.30210100	0.35023400	-0.10045500
C	0.40895500	1.67792600	-1.54598300
H	-0.47970500	1.95101900	-2.10738700
H	1.01184400	0.88839900	-1.98706100
C	-2.42881400	-1.40032200	-1.19917000
H	-1.39940500	-1.72775800	-1.31337500
C	-3.34883100	2.25619400	0.83315300
H	-3.57590000	3.18936200	1.34116300
C	0.95080800	2.57274500	-0.65910000
H	0.45733600	3.52090700	-0.47599300
C	-1.64413600	0.62080400	0.06349700
C	4.21484800	-1.42085800	-0.67575000
H	4.74381600	-2.34486900	-0.89691500
C	-4.04568900	0.22908300	-0.36837200
C	-5.08173900	-0.57069900	-0.89194800
H	-6.11125000	-0.24263600	-0.76696000
C	2.11921500	2.25123400	0.21888200
H	2.82875400	3.08818500	0.21446200
H	1.70519800	2.21463100	1.24032100
C	-3.46481700	-2.16734400	-1.71228300
H	-3.24099400	-3.09442300	-2.23366700
C	4.89620400	-0.19636800	-0.74572700
C	6.35948600	-0.15243400	-1.11039000
H	6.97147800	-0.64225800	-0.34180200
H	6.71849300	0.87614300	-1.21835600
H	6.54924000	-0.67987800	-2.05336100
C	2.82862300	0.95355500	-0.09919200
C	-4.32819700	1.46819600	0.31891300
H	-5.37117400	1.76538000	0.41229000
C	-4.80076100	-1.75503000	-1.55855800
H	-5.60821400	-2.36187400	-1.95878800
C	4.18196500	0.97105800	-0.45696300
H	4.69502300	1.92923100	-0.50355700

Br
r

TS3

| 2.33835800 | -2.38494100 | 0.14734100 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}-0.26884400 & 0.56947900 & 0.18651000\end{array}$
$-0.11814500 \quad 3.39713900 \quad-0.52203100$
$-0.97347500 \quad 3.58213500 \quad-1.16230100$
$0.13989000 \quad 4.18105600 \quad 0.18096900$
$-1.90771100-1.52611700-1.09280600$
$-0.83678100-1.69004900-1.05094700$
$\begin{array}{llll}-3.68562100 & 2.04624300 & 0.46538400\end{array}$
$\begin{array}{llll}-4.12492800 & 2.96348500 & 0.84637600\end{array}$
$\begin{array}{llll}0.73144100 & 2.34153700 & -0.75438000\end{array}$
$-1.63786000 \quad 0.66928600 \quad 0.12216900$
$4.13760700-1.45951700 \quad-0.56730500$
$4.64868600-2.41014500 \quad-0.69816800$
$-3.85865600-0.13890100 \quad-0.63286200$
$-4.66913400-1.12339900-1.23591400$
$-5.74234900-0.95607200-1.28884800$
$\begin{array}{llll}2.06758200 & 2.28349300 & -0.04133000\end{array}$
$2.70685900 \quad 3.10047000 \quad-0.39870900$
$\begin{array}{llll}1.89511600 & 2.46292400 & 1.02943100\end{array}$
$-2.72398700-2.47805200-1.68683400$
$-2.28189700-3.38076300-2.09991700$
$\begin{array}{lllll}\text { C } & 4.80126700 & -0.26617200 & -0.87449700\end{array}$
$\begin{array}{lllll}\mathrm{C} & 6.23132100 & -0.26161600 & -1.35537100\end{array}$
$6.23132100-0.26161600-1.35537100$

H

$\begin{array}{llll}-4.43965500 & 1.07383700 & -0.10866500\end{array}$ $-5.51737300 \quad 1.19619500 \quad-0.19573900$
$-4.11399700-2.28207500-1.75720000$
$-4.74865600-3.03258700-2.22016200$
$4.10267200 \quad 0.93698600-0.69794600$
$4.59992000 \quad 1.87682900 \quad-0.93050900$
$\begin{array}{llll}0.64760400 & 1.80571900 & -1.69830300\end{array}$

Cat 6

C	3.43183000	1.53371400	2.78828200
C	2.63589800	3.19858400	1.42754300
C	2.01109900	2.26134400	0.53722400
C	2.15325400	0.86316800	0.83997400
C	2.86007300	0.52399200	1.97347000
H	3.00697200	5.27756100	1.83232000
H	3.99048700	1.24512300	3.67806700
C	2.52440300	4.58388100	1.14999000
C	1.29525800	2.75372500	-0.57892900
H	3.00148500	-0.51058700	2.26551600
C	1.20324600	4.11643700	-0.82122000
C	1.82745700	5.04399500	0.05469000
H	0.79278600	2.08545400	-1.26944600
H	1.76097700	6.10989500	-0.12908300
N	3.33779300	2.82296900	2.53991100
O	0.49372300	4.47890400	-1.92361200
C	0.37277100	5.86415900	-2.24073400
H	1.35220400	6.32611800	-2.42009900
H	-0.21581600	5.90766800	-3.15956900

H
C
$\begin{array}{lllll}\mathrm{H} & 1.59828000 & 0.14991000 & -1.09413800\end{array}$
$\begin{array}{lllll}\mathrm{C} & 2.07603400 & -1.59389100 & 0.06136200\end{array}$
$\begin{array}{lllll}\mathrm{C} & 3.57849600 & -1.64035400 & -0.35036700\end{array}$
$\begin{array}{lllll}\text { C } & 1.69834300 & -3.92655200 & -0.28309600\end{array}$

| C | -4.57015300 | -0.84318000 | -1.01251800 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\mathrm{H} & -2.87028100 & -0.86083100 & -2.33970600\end{array}$
$\begin{array}{lllll}\mathrm{C} & -5.00984200 & -0.57622400 & 0.28726500\end{array}$

H	-4.46214600	0.08901300	2.26486600
H	-5.27190300	-1.18812000	-1.76452400
C	-6.46713100	-0.70179000	0.63237200
F	-7.11292700	-1.57379700	-0.17429400
F	-7.11397900	0.48561900	0.52020800
F	-6.65069900	-1.12006800	1.90707600

OMe-TS2

Br
O
C
C
C
C
C
H
C
C
H
C
H
C
H
C
H
C
C

H
C
C
$\begin{array}{lllll}\mathrm{H} & -6.03315000 & 0.21607400 & 0.51858400\end{array}$
$\begin{array}{lllll}\mathrm{C} & 2.12275600 & -1.88378800 & -1.09512200\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.81149300 & -2.69410400 & -1.36340800\end{array}$
$\begin{array}{llllll}\mathrm{H} & 1.74207300 & -1.48306800 & -2.04899500\end{array}$

C	-3.42371800	1.94977900	1.85718300
H	-3.21854900	2.74989400	2.56375600
C	4.94359100	-0.02216600	0.70150200
C	6.39183700	-0.24799300	1.05950600
H	7.05005500	0.38340300	0.44800400
H	6.68995000	-1.28962400	0.90162600
H	6.58696500	0.00770400	2.10799900
C	2.86249000	-0.79961700	-0.33473900
C	-4.21680800	-1.18219300	-0.90721200
H	-5.25295400	-1.47537300	-1.06600500
C	-4.75232200	1.54954100	1.61779400
H	-5.57087600	2.03845600	2.13879700
C	4.19971300	-0.99728800	0.02825400
H	4.67653000	-1.93946500	-0.23326300
O	-0.69158100	-2.49665900	1.28291800
C	-1.10418900	-1.95721900	2.54330100
H	-1.27990800	-0.87791500	2.47774300
H	-2.03882600	-2.45733300	2.80441800
H	-0.35202600	-2.16055100	3.31735300

OMe-TS3

Br	-0.74218600	-2.14861300	-1.65862900
O	1.59308600	1.83733000	-1.96851600
C	-2.35449200	-0.26608400	-0.08413000
C	2.21948900	1.03937200	-1.23913600
C	2.26330700	-0.76613700	0.55926400
C	-0.97602700	-0.52080200	-0.55121800
C	-3.22067800	-1.32853400	0.21591100
H	-2.88419900	-2.35004500	0.07683600
C	0.15480200	0.11989500	-0.34991600
C	0.42615700	2.97411900	0.17051500
H	0.38665700	3.63934400	-0.68782200
C	1.63123700	-1.65469500	1.45239800
H	0.54718900	-1.68081700	1.49779900
C	3.67871200	1.00625200	-1.20859600
H	4.19466500	1.68458500	-1.88213900

C	-0.61048800	2.16040500	0.51814900
C	1.51773700	0.10765600	-0.34460000
C	-4.51019200	-1.09869300	0.69108200
H	-5.15246200	-1.94553300	0.91994600
C	3.68570400	-0.73921800	0.51858300
C	4.42235700	-1.59723800	1.35918300
H	5.50868600	-1.56813400	1.31498400
C	-1.93204200	2.24087800	-0.20719600
H	-2.46736000	3.16035400	0.06237700
H	-1.74015800	2.29102900	-1.28816300
C	2.37636300	-2.48995400	2.27478200
H	1.86647600	-3.16605100	2.95601700
C	-4.98434700	0.20359200	0.87490600
C	-6.37669100	0.47772900	1.38728500
H	-6.94622400	1.09378700	0.67988700
H	-6.34830100	1.02684000	2.33728700
H	-6.93472500	-0.44972700	1.55178500
C	-2.81982800	1.05745500	0.09914900
C	4.35617000	0.16581600	-0.38794100
H	5.44460500	0.15817800	-0.39159200
C	3.77992900	-2.46607300	2.23045900
H	4.35860300	-3.12280900	2.87407400
C	-4.11695800	1.26213400	0.56999600
H	-4.46483500	2.28475600	0.70386800
H	-0.57777600	1.67805700	1.49193100
O	1.57274300	2.91959300	0.85325400
C	2.60118600	3.82602900	0.41728800
H	2.34606300	4.85166200	0.70799800
H	3.51780000	3.51527800	0.91986300
H	2.72676800	3.76192200	-0.66811800

$\begin{array}{llll}\mathrm{C} & -2.04707000 & 1.84690100 & 0.82757500\end{array}$
$\begin{array}{lllll}\text { C } & -2.68077800 & -0.20436700 & -0.54856600\end{array}$
$\begin{array}{lllll}\mathrm{C} & 0.71724900 & -0.30507300 & 0.42608100\end{array}$
C $\quad 2.86996200-1.43439400 \quad-0.20921100$
$\begin{array}{lllll}\mathrm{H} & 2.38407000 & -2.39195300 & -0.05294900\end{array}$
$\begin{array}{lllll}\mathrm{C} & -0.33729000 & 0.36353700 & -0.00305300\end{array}$
$\begin{array}{lllll}\mathrm{C} & 0.44031300 & 1.71173600 & -1.51840400\end{array}$
$\begin{array}{lllll}\mathrm{H} & -1.30882500 & -1.64976300 & -1.38220600\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.47552900 & 2.14701800 & 0.89957400\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.75642600 & 3.04385400 & 1.44474000\end{array}$
$\begin{array}{lllll}\mathrm{C} & 1.05045700 & 2.49178300 & -0.57894300\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.61562900 & 3.40202200 & -0.18761300\end{array}$
$\begin{array}{lllll}\mathrm{C} & -1.68071200 & 0.61136900 & 0.11962300\end{array}$
$\begin{array}{lllll}\text { C } & 4.19951900 & -1.39509500 & -0.60864600\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.73612100 & -2.32655500 & -0.76930900\end{array}$
$\begin{array}{lllll}\mathrm{C} & -4.05221100 & 0.16096200 & -0.42892900\end{array}$
C $\quad-5.03939100 \quad-0.63698500 \quad-1.04039400$
$\mathrm{H} \quad-6.08320000 \quad-0.34872300 \quad-0.93808700$
$\begin{array}{lllll}\text { C } & -3.34062300 & -2.12828700 & -1.88759100\end{array}$
H $\quad-3.06378800$-3.01337900 -2.45449200
$\begin{array}{lllll}\text { C } & 4.86192500 & -0.17225800 & -0.80396300\end{array}$
$\begin{array}{lllll}\mathrm{C} & 6.30757600 & -0.13970600 & -1.23032200\end{array}$
H $\quad 6.94548300$-0.64041300 -0.49127900
$\begin{array}{lllll}\mathrm{H} & 6.67044100 & 0.88562200 & -1.35113600\end{array}$
$\begin{array}{lllll}\mathrm{H} & 6.44755000 & -0.66505600 & -2.18324900\end{array}$
$\begin{array}{lllll}\mathrm{C} & 2.80522700 & 0.95938900 & -0.20029100\end{array}$
$\begin{array}{lllll}\mathrm{C} & -4.40492700 & 1.34895200 & 0.31572700\end{array}$
$\begin{array}{lllll}\mathrm{H} & -5.46179900 & 1.59889000 & 0.39147500\end{array}$
C $\quad-4.69410400 \quad-1.76970200 \quad-1.76499100$
H $\quad-5.46452400$-2.37536900 -2.23394800
$\begin{array}{lllll}\mathrm{C} & 4.14103400 & 1.00524900 & -0.59102500\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.60680400 & 1.97718500 & -0.72231600\end{array}$
$\begin{array}{lllll}\mathrm{O} & 2.19717200 & 2.18579200 & 0.05214800\end{array}$

O-TS3

Br
O
C
C
C
C
C

H

C

C
H
H
C
H
C
H
C
C
C
H
C
C
H
C
H
C
C
H
H
H
C

| C | -4.41040600 | 1.24224300 | 0.10277900 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\mathrm{H} & -5.48139500 & 1.43245200 & 0.07652600\end{array}$

C	-4.35900800	-2.00815000	-1.77420400
H	-5.05701900	-2.68782400	-2.25496700
C	4.07913600	1.02806200	-0.66120300
H	4.49849100	2.01066200	-0.85740100
H	0.69919500	1.70803200	-1.67188400
O	2.05960300	2.13183500	-0.13757800

IX. Gram-scale preparation and transformations

A solution of $\mathbf{1 a - 2}\left(1.0 \mathrm{~g}, 3.52 \mathrm{mmol}, 1.0\right.$ equiv.) and $\mathbf{C 6}(10 \mathrm{~mol} \%)$ in EA $(0.0125 \mathrm{M})$ was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , then NBS ($660 \mathrm{mg}, 3.70 \mathrm{mmol}, 1.05$ equiv.) was added in 10 portions. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography using PE/EA eluent ($30: 1$ to $15: 1$) to afford the product $\mathbf{3 a}$ ($831 \mathrm{mg}, 65 \%$ yield) as a pale yellow solid.

3a ($73 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) was dissolved in freshly distilled THF (2 mL) at room temperature under nitrogen atmosphere. The solution was cooled to $-78^{\circ} \mathrm{C}$. Titrated $n-\operatorname{BuLi}(0.25 \mathrm{mmol}, 1.25$ equiv.) was added dropwise. After stirred for 30 min at $-78^{\circ} \mathrm{C}$, the reaction was allowed to warm to room temperature. Solvent was removed under reduced pressure. The product was then dried under vacuum and flash chromatography on a silica column (PE: EA $=20: 1$) to afforded compound 5 as a yellow oil in 65% yield.

5

8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(5)

Yellow oil. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=20: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.54-$ $5.40(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=14.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=14.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 151.28,139.53,137.72,137.49,129.81,129.63,128.63,128.28,128.20,127.82,127.33$, 127.26, 126.44, 125.69, 123.68, 123.43, 121.86, 118.41, 85.99, 40.97, 32.66.

HRMS (APCI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 285.1274$, Found: 285.1265

Optical Rotation: $[\alpha]_{D}{ }^{25}=-126.4^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\operatorname{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=5.213 \mathrm{~min}$ (major), $t_{\mathrm{R}}=5.934 \mathrm{~min}$ (minor), 96% ee.

3a ($73 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) and m - CPBA ($138 \mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv.) was dissolved in $\mathrm{DCM}(4 \mathrm{~mL})$. The mixture was stirred overnight at room temperature. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel $($ PE/EA $=5: 1)$ to afford the product $6(45.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 60 \%$ yield $)$ as a white solid.

6

White solid. $\left(\mathrm{R}_{f}=0.4, \mathrm{PE} / \mathrm{EA}=5: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.47(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.59,151.79,136.97,132.59,131.99,131.58,131.10,130.05,129.37,128.81,128.41$, $126.90,126.03,125.29,123.72,118.84,114.02,71.42,65.39,43.45,40.98$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 401.0148$, Found: 401.0148.
Optical Rotation: $[\alpha]_{D}{ }^{25}=+34.6^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=8.899$ \min (major), $t_{\mathrm{R}}=10.046 \mathrm{~min}$ (minor), 99% ee.

$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(12 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05\right.$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1 \mathrm{mmol}, 5.0$ equiv.), $\mathbf{3 a}$ ($73 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) and the boronic acid ($0.24 \mathrm{mmol}, 1.2$ equiv.) was dissolved in THF (2 mL) and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ under nitrogen atmosphere. The mixture was stirred for 4 hours at $70^{\circ} \mathrm{C}$. Then the mixture was filtered through a pad of celite and washed with EA. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=20: 1$) to afford the product.

(S)-14-phenyl-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(7)

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=15: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 4 \mathrm{H})$, $7.09(\mathrm{t}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.90(\mathrm{~m}, 4 \mathrm{H}), 5.51-5.42(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=14.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=14.4,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.19,142.50,141.10,136.68,134.75,132.04,129.55,128.85,128.76,128.41,128.13$, 127.99, 127.79, 127.48, 127.29, 126.49, 125.41, 125.08, 122.86, 121.23, 118.11, 84.83, 41.53, 34.27.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 361.1587$, Found: 361.1595.
Optical Rotation: $[\alpha]_{D}{ }^{25}=-176.6^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H $($ Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=8.421 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=9.627 \mathrm{~min}$ (major), 98% ee.

(S)-14-(anthracen-9-yl)-8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonine(8)

White solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=15: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.70-$ $7.49(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, 2 \mathrm{H}), 7.19-6.88(\mathrm{~m}, 6 \mathrm{H}), 6.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ $-5.70(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=15.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=15.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=$ $11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.40,141.76,138.16,136.31,135.94,134.02,131.72,131.62,131.27,130.64,129.85$, $128.89,128.80,128.67,128.24,128.13,127.82,127.52,127.10,126.88,126.68,126.00,125.70,125.35,125.01,124.79$, 124.65, 124.00, 123.66, 122.50, 117.82, 86.68, 44.06, 35.39.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 483.1719$, Found: 483.1743 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-307.3^{\circ}(c=0.3$, DCM $)$.

HPLC analysis: Chiralcel IA-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=6.962 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=8.522 \mathrm{~min}$ (major), 97% ee.

TMS $=$

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{CuI}(4 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv.), and $\mathbf{3 a}(73 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) were weighed and added into a schlenk tube, evacuated and backfilled with nitrogen (3 times). THF (1.0 mL) and $\mathrm{Et}_{3} \mathrm{~N}$
$(1.0 \mathrm{~mL})$ were injected into the flask. Then, the mixture was stirred for 2 h at $70^{\circ} \mathrm{C}$. After that, the alkyne $(0.22 \mathrm{mmol}, 1.1$ equiv.) dissolved in THF (1.0 mL) was added. The resulting mixture kept stirring for 4 h at $70{ }^{\circ} \mathrm{C}$. Then the mixture was filtered through a pad of celite. Removal of the solvent under reduced pressure afforded a residue which is purified by chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=20: 1)$ to afford the product.

(S)-((8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonin-14-yl)ethynyl)trimethylsilane (9)

Yellow solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=15: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45-5.37(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (dd, $J=11.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}),-0.13(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.80,142.24,140.16,137.00,129.40,129.36,129.00,128.93,128.41,128.03,127.66$, 127.60, 127.28, 125.26, 123.27, 122.10, 118.37, 117.97, 103.93, 100.57, 84.67, 40.46, 34.10, -0.37.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 381.1669$, Found: 381.1676.
Optical Rotation: $[\alpha]_{D}{ }^{25}=-146.0^{\circ}(c=1.0$, acetone $)$.
HPLC analysis: Chiralcel IB-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=4.970 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=5.742 \mathrm{~min}$ (major), 98% ee.

(S)-((8,9-dihydro-8,15-methanobenzo[f]naphtho[2,1-b]oxonin-14-yl)ethynyl)ferrocene (10)

Red solid. $\left(\mathrm{R}_{f}=0.6, \mathrm{PE} / \mathrm{EA}=15: 1\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=11.8,3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.55,140.41,139.10,136.97,129.48,129.40,129.23,128.81,128.56,128.01,127.87$, $127.66,127.27,125.29,123.38,122.37,118.95,118.31,94.17,85.50,84.77,71.61,70.71,69.91,68.70,40.53,33.81$.

HRMS (ESI) m / z Calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{FeNaO}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 515.1069$, Found: 515.1085.
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-171.0^{\circ}(c=0.2$, acetone $)$.
HPLC analysis: Chiralcel IA-H (Hexane $/ i-\mathrm{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}), t_{\mathrm{R}}=6.142 \mathrm{~min}$ (major), $t_{\mathrm{R}}=6.744 \mathrm{~min}$ (minor), 97% ee.

3a ($73 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) $\mathrm{KMnO}_{4}\left(126 \mathrm{mg}, 0.8 \mathrm{mmol}\right.$, 4 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(110 \mathrm{mg}, 0.8 \mathrm{mmol}$, 4 equiv.) was dissolved in THF (2 mL) and $\mathrm{MeOH}(2 \mathrm{~mL})$. The mixture was stirred overnight at room temperature. Removal of solvent under reduced pressure, purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=5: 1$) to afford the product $\mathbf{1 1}(34.8 \mathrm{mg}$, $0.11 \mathrm{mmol}, 55 \%$ yield) as a white solid.

Yellow solid. $\left(\mathrm{R}_{f}=0.5, \mathrm{PE} / \mathrm{EA}=3: 1\right)$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.91-4.85(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J$ $=16.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=14.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.62,153.22,136.41,133.73,131.52,131.14,130.90,130.84,129.14,128.64,128.37$, $127.00,126.47,123.92,123.01,118.34,114.36,74.51,71.82,42.34,39.75$.
HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 339.0992$, Found: 339.0990 .
Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=+44.8^{\circ}(c=0.5$, acetone $)$.
HPLC analysis: Chiralcel AD-H (Hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, wave length $=254 \mathrm{~nm}$), $t_{\mathrm{R}}=11.834$ \min (major), $t_{\mathrm{R}}=15.593 \mathrm{~min}$ (minor), 98% ee.

X. Thermal stability experiments

Thermal stability of 3a:

A solution of 3a(5 mg, 99\% ee after recrystallization) in DMF (1 mL) was heated at $120{ }^{\circ} \mathrm{C}$. At intervals, the enantiomeric excess was determined by HPLC.

3a, 99% ee
$120^{\circ} \mathrm{C}$ after one week 99\% ee

Thermal stability of 3s:

A solution of $\mathbf{3 s}\left(5 \mathrm{mg}, 98 \%\right.$ ee, after recrystallization) in DMF (1 mL) was heated at $120^{\circ} \mathrm{C}$. At intervals, the enantiomeric excess was determined by HPLC.

XI. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

XII. X-ray crystallographic information

The authors thank Mr. Xiangnan Gong (Analytical and Testing Center of Chongqing University) for spectroscopic measurements.

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0040 \mathrm{~A}$	Wavelength $=0.71073$	
Cell:	$a=15.1076$ (5)	$\mathrm{b}=10.0376$ (5)	$\mathrm{c}=20.6682$ (10)
alpha=90	beta $=90$	gamma $=90$	
Temperature:	293 K		
	Calculated	Reported	
Volume	3134.2(2)	3134.2(2)	
Space group	Pbca	Pbca	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C21 H15 Br O	C21 H15 Br O	
Sum formula	C21 H15 Br O	C21 H15 Br O	
Mr	363.23	363.24	
Dx,g cm-3	1.540	1.540	
Z	8	8	
$\mathrm{Mu}(\mathrm{mm}-1)$	2.625	2.625	
F000	1472.0	1472.0	
F000,	1470.26		
h,k,lmax	20,13,28	20,13,27	
Nref	4202	3707	
Tmin, Tmax	0.437,0.467	0.970,1.000	
Tmin'	0.404		
Correction method= \# Reported T Limits: Tmin=0.970 Tmax=1.000			
AbsCorr $=$ MULTI-SCAN			
Data completeness $=0.882$		$=29.094$	
R (reflections)=0.0391 (2444)		(ons) $=0.0899(3707)$	
$\mathrm{S}=1.038$			

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0083 \mathrm{~A}$	Wavelength $=0$.	
Cell:	$\mathrm{a}=7.8805$ (4)	$\mathrm{b}=11.2373$ (4)	$\mathrm{c}=17.8564$ (12)
alpha=90	beta $=90$	gamma=90	
Temperature:	293 K		
	Calculated	Reported	
Volume	1581.28(14)	1581.28(14)	
Space group	P 212121	P 212121	
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C21 H15 Br O	C21 H15 Br O	
Sum formula	C21 H15 Br O	C21 H15 Br O	
Mr	363.23	363.24	
Dx, g cm-3	1.526	1.526	
Z	4	4	
Mu (mm-1)	2.601	2.601	
F000	736.0	736.0	
F000'	735.13		
h,k,lmax	10,15,24	10,15,22	
Nref	4242[2425]	3598	
Tmin, Tmax	0.358,0.424	0.770,1.000	
Tmin ${ }^{\text {, }}$	0.331		
Correction method= \# Reported	mits: $\mathrm{Tmin}=0.770$	1.000	
AbsCorr $=$ MULTI-SCAN			
Data completeness $=1.48 / 0.85$		max $=29.096$	
R (reflections) $=0.0487$ (2126)		flections) $=0.1007$	
$\mathrm{S}=0.981$		208	

Bond precision:
Cell:
alpha $=90$
Temperature:

Volume
Space group
Hall group
Moiety formula
Sum formula
Mr
Dx,g cm-3
Z
$\mathrm{Mu}(\mathrm{mm}-1)$
F000
F000'
h,k, lmax
Nref
Tmin,Tmax
Tmin'
$\mathrm{C}-\mathrm{C}=0.0076 \mathrm{~A}$
$\mathrm{a}=8.0085$ (3)
beta=90
295 K
Calculated
1512.66(14)

P 212121
P 2 ac 2 ab
C20 H13 Br O2
C 20 H 13 Br O 2
365.20
1.604

4
2.725
736.0
735.16

10,12,28
4032[2317]
$0.435,0.596$
0.402

Wavelength $=0.71073$
$\mathrm{b}=8.9848(6) \quad \mathrm{c}=21.0224(11)$
gamma $=90$

Reported
1512.66(15)

P 212121
P 2ac 2ab
C20 H13 Br O2
C20 H13 Br O2
365.21
1.604

4
2.725
736.0

10,11,28
3463
0.776,1.000

Correction method= \# Reported T Limits: Tmin=0.776 Tmax=1.000
AbsCorr $=$ MULTI-SCAN
Data completeness $=1.49 / 0.86$
$R($ reflections $)=0.0439$ (2759)
$\mathrm{S}=1.035$

Theta $(\max)=29.044$
wR 2 (reflections) $=0.0823(3463)$
Npar $=208$

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0063 \mathrm{~A}$	Wavelength $=0.71073$	
Cell:	$\mathrm{a}=5.5950$ (3)	$\mathrm{b}=10.2307(4)$	$\mathrm{c}=29.7158(12)$
alpha $=90$	beta $=90$	gamma $=90$	
Temperature:	293 K		
	Calculated		Reported
Volume	1700.96(13)		1700.96(13)
Space group	P 212121		P 212121
Hall group	P 2ac 2ab		P 2 ac 2 ab
Moiety formula	C 22 H 17 Br O		C 22 H 17 BrO
Sum formula	C22 H17 Br O		C22 H17 Br O
Mr	377.26		377.26
Dx, g cm-3	1.473		1.473
Z	4		4
$\mathrm{Mu}(\mathrm{mm}-1)$	2.421		2.421
F000	768.0		768.0
F000'	767.13		
h,k, lmax	7,13,40		7,13,37
Nref	4531[2634]		3859
Tmin, Tmax	0.551, 0.559		0.831,1.000
Tmin ${ }^{\text {' }}$	0.541		
Correction method= \# Reported T Limits: Tmin=0.831 Tmax=1.000			
AbsCorr = MULTI-SCAN			
Data completeness $=1.47 / 0.85$		Theta(m	$x)=29.010$
R (reflections) $=0.0436$ (2981)		wR2(re	ections) $=0.0772(3859)$
$\mathrm{S}=1.065$		$a \mathrm{r}=218$	

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0082 \mathrm{~A}$	Wavelength=0.71073	
Cell:	$\mathrm{a}=8.7121$ (3)	$\mathrm{b}=8.8820$ (4)	$\mathrm{c}=13.2952$ (6)
alpha=90	beta=98.023(4)	gamma	$=90$
Temperature:	293 K		
	Calculated		Reported
Volume	1018.73(7)		1018.72(7)
Space group	P 21		P 1211
Hall group	P 2 yb		P 2 yb
Moiety formula	C27 H19 Br O		C27 H19 Br O
Sum formula	C27 H19 Br O		C27 H19 Br O
Mr	439.32		439.33
Dx, g cm-3	1.432		1.432
Z	2		2
$\mathrm{Mu}(\mathrm{mm}-1)$	2.033		2.033
F000	448.0		448.0
F000'	447.59		
h,k,lmax	11,12,18		11,12,17
Nref	5421[2878]		4625
Tmin, Tmax	0.443, 0.462		0.981,1.000
Tmin'	0.409		
Correction method= \# Reported T Limits: Tmin=0.981 Tmax=1.000			
AbsCorr $=$ MULTI-SCAN			
Data completeness $=1.61 / 0.85$		Theta(max)	$=29.047$
$\mathrm{R}($ reflections) $=0.0420$ (3735)		wR2(refl	ections) $=0.0842(4625)$
$\mathrm{S}=1.053$		Npar= 262	

3s CCDC 2151488

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0058 \mathrm{~A}$		Wavelength $=0.71073$$\mathrm{c}=17.6123(7)$
Cell:	$\mathrm{a}=8.6383$ (3)	$\mathrm{b}=12.6159(5)$	
alpha $=90$	beta $=90$	gamm	
Temperature:	293 K		
	Calculated		Reported
Volume	1919.39(13)		1919.39(13)
Space group	P 212121		P 212121
Hall group	P 2ac 2ab		P 2ac 2ab
Moiety formula	C 23 H 21 BrOSi		C23 H21 Br O Si
Sum formula	C23 H21 Br O Si		C23 H21 Br O Si
Mr	421.39		421.40
Dx,g cm-3	1.458		1.458
Z	4		4
Mu (mm-1)	2.213		2.213
F000	864.0		864.0
F000'	863.46		
h,k, \max	11,17,24		11,16,23
Nref	5099[2887]		4349
Tmin,Tmax	0.449,0.482		0.806,1.000
Tmin'	0.415		
Correction method= \# Reported T Limits: Tmin=0.806 Tmax=1.000			
AbsCorr $=$ MULTI-SCAN			
Data completeness $=1.51 / 0.85$		Theta(m	$=28.995$
R (reflections) $=0.0398$ (3532)		wR2(re	ions) $=0.0805$ (4349)
$\mathrm{S}=1.039$		Npar=	

6

CCDC 2151482

Bond precision:
$\mathrm{C}-\mathrm{C}=0.0104 \mathrm{~A}$
Wavelength=0.71073
Cell:
$\mathrm{a}=8.8697(4)$
$\mathrm{b}=22.6968(7)$
$\mathrm{c}=8.9630$ (5)
alpha $=90$
beta $=114.336(6)$
gamma $=90$

Temperature:
293 K
Calculated Reported

Volume
Space group
Hall group
Moiety formula
Sum formula
Mr
Dx,g cm-3
Z
$\mathrm{Mu}(\mathrm{mm}-1)$
F000
F000'
h,k,lmax
Nref
Tmin,Tmax
1644.05(15)

P 21
P 2 yb
C21 H15 Br O2
C21 H15 Br O2
379.23
1.532

4
2.510
768.0
767.16

12,30,12
8758[4487]
12,30,12
7480
0.664,1.000

Tmin' 0.516
Correction method= \# Reported T Limits: Tmin=0.664 Tmax=1.000
AbsCorr $=$ MULTI-SCAN
Data completeness=1.67/0.85
$R($ reflections $)=0.0472$ (5045)
Theta $(\max)=29.012$
wR 2 (reflections) $=0.0867(7480)$
$\mathrm{S}=1.010$
Npar $=433$

Bond precision:
$\mathrm{C}-\mathrm{C}=0.0041 \mathrm{~A}$
Wavelength $=1.54184$
$\mathrm{c}=8.95801$ (13)
Cell:
alpha $=90$
Temperature:

Volume
Space group
Hall group
Moiety formula
Sum formula
Mr
Dx, g cm-3
Z
$\mathrm{Mu}(\mathrm{mm}-1)$
F000
F000'
h,k,lmax
Nref
Tmin,Tmax
$a=7.48375(11)$
beta $=94.0554(14)$
$\mathrm{b}=23.7768(5)$

180 K

Calculated	Reported
$1589.99(5)$	$1589.99(5)$
P 21	P 1211
P 2 yb	P 2 yb

C21 H16 O3 [+ solvent] C21 H16 O3
C21 H16 O3 [+ solvent] C21 H16 O3
316.34
316.34
1.321
1.321

4
4
$0.707 \quad 0.707$
$664.0 \quad 664.0$
666.03
$9,29,11 \quad 9,28,10$
6209[3184]
5126
$0.775,0.770 \quad 0.334,1.000$
Tmin'
0.703

Correction method= \# Reported T Limits: Tmin=0.334 Tmax=1.000
AbsCorr $=$ MULTI-SCAN
Data completeness=1.61/0.83
$R($ reflections $)=0.0354$ (5051)
Theta $(\max)=71.700$
wR 2 (reflections) $=0.0924(5126)$
$\mathrm{S}=1.057$
Npar= 435

References

1. S. Jia, Z. Chen, N. Zhang, Y. Tan, Y. Liu, J. Deng and H. Yan, J. Am. Chem. Soc., 2018, 140, 7056-7060.
2. S. Doherty, J. G. Knight, C. H. Smyth, R. W. Harrington and W. Clegg, Organometallics, 2007, 26, 6453-6461.
3. S. Huang, Z. Chen, H. Mao, F. Hu, D. Li, Y. Tan, F. Yang and W. Qin, Org. Biomol. Chem., 2019, 17, 1121-1129.
4. T. Ishida, S. Kikuchi, T. Tsubo and T. Yamada, Org. Lett., 2013, 15, 848-851.
5. F. Zhou, C. Li, M. Li, Y. Jin, H. Jiang, Y. Zhang and W. Wu, Chem. Commun., 2021, 57, 4799-4802.
6. S. Yoshioka, Y. Fujii, H. Tsujino, T. Uno, H. Fujioka and M. Arisawa, Chem. Commun., 2017, 53, 5970-5973.
7. N. Kapadia and W. Harding, Tetrahedron, 2013, 69, 8914-8920.
8. E. Jiménez-Núñez, M. Raducan, T. Lauterbach, K. Malawi, C. R. Solorio and A. M. Echavarren, Angew. Chem. Int. Ed., 2009, 48, 6152-6155.
