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1 Methods

1.1 Simulation Details

In this study, molecular dynamics (MD) simulations were con-
ducted for the AB;_4, monomer and dimer. In both systems,
ABi_4, was modeled with neutral histidine and no terminal
capping groups, resulting in an overall peptide charge of 3—.
The simulations were performed using the GROMACS simulation
package.! As the monomer and dimer simulations where origi-
nally performed as part of different studies, some of the simu-
lation settings differ slightly, but the most relevant settings are
identical, in particular the force field parameters and ion concen-
tration are the same. We are confident that the slight differences
in the setup do not affect our key conclusions.

The CHARMM36m force field? was employed in all simula-
tions. Previous research has revealed that the CHARMM36m
force field provides an accurate representation of monomeric AB
and is well suited for simulating amyloid aggregation phenom-
ena.

All system preparations followed the same protocol: the pep-
tide(s) was(were) positioned within the simulation box with a
minimum distance of 1.2 nm between any peptide atom and the
simulation box faces or edges. The box was subsequently filled
with TIP3P water molecules, along with Nat and Cl~ ions to
achieve system neutralization and a physiological salt concen-
tration of 150 mM. After system equilibration, each system was
simulated under NpT conditions at 1 bar, using the Parrinello-
Rahman pressure coupling scheme.® The dimer simulations were
conducted at 298 K using the Nosé-Hoover thermostat,Z¢ while
the monomer system was maintained at 300 K using a veloc-
ity rescaling thermostat.? In all simulations, periodic boundary
conditions in all dimensions were applied, with the particle-mesh
Ewald method1¥ employed for the calculation of electrostatic in-
teractions. The calculation of van der Waals and Coulomb inter-
actions in real space were performed with a cutoff at 1.2 nm.

The total simulation time for the Af; 4, monomer accumu-
lated to 6 us. For the dimer, three simulations were conducted,
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each initiated from two extended AfB;_4, monomers separated
by at least 2 nm. Due to the initial peptide extended conforma-
tions, a relatively large simulation box was necessary to prevent
self-interaction across periodic boundary conditions, leading to
an extensive system predominantly composed of water. To con-
serve computational resources, after an initial 2 us simulation
per dimer simulation, the peptide structures of the last MD frame
were extracted and resolvated in a smaller simulation box, as at
this point the two peptides had already formed a dimer. Subse-
quently, after a brief NpT equilibration, another 6 us per dimer
system were collected, resulting in a cumulative simulation time
of 3 x 8 us for the AB;_4, dimer.

All MD simulations were run on the supercomputer JURECA. 1

1.2 Distance of Reciprocal Interatomic Distances Metric

In order to partition the sampled conformational space over the
course of the MD simulation into discrete microstates, we used
the distribution of reciprocal interatomic distance (DRID) met-
ricd2 for subsequent structural clustering. Given the size of the
AP _4, monomer, structure-based clustering in Cartesian coordi-
nates becomes a challenging task. One therefore usually relies on
some form of dimensionality reduction, which should preserve as
much of the kinetics and structural features as possible. It has
been shown that the DRID metric is a good candidate to meet
both of these criteria.12113' A key feature of the DRID metric is
the use of the multiplicative inverse (reciprocal) distances, which
highlights the difference in short distances, while not neglecting
changes in large distances completely.

To apply the DRID metric, two essential atom sets are defined:
a set of m centroids ¢ representing key structural elements, and a
set of N reference atoms </ (excluding atoms that are covalently
bound to the centroid). For a given structure, the distribution of
reciprocal interatomic distances for each centroid i and the first
three moments of that distribution (y;,v;,&;) are calculated, re-
sulting in a 3m dimensional vector for each structure (i.e., each
frame of the MD trajectory). The moments are defined as follows,
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where d;; denotes the distance of atom «; € ./ to centroid c¢; €
¢, nb; is the number of covalent bonds of a centroid, and N the
number of atoms in .2/. The distance metric s ;; between a pair of
conformations j and & in DRID space is defined as
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To group the structures into states, we performed regular space
clustering in DRID space, as implemented in the PyYEMMA python
package, 4 using the s jk distance metric.

For studying the conformational space of the AB; 4> peptide,
we chose as centroids the C, atoms of structurally important
residues, namely D1, F19, D23, K28, L34 and A42, resulting in
an 18-dimensional DRID space. We chose D23 and K28, because
they have been identified in previous studies to form a salt bridge
in the B-hairpin state.1>1® The residues F19 and L34 are mem-
bers of the hydrophobic core regions and have been shown by
NMR spectroscopy to form contacts in AB oligomers,1Z while the
termini D1 an A42 where included to capture the overall com-
pactness of the peptide. For clustering, we chose a cutoff of
sjﬁk =0.02 nm~!, which resulted in 447 states for the monomer
and 511 states for the dimer.

To evaluate the robustness of the FES derived from project-
ing structures into the DRID space, we computed the FES for
the dimer system using various DRID metrics. Specifically, we
selected five times 6 random residues of the peptide chain as cen-
troids for defining the DRID metric, and constructed five FESs.
All FESs exhibited a consistent single funnel structure, similar
to the FES presented in this manuscript (Fig. 2). To assess the
predictability of our results, we calculated the overlap between
the ensemble of states corresponding to the global minimum of
the FES presented in Fig. 2 and those of the randomly gener-
ated FESs, yielding an average overlap of ~45%. When the three
most prominent states next to the global minimum but within the
same basin are further included, there is an overlap of at least
77% between the current and the random FES. Moreover, the in-
trinsically disordered state consistently appeared as a high-energy
excited state in all FESs. These findings underscore the robustness
of the DRID metric, showing its reliability relatively independent
of centroid selection.

1.3 Free Energy Calculation

The free energy surface (FES) of a protein determines its struc-
tural and dynamical properties and is therefore of great interest if
one wants to understand the protein function. Here, we calculate
the free energies associated with the states determined by struc-
tural clustering in DRID space, treating each state as a minimum
in the FES.18 The free energy of the minima F; are calculated via
their occupation probability p;,

F; = —kgTlog(p;), (5)

where kg is the Boltzmann constant and 7 the temperature of
the system. The rate matrix R, representing the state-to-state
rates rj; between minima j and k observed in the MD simula-
tions, is used to derive the transition state free energies Fj; via the
Eyring—Polanyi formulation. The rate matrix was derived from
the transition matrix of the MD trajectory in DRID space, which
represents the corresponding right stochastic matrix. Assuming
Markovian dynamics, these free energies can be calculated as fol-

lows:

kT
Fj = F — kT log(kji) + kg T log (BT) , (6)

where £ is the Planck constant. In a perfectly converged system,
the transition state free energy for both interconversion rates be-
tween minima j and & should be the same, i.e. Fj, = F;;. How-
ever, for a finite MD trajectory this equality is rarely achieved. To
minimize the error we average over both rates,
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giving us an estimate for the transition state free energy F;,i be-
tween minima j and k.

It is important to note that it is the rates that correspond to ob-
servable quantities, and the free energy barriers simply provide a
convenient way to visualise the corresponding landscape. Equa-
tion (6) translates the rates into barriers on a log scale. Multiply-
ing all the rates by a constant factor would preserve detailed bal-
ance and shift the connections in the disconnectivity graph uni-
formly, without affecting the organisation of the landscape. The
relative free energies of the minima in the graph and the barri-
ers between them reproduce the equilibrium distribution and the
rates by construction. Hence we obtain insight into the organ-
isation of the landscape in a representation that will faithfully
reproduce the stationary distribution and the rates.

To assess the assumption of Markovian dynamics, we con-
ducted a Chapman-Kolmogorov test on the kinetic network of the
dimer system, following the standard PyEMMA protocol}? with a
discrete timestep of 7 = 20 ps. The number of metastable states
was set to five, representing the number of states on the pathway
from the disordered state D to the global minimum B. Figure
illustrates the comparison between the estimated and predicted
transition probabilities between metastable states for lagtimes up
to 100 ps. The strong agreement between estimated and pre-
dicted probabilities supports the Markovian nature of the dynam-
ics. Notably, the states involved in the pathway do not correspond
to the metastable states identified by PCCA++ clustering?®:

D: state 1
I;: state 3
I, : state 5
I3: state 5
B: state 5

However, this observation aligns with our findings, as states I, I3,



and B are structurally similar, closely located within the same en-
ergy funnel, and exhibit relatively fast transitions, as confirmed
by FPT analysis. Additionally, the highest transition probabili-
ties are associated with the transitions between states 1 — 3 and
3 — 5, reproducing the fastest pathway as determined by FPT
analysis. The estimated and predicted transition probabilities as
determined from a Chapman-Kolmogorov test for the kinetic net-
work of the monomer system is presented in Fig.

1.4 First Passage Times

While the FES governs the structural and dynamical properties
of a molecule, in experiment often the relaxation times asso-
ciated with a given process are measured. Thus, studying the
timescales associated with transitions between minima on the FES
can bridge the gap between simulation and experiment, and also
shed light on the processes associated with those timescales. Of-
ten quantified by the mean first passage time (MFPT), intercon-
version rates between minima offer insights into the average time
taken for a system to transition between reactant and product
states. It has been shown that studying the first passage time
(FPT) distribution of a transition can reveal a interesting addi-
tional information.2!' Specifically, such analysis provides direct
access to the organizational structure of the underlying energy
landscape and facilitates the identification of distinct signatures
linked to relaxation to different funnels in the FES.

For a given transition A + B from reactant state A to
product state B the first passage time probability distribution
p(t) can be obtained by treating the product state as absorb-
ing. Then, the master equation for the occupation probabilities
Py (1) for the set of intermediate states | and reactant states |UB is

I.)I(l) _ | Kn—=Dy Kig Pi(r) B
’VPB(t)-‘ B ’V Kp KBB—DB-‘ L’B(l‘)-‘ =MP (1), (8)

where Kxy is the rate matrix of transitions between connected
states and Dy a diagonal matrix containing the escape rates of
each state in X, i.e. [Dx]; = Y;K;.. Applying eigenvector de-
composition to the formal solution of eq. |8 produces an analytic
solution for the first passage time distribution

p(t) =Y vie "4, 9
1

here —v; are the eigenvalues of M and A; are amplitudes, which
depend on the eigenvectors of M. The FPT can be represented by
the probability distribution Z(y) for y = log(r)

P(y) =Y v P04, (10)
1

which gives distinct peaks for different features and relaxation
time scales in the FPT distribution.

2 Pathway Analysis

2.1 Extraction of Pathways

From the database of minima and transition states constituting
the FES of the dimer, we extracted the shortest pathway connect-
ing states D and state B using the PATHSAMPLE program.22 This

pathway describes the fastest transition from a disordered struc-
ture (state D) to a fB-hairpin structure (state B). The transition
occurs through three intermediate states (Ij, I, I3), character-
ized by the establishment of a salt bridge between residues D23
and K28, followed by the formation of hydrophobic contacts and
subsequent rearrangement of these contacts into a 3-sheet. How-
ever, due to the dimensionality reduction from application of the
DRID metric before clustering, the resulting minima represent an
ensemble of configurations. While these structures are similar
according to the DRID metric, this procedure leads to an ensem-
ble of slightly different pathways. To identify potential pathways
from this ensemble of candidates for further analysis, we have
employed linear interpolation between the configurations to con-
struct trajectories for the transition:

D—1 -1, —-13 —+B.

Given our focus on studying the pathway associated with the
fastest transition rates, we only considered trajectories that do
not involve chain crossing in the linear interpolation between
states, which is an artefact.. From this procedure, we inferred
three pathways (Fig. S2), which exhibit slight differences in their
final configuration but all begin with the formation of a salt bridge
between D23 and K28, proceed with hydrophobic contact forma-
tion, and ultimately reorient into a 3-sheet configuration.

The predominant pathway 1 is discussed in the main text.
Here, we briefly discuss the other two pathways from D to B.
Pathway 2 is different from pathway 1 primarily in two aspects.
Firstly, the closing scissor motion from an extended to a closed
structure is not fully accomplished via the transition to the first
intermediate state I;, but also involves the second intermediate
state I,. Nonetheless, it follows the same hierarchy of events,
where first the salt bridge and then the hydrophobic contacts are
formed. The second deviation from pathway 1 is the orienta-
tion of the C-terminus, which almost wraps around the rest of
the chain. Examination of the full dimer structure of this mem-
ber of the global minimum ensemble reveals a very stable com-
plex, which is the predominant structure in one of the three MD
trajectories. In contrast, pathway 3 exhibits §-hairpin formation
only in the early stages of the transition, via the first intermedi-
ate state I;. Subsequently, the hydrophobic contacts reorganise
to form a short parallel 3-sheet in I, resulting in a wide loop
in the peptide central region. While this pathway differs signifi-
cantly from pathways 1 and 2, the final structure constitutes only
a very small fraction of the equilibrium population of the global
minimum (< 1%).

2.2 First Passage Times

Besides calculating the FPT probability distribution for the overall
transition, we also calculated the FPTs between the intermediate
states corresponding to the fastest pathway between D and B.
Fig. [S4] shows the resulting FPT probability distributions for each
intermediate transition. In each case, the FPT probability dis-
tribution indicates the presence of both fast and slow relaxation
modes to the target state, leading to an overall slow MFPT. The
two peaks correspond to two competing events: relaxation to the



global minimum and relaxation to the absorbing target state of
that transition. The first, faster peak is associated with direct re-
laxation to the absorbing target state, while the slower peak cor-
responds to relaxation to the global minimum followed by even-
tual propagation to the absorbing target state. This is evident
in the FPT probability distribution, where slow relaxation to the
global minimum is generally more likely, except for the final tran-
sition I3 — B, where fast/direct relaxation to the global minimum
is more probable compared to relaxation via intermediates. The
last intermediate exhibits significant structural similarity to the
global minimum, which is further underscored by the close prox-
imity of I3 and B in the FES funnel. Consequently, the slow peak
corresponding to relaxation via intermediates in the side funnel
acts only as a minor kinetic trap. This latter process is not promi-
nently featured in the FPT distribution for the D — B transition,
as it is not accessed significantly for the chosen starting point and
thus has a negligible impact on the overall relaxation pathway.

The FPTs associated with the fastest mode according to the
peak position of the fast relaxation mode are as follows:

Thim ~780 ps

7dim 190 ps

1—h

dim
T12*>13 ~90 ps

Tim, ~110 ps

Since each FPT probability distribution was calculated separately,
the respective target state was treated as an absorbing state. As
a result, the individual estimates of the FPT associated with the
fastest transitions do not add up to the estimate of the overall
transition time between states D and B of rgig‘B ~ 4 ns, which
include all possible recrossing event. The individual FPT distribu-
tions provide insights into the relative timescales of the interme-
diate transitions as well as the underlying structure of the FES.

2.3 Cooperative Folding

We demonstrated how the FES of the AB;_4, peptide is signifi-
cantly altered in the presence of another AB;_4, peptide by em-
ploying the same DRID metric to calculate the FES. However, this
approach only implicitly reveals the impact of their interaction.
To more thoroughly analyse the cooperative effects driving the
AP _4 peptide towards a more folded, -sheet-rich state rather
than a disordered state, we studied the intra- and interpeptide
contacts along the fastest pathway from state D to B.
Figure[S3|displays the intra- and interpeptide contact maps for
the ensemble of states states belonging to D and B as well as for
the three intermediates along that pathway. In the disordered
state D, the two peptides show no interaction, as indicated by the
absence of contacts between the two peptides. The intrapeptide
contact map, on the other hand, reveals a slight tendency towards
forming a hairpin structure, suggested by the faint contact trace
perpendicular to the diagonal. This mirrors the behaviour of two
AP _4, monomers, as shown by the FES of the Af;_4, monomer
in Fig. 1, and confirms that no stable S-hairpin is formed with-

out an interaction partner. In the first intermediate state I, the
two AP;_4, peptides begin to form a complex, with one monomer
contacting the hydrophobic C-terminal region of the other. In
parallel, contacts begin to form within the peptide, in particular
a salt bridge forms between residues D23 and K28, and the hy-
drophobic core region around F19 interacts with the hydropho-
bic C-terminal region around L34. At this point, the orientation
of the interacting peptide segments within the peptide is mainly
parallel and not antiparallel, as required for a hairpin structure.
In the second intermediate state I,, the interpeptide contact map
reveals strong interactions between the hydrophobic regions of
the two AB;_4, peptides, while the intramolecular D23-K28 salt
bridge is broken to allow the hydrophobic intrapeptide contacts
to reorganise. The binding of the hydrophobic regions between
the peptides can be considered a hydrophobic platform essential
for forming the proper intrapeptide contacts necessary for the 3-
hairpin structure. In the third intermediate state I3, the D23-K28
salt bridge reforms, and the fB-hairpin structure becomes estab-
lished, as indicated by a strong contact trace perpendicular to the
diagonal. Additionally, the dimer shows a high propensity for
forming antiparallel contacts between the hydrophobic core re-
gions or hydrophobic C-termini of the two peptides. Finally, the
transition to the global minimum state B is characterised by fur-
ther stabilisation of the $-hairpin and a stronger tendency for an-
tiparallel alignment in the intermolecular hydrophobic contacts.

In summary, this juxtaposition of intra- and interpeptide inter-
actions during the D — B transition reveals that their formation
occurs in a cooperative manner. The AB; 4> peptide gains the
ability to fold into a stable $-hairpin by binding to the hydropho-
bic region offered by the other AB;_4, peptide. Therefore, the
increase in hydrophobicity in the environment appears to be cru-
cial for folding during self-assembly.

Notes and references

1 M.J. Abraham, T. Murtola, R. Schulz, S. P4ll, J. C. Smith, B. Hess and E. Lindahl,
SoftwareX, 2015, 1, 19-25.

2 J.Huang, S. Rauscher, G. Nawrocki, R. Ting, M. Feig, B. de Groot, H. Grubmidiller
and A. MacKerell, Nature Meth., 2017, 14, 71-73.

3 A.Paul, S. Samantray, M. Anteghini, M. Khaled and B. Strodel, Chem. Sci., 2021,
12, 6652-6669.

4 S. Samantray, F. Yin, B. Kav and B. Strodel, J. Chem. Inf. Model., 2021, 60, 6462

— 6475.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein,

J. Chem. Phys., 1983, 79, 926-935.

M. Parrinello and A. Rahman, Mol. Phys., 1981, 52, 7182-7190.

S. Nosé, Mol. Phys., 1984, 52, 255-268.

W. G. Hoover, Phys. Rev. A, 1985, 31, 1695-1697.

G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 2007, 126, 014101.

10 T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993.

11 D. Krause and P. Thornig, JLSRF, 2018, 4, A132.

12 T. Zhou and A. Caflisch, J. Chem. Theory Comput., 2012, 8, 2930-2937.

13 D. Chakraborty, J. E. Straub and D. Thirumalai, Sci. Adv., 2023, 9, eadd6921.

14 M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Herndndez, M. Hoff-
mann, N. Plattner, C. Wehmeyer, J.-H. Prinz and F. Noé, J. Chem. Theory Com-
put., 2015, 11, 5525-5542.

15 G. Reddy, J. E. Straub and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A., 2009,
106, 11948-11953.

16 M. Schiffler, S. Samantray and B. Strodel, Int. J. Mol. Sci., 2023, 24, 11238.

17 J.Jeon, W.-M. Yau and R. Tycko, Nature Commun., 2023, 14, 2964.

18 S. V. Krivov and M. Karplus, J. Chem. Phys., 2002, 117, 10894-10903.

19 M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernédndez, M. Hoff-
mann, N. Plattner, C. Wehmeyer, J.-H. Prinz and F. Noé, J. Chem. Theory Com-
put., 2015, 11, 5525-5542.

20 S. Roblitz and M. Weber, Adv. Data Anal. Classif,, 2013, 7, 147-179.

21 D.J. Wales, J. Phys. Chemn. Lett., 2022, 13, 6349-6358.

22 PATHSAMPLE: A program for generating connected stationary point databases and
extracting global kinetics, http://www-wales.ch.cam.ac.uk/software.html.

[o<BRN o)) 1921

O



D I, I B

I -
L “})’\‘} 780 ps 190 ps 90 ps
2
¢

— Kl — , —
p ve S

Fig. S1 Fastest pathway from intrinsically disordered state (D) to the global minimum (B) in the dimer free energy surface. Different to Fig. 3,
here both peptides in each of the states are shown. The spheres represent the centroids used in the DRID metric: blue spheres for positively charged
N-terminus and K28, red spheres for the negatively charged C-terminus and D23, and magenta spheres for the hydrophobic F19 and L34.
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Fig. S2 The three most dominant pathways from the intrinsically disordered state (D) to the global minimum (B) in the free energy surface of the
dimer. Only the peptide of the dimer for which the D — B transition was analysed is shown.
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Fig. S3 Intra- and interpeptide contact maps along the D — B transition for Af}|_4, dimerisation. The contact maps were calculated for the ensemble

of conformations belonging to the intrinsically disordered state (D), the global minimum (B), and the intermediate states of the fastest D—B pathway
(11,12,13). Two residues were considered to be in contact if any pair of atoms of the two residues were within a distance of 6 A. The lower right
corner displays the physicochemical nature of all possible residue—residue interactions that could occur within an AB;_4, peptide or between AB|_4»
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other panels of this figure, the regions of relevant hydrophobic interactions as well as the D23-K28 salt bridge are highlighted by red boxes.
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Fig. S5 Chapman-Kolmogorov test for the kinetic network of the dimer system, following a standard PyEMMA protocol with a discrete timestep of
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