Supporting Information

Photoinduced Copper Catalyzed Nitrogen-to-Alkyl Radical Relay Sonogashira-type Coupling of *o*-Alkylbenzamides with Alkynes

Yan-fang Zhan^{†a}, Jia-ming Chen^{†a}, Xia-xin Sheng^a, Chao-ying Qiu^a, Yan Jiang^{*a}, Sen Yang^{*a} and Ming Chen^{*a}

^aJiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China. [†]These authors contributed equally to this work.

* = corresponding author. E-mail: <u>chenming0228@cczu.edu.cn</u>; jy@cczu.edu.cn; yangsen@cczu.edu.cn.

General Information
The Parameters of the Blue LEDs
Synthesis of Starting Materials
General Procedure A: For the Preparation of Amide Substrates 11~1s
General Procedure B: For the Preparation of Substrates 1f~1k, 1w~1x10
General Procedure C: For the Preparation of Amide Substrates 1t~1v14
General Procedure D: For the Preparation of Phenylacetylene 2s10
Reaction optimization ^{<i>a,b</i>}
General Procedure of the Radical Relay Sonogashira Reaction
Control Experiment and Synthetic Application
Procedure for the synthesis of product 5
Procedure for the synthesis of product 6
Grams Scale Synthesis
The Radical Trapping Experiment with TEMPO45
Derivatizations of product 3a
Reference
NMR Spectra

General Information

Unless noted otherwise, all the solvents and commercially available reagents were purchased and used directly. Benzene, 1,4-dioxaneand tetrahydrofuranwere distilled freshly over sodium, benzotrifluoride was distilled freshly over P₂O₅, DCM was distilled freshly over CaH₂ and carefully freeze-pump-thawed. Sensitive reagents and solvents were transferred under nitrogen into a nitrogen-filled glovebox with standard techniques. Reactions were monitored with thin layer chromatography (TLC) using silica gel 60 F-254 plates. TLC plates were normally visualized by UV irradiation (254 nm or 365 nm), stained with basic KMnO₄. Flash chromatography was performed using silica gel 60 (200-300 mesh). Vials (15 x 45 mm 1 dram (4 mL) / 17 x 60 mm 3 dram (7.5 mL) with PTFE lined cap attached) were purchased from Qorpak and flame-dried or put in an oven overnight and cooled in a desiccator. Mass (HRMS) analysis was obtained using Agilent 6200 Accurate-Mass TOF LC/MS system with Electrospray Ionization (ESI). Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded with Bruker AVANCE III-300 (300 MHz, ¹H at 300 MHz, ¹³C at 75 MHz) or 400 (400 MHz, ¹H at 400 MHz, ¹³C at 101 MHz) or 600 (600 MHz, ¹H at 600 MHz, ¹³C at 151 MHz).¹⁹F NMR spectra were recorded on Bruker AVANCE III-400.Unless otherwise noted, all spectra were acquired in CDCl₃. X-ray data were collected with a Bruker D8 VENTURE diffractometer. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, $\delta = 0.00$ ppm) and are referenced to residual solvent (CDCl₃, δ = 7.26 ppm (¹H) and 77.00 ppm (¹³C). Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium, s = singlet, d = doublet, t = doublettriplet, q = quartet, quin = quintet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration). All other materials were obtained from Energy Chemical and were used as received.

The Parameters of the Blue LEDs

Test Report of LED Photoelectric Test System

Synthesis of Starting Materials

The amides $1a^1$, $1b^2$, $1c^1$, $1d^1$ and $1e^1$ are known compounds. The substrates $1f \sim 1x$ were prepared according to following precudures.

The arylacetylenes $2u^3$ and $2v^4$ were prepared according to the previously reported literature. The substrate 2t was unknown compound. The others are commercially available and were used as recieved.

S5

General Procedure A: For the Preparation of Amide Substrates 11~1s^{5,6}

Step 1: To a solution of **SM-1** (458 mg, 2.0 mmol, 1.0 equiv.) in *i*-PrOH (0.1 M) under N₂ atmosphere was added Pd(OAc)₂ (22.5 mg, 0.1 mmol, 5 mol%), XPhos (95 mg, 0.2 mmol, 10 mol%), phenylboronic acid (366 mg, 3.0 mmol, 1.5 equiv.) and K₃PO₄ (637 mg, 3.0 mmol, 1.5 equiv.). After stirring for 18 h at 45 \Box in a sealed tube, the mixture was directly evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 15:1) to afford the the intermediate **SM-2** in 99% isolated yield (447 mg).

Step 2: To a solution of **SM-2** (447 mg, 2.0 mmol, 1.0 equiv.) in MeOH (0.2 M) was added LiOH (240 mg, 10.0 mmol, 5.0 equiv.). After stirring for 12 h at room temperature in a sealed tube, the mixture was regulated pH to $1\sim2$ by 1 M HCl. Then H₂O (20 mL) was added, then the mixture was extracted with EtOAc. The organic layer was combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) to afford the the intermediate **SM-3** in 88% isolated yield (373 mg).

Step 3: To a solution of carboxylic acid **SM-3** (373 mg, 1.76 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (0.3 M) was added 2~3 drops of anhydrous DMF. The solution was cooled to 0 °C and oxalyl chloride (335 mg, 2.64 mmol, 1.5 equiv.) was added dropwise. The reaction was then allowed to warm up to room temperature and vigorously stirred for two hours. The solvent was removed in vacuum. Then the resulting acyl chloride **SM-4** used directly for the next step without further purification.

Step 4: To a solution of the *N*-(*tert*-Butyl)hydroxylamine Hydrochloride (373 mg, 1.76 mmol, 1.0 equiv.) in anhydrous THF (0.5 M) was added DIPEA (682 mg, 5.28 mmol, 3.0 equiv.). The solution was cooled to 0 °C and stirred for 15 minutes. The above crude acyl chloride **SM-4** (1.76 mmol, 1.0 equiv.) in anhydrous acetonitrile (0.8 M) was added to the solution dropwise over 15 minutes. Then the mixture was allowed to warm to room temperature, and stirred for 6 hours. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The organic layer was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) to afford the the intermediate **SM-5** in 70% isolated yield (349 mg).

Step 5: To a solution of hydroxylamine intermediate **SM-5** (349 mg, 1.2 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (0.35 M), was added was added Et₃N (364 mg, 3.6 mmol, 3.0 equiv.) dropwise at 0 °C. Pentafluorobenzoyl chloride (830 mg, 3.6 mmol, 3.0 equiv.) was then added dropwise over 5 minutes. The reaction was vigorously stirred at room temperature for 3 h. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The organic layer was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 10:1) to afford **11** in 76% isolated yield (435 mg).

11

N-(*tert*-butyl)-4-methyl-*N*-((perfluorobenzoyl)oxy)-[1,1'-biphenyl]-3-carboxamide (11). Isolated yield = 94% on 3 mmol scale; yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.32 (m, 4H), 7.28 (dd, *J* = 8.4, 6.8 Hz, 2H), 7.22 – 7.17 (m, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 2.28 (s, 3H), 1.53 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 158.1, 146.9 – 146.2 (m), 145.3 – 144.8 (m), 144.3 – 143.6 (m), 142.7 – 142.2 (m), 140.1, 139.1 – 138.5 (m), 138.2, 136.7 – 135.7 (m), 133.7, 130.6, 128.7, 127.8, 127.2, 126.7, 124.5, 104.9 – 104.3 (m), 63.4, 27.6, 18.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.2, -145.8, -159.3. HRMS (ESI) [M+Na]⁺ Calcd for C₂₅H₂₀F₅NNaO₃, 500.1255; Found 500.1252.

1m

N-(*tert*-butyl)-4'-ethyl-4-methyl-*N*-((perfluorobenzoyl)oxy)-[1,1'-biphenyl]-3-carboxamide (1m). Isolated yield = 60% on 2 mmol scale; yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 4H), 7.14 – 6.99 (m, 3H), 2.53 (q, *J* = 7.6 Hz, 2H), 2.26 (s, 3H), 1.50 (s, 9H), 1.12 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 158.0, δ 146.7 – 146.4 (m), 145.2 – 144.7 (m), 144.2 – 143.7 (m), 143.3, 142.7 – 142.0 (m), 139.1 – 138.4 (m), 138.0, 137.4, 136.4 – 136.0 (m), 135.9, 133.3, 130.5, 128.1, 127.6, 126.6, 124.3, 106.1 – 103.3 (m), 63.2, 28.3, 27.5, 18.3, 15.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.2, -146.0, -159.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₂₅F₅NO₃, 506.1749; Found 506.1740.

N-(*tert*-butyl)-4'-methoxy-4-methyl-*N*-((perfluorobenzoyl)oxy)-[1,1'-biphenyl]-3-carboxamide (1n). Isolated yield = 80% on 3 mmol scale; white solid; M.p. 62-63 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃ δ 7.44 – 7.35 (m, 4H), 7.15 (d, *J* = 7.6 Hz, 1H), 6.93 – 6.89 (m, 2H), 3.80 (s, 3H), 2.36 (s, 3H), 1.61 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 159.1, 158.1, 147.0 – 146.2 (m), 145.5 – 144.7 (m), 144.3 – 143.8 (m), 142.8 – 142.2 (m), 139.1 – 138.4 (m), 137.8, 136.6 – 135.6 (m), 135.9, 132.6, 130.5, 127.7, 127.3, 124.0, 114.1, 104.8 – 104.3 (m), 63.3, 55.2, 27.5, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.2, -145.9, -159.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₂F₅NNaO₄, 530.1361; Found 530.1351.

N-(*tert*-butyl)-4'-fluoro-4-methyl-*N*-((perfluorobenzoyl)oxy)-[1,1'-biphenyl]-3-carboxamide (10). Isolated yield = 82% on 3 mmol scale; yellow oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 8.8, 5.6 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.08 (d, J = 8.0 Hz, 1H), 7.02 – 6.94 (m, 2H), 2.28 (s, 3H), 1.53 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 162.4 (d, J = 246.5 Hz), 158.1, 146.9 – 146.1 (m), 145.4 – 144.9 (m), 144.3 – 143.7 (m), 142.9 – 142.2 (m), 139.1 – 138.5 (m), 137.2, 136.2 (d, J = 3.2 Hz), 136.5 – 135.7 (m), 133.9 – 133.3 (m), 130.6, 128.3 (d, J = 8.0 Hz), 127.6, 124.4, 115.6 (d, J = 21.5 Hz), 104.9 – 103.8 (m), 63.4, 27.5, 18.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.6, -136.2, -145.6, -159.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₀F₆NO₃, 496.1342; Found 496.1333.

1p

N-(*tert*-butyl)-4'-chloro-4-methyl-*N*-((perfluorobenzoyl)oxy)-[1,1'-biphenyl]-3-carboxamide (1p). Isolated yield =72% on 3 mmol scale; white solid; M.p. 82-83 °C. R_f = 0.5 (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 6H), 7.10 (d, *J* = 7.6 Hz, 1H), 2.29 (s, 3H), 1.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 158.1, 146.9 – 146.2 (m), 145.4 – 144.8 (m), 144.3 – 143.5 (m), 142.8 – 142.0 (m), 139.1 – 138.6 (m), 138.5, 137.0, 136.5 – 136.0 (m), 134.1 – 133.8 (m), 133.4, 130.7, 128.9, 128.0, 127.6, 124.4, 104.8 – 104.3 (m), 63.5, 27.6, 18.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.3, - 145.6, -159.1. HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₅H₂₀ClF₅NO₃, 512.1046; Found 512.1045.

1q

N-(*tert*-butyl)-4'-cyano-4-methyl-*N*-((perfluorobenzoyl)oxy)-[1,1'-biphenyl]-3-carboxamide (1q). Isolated yield = 68% on 3 mmol scale; yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.58 – 7.52 (m, 2H), 7.41 – 7.31 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 1H), 2.32 (s, 3H), 1.55 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 158.2, 146.7 – 146.4 (m), 145.4 – 145.0 (m), 144.5, 144.1 – 143.6 (m), 142.8 – 142.3 (m), 139.2 – 138.5 (m), 136.7 – 136.3 (m), 136.2, 135.3, 132.6, 130.9, 127.8, 127.4, 124.7, 118.8, 110.9, 104.8 – 103.6 (m), 63.6, 27.5, 18.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.4, -145.3, -158.9. HRMS (ESI) m/z: [M+NH4]⁺ Calcd for C₂₆H₂₃F₅N₃O₃, 520.1654; Found 520.1661.

N-(*tert*-butyl)-2-methyl-5-(naphthalen-2-yl)-*N*-((perfluorobenzoyl)oxy)benzamide (1r). Isolated yield = 70% on 2 mmol scale; white solid; M.p. 142-143 °C. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.82 – 7.62 (m, 3H), 7.58 (dd, J = 8.4, 1.6 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.44 – 7.37 (m, 2H), 7.16 (d, J = 8.4 Hz, 1H), 2.33 (s, 3H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 158.2, 146.7 – 146.3 (m), 145.2 – 144.8 (m), 144.2 – 143.6 (m), 142.7 – 142.0 (m), 140.7, 139.1 – 138.4 (m), 138.1, 137.4, 136.7 – 135.8 (m), 133.8, 133.5, 132.5, 130.7, 128.4, 128.1, 127.5, 126.3, 125.9, 125.4, 125.1, 124.7, 104.9 – 103.9 (m), 63.4, 27.6, 18.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.1, -145.6, -159.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₃F₅NO₃, 528.1593; Found 528.1589.

1s

N-(tert-butyl)-2-methyl-N-((perfluorobenzoyl)oxy)-5-(thiophen-3-yl)benzamide (1s). Isolated yield =

78% on 2 mmol scale; yellow oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 2H), 7.30 – 7.27 (m, 1H), 7.26 – 7.20 (m, 2H), 7.06 (d, J = 8.0 Hz, 1H), 2.27 (s, 3H), 1.53 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 158.1, 146.9 – 146.3 (m), 145.4 – 144.7 (m), 144.2 – 143.7 (m), 142.8 – 142.1 (m), 141.2, 139.1 – 138.3 (m), 136.6 – 135.5 (m), 133.7 – 133.1 (m), 132.9, 130.6, 127.1, 126.2, 126.0, 123.8, 120.1, 104.9 – 103.7 (m), 63.4, 27.6, 18.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.1, -145.7, -159.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₈F₅NNaO₃S, 506.0820; Found 506.0817.

General Procedure B: For the Preparation of Substrates 1f~1k, 1w~1x

Step 1: To a solution of carboxylic acid **SM-1** (750 mg, 5.0 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (0.3 M) was added 2~3 drops of anhydrous DMF. The solution was cooled to 0 °C and oxalyl chloride (963 mg, 7.5 mmol, 1.5 equiv.) was added dropwise. The reaction was then allowed to warm up to room temperature and vigorously stirred for two hours. The solvent was removed in vacuum. Then the resulting acyl chloride **SM-2** used directly for the next step without further purification.

Step 2: To a solution of the *N*-(*tert*-Butyl)hydroxylamine Hydrochloride (377 mg, 3 mmol, 1.0 equiv.) in anhydrous THF (0.5 M) was added DIPEA (1.1 g, 9.0 mmol, 3.0 equiv.). The solution was cooled to 0 °C and stirred for 15 minutes. The above crude acylchloride **SM-2** (3.0 mmol, 1.0 equiv.) in anhydrous acetonitrile was added to the solution dropwise over 15 minutes and the mixture was allowed to warm to room temperature for 6 hours. Then the mixture was allowed to warm to room temperature, and stirred for 6 hours. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The organic layer was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) to afford the the intermediate **SM-3** in 63% isolated yield (419 mg).

Step 3: To a solution of hydroxylamine intermediate **SM-3** (419 mg, 1.9 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (0.35 M) at 0 $^{\circ}$ C was added Et₃N (574 mg, 5.7 mmol, 3.0 equiv.) dropwise at 0 $^{\circ}$ C.

Pentafluorobenzoyl chloride (1.3 g, 5.7 mg, 3.0 equiv.) was then added dropwise over 5 minutes. The reaction was vigorously stirred at room temperature for 3 h. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The organic layer was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 10:1) to afford **1f** in 70% isolated yield (553 mg).

1f

N-(*tert*-butyl)-2,4-dimethyl-*N*-((perfluorobenzoyl)oxy)benzamide (1f). Isolated yield = 70% on 3 mmol scale; colourless oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 7.6 Hz, 1H), 6.87 – 6.79 (m, 2H), 2.23 (s, 3H), 2.18 (s, 3H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 158.1, 146.9 – 146.2 (m), 145.3 – 144.8 (m), 144.3 – 143.8 (m), 142.8 – 142.2 (m), 139.2, 139.1 – 138.6 (m), 136.7 – 136.0 (m), 135.1 – 134.5 (m), 132.7, 130.8, 126.0, 125.6, 105.2 – 104.2 (m), 63.2, 27.7, 21.1, 18.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.1, -146.0, -159.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉F₅NO₃, 416.1280; Found 416.1276.

1g

N-(*tert*-butyl)-3-methoxy-2-methyl-*N*-((perfluorobenzoyl)oxy)benzamide (1g). Isolated yield = 94% on 3 mmol scale; colourless oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.07 (t, *J* = 7.7 Hz, 1H), 6.85 – 6.72 (m, 2H), 3.79 (s, 3H), 2.18 (s, 3H), 1.60 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 158.0, 157.6 – 157.1 (m), 147.0 – 145.9 (m), 145.5 – 144.6 (m), 144.5 – 143.5 (m), 143.0 – 142.0 (m), 139.2 – 138.3 (m), 137.0 – 135.8 (m), 126.2, 123.2 – 122.4 (m), 117.7, 110.7, 104.9 – 104.0 (m), 63.4, 55.3, 27.4, 12.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.3, -146.1, -159.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₈F₅NNaO₄, 454.1048; Found 454.1043.

1h

N-(*tert*-butyl)-4-fluoro-2-methyl-*N*-((perfluorobenzoyl)oxy)benzaomide (1h). Isolated yield = 51% on 3 mmol scale; colourless oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, J = 8.4, 5.6 Hz, 1H), 6.95 – 6.63 (m, 2H), 2.36 (s, 3H), 1.59 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 162.9 (d, $J_{C-F} = 248.6$ Hz), 158.2, 147.1 – 146.3 (m), 145.9 – 144.8 (m), 144.6 – 143.7 (m), 143.1 – 142.1 (m), 139.3 – 138.6 (m), 138.6 – 137.8 (m), 137.0 – 135.4 (m), 131.6, 128.0 (d, $J_{C-F} = 8.9$ Hz), 117.0 (d, $J_{C-F} = 21.5$ Hz), 112.1 (d, $J_{C-F} = 21.6$ Hz), 104.7 – 104.2 (m), 63.4, 27.6, 18.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.8, -136.3, -145.5, -159.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆F₆NO₃, 420.1029; Found 420.1021.

1i *N-(tert-*butyl)-2,4-dimethyl-*N-((perfluorobenzoyl)oxy)benzamide* (1i). Isolated yield = 91% on 3 mmol scale; colourless solid; M.p. 66-67 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) 7.21 – 7.16 (m, 2H), 7.10 – 7.05 (m, 1H), 2.32 (s, 3H), 1.60 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 158.1, 146.9 – 146.1 (m), 145.7 – 144.7 (m), 144.2 – 143.4 (m), 143.0 – 142.0 (m), 139.5 – 138.4 (m), 136.8, 136.6 – 135.9 (m), 133.7 – 132.7 (m), 131.6, 130.9, 129.2, 125.8, 104.6 – 104.1 (m), 63.6, 27.5, 18.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.3, -145.4, -159.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆ClF₅NO₃, 436.0734; Found 436.0738.

1j

5-bromo-*N***-(***tert***-butyl)-2-methyl-***N***-((perfluorobenzoyl)oxy)benzamide (1j).** Isolated yield = 70% on 3 mmol scale; colourless solid; M.p. 89-90 °C. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 2H), 7.03 – 6.98 (m, 1H), 2.28 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 158.1, 146.8 – 146.3 (m), 145.6 – 144.9 (m), 144.2 – 143.7 (m), 142.9 – 142.1

(m), 139.3 – 138.5 (m), 137.1, 136.6 – 135.9 (m), 133.9, 132.2, 131.8, 128.6, 118.5, 104.8 – 103.9 (m), 63.5, 27.5, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.3, -145.5, -159.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆BrF₅NO₃, 480.0228; Found 480.0225.

1k

N-(*tert*-butyl)-2-methyl-*N*-((perfluorobenzoyl)oxy)-3-(trifluoromethyl)benzamide (1k). Isolated yield = 61% on 1.2 mmol scale; colourless oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.45 – 7.36 (m, 1H), 7.24 – 7.18 (m, 1H), 2.42 (s, 3H), 1.61 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) 170.9, 158.1, 146.9 – 146.2 (m), 145.7 – 145.0 (m), 144.2 – 143.7 (m), 143.1 – 142.4 (m), 139.3 – 138.7 (m), 138.3, 136.6 – 136.1 (m), 133.3, 129.2 , 126.7, 126.6 (q, *J*_{C-F} = 5.3 Hz), 124.1 (q, *J*_{C-F} = 272.7 Hz), 104.4 – 104.0 (m), 63.7, 27.4, 15.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.5, -136.6, -145.1, -159.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₆F₈NO₃, 492.0816; Found 492.0808.

N-(*tert*-butyl)-2-ethyl-*N*-((perfluorobenzoyl)oxy)benzamide (1w). Isolated yield = 64% on 3 mmol scale; colourless oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.15 (m, 3H), 7.12 – 7.06 (m, 1H), 2.74 – 2.62 (m, 2H), 1.60 (s, 9H), 1.23 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 146.9 – 146.5 (m), 145.3 – 144.9 (m), 144.6, 144.3 – 143.9 (m), 143.2 – 142.3 (m), 141.1 – 140.3 (m), 139.4 – 138.4 (m), 136.6 – 136.0 (m), 135.6 – 134.8 (m), 129.4, 128.4, 125.8, 125.1, 104.9 – 104.6 (m), 63.4, 27.6, 25.8, 15.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.1, -145.8, -159.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉F₅NO₃, 416.1280; Found 416.1273.

N-(*tert*-butyl)-*N*-((perfluorobenzoyl)oxy)-4-phenylbutanamide (1x). Isolated yield = 67% on 2 mmol scale; colourless solid; M.p. 32-33 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.11 (m, 2H), 7.10 – 7.00 (m, 3H), 2.64 – 2.46 (m, 2H), 2.24 (dt, *J* = 15.6, 7.6 Hz, 1H), 2.08 (dt,

J = 16.4, 7.6 Hz, 1H), 1.88– 1.80 (m, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 158.7, 146.9 – 146.5 (m), 145.5 – 145.1 (m), 144.3 – 143.9 (m), 142.9 – 142.5 (m), 141.4, 139.4 – 138.7 (m), 136.8 – 136.2 (m), 128.4, 128.1, 125.7, 105.3 – 104.6 (m), 63.1, 34.9, 33.5, 27.3, 25.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -135.9, -145.5, -158.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₁F₅NO₃, 430.1436; Found 430.1434.

General Procedure C: For the Preparation of Amide Substrates 1t~1v

Step 1: To a solution of carboxylic acid **SM-1** (408 mg, 3.0 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (0.3 M) was added 2~3 drops of anhydrous DMF. The solution was cooled to 0 °C and oxalyl chloride (571 mg, 4.5 mmol, 1.5 equiv.) was added dropwise. The reaction was then allowed to warm up to room temperature and vigorously stirred for two hours. The solvent was removed in vacuum. Then the resulting acyl chloride **SM-2** used directly for the next step without further purification.

Step 2: To a solution of the *N*-(*tert*-butyl)hydroxylamine hydrochloride (333 mg, 3.0 mmol, 1.0 equiv.) in anhydrous THF (0.5 M) was added DIPEA (1.1 g, 9.0 mmol, 3.0 equiv.). The solution was cooled to 0 °C and stirred for 15 minutes. The above crude acylchloride **SM-2** (3.0 mmol, 1.0 equiv.) in anhydrous acetonitrile was added to the solution dropwise over 15 minutes and the mixture was allowed to warm to room temperature for 6 hours. Then the mixture was allowed to warm to room temperature, and stirred for 6 hours. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The organic layer was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) to afford the the intermediate **SM-3** in 63% isolated yield (365 mg).

Step 3: To a solution of hydroxylamine intermediate **SM-3** (391 mg, 1.9 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 (0.35 M) at 0 °C was added Et_3N (574 mg, 5.7 mmol, 3.0 equiv.) dropwise at 0 °C. Pentafluorobenzoyl chloride (1.3g, 5.7 mg, 3.0 equiv.) was then added dropwise over 5 minutes. The

reaction was vigorously stirred at room temperature for 3 h. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The organic layer was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 10:1) to afford **1c** in 70% isolated yield (515 mg).

1t

N-(*tert*-butyl)-2-methyl-*N*-((perfluorobenzoyl)oxy)benzamide(1t). Isolated yield =49% on 2.0 mmol scale; yellow oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) 7.34 – 7.28 (m, 2H), 7.25 – 7.17 (m, 2H), 4.40 (s, 1H), 2.43 (s, 3H), 1.27 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 147.3 – 146.4 (m), 145.6 – 144.9 (m), 144.5 – 143.8 (m), 142.9 – 142.2 (m), 139.3 – 138.6 (m), 136.8 – 136.0 (m), 135.4, 133.6, 130.6, 130.0, 126.4, 125.7, 105.3 – 104.8 (m), 52.4, 19.6, 19.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -135.8, -146.1, -159.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₅F₅NO₃, 388.0967; Found 388.0963.

1u

N-cyclohexyl-2-methyl-*N*-((perfluorobenzoyl)oxy)benzamide (1u). Isolated yield = 67% on 5 mmol scale; white solid; M.p. 50-51 °C. R_f = 0.5 (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) 7.32 – 7.27 (m, 2H), 7.23 – 7.15 (m, 2H), 4.10 (s, 1H), 2.41 (s, 3H), 1.97 – 1.76 (m, 4H), 1.71 – 1.56 (m, 2H), 1.35 – 0.84 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 147.0 – 146.7 (m), 145.4 – 144.9 (m), 144.6 – 143.9 (m), 142.9 – 142.2 (m), 139.3 – 138.0 (m), 136.9 – 135.6 (m), 135.4, 133.7, 130.5, 129.9, 126.3, 125.6, 105.3 – 104.7 (m), 59.5, 30.0, 25.3, 24.9, 19.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -135.7, -146.1, -159.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₉F₅NO₃, 428.1280; Found 428.1280.

N,2-dimethyl-*N*-((perfluorobenzoyl)oxy)benzamide (1v). Isolated yield = 63% on 3 mmol scale; yellow oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 2H),

7.16 – 7.08 (m, 2H), 3.37 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 147.3 – 146.6 (m), 145.8 – 145.0 (m), 144.7 – 144.1 (m), 143.2 – 142.5 (m), 139.3 – 138.7 (m), 136.8 – 136.0 (m), 135.7, 132.9, 130.6, 130.1, 126.7, 125.6, 105.0 – 104.0 (m), 37.2, 19.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -135.7, -145.4, -159.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₀F₅NNaO₃, 382.0473; Found 382.0476.

General Procedure D: For the Preparation of Phenylacetylene 2s⁷.

Step 1: An oven-dried screw cap reaction tube was charged with a magnetic stirbar $Pd(OAc)_2$ (27 mg, 0.12 mmol, 3 mol%), Tri(*o*-tolyl)phosphine (73 mg, 0.24 mmol, 6 mol%) and bromo-substrate (784 mg, 4 mmol, 1.0 equiv.). Freshly distil dry THF (10 mL) was added to the reaction tube under nitrogen atmosphere using syringe. DBU (1.8 mL, 12 mmol, 3 equiv.) was injected in it and the reaction was stirred at room temperature. Under 80 °C trimethylsilylacetylene (719 µl, 5.2 mmol, 1.3 equiv.) was added to the reaction mixture slowly. The reaction was stirred continuously for 12 h at room temperature. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 10:1) to afford the the intermediate **SM-1** in 62% isolated yield (525.8 mg).

Step 2: **SM-1** was dissolved in a mixed solution of 4 mL MeOH and $Et_2O = 5:1$, and 2.5 equivalents of anhydrous K_2CO_3 were added under N_2 atmosphere. The reaction mixture was stirred at room temperature for 3 h. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine successively. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 10:1) to afford the the intermediate **SM-2** in 58% isolated yield (199.8 mg).

Step 3: SM-2 (199.8 mg, 1.4 mmol, 1.0 equiv.) was dissolved in 10 mL THF, added with NaH (84 mg, 2.1 mmol, 1.5 equiv.), stirred for 30 min, and then added with TsCl (400 mg, 2.1 mmol, 1.2 equiv.) for 3 h. The mixture was quenched with saturated NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine

successively. The crude residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) to afford **2s** in 58% isolated yield (171 mg).

4-ethynyl-1-tosyl-1*H***-indole (2s).** Isolated yield = 58% on 1.4 mmol scale; black oil; $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹**H NMR (400 MHz, CDCl**₃) δ 7.93 – 7.90 (m, 1H), 7.69 – 7.65 (m, 2H), 7.54 (d, *J* = 3.6 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.25 – 7.05 (m, 3H), 6.77 (dd, *J* = 3.6, 0.8 Hz, 1H), 3.22 (s, 1H), 2.27 (s, 3H). ¹³**C NMR (101 MHz, CDCl**₃) δ 145.2, 135.0, 134.4, 132.7, 129.9, 127.3, 127.0, 126.8, 124.3, 114.7, 114.3, 108.3, 81.1, 80.5, 21.6. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₁₇H₁₄NO₂S, 296.0740; Found 296.0746.

Reaction optimization^{*a,b*}

$\mathbf{R} = C_6 F_5 \mathbf{1a}$	10 mol% Cul 20 mol% TERPY (L1) 2.0 equiv K ₂ CO ₃ Ph-(2a, 2.0 equiv) MeCN, Blue LEDs, r.t. 24 h 'standard' conditions	O H H 3a, 88%	N- ^t Bu TERPY N Ja'.trace
1.0 equiv	Standard Conditione	(84% isolated)	
Entry	Variations from the 'standa	ard' conditions	Yield (%) of 3a / 3a' ^b
1	Without Cul		0
2	Without Blue LEDs		0
3	Without K ₂ CO ₃ (B1)		0
4	Without Ligand	0 Listed below	
5	C2-C9 Instead of	Listed below	
0 7	B2-B7 instead of	Listed below	
8	carried out in	15/trace	
9	Without Blue LEDs, carrie	0/0	
10	solvent = Phl	49/45	
11	solvent = PhC	21/15	
12	solvent = TH	49/22	
13	solvent = DM	44/18	
14	1.5 equiv 2 a	67/trace	
15	2.5 equiv za R group investig	ation	Listed below
10	rt group invoorig		
CuCl C2 , 77%/0%	CuBr C3 , 70%/6%	CuTc C4 , 65%/10%	CuO C5 , trace/14%
Cu(OAc) ₂	Cu ₂ (OH) ₂ CO ₃	Cu(acac) ₂	Pd(OAc) ₂
C6, 58%/25%	C7, 36%/11%	C8 , 60%/0%	C9 , 0%/31%
L2, 3%/t	race N N N L3, R' R' R' L4, R' R' L5, R' L6, R'	= H, trace/37% = CH_3 , trace/43% = OMe , 15%/34% = ${}^{t}Bu$, 0%/24%	L7, trace/0%
	Cy, Cy P 'Pr	PPh ₂ PPh ₂	PPh ₂ PPh ₂
PPh_3	XPhos	DPEphos	Xantphos
L8, 5%/29%	L9, trace/11%	L10, trace/0%	L11, trace/15%
Cs ₂ CO ₃	Na ₂ CO ₃	K ₃ PO ₄	NaOCH ₃
B2 , 62%/7%	B3, 11%/12%	B4, 48%/47%	B5, 14%/trace
KHCO ₃	2,4,6-tri-Me-Py	Cy ₂ NMe	DBU
B6, 23%/11%	B7 , 56%/7%	B8, 34%/14%	B9 , 0%/0%
R Group Investigation	on:		
1b 4-CF ₃ -C ₆ H ₄ -	3a/3a', 4%/trace	1c Bn	3a/3a', 0%/trace
1d H₃C -ş -	3a/3a', 0%/0%	1e ⁱ BuO →	3a/3a', 0%/0%

^{*a*}Each reaction was run on a 0.1 mmol scale in a sealed 4 mL vial for 24 h; ^{*b*}Yields of **3a** were determined by ¹H NMR using CH_2Br_2 as the internal standard. Py = pyridine. Cy = cyclohexane.

General Procedure of the Radical Relay Sonogashira Reaction.

An oven-dried 4.0 mL vial was charged with amide 1 (0.2 mmol, 1.0 equiv.), alkyne 2 (0.4mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K_2CO_3 (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:3) to afford 3/4 and 3a'.

3a

N-(*tert*-butyl)-2-(3-phenylprop-2-yn-1-yl)benzamide (3a). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED

lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3a**. Isolated yield = 84% (48.8 mg) as a white solid; M.p. 111-112 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 1H), 7.37 – 7.30 (m, 4H), 7.23 – 7.20 (m, 4H), 5.81 (s, 1H), 3.90 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 137.0, 134.3, 131.5, 130.0, 129.6, 128.2, 127.9, 127.1, 126.9, 123.4, 87.7, 83.0, 51.9, 28.8, 23.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₂₁NNaO 314.1515; Found 314.1512.

(*E*)-*N*-(*tert*-butyl)isobenzofuran-1(*3H*)-imine (3a'). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), Cu(OAc)₂ (4.0 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3a'**. Isolated yield = 25% (9.5 mg) as a white solid. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 1H), 7.44 – 7.35 (m, 1H), 7.36 – 7.28 (m, 1H), 7.28 – 7.23 (m, 1H), 5.24 (s, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 131.8, 130.9, 128.2, 123.8, 121.1, 72.1, 53.6, 30.0. The spectroscopic data match the reported literature⁸.

3b

N-(*tert*-butyl)-2-(3-(4-butylphenyl)prop-2-yn-1-yl)benzamide (3b). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2b (63.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was

tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3b**. Isolated yield = 54% (39.6 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.6 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.25 – 7.19 (m, 3H), 7.04 – 7.01 (m, 2H), 5.83 (s, 1H), 3.88 (s, 2H), 2.54 – 2.49 (m, 2H), 1.53 – 1.47 (m, 2H), 1.39 (s, 9H), 1.29 – 1.23 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 143.0, 137.1, 134.4, 131.4, 130.0, 129.6, 128.3, 127.1, 126.9, 120.5, 86.9, 83.2, 51.9, 35.5, 33.4, 28.8, 23.8, 22.3, 13.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₃₀NO 348.2322; Found 348.2320.

3c

N-(*tert*-butyl)-2-(3-(4-(*tert*-butyl)phenyl)prop-2-yn-1-yl)benzamide (3c). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2c** (63.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3c**. Isolated yield = 38% (26.4 mg) as a white solid; M.p. 57-58 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.29 – 7.21 (m, 5H), 5.81 (s, 1H), 3.89 (s, 2H), 1.40 (s, 9H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 151.1, 137.1, 134.4, 131.2, 130.0, 129.6, 127.1, 126.9, 125.2, 120.4, 86.9, 83.2, 51.9, 34.7, 31.1, 28.8, 23.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₂₉NNaO 370.2141; Found 370.2144.

N-(*tert*-butyl)-2-(3-(*o*-tolyl)prop-2-yn-1-yl)benzamide (3d). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2d (46.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20

mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3d**. Isolated yield = 89% (54.2 mg) as a white solid; M.p. 82-83 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.34 – 7.17 (m, 4H), 7.12 – 7.01 (m, 3H), 5.78 (s, 1H), 3.96 (s, 2H), 2.34 (s, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 140.0, 136.9, 134.6, 131.8, 130.0, 129.4, 129.3, 127.8, 126.9, 126.8, 125.4, 123.2, 91.4, 82.1, 51.9, 28.8, 23.7, 20.8. HRMS (ESI) m/z: [M+K]⁺ Calcd for C₂₁H₂₃KNO 328.1672; Found 328.1665.

N-(*tert*-butyl)-2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)benzamide (3e). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2e (52.8 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3e**. Isolated yield = 75% (48.2 mg) as a white solid; M.p. 75-76 °C. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 **MHz, CDCl**₃) δ 7.48 (d, J = 7.6 Hz, 1H), 7.35 – 7.24 (m, 4H), 7.21 – 7.18 (m, 1H), 6.77 – 6.69 (m, 2H), 5.85 (s, 1H), 3.87 (s, 2H), 3.71 (s, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 159.2, 137.1, 134.4, 132.9, 130.0, 129.6, 127.1, 126.8, 115.5, 113.8, 86.1, 82.8, 55.2, 51.9, 28.8, 23.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₄NO₂ 322.1802; Found 322.1793.

N-(*tert*-butyl)-2-(3-(2,6-dimethoxyphenyl)prop-2-yn-1-yl)benzamide (3f). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol,

1.0 equiv.), alkyne **2f** (64.8 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3f**. Isolated yield = 87% (61.2 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (**300 MHz, CDCl3**) δ 7.48 (d, *J* = 7.6 Hz, 1H), 7.36 – 7.28 (m, 2H), 7.23 – 7.18 (m, 1H), 6.53 – 6.30 (m, 3H), 5.79 (s, 1H), 3.89 (s, 2H), 3.68 (s, 6H), 1.39 (s, 9H). ¹³C NMR (**101 MHz, CDCl3**) δ 168.9, 160.4, 137.0, 134.2, 130.0, 129.6, 127.1, 126.9, 124.7, 109.4, 101.3, 87.3, 82.9, 55.3, 51.9, 28.8, 23.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₆NO₃ 352.1907; Found 352.1904.

N-(*tert*-**butyl**)-2-(3-(4-fluorophenyl)prop-2-yn-1-yl)benzamide (3g). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2g** (48.0 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3g**. Isolated yield = 70% (38.8 mg) as a white solid; M.p. 142-143 °C. R_f= 0.4 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 1H), 7.37 – 7.26 (m, 4H), 7.22 – 7.18 (m, 1H), 6.96 – 6.86 (m, 2H), 5.79 (s, 1H), 3.89 (s, 2H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 162.2 (d, *J*_{C-F} = 248.7 Hz), 137.0, 134.3, 133.4 (d, *J*_{C-F} = 8.3 Hz), 130.0, 129.6, 127.0 (d, *J*_{C-F} = 13.2 Hz), 119.5, 119.5, 115.43 (d, *J*_C F = 22.1 Hz), 87.3, 81.8, 51.9, 28.8, 23.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁FNO 310.1602; Found 310.1595.

N-(*tert*-**butyl**)-2-(3-(4-chlorophenyl)prop-2-yn-1-yl)benzamide (3h). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2h** (54.6 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3h**. Isolated yield = 71% (46.0 mg) as a white solid; M.p. 142-143 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 1H), 7.35 – 7.30 (m, 2H), 7.28 – 7.24 (m, 2H), 7.22 – 7.18 (m, 3H), 5.76 (s, 1H), 3.91 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 137.0, 134.2, 133.8, 132.8, 130.1, 129.6, 128.5, 127.1, 127.0, 121.9, 88.8, 81.8, 51.9, 28.8, 23.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁CINO 326.1306; Found 326.1302.

2-(3-(4-bromophenyl)prop-2-yn-1-yl)-*N-(tert*-butyl)benzamide (3i). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2i** (72.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogenfilled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3i**. Isolated yield = 58% (43.0 mg) as a white solid; M.p. 108-109 °C. R_f = 0.5 (Hexane: Ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.6 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.21 – 7.18 (m, 3H), 5.75 (s, 1H), 3.90 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 137.0, 134.2, 133.0, 131.5, 130.0, 129.6, 127.0, 127.0,

122.4, 122.0, 89.0, 81.8, 51.9, 28.8, 23.7. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₀H₂₁BrNO 370.0801; Found 370.0792.

2-(3-(2-bromophenyl)prop-2-yn-1-yl)-*N-(tert-***butyl)benzamide (3j).** Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2j** (72.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3j**. Isolated yield = 66% (46.8 mg) as a yellow oil. R_f = 0.4 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.6 Hz, 1H), 7.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.41 – 7.29 (m, 3H), 7.23 – 7.16 (m, 2H), 7.10 – 7.03 (m, 1H), 5.77 (s, 1H), 3.98 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 137.0, 134.0, 133.3, 132.3, 130.0, 129.7, 129.0, 126.9, 126.9, 125.5, 125.4, 92.6, 81.8, 51.9, 28.8, 23.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁BrNO 370.0801; Found 370.0799.

N-(*tert*-butyl)-2-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)benzamide (3k). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2k (68.0 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 3k. Isolated yield = 81% (58.2 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.41 (m, 5H), 7.37 – 7.32 (m, 2H), 7.24 – 7.19 (m, 1H), 5.74 (s, 1H), 3.95 (s, 2H), 1.39 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 137.0, 134.1, 131.8, 130.1, 129.6, 129.6 (q, J_{C-F} = 32.8Hz), 127.3, 127.1, 127.0, 125.1 (q, J_{C-F} = 3.9Hz), 123.9 (q, J_{C-F} = 273.1Hz), 90.5, 81.6, 51.9, 28.8, 23.6. ¹⁹F NMR (**376 MHz, CDCl**₃) δ -62.8. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₁H₂₁F₃NO 360.1570; Found 360.1564.

2-(3-(4-acetylphenyl)prop-2-yn-1-yl)-*N*-(*tert*-butyl)benzamide (31). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2l** (57.6 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogenfilled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3l**. Isolated yield = 50% (33.0 mg) as a yellow oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 2H), 7.56 (d, J = 7.2 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.43 – 7.37 (m, 2H), 7.32 – 7.26 (m, 1H), 5.82 (s, 1H), 4.02 (s, 2H), 2.58 (s, 3H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 168.9, 142.9, 137.0, 135.9, 134.1, 131.7, 130.1, 129.6, 128.5, 128.2, 127.0, 92.7, 82.2, 51.9, 28.8, 26.6, 23.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO₂ 334.1802; Found 334.1799.

methyl 4-(3-(2-(*tert***-butylcarbamoyl)phenyl)prop-1-yn-1-yl)benzoate (3m).** Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2m** (52.8 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3m**. Isolated yield

= 49% (40.4 mg) as a white solid; M.p. 92-93 °C. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.91 (m, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.42 – 7.37 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 5.82 (s, 1H), 4.02 (s, 2H), 3.90 (s, 3H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 166.6, 137.0, 134.1, 131.5, 130.1, 129.6, 129.4, 129.2, 128.3, 127.0, 91.1, 82.2, 52.2, 51.9, 28.8, 23.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO₃ 350.1751; Found 350.1748.

N-(*tert*-butyl)-2-(3-(4-cyanophenyl)prop-2-yn-1-yl)benzamide (3n). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2n (50.8 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3n**. Isolated yield = 66% (41.4 mg) as a white solid; M.p. 98-99 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.49 (m, 2H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.37 – 7.31 (m, 2H), 7.26 – 7.20 (m, 1H), 5.71 (s, 1H), 3.97 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 136.9, 133.9, 132.1, 131.9, 130.1, 129.6, 128.5, 127.1, 127.0, 118.5, 111.2, 92.8, 81.4, 52.0, 28.8, 23.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₂₀N₂NaO 339.1468; Found 339.1467.

N-(*tert*-butyl)-2-(3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)prop-2-yn-1-yl)benzamide (30). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2o (91.2 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **30**. Isolated yield = 52% (43.4 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.35 – 7.31 (m, 4H), 7.24 – 7.21 (m, 1H), 5.79 (s, 1H), 3.91 (s, 2H), 1.38 (s, 9H), 1.27 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 137.1, 134.5, 134.2, 130.7, 130.0, 129.7, 129.4, 127.1, 127.0, 126.1, 89.2, 83.9, 83.1, 52.0, 28.8, 24.8, 23.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₃BNO₃ 418.2548; Found 418.2539.

N-(*tert*-butyl)-2-(3-(4'-ethyl-[1,1'-biphenyl]-4-yl)prop-2-yn-1-yl)benzamide (3p). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2p (84.6 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3p**. Isolated yield = 70% (55.4 mg) as a white solid; M.p. 120-121 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 1H), 7.48 – 7.29 (m, 8H), 7.23 – 7.16 (m, 3H), 5.80 (s, 1H), 3.93 (s, 2H), 2.61 (q, *J* = 7.6 Hz, 2H), 1.40 (s, 9H), 1.19 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 143.8, 140.6, 137.7, 137.1, 134.4, 131.9, 130.0, 129.7, 128.3, 127.1, 126.92, 126.86, 126.7, 122.0, 88.2, 83.0, 51.9, 28.8, 28.5, 23.8, 15.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₃₀NO 396.2322; Found 396.2316.

N-(*tert*-butyl)-2-(3-(naphthalen-1-yl)prop-2-yn-1-yl)benzamide (3q). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2q (60.8 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue

LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3q**. Isolated yield = 72% (49.2 mg) as a white solid; M.p. 114-115 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.4 Hz, 1H), 7.75 – 7.69 (m, 2H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 7.2 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.34 – 7.30 (m, 3H), 7.23 – 7.19 (m, 1H), 5.80 (s, 1H), 4.07 (s, 2H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 137.0, 134.5, 133.4, 133.1, 130.1, 130.0, 129.6, 128.3, 128.2, 127.0, 126.9, 126.6, 126.2, 126.1, 125.1, 121.1, 92.6, 81.1, 51.9, 28.7, 23.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄NO 342.1853; Found 342.1848.

N-(*tert*-butyl)-2-(3-(thiophen-2-yl)prop-2-yn-1-yl)benzamide (3r). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1a** (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne **2r** (43.2 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3r**. Isolated yield = 64% (38.2 mg) as a white solid; M.p. 123-124 °C. R_f = 0.4 (Hexane: Ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 1H), δ 7.35 – 7.27 (m, 2H), 7.25 – 7.19 (m, 1H), 7.12 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.07 (d, *J* = 3.2 Hz, 1H), 6.86 (dd, *J* = 5.2, 3.6 Hz, 1H), 5.78 (s, 1H), 3.92 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 137.1, 134.0, 131.4, 130.0, 129.7, 127.1, 127.0, 126.8, 126.4, 123.4, 91.7, 76.0, 51.9, 28.8, 23.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₀NOS 298.1260; Found 298.1253.

3s

N-(*tert*-butyl)-2-(3-(pyridin-3-yl)prop-2-yn-1-yl)benzamide (3s). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2s (41.2 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-

filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3s**. Isolated yield = 56% (32.8 mg) as a white solid; M.p. 120-121 °C. R_f = 0.5 (Hexane: Ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.42 (d, *J* = 4.4 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.25 – 7.12 (m, 2H), 5.75 (s, 1H), 3.96 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 152.0, 148.0, 138.7, 137.0, 134.0, 130.1, 129.6, 127.1, 127.0, 123.0, 120.8, 91.6, 79.4, 51.9, 28.8, 23.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀N₂O 293.1649; Found 293.1655.

N-(*tert*-butyl)-2-(3-(1-tosyl-1*H*-indol-4-yl)prop-2-yn-1-yl)benzamide (3t). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2t (118.0 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3t**. Isolated yield = 43% (41.6 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.74 – 7.72 (m, 2H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 3.6 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.30 – 7.26 (m, 2H), 7.25 – 7.18 (m, 3H), 6.78 (d, *J* = 3.6 Hz, 1H), 5.83 (s, 1H), 4.06 (s, 2H), 2.32 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 145.1, 136.9, 135.0, 134.4, 134.4, 132.4, 130.0, 129.9, 129.4, 126.95, 126.89, 126.7, 126.61, 126.55, 124.4, 116.3, 113.4, 108.5, 91.2, 80.5, 51.9, 28.7, 23.7, 21.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₈N₂NaO₃S 507.1713; Found 507.1710.

N-(tert-butyl)-2-(3-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cvclopenta[a]phenanthren-3-vl)prop-2-vn-1-vl)benzamide (3u). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2u (111.2 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogenfilled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 3u. Isolated yield = 52% (48.2 mg) as a yellow oil. $R_f = 0.4$ (Hexane: Ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.6 Hz, 1H), 7.37 - 7.29 (m, 2H), 7.23 - 7.20 (m, 1H), 7.15 - 7.08 (m, 3H), 5.80 (s, 1H), 3.89 (s, 2H), 2.80 (dd, J = 9.2, 4.4 Hz, 2H), 2.44 (dd, J = 18.8, 8.8 Hz, 1H), 2.36 – 2.31 (m, 1H), 2.25 – 2.17 (m, 1H), 2.12 – 2.04 (m, 1H), 2.03 – 1.84 (m, 4H), 1.59 – 1.47 (m, 5H), 1.40 (s, 9H), 0.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.9, 169.0, 139.8, 137.0, 136.4, 134.4, 132.0, 130.0, 129.5, 128.8, 127.1, 126.8, 125.2, 120.7, 86.9, 83.1, 51.9, 50.4, 47.9, 44.3, 37.9, 35.8, 31.4, 29.0, 28.8, 26.3, 25.5, 23.7, 21.5, 13.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₂H₃₈NO₂ 468.2897; Found 468.2889.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclo-hexyl 4-(3-(2-(*tert*-butylcarbamoyl)phenyl)prop-1-yn-1-yl)benzoate (3v). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2v (113.8 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3v**. Isolated yield = 36% (34.1 mg) as a yellow oil. R_f = 0.4 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.85 (m, 2H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.41 – 7.36 (m, 2H), 2H), 7.36 – 7.32 (m, 2H), 7.24 – 7.20 (m, 1H), 5.76 (s, 1H), 4.84 (td, *J* = 10.8, 5.6 Hz, 1H), 3.95 (s, 2H), 2.07 – 2.01 (m, 1H), 1.86 (ddt, *J* = 14.0, 7.2, 3.6 Hz, 1H), 1.68 – 1.60 (m, 3H), 1.52 – 1.44 (m, 2H), 1.39 (s, 9H), 1.07 – 0.98 (m, 2H), 0.85 (d, *J* = 4.0 Hz, 3H), 0.84 (d, *J* = 4.4 Hz, 3H), 0.71 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 165.6, 137.0, 134.1, 131.4, 130.1, 129.9, 129.6, 129.4, 128.0, 127.05, 127.02, 90.9, 82.3, 75.0, 51.9, 47.2, 40.9, 34.2, 31.4, 28.8, 26.4, 23.8, 23.5, 22.0, 20.7, 16.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₄₀NO₃ 474.3003; Found 474.2994.

N-(*tert*-butyl)-2-(hept-2-yn-1-yl)benzamide (3w). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2w (39.2 mg, 0.4 mmol, 2.0 equiv.), CuI (7.6 mg, 0.04 mmol, 20 mol%), TERPY (18.68 mg, 0.08 mmol, 40 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3w**. Isolated yield = 47% (25.4 mg) as a white oil. R_f = 0.4 (Hexane: Ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.6 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.19 – 7.15 (m, 1H), 5.87 (s, 1H), 3.61 (t, *J* = 2.4 Hz, 2H), 2.11 (tt, *J* = 7.2, 2.4 Hz, 2H), 1.45 – 1.41 (m, 2H), 1.40 (s, 9H), 1.34 – 1.29 (m, 2H), 0.83 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 137.0, 134.9, 129.9, 129.5, 127.2, 126.7, 83.3, 77.8, 51.9, 31.0, 28.7, 23.2, 22.0, 18.5, 13.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₆NO 272.2006; Found 272.2003.

N-(*tert*-butyl)-2-(3-cyclopropylprop-2-yn-1-yl)benzamide(3x). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2x (26.6 mg, 0.4 mmol, 2.0 equiv.), CuI (7.6 mg, 0.04 mmol, 20 mol%), TERPY (18.68 mg, 0.08 mmol, 40 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogenfilled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column

chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3x**. Isolated yield = 33% (16.4 mg) as a yellow oil. $R_f = 0.4$ (Hexane: Ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.13 – 7.08 (m, 1H), 5.85 (s, 1H), 3.58 (d, J = 2.0 Hz, 2H), 1.40 (s, 9H), 1.20 – 1.17 (m, 1H), 0.69 – 0.63 (m, 2H), 0.60 – 0.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 137.1, 134.8, 129.9, 129.5, 127.2, 126.7, 86.1, 73.3, 51.9, 28.8, 23.2, 7.9, -0.4. (The product contains a small amount of (N- (tert-butyl) -2-methylbenzamide.) HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₁NO 256.1696; Found 256.1703.

N-(*tert*-butyl)-2-(3-(trimethylsilyl)prop-2-yn-1-yl)benzamide (3y). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1a (80.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2y (39.2 mg, 0.4 mmol, 2.0 equiv.), CuI (7.6 mg, 0.04 mmol, 20 mol%), TERPY (18.68 mg, 0.08 mmol, 40 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **3y**. Isolated yield = 49% (28.0 mg) as a white solid; M.p. 76-77 °C. R_f = 0.4 (Hexane: Ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.8 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.10 – 7.06 (m, 1H), 5.72 (s, 1H), 3.61 (s, 2H), 1.30 (s, 9H), -0.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 137.0, 133.8, 129.9, 129.4, 127.1, 126.8, 104.3, 87.3, 51.9, 28.7, 24.1, 0.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₆NOSi 288.1778; Found 288.1774.

N-(*tert*-butyl)-4-methyl-2-(3-phenylprop-2-yn-1-yl)benzamide (4a). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1f (83.0 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.2 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue

LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4a**. Isolated yield = 62% (53.6 mg) as a white solid; M.p. 85-86 °C. R_f = 0.4 (Hexane: Ethyl acetate = 5:1). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.36 – 7.31 (m, 2H), 7.27 (s, 1H), 7.25 – 7.17 (m, 4H), 7.01 (d, *J* = 7.6 Hz, 1H), 5.80 (s, 1H), 3.87 (s, 2H), 2.30 (s, 3H), 1.38 (s, 9H). ¹³C NMR (**101 MHz, CDCl**₃) δ 169.0, 140.1, 134.3, 131.6, 130.4, 128.2, 127.8, 127.5, 127.3, 123.5, 87.9, 82.9, 51.8, 28.8, 23.7, 21.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₄NO 306.1853; Found 306.1846.

N-(*tert*-butyl)-3-methoxy-2-(3-phenylprop-2-yn-1-yl)benzamide (4b). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1g (86.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4b**. Isolated yield = 79% (50.6 mg) as a white solid; M.p. 99-100 °C. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 **MHz, CDCl**₃) δ 7.28 – 7.25 (m, 2H), 7.19 – 7.15 (m, 4H), 7.00 (dd, J = 7.6, 1.2 Hz, 1H), 6.85 (dd, J = 8.4, 1.2 Hz, 1H), 6.01 (s, 1H), 3.80 (s, 2H), 3.80 (s, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 157.2, 139.2, 131.5, 128.2, 128.1, 127.7, 123.5, 122.3, 119.8, 111.9, 88.6, 80.6, 55.9, 52.0, 28.7, 17.2. **HRMS (ESI)** m/z: $[M+H]^+$ Calcd for C₂₁H₂₄NO₂ 322.1802; Found 322.1803.

N-(*tert*-butyl)-4-fluoro-2-(3-phenylprop-2-yn-1-yl)benzamide (4c). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1h (83.8 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was

tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4c**. Isolated yield = 64% (45.0 mg) as a white solid; M.p. 113-114 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 3H), 7.26 – 7.20 (m, 4H), 6.88 (td, *J* = 8.4, 2.8 Hz, 1H), 5.78 (s, 1H), 3.90 (s, 2H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, δ 163.3 (d, *J* = 249.5 Hz), 137.6 (d, *J* = 8.0 Hz), 133.1 (d, *J* = 3.3 Hz), 131.6, 129.1 (d, *J* = 8.5 Hz), 128.3, 128.1, 123.1, 116.6 (d, *J* = 22.7 Hz), 113.7 (d, *J* = 21.5 Hz), 86.6, 83.6, 52.0, 28.8, 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁FNO 310.1602; Found 310.1595.

N-(*tert*-butyl)-5-chloro-2-(3-phenylprop-2-yn-1-yl)benzamide (4d). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1i (87.2 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 4d. Isolated yield = 60% (48.2 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.0 Hz, 1H), 7.37 – 7.27 (m, 4H), 7.25 – 7.20 (m, 3H), 5.78 (s, 1H), 3.85 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 138.4, 132.9, 132.7, 131.5, 131.1, 129.9, 128.3, 128.0, 127.1, 123.2, 87.0, 83.3, 52.2, 28.7, 23.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁CINO 326.1306; Found 326.1301.

5-bromo-*N***-(***tert***-butyl**)**-2-(3-phenylprop-2-yn-1-yl)benzamide** (**4e**). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1j** (96.0 mg, 0.2 mmol, 1.0 equiv.), alkyne **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04

mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogenfilled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4e**. Isolated yield = 76% (76.0 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (**400 MHz, CDCl3**) δ 7.45 – 7.42 (m, 2H), 7.39 – 7.36 (m, 1H), 7.34 – 7.30 (m, 2H), 7.23 – 7.19 (m, 3H), 5.80 (s, 1H), 3.83 (s, 2H), 1.38 (s, 9H). ¹³C NMR (**101 MHz, CDCl3**) δ 167.3, 138.7, 133.4, 132.9, 131.5, 131.3, 129.9, 128.3, 128.0, 123.1, 120.5, 86.9, 83.3, 52.2, 28.7, 23.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁BrNO 370.0801; Found 370.0797.

*N-(tert-***butyl)-2-(3-phenylprop-2-yn-1-yl)-3-(trifluoromethyl)benzamide (4f).** Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1k** (93.8 mg, 0.2 mmol, 1.0 equiv.), alkyne **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4f**. Isolated yield = 84% (57.6 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹**H NMR (400 MHz, CDCl**₃) δ 7.65 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.20 – 7.17 (m, 3H), 6.00 (s, 1H), 3.97 (s, 2H), 1.40 (s, 9H). ¹³**C NMR (101 MHz, CDCl**₃) δ 167.9, 140.6, 132.3, 131.5, 129.3(q, *J*_{C-F}=31.3Hz) 128.2, 128.1, 127.43, 127.42(q, *J*_{C-F} = 5.7Hz) 125.4, 124.0(q, *J*_{C-F} = 274.7Hz), 123.1, 87.4, 82.4, 52.4, 28.6, 20.3(q, ⁴*J*_{C-F} = 1.4Hz). ¹⁹**F NMR (376 MHz, CDCl**₃) δ -59.4. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₁H₂₁F₃NO 360.1570; Found 360.1569.

4g

N-(tert-butyl)-4-(3-phenylprop-2-yn-1-yl)-[1,1'-biphenyl]-3-carboxamide (4g). Following the typical
procedure described above, an oven-dried 4.0 mL vial was charged with amide **11** (95.4 mg, 0.2 mmol, 1.0 equiv.), alkyne **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4g**. Isolated yield = 71% (52.4 mg) as a white solid; M.p. 114-115 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 5H), 7.39 – 7.33 (m, 5H), 7.22 – 7.19 (m, 3H), 5.88 (s, 1H), 3.92 (s, 2H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 140.0, 137.5, 133.2, 131.5, 130.1, 128.8, 128.5, 128.2, 127.9, 127.6, 127.0, 125.8, 123.4, 87.6, 83.1, 52.0, 28.8, 23.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₆NO 368.2009; Found 368.2003.

*N-(tert-***butyl)-4'-ethyl-4-(3-phenylprop-2-yn-1-yl)-[1,1'-biphenyl]-3-carboxamide** (**4h**). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1m** (101.0 mg, 0.2 mmol, 1.0 equiv.), alkyne **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4h**. Isolated yield = 89% (71.4 mg) as a white solid; M.p. 58-59 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). **¹H NMR (400 MHz, CDCl₃)** δ 7.52 – 7.49 (m, 3H), 7.43 – 7.39 (m, 2H), 7.36 – 7.29 (m, 2H), 7.20 – 7.17 (m, 5H), 5.89 (s, 1H), 3.89 (s, 2H), 2.60 (q, *J* = 7.6 Hz, 2H), 1.38 (s, 9H), 1.18 (t, *J* = 7.6 Hz, 3H). **¹³C NMR (101 MHz, CDCl₃)** δ 169.0, 143.8, 140.0, 137.4, 137.4, 132.9, 131.5, 130.1, 128.4, 128.3, 128.2, 127.9, 126.9, 125.7, 123.4, 87.7, 83.0, 52.0, 28.8, 28.5, 23.4, 15.6. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₈H₃₀NO 396.2322; Found 396.2326.

N-(*tert*-butyl)-4'-methoxy-4-(3-phenylprop-2-yn-1-yl)-[1,1'-biphenyl]-3-carboxamide (4i).

Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1n** (97.6 mg, 0.2 mmol, 1.0 equiv.), alkyne **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4i**. Isolated yield = 56% (44.2 mg) as a yellow oil. R_{*f*} = 0.5 (Hexane: Ethyl acetate = 4:1). **¹H NMR (400 MHz, CDCl₃)** δ 7.53 – 7.49 (m, 3H), 7.45 – 7.42 (m, 2H), 7.36 – 7.32 (m, 2H), 7.22 – 7.19 (m, 3H), 6.91 – 6.89 (m, 2H), 5.87 (s, 1H), 3.90 (s, 2H), 3.77 (s, 3H), 1.40 (s, 9H). ¹³C NMR (**101 MHz, CDCl₃)** δ 168.9, 159.3, 139.6, 137.5, 132.5, 132.50, 131.48, 130.1, 128.2, 128.07, 128.05, 127.9, 125.4, 123.4, 114.3, 87.7, 83.0, 55.3, 52.0, 28.8, 23.4. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C_{27H27}NNaO₂ 420.1934; Found 420.1926.

N-(*tert*-butyl)-4'-fluoro-4-(3-phenylprop-2-yn-1-yl)-[1,1'-biphenyl]-3-carboxamide (4j). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 10 (99.0 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 4j. Isolated yield = 70% (53.2 mg) as a yellow oil. $R_f = 0.6$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.52 (m, 1H), 7.50 – 7.44 (m, 4H), 7.36 – 7.32 (m, 2H), 7.23 – 7.21 (m, 3H), 7.07 – 7.03 (m, 2H), 5.88 (s, 1H), 3.91 (s, 2H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 162.6 (d,

 $J_{C-F} = 247.1 \text{ Hz}$), 139.0, 137.7,136.1 (d, $J_{C-F} = 3.2 \text{ Hz}$), 133.2, 131.5, 130.2, 128.6 (d, $J_{C-F} = 8.0 \text{ Hz}$), 128.4, 128.2, 128.0, 125.7, 123.3, 115.7 (d, $J_{C-F} = 21.4 \text{ Hz}$), 87.5, 83.1, 52.1, 28.8, 23.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₆FNO 386.1915; Found 386.1911.

N-(*tert*-butyl)-4'-chloro-4-(3-phenylprop-2-yn-1-yl)-[1,1'-biphenyl]-3-carboxamide (4k). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1p (102.4 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 4k. Isolated yield = 69% (55.4 mg) as a yellow oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCI₃) δ 7.55 – 7.52 (m, 1H), 7.52 – 7.44 (m, 2H), 7.46 – 7.39 (m, 2H), 7.37 – 7.29 (m, 4H), 7.24 – 7.18 (m, 3H), 5.89 (s, 1H), 3.90 (s, 2H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCI₃) δ 168.6, 138.7, 138.4, 137.7, 133.7, 133.5, 131.5, 130.3, 129.0, 128.3, 128.2, 128.0, 125.7, 123.3, 87.4, 83.2, 52.1, 28.8, 23.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅CINO 402.1619; Found 402.1615.

N-(*tert*-butyl)-4'-cyano-4-(3-phenylprop-2-yn-1-yl)-[1,1'-biphenyl]-3-carboxamide (4l). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1q (100.4 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 4l. Isolated yield = 68% (53.4 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400

MHz, CDCl₃) δ 7.66 – 7.58 (m, 6H), 7.58 – 7.52 (m, 1H), 7.36 – 7.32 (m, 2H), 7.24 – 7.21 (m, 3H), 5.92 (s, 1H), 3.92 (s, 2H), 1.41 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃)** δ 168.3, 144.4, 138.0, 137.9, 134.7, 132.6, 131.5, 130.5, 128.5, 128.3, 128.1, 127.6, 126.0, 123.1, 118.8, 111.2, 87.1, 83.4, 52.2, 28.8, 23.6. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd for C₂₇H₂₄N₂NaO 415.1781; Found 415.1780.

N-(*tert*-butyl)-5-(naphthalen-2-yl)-2-(3-phenylprop-2-yn-1-yl)benzamide (4m). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1r (105.4 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 22.4 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 4m. Isolated yield = 62% (45.8 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.33 (m, 2H), 7.23 – 7.19 (m, 3H), 7.68 – 7.63 (m, 3H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.44 – 7.40 (m, 2H), 7.37 – 7.33 (m, 2H), 7.23 – 7.19 (m, 3H), 5.92 (s, 1H), 3.93 (s, 2H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 139.9, 137.7, 137.3, 133.6, 133.2, 132.7, 131.6, 130.3, 128.8, 128.6, 128.2, 128.2, 127.9, 127.6, 126.4, 126.1, 125.8, 125.2, 123.4, 87.6, 83.1, 52.1, 28.8, 23.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₈NO 418.2166; Found 418.2158.

N-(tert-butyl)-2-(3-phenylprop-2-yn-1-yl)-5-(thiophen-3-yl)benzamide (4n). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1s (96.6 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by

column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4n**. Isolated yield = 74% (55.6 mg) as a yellow oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (**400 MHz, CDCl**₃) δ 7.53 – 7.52 (m, 1H), 7.51 – 7.48 (m, 2H), 7.38 – 7.37 (m, 1H), 7.34 – 7.32 (m, 2H), 7.30 – 7.29 (m, 2H), 7.21 – 7.19 (m, 3H), 5.90 (s, 1H), 3.87 (s, 2H), 1.39 (s, 9H). ¹³C NMR (**101 MHz, CDCl**₃) δ 168.7, 141.1, 137.6, 134.6, 132.8, 131.5, 130.1, 128.2, 127.9, 127.8, 126.4, 126.1, 125.1, 123.3, 120.7, 87.6, 83.1, 52.0, 28.8, 23.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄NOS [M+H]⁺: 374.1573; Found 374.1571.

2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-*N*-methylbenzamide (40). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1v** (71.8 mg, 0.2 mmol, 1.0 equiv.), alkyne **2a** (40.2 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **40**. Isolated yield = 51% (28.4 mg) as a white solid; M.p. 123-124 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.8 Hz, 1H), 7.34 (m, 2H), 7.30 – 7.26 (m, 2H), 7.24 – 7.21 (m, 1H), 6.77 – 6.73 (m, 2H), 5.99 (s, 1H), 3.91 (s, 2H), 3.73 (s, 3H), 2.93 (d, *J* = 4.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 159.2, 135.7, 135.1, 132.9, 130.3, 129.7, 127.1, 126.9, 115.5, 113.8, 85.9, 82.7, 55.2, 26.7, 23.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇NO₂ 280.1333; Found 280.1340.

N-isopropyl-2-(3-phenylprop-2-yn-1-yl)benzamide (**4p**). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide **1t** (77.4 mg, 0.2 mmol, 1.0 equiv.), alkyne **2e** (52.8mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K_2CO_3 (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5

mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford **4p**. Isolated yield = 46% (28.2 mg) as a white solid; M.p. 131-132 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.5 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.29 – 7.26 (m, 2H), 7.24 – 7.20 (m, 1H), 6.77 – 6.73 (m, 2H), 5.87 (d, *J* = 7.9 Hz, 1H), 4.27 – 4.16 (m, 1H), 3.89 (s, 2H), 3.73 (s, 3H), 1.18 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 159.3, 136.2, 134.8, 132.9, 130.3, 129.8, 127.3, 126.9, 115.5, 113.8, 86.1, 82.9, 55.2, 41.9, 23.9, 22.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₂₁NNaO₂ 330.1464; Found 330.1468.

N-cyclohexyl-2-(3-phenylprop-2-yn-1-yl)benzamide (4q). Following the typical procedure described above, an oven-dried 4.0 mL vial was charged with amide 1u (85.4 mg, 0.2 mmol, 1.0 equiv.), alkyne 2a (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K₂CO₃ (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:5) to afford 4q. Isolated yield = 62% (39.0 mg) as a white solid; M.p. 142-143 °C. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.36 – 7.33 (m, 3H), 7.25 – 7.18 (m, 5H), 5.86 (d, *J* = 8.0 Hz, 1H), 3.94 – 3.82 (m, 3H), 1.99 – 1.94 (m, 2H), 1.71 – 1.52 (m, 4H), 1.38 – 1.30 (m, 2H), 1.17 – 1.12 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 136.2, 134.7, 131.6, 130.2, 129.7, 128.2, 127.9, 127.2, 126.9, 123.4, 87.7, 83.1, 48.7, 33.1, 25.5, 24.8, 23.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₃NNaO 340.1672; Found 340.1669.

Control Experiment and Synthetic Application

10 mol%Cul HN^{_t}Bu 20 mol% TERPY OMe 2.0 equiv K₂CO₃ TERPY ÓCOR MeCN, Blue LEDs, r.t. MeC L1 24 h 2.0 equiv 1w Мe 2a $R = C_6 F_5$ 5,47%

Procedure for the synthesis of product 5.

An oven-dried 4.0 mL vial was charged with amide **1w** (83.0 mg, 0.2 mmol, 1.0 equiv.), alkene **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.34 mg, 0.04 mmol, 20 mol%) and K_2CO_3 (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:3) to afford **5** in 47% isolated yield (31.4 mg).

N-(*tert*-butyl)-2-(4-(4-methoxyphenyl)but-3-yn-2-yl)benzamide (5). Isolated yield = 47% on 0.2 mmol scale; as a colourless oil. R_f = 0.5 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.6 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.29 – 7.24 (m, 3H), 7.21 – 7.15 (m, 1H), 6.77 – 6.71 (m, 2H), 5.72 (s, 1H), 4.37 (q, J = 7.2 Hz, 1H), 3.72 (s, 3H), 1.53 (d, J = 7.2 Hz, 3H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 159.1, 141.1, 136.5, 132.9, 130.0, 127.8, 126.8, 126.6, 115.6, 113.7, 91.5, 81.7, 55.2, 51.9, 28.9, 28.7, 24.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₅NO₂ 336.1959; Found 336.1961.

Procedure for the synthesis of product 6.

An oven-dried 4.0 mL vial was charged with amide **1x** (86.0 mg, 0.2 mmol, 1.0 equiv.), alkene **2a** (40.4 mg, 0.4 mmol, 2.0 equiv.), CuI (3.8 mg, 0.02 mmol, 10 mol%), TERPY (9.35 mg, 0.04 mmol, 20 mmol%)

and K_2CO_3 (55.2 mg, 0.4 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2 mL of degassed 1,4-dioxane were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:3) to afford **6** in 32% isolated yield (24.3 mg).

N-(*tert*-butyl)-6-(3,5-dimethoxyphenyl)-4-phenylhex-5-ynamide (6). Isolated yield = 32% on 0.2 mmol scale; as a colourless oil. $R_f = 0.5$ (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.34 (m, 2H), 7.30 – 7.25 (m, 2H), 7.22 – 7.15 (m, 1H), 6.53 (d, J = 2.4 Hz, 2H), 6.36 (t, J = 2.4 Hz, 1H), 5.22 (s, 1H), 3.88 – 3.83 (m, 1H), 3.71 (s, 6H), 2.25 – 1.99 (m, 4H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 160.4, 141.1, 128.5, 127.5, 126.9, 124.7, 109.4, 101.3, 90.2, 83.8, 55.4, 51.2, 37.5, 34.9, 33.9, 28.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₃₀NO₃ 380.2220; Found 380.2230.

Grams Scale Synthesis.

An oven-dried 250 mL reaction flask was charged with amide **1a** (2.41 g, 6.0 mmol, 1.0 equiv.), alkene **2a** (1.23 g, 12.0 mmol, 2.0 equiv.), CuI (114.3 mg, 0.6 mmol, 10 mol%), TERPY (279.9 mg, 1.2 mmol, 20 mol%) and K_2CO_3 (1.66 g, 12 mmol, 2.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 60 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 48 hours. After completion of the reaction, the resulting mixture was diluted with acetone (100 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) to afford **3a** in 75% isolated yield (1.31 g).

The Radical Trapping Experiment with TEMPO

An oven-dried 4.0 mL vial was charged with amide amide **1a** (40.1 mg, 0.1 mmol, 1.0 equiv.), alkyne **2a** (20.2 mg, 0.2 mmol, 2.0 equiv.), CuI (1.9 mg, 0.01 mmol, 10 mol%), TERPY (4.67 mg, 0.2 mmol, 20 mol%) and K₂CO₃ (27.6 mg, 0.2 mmol, 2.0 equiv.) and TEMPO (15.7 mg, 0.1 mmol, 1.0 equiv.). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 1 mL of degassed MeCN were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 24 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 1:3) to afford 7 in 66% isolated yield (22.8 mg).

*N-(tert-*butyl)-2-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)benzamide (7). Isolated yield = 66% on 0.1 mmol scale; colourless oil; R_f = 0.6 (Hexane: Ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.6 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.22 – 7.19 (m, 1H), 5.71 (s, 1H), 4.92 (s, 2H), 1.38 (s, 15H), 1.09 (d, *J* = 17.6 Hz, 12H). The spectroscopic data match the reported literature¹.

Derivatizations of product 3a.

An oven-dried 4 mL vial was charged with amide **3a** (29.1mg, 0.1 mmol, 1.0 equiv.) and palladium on carbon (5.8 mg, 10%w). The vial was evacuated and refilled with hydrogen through a hydrogen balloon. After addition of 0.5 mL of methanol, the mixture was stirred at r.t. for 24 h under hydrogen. The reaction mixture was filtered through celite and washed with EtOAc. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) to afford **8** in 95% isolated yield (28 mg).

N-(*tert*-butyl)-2-(3-phenylpropyl)benzamide (8). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.18 (m, 5H), 7.12 – 7.07 (m, 4H), 5.47 (s, 1H), 2.77 – 2.72 (m, 2H), 2.60 (t, *J* = 7.6 Hz, 2H), 1.91 – 1.82 (m, 2H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 142.2, 139.9, 137.7, 129.9, 129.4, 128.4, 128.2, 126.6, 125.8, 125.7, 51.7, 35.9, 33.1, 32.8, 28.7. The spectroscopic data match the reported literature¹⁰.

In a glovebox, the Schwartz reagent (103.2 mg, 0.4 mmol, 4.0 equiv.) and a stir bar were added to a Schlenk tube, which was then sealed with a rubber septum and removed from the box. Next, amide **3a** (29.1 mg, 0.1 mmol, 1.0 equiv.) in anhydrous THF (2.0 mL) was added into the tube via syringe and the heterogeneous mixture was stirred vigorously at rt for 4 h. The resulting reaction mixture was then transferred to a separatory funnel and diluted with 20 mL water. The resulting mixture was extracted with DCM and the combined organic layers were dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel to give the corresponding aldehyde **9** (12.1 mg, 55%) as a colorless oil.

N-(*tert*-butyl)-2-(3-phenylpropyl)benzamide (9). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 7.79 – 7.69 (m, 2H), 7.57 – 7.50 (m, 1H), 7.43 – 7.34 (m, 3H), 7.26 – 7.19 (m, 3H), 4.23 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 192.8, 138.7, 134.0, 133.6, 133.2, 131.6, 129.9, 128.2, 128.0, 127.3, 123.4, 86.6, 83.9, 23.5. The spectroscopic data match the reported literature¹⁰.

Reference

- 1 X.-X. Sheng, Y.-J. Du, J.-H. Li, Q.-Q. Teng, M. Chen, Org. Lett. 2023, 25, 3664.
- X.-Y. Ruan, T. Zhang, W.-A. Li, Y.-Z. Yin, Z.-Y. Han, L.-Z. Gong, Science China Chemistry 2022, 65, 863.
- 3 W. Shang, Z. Jia, Y. Jun, W. Xiao, Org. Lett. 2023, 25, 5314.
- 4 Y. Bo, L. Shi, W. Yong, L. Yu, Z. Shi, Nat. Commun. 2021, 12, 5257.
- 5 J. Lee, J. R. Schmink, S. Berritt, J. Chem. Educ. 2020, 97, 538.
- 6 G. A. Molander, S. L. J. Trice, S. Kennedy, J. Org. Chem. 2012, 77, 8678.
- 7 D. Uttam, W. David, M. Debabrata, Org. Lett. 2016, 18, 860.
- 8 H. Wei, Z.-H. Zhang, X. Zhang, M.-M. Zhao, P.-F. Wei, M. Wang, Org. Biomol. Chem., 2022, 20, 8912.
- 9 Z. Zhang, X. Dong, X. Du, Q. Gu, X. Y. Liu, Nat. Commun. 2019, 10, 5689.

NMR Spectra

1f, ¹H NMR (400 MHz, CDCl₃)

1f, ¹³C NMR (101 MHz, CDCl₃)

1f, ¹⁹F NMR (376 MHz, CDCl₃)

1g, ¹H NMR (400 MHz, CDCl₃)

1g, ¹³C NMR (101 MHz, CDCl₃)

1g, ¹⁹F NMR (376 MHz, CDCl₃)

1h, ¹H NMR (400 MHz, CDCl₃)

1h, ¹³C NMR (101 MHz, CDCl₃)

1h, ¹⁹F NMR (376 MHz, CDCl₃)

1i, ¹H NMR (400 MHz, CDCl₃)

1i, ¹³C NMR (101 MHz, CDCl₃)

1i, ¹⁹F NMR (376 MHz, CDCl₃)

1j, ¹H NMR (400 MHz, CDCl₃)

1j, ¹³C NMR (101 MHz, CDCl₃)

1j, ¹⁹F NMR (376 MHz, CDCl₃)

1k, ¹H NMR (400 MHz, CDCl₃)

1k, ¹³C NMR (101 MHz, CDCl₃)

1k, ¹⁹F NMR (376 MHz, CDCl₃)

11, ¹H NMR (400 MHz, CDCl₃)

1l, ¹³C NMR (101 MHz, CDCl₃)

11, ¹⁹F NMR (376 MHz, CDCl₃)

1m, ¹H NMR (400 MHz, CDCl₃)

1m, ¹³C NMR (101 MHz, CDCl₃)

S62

1m, ¹⁹F NMR (376 MHz, CDCl₃)

1n, ¹H NMR (400 MHz, CDCl₃)

1n, ¹³C NMR (101 MHz, CDCl₃)

1n, ¹⁹F NMR (376 MHz, CDCl₃)

10, ¹H NMR (400 MHz, CDCl₃)

10, ¹³C NMR (101 MHz, CDCl₃)

10, ¹⁹F NMR (376 MHz, CDCl₃)

1p, ¹H NMR (400 MHz, CDCl₃)

1p, ¹³C NMR (101 MHz, CDCl₃)

1p, ¹⁹F NMR (376 MHz, CDCl₃)

1q, ¹H NMR (400 MHz, CDCl₃)

1q, ¹³C NMR (101 MHz, CDCl₃)

1q, ¹⁹F NMR (376 MHz, CDCl₃)

1r, ¹H NMR (400 MHz, CDCl₃)

1r, ¹³C NMR (101 MHz, CDCl₃)

S72
1r, ¹⁹F NMR (376 MHz, CDCl₃)

1s, ¹H NMR (400 MHz, CDCl₃)

1s, ¹³C NMR (101 MHz, CDCl₃)

1s, ¹⁹F NMR (376 MHz, CDCl₃)

1t, ¹H NMR (400 MHz, CDCl₃)

1t, ¹³C NMR (101 MHz, CDCl₃)

1t, ¹⁹F NMR (376 MHz, CDCl₃)

1u, ¹H NMR (400 MHz, CDCl₃)

1u, ¹³C NMR (101 MHz, CDCl₃)

1u, ¹⁹F NMR (376 MHz, CDCl₃)

1v, ¹H NMR (400 MHz, CDCl₃)

1v, ¹³C NMR (101 MHz, CDCl₃)

1v, ¹⁹F NMR (376 MHz, CDCl₃)

1w, ¹H NMR (400 MHz, CDCl₃)

1w, ¹³C NMR (101 MHz, CDCl₃)

1w, ¹⁹F NMR (376 MHz, CDCl₃)

1x, ¹H NMR (400 MHz, CDCl₃)

1x, ¹³C NMR (101 MHz, CDCl₃)

1x, ¹⁹F NMR (376 MHz, CDCl₃)

2s, ¹H NMR (400 MHz, CDCl₃)

2s, ¹³C NMR (101 MHz, CDCl₃)

3a, ¹H NMR (400 MHz, CDCl₃)

3a, ¹³C NMR (101 MHz, CDCl₃)

3a', ¹H NMR (400 MHz, CDCl₃)

3b, ¹H NMR (400 MHz, CDCl₃)

3c, ¹H NMR (400 MHz, CDCl₃)

3d, ¹H NMR (300 MHz, CDCl₃)

S91

3e, ¹H NMR (400 MHz, CDCl₃)

3e, ¹³C NMR (101 MHz, CDCl₃)

3f, ¹H NMR (300 MHz, CDCl₃)

3f, ¹³C NMR (101 MHz, CDCl₃)

3g, ¹H NMR (400 MHz, CDCl₃)

3g, ¹³C NMR (101 MHz, CDCl₃)

3g, ¹⁹F NMR (376 MHz, CDCl₃)

3h, ¹H NMR (400 MHz, CDCl₃)

3h, ¹³C NMR (101 MHz, CDCl₃)

3i, ¹H NMR (400 MHz, CDCl₃)

3j, ¹H NMR (400 MHz, CDCl₃)

3j, ¹³C NMR (101 MHz, CDCl₃)

3k, ¹H NMR (400 MHz, CDCl₃)

3k, ¹³C NMR (101 MHz, CDCl₃)

3k,¹⁹F NMR (376 MHz, CDCl₃)

3l, ¹H NMR (400 MHz, CDCl₃)

3l, ¹³C NMR (101 MHz, CDCl₃)

3m, ¹H NMR (400 MHz, CDCl₃)

3m, ¹³C NMR (101 MHz, CDCl₃)

3n, ¹H NMR (400 MHz, CDCl₃)

3n, ¹³C NMR (101 MHz, CDCl₃)

30, ¹H NMR (400 MHz, CDCl₃)

30, ¹³C NMR (101 MHz, CDCl₃)

3p, ¹H NMR (400 MHz, CDCl₃)

3p, ¹³C NMR (101 MHz, CDCl₃)

3q, ¹H NMR (400 MHz, CDCl₃)

3q, ¹³C NMR (101 MHz, CDCl₃)

3r, ¹H NMR (400 MHz, CDCl₃)

3r, ¹³C NMR (101 MHz, CDCl₃)

3s, ¹H NMR (400 MHz, CDCl₃)

3s, ¹³C NMR (101 MHz, CDCl₃)

3t, ¹H NMR (400 MHz, CDCl₃)

3t, ¹³C NMR (101 MHz, CDCl₃)

3u, ¹H NMR (400MHz, CDCl₃)

3u, ¹³C NMR (101 MHz, CDCl₃)

3v, ¹H NMR (400 MHz, CDCl₃)

3v, ¹³C NMR (101 MHz, CDCl₃)

3w, ¹H NMR (400 MHz, CDCl₃)

3x, ¹H NMR (400 MHz, CDCl₃)

3x, ¹³C NMR (101 MHz, CDCl₃)

3y, ¹H NMR (400 MHz, CDCl₃)

4a, ¹H NMR (400 MHz, CDCl₃)

4a, ¹³C NMR (101 MHz, CDCl₃)

4b, ¹H NMR (400 MHz, CDCl₃)

4b, ¹³C NMR (101 MHz, CDCl₃)

4c, ¹H NMR (400 MHz, CDCl₃)

4c, ¹³C NMR (101 MHz, CDCl₃)

S117

4c, ¹⁹F NMR (376 MHz, CDCl₃)

4d, ¹H NMR (400 MHz, CDCl₃)

4d, ¹³C NMR (101 MHz, CDCl₃)

S119

4e, ¹H NMR (400 MHz, CDCl₃)

4e, ¹³C NMR (101 MHz, CDCl₃)

4f, ¹H NMR (400 MHz, CDCl₃)

4f, ¹³C NMR (101 MHz, CDCl₃)

4f, ¹⁹F NMR (376 MHz, CDCl₃)

4g, ¹H NMR (400 MHz, CDCl₃)

4g, ¹³C NMR (101 MHz, CDCl₃)

4h, ¹H NMR (400 MHz, CDCl₃)

4h, ¹³C NMR (101 MHz, CDCl₃)

S124

4i, ¹H NMR (400 MHz, CDCl₃)

4i, ¹³C NMR (101 MHz, CDCl₃)

4j, ¹H NMR (400 MHz, CDCl₃)

4j, ¹³C NMR (101 MHz, CDCl₃)

4j, ¹⁹F NMR (376 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

4k, ¹H NMR (400 MHz, CDCl₃)

4k, ¹³C NMR (101 MHz, CDCl₃)

4l, ¹H NMR (400 MHz, CDCl₃)

4l, ¹³C NMR (101 MHz, CDCl₃)

4m, ¹H NMR (400 MHz, CDCl₃)

4m, ¹³C NMR (101 MHz, CDCl₃)

4n, ¹H NMR (400 MHz, CDCl₃)

4n, ¹³C NMR (101 MHz, CDCl₃)

40, ¹H NMR (400 MHz, CDCl₃)

40, ¹³C NMR (101 MHz, CDCl₃)

4p, ¹H NMR (400 MHz, CDCl₃)

4p, ¹³C NMR (101 MHz, CDCl₃)

4q, ¹H NMR (400 MHz, CDCl₃)

4q, ¹³C NMR (101 MHz, CDCl₃)

5, ¹H NMR (400 MHz, CDCl₃)

5, ¹³C NMR (101 MHz, CDCl₃)

6, ¹H NMR (400 MHz, CDCl₃)

6, ¹³C NMR (101 MHz, CDCl₃)

7, ¹H NMR (400 MHz, CDCl₃)

8, ¹H NMR (400 MHz, CDCl₃)

8, ¹³C NMR (101 MHz, CDCl₃)

9, ¹H NMR (400 MHz, CDCl₃)

9, ¹³C NMR (101 MHz, CDCl₃)

