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Experimental details 

General Considerations: All manipulations were performed under an inert atmosphere in a nitrogen filled 

MBraun Unilab glove box or using standard Schlenk techniques. Solvents were purchased from commercial 

sources as anhydrous grade, dried further using a JC Meyer Solvent System with dual columns packed with 

solvent-appropriate drying agents, and stored over 4 Å molecular sieves. Deuterated solvents for NMR 

spectroscopy were purchased from Cambridge Isotope Laboratories and dried by stirring for 5 days over 

CaH2, distilled, and stored over 4 Å molecular sieves. Solutions of nBuLi in hexanes were purchased from 

Acros Organics and titrated to determine the precise molarity before use. Boron trichloride solution (1 M 

in methylene chloride) and PhBCl2 were purchased from Acros Organics and used as received. Multinuclear 

NMR spectra (1H, 13C{1H}, 31P{1H}, 11B) were recorded on a Bruker Ascend 400 MHz instrument. High 

Resolution mass spectra (HRMS) were obtained at the Baylor University Mass Spectrometry Center on a 

Thermo Scientific LTQ Orbitrap Discovery spectrometer using +ESI. Melting points were measured with 

a Thomas Hoover Uni-melt capillary melting point apparatus and are uncorrected. The photophysical 

experiments were conducted utilizing standard quartz cuvettes with dimensions of 1 cm × 1 cm. UV-visible 

absorption spectra were acquired employing an Agilent 8453 diode array UV-visible spectrophotometer. 

Extinction coefficients were derived from five independently prepared samples dissolved in 

dichloromethane (DCM). Fluorescence quantum yields were determined employing a calibrated integrating 

sphere with an inner diameter of 150 mm, in conjunction with the FLSP920 spectrometer. Fluorescence 

lifetimes were recorded using the time-correlated single-photon counting (TCSPC) method employing the 

FLSP920 spectrometer. Samples were excited using a picosecond pulsed diode laser emitting at a 

wavelength of 273.8 nm. Single crystal X-ray diffraction data were collected on a Bruker Apex III-CCD 

detector using Mo-Kα radiation (λ = 0.71073 Å). Crystals were selected under paratone oil, mounted on 

MiTeGen micromounts, and immediately placed in a cold stream of N2. Structures were solved and refined 

using SHELXTL and figures produced using OLEX2.1, 2  
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4,5-Diiodophenanthrene: 4,5-Diiodophenathrene was prepared by the 

procedure reported by Bock and Havlas with modifications to the work up 

detailed below.3 A solution of nBuLi in hexane (2.5 M, 7.12 mL, 17.8 mmol) 

was added to a suspension of phenanthrene (1.51 g, 8.45 mmol) in tetramethylethylenediamine 

(3.00 mL, 18.9 mmol) at 0 °C. The resulting mixture was stirred at 23 °C for 30 min, then was 

refluxed at 70 °C for 2 h. After the reaction cooled to 23 °C, the volatiles were removed under 

vacuum. The residue was dissolved in tetrahydrofuran (10 mL) and cooled to -78 °C. A solution 

of iodine in tetrahydrofuran (4.73 g, 18.6 mmol, 20 mL) was slowly added over a 15 min period. 

The resulting dark purple solution was stirred for 1 h at -78 °C, then the bath was removed to 

allow the solution to warm to 23 °C and stirring was continued for 17 h. The reaction mixture was 

quenched with 10 % aqueous NaHSO3 (50 mL) and extracted with diethyl ether (3 × 50 mL). The 

organic phase was washed twice with brine, dried over MgSO4, filtered, and the volatiles removed 

under reduced pressure. Acetone (5 mL) was added to the residue to generate a solid. The solid 

was recrystallized by dissolving in warm chloroform and storing at -78 °C to afford pale-yellow 

crystals (0.763 g, 21% yield). The multinuclear NMR spectra match the literature data. 

1: A hexanes solution of nBuLi (2.37 M in hexanes, 1.30 mL, 2.93 mmol) was 

added dropwise to a diethyl ether solution of 4,5-diiodophenanthrene (0.600 g, 

1.40 mmol, 5.0 mL) at -78 °C. The reaction was stirred for 2 h at 23 °C and a 

diethyl ether solution of SnCl2(CH3)2 (0.43 g, 2.0 mmol, 5 mL) was added dropwise over a 10 min 

period to the reaction mixture which was then stirred for 17 h. The reaction mixture was filtered 

to obtain a yellow solution. The volatiles were removed from the supernatant under reduced 

pressure and the product extracted with 3 mL n-pentane at –78 °C. The solvent was removed under 

reduced pressure to obtain the product as a pale-yellow oil (0.380 g, 84% yield). 1H NMR (400 

Sn

II
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MHz, CDCl3): δ 7.91 (dd, J = 7, 1 Hz, 2H), 7.87 (dd, J = 8, 1 Hz, 2H), 7.74 – 7.71 (m, 2H), 7.62 

(dd, J = 8, 7 Hz, 2H), 0.64 (s, 2JH–Sn = 32 Hz, 6H). 13C{1H} NMR (75 MHz, CDCl3): δ 142.51, 

140.60, 134.08, 131.27, 127.99, 126.94, 126.85, –8.07. High-resolution mass spectrometry 

(HRMS) electrospray ionization: +ESI-HRMS for [C16H15Sn1]+ calcd. m/z 327.0196, found: 

327.0189. 

2Cl: A hexanes solution of 1 (0.0925 g, 0.285 mmol, 5.0 mL) was prepared in 

a pressure tube charged with a magnetic stir bar. A solution of 1 M boron 

trichloride in CH2Cl2 (315 µL, 0.315 mmol) was added dropwise and the 

pressure tube was closed and heated at 70 °C for 48 h while stirring. The reaction mixture was 

filtered and the supernatant stripped of volatiles under vacuum. The product was extracted in n-

pentane (5 mL) at –78 °C. Removing the n-pentane at reduced pressure afforded the product as 

pale-yellow crystals (0.027 g, 43% yield). Crystals for X-ray crystallography were obtained at 23 

°C by dissolving the product in a 1:1 mixture of benzene and hexanes. 1H NMR (400 MHz, 

CDCl3): δ 7.78 – 7.73 (m, 4H), 7.62 (s, 2H), 7.44 (t, J = 8 Hz, 2H). 13C{1H} NMR (101 MHz, 

CDCl3): δ 130.63, 130.56, 128.56, 128.26, 127.85, 125.19. 11B NMR (128 MHz, CDCl3): δ 63.3.  

2Ph: A hexanes solution of 1 (0.296 g, 1.00 mmol, 10 mL) was prepared in a 

pressure tube charged with a magnetic stir bar. Dichlorophenylborane (0.159 

g, 1.00 mmol) was added dropwise and the mixture was heated at 75 °C for 48 

h while stirring. The reaction mixture was filtered, the volatiles were removed 

under vacuum from the supernatant, and the product was extracted with n-pentane at –78 °C. 

Removing the n-pentane at reduced pressure gave the product as a yellow oil (0.084 g, 32% yield). 

1H NMR (400 MHz, CDCl3): δ 8.52 - 8.46 (m, 2H), 8.08 (dd, J = 7, 1 Hz, 2H), 7.77 (dd, J = 8, 0.5 

Hz, 2H), 7.70 - 7.58 (m, 5H), 7.46 (dd, J = 8, 7 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ 

B
Cl

B
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147.99, 137.30, 137.23, 133.37, 133.18, 133.11, 130.99, 128.46, 128.19, 128.03, 125.18. 11B NMR 

(128 MHz, CDCl3): δ 63.1. 

3Cl: To a hexanes solution of 2Cl (0.019 g, 0.10 mmol, 5.0 mL), benzyl 

azide (10.7 µL, 0.100 mmol) was added dropwise and the reaction was 

stirred for 15 min at 23 °C. The addition of n-pentane (5 mL) gave a white 

precipitate. Filtering and drying the precipitate at reduced pressure gave the product (0.025 g, 76% 

yield). Single crystals for X-ray diffraction were grown by vapor diffusion from a chloroform 

solution of 3Cl into toluene. 1H NMR (400 MHz, C6D6): δ 8.84 (d, J = 8, 1H), 7.98 (d, J = 8 Hz, 

1H), 7.72 - 7.66 (m, 3H), 7.54 (d, J = 8 Hz, 1H), 7.41 - 7.31 (m, 2H), 7.06 - 6.95 (m, 5H), 5.43 (s, 

2H). 13C{1H} NMR (101 MHz, C6D6) δ 138.50, 136.75, 134.59, 132.70, 131.94, 131.18, 129.95, 

129.67, 127.87, 127.68, 126.16, 126.04, 125.83, 125.04, 124.97, 120.87, 119.62, 112.99, 50.36. 

11B NMR (128 MHz, C6D6): δ 37.2. 

 3Ph: To a hexanes solution of 2Ph (0.237 g, 0.100 mmol, 5.0 mL), benzyl 

azide (10.7 µL, 0.100 mmol) was added dropwise and the reaction was 

stirred for 15 min at 23 °C. The addition of n-pentane (5 mL) generated a 

precipitate, the supernatant was decanted, and drying the precipitate in vacuo gave a yellow 

residue. The residue was loaded onto a silica column and 3Ph was isolated by chromatography 

using 9:1 hexanes/CH2Cl2 as the eluent, giving 3Ph as a pale-yellow oil (0.025 g, 67% yield). 1H 

NMR (400 MHz, CDCl3) δ 8.27 (dd, J = 8, 1 Hz, 1H), 8.06 (dd, J = 7, 1 Hz, 1H), 8.04 - 7.96 (m, 

2H), 7.86 - 7.77 (m, 2H), 7.70 (t, J = 8 Hz, 1H), 7.64 - 7.51 (m, 3H), 7.47 - 7.35 (m, 3H), 7.26 - 

7.10 (m, 5H), 5.52 (s, 2H). 13C{1H} NMR (101 MHz, C6D6): δ 139.74, 137.96, 137.54, 133.93, 

133.46, 133.31, 133.16, 132.42, 131.18, 131.09, 130.90, 129.34, 129.08, 127.38, 127.25, 127.05, 

126.27, 126.18, 125.33, 122.09, 120.86, 114.23 11B NMR (128 MHz, CDCl3): δ 29.6.  

NB
Cl

NB
Ph
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Figure S1: 1H NMR spectrum of 1 in CDCl3 (400 MHz) 
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Figure S2: 1H NMR spectrum of 1 in CDCl3 (400 MHz, expanded view of the aryl region)  
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Figure S3: 13C{1H} NMR spectrum of 1 in CDCl3 (101 MHz) 
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Figure S4: 1H NMR spectrum of 2Cl in CDCl3 (400 MHz)  
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Figure S5: 1H NMR spectrum of 2Cl in CDCl3 (400 MHz, expanded view of the aryl region) 
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Figure S6: 13C{1H} NMR spectrum of 2Cl in CDCl3 (101 MHz) 
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Figure S8: 1H NMR spectrum of 2Ph in CDCl3 (400 MHz) 
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Figure S9: 1H NMR spectrum of 2Ph in CDCl3 (400 MHz, expanded view of the aryl region) 
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Figure S10: 13C{1H} NMR spectrum of 2Ph in CDCl3 (101 MHz) 
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Figure S11: 11B NMR spectrum of 2Ph in CDCl3 (128 MHz) 
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Determination of the Lewis acidity using Gutmann–Beckett method: 

In a small vial, a solution of Et3PO (0.02 mmol in 1.0 mL of C6D6) was added to a solution of the 

corresponding phenanthrylboroles (0.02 mmol 2Cl or 2Ph in 1.0 mL of C6D6). The reaction 

mixture was stirred and the 31P{1H} spectrum recorded. The 31P{1H} chemical shifts of Et3PO·2Cl 

and Et3PO·2Ph are shown in Figures S12 and S13, respectively. 

Figure S12: 31P{1H} NMR spectrum of 2Cl in C6D6 (162 MHz) 
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Figure S13: 31P{1H} NMR spectrum of 2Ph in C6D6 (162 MHz) 
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Figure S14: 1H NMR spectrum of 3Cl in C6D6 (400 MHz)  
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Figure S15: 1H NMR spectrum of 3Cl in C6D6 (400 MHz, expanded view of the aryl region) 
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Figure S16: 13C{1H} NMR spectrum of 3Cl in C6D6 (101 MHz)  
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Figure S17: 11B NMR spectrum of 3Cl in CDCl3 (128 MHz) 
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Figure S18: 1H NMR spectrum of 3Ph in CDCl3 (400 MHz, * H2O , # grease) 
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Figure S19: 1H NMR spectrum of 3Ph in CDCl3 (400 MHz, expanded view of the aryl region) 
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Figure S20: 13C{1H} NMR spectrum of 3Ph in C6D6 (101 MHz, * grease)  
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Figure S21: 13C{1H} NMR spectrum of 3Ph in CDCl3 (128 MHz, expanded view of the aryl 
region) 
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Figure S22: 11B NMR spectrum of 3Ph in CDCl3 (128 MHz)  
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Figure S23: UV-Vis spectra of 2Ph (a) 3Cl (c) and 3Ph (e) in DCM. Graphs showing their linear 

dependence of the absorbance on the concentration in (b, d, f, respectively) 
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Figure S24: (a) Emission and excitation spectra of 2Ph, 3Cl, and 3Ph in DCM. (b) Lifetime 

measurements of 2Ph, 3Cl, and 3Ph in DCM using a 273.8 nm laser and monitoring PL peaks at 

365 nm for 2Ph and 375 nm for 3Cl and 3Ph. 
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Table S1: X-ray crystallographic details for 2Cl and 3Cl.  

Compound  2Cl 3Cl 
CCDC  2357740 2357741 

Empirical Formula  C14H8BCl C21H15BClN 
FW (g/mol)  222.4780 327.6180 

Crystal System  Monoclinic Orthorhombic 
Space Group  P21 P212121 

a (Å)  8.5508(5) 5.4556(3) 
b (Å)  3.8729(3)  16.6414(13) 
c (Å)  15.8451(10) 17.5759(13) 
𝛼 (deg)  90° 90°  
𝛽 (deg)  102.727(3)° 90°  
𝛾 (deg)  90°  90°  
V (Å3)  511.84(6)  1595.70(19) 

Z  2 4 
Dc (g cm-3)  1.444 1.364 

Radiation (Mo-K𝛼)𝜆 (Å)  0.71073 0.71073 
Temp (K)  150 150 

R1 [I>2(𝜎)I]a  9.48% 3.52% 
wR2 (F2)a  22.73% 8.69% 
GOF (S)a  1.228 1.122 

    
a R1(F[I > 2(I)]) = ∑ǁ|Fo| - |Fc |ǁ/ ∑ |Fo|; bwR2(F2 [all data]) = {[w(Fo2 - Fc2)2]/[w(Fo2)2]}1/2; S(all 
data) = [w(Fo2 - Fc2)2 /(n - p)]1/2 (n = no. of data; p = no. of parameters varied; w = 1/s2 (Fo2) + 
(aP)2 + bP] where P = (Fo2 + 2Fc2)/3 and a and b are constants suggested by the refinement 
program.  
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Figure S25: Solid-state structure of 2Cl. Thermal ellipsoids are drawn at the 50% probability 

level. All hydrogen atoms and solvent molecules are omitted for clarity.  

 

 Table S2. Significant bond lengths and angles for 2Cl and 9-Cl-9-borafluorene.4 

Bond 2Cl 9-Cl-9-borafluorene4 
B1–C1 1.580(1) Å  1.536(4) Å 
C1–C2 1.417(9) Å 1.416(3) Å 
C2–C3 1.431(8) Å 1.481(3) Å 
C3–C4 1.444(10) Å 1.409(3) Å 
B1–C4 1.541(10) Å 1.547(4) Å 
B1–Cl1 1.746(8) Å 1.752(3) Å 

C4–B1–C1 106.6(6)° 105.9(2)° 
B1–C1–C2 104.4(5)° 106.8(2)° 
C1–C2–C3 112.5(6)° 110.2(2)° 
C2–C3–C4 111.5(6)° 110.4(2)° 
C3–C4–B1 104.9(5)° 106.6(2)° 
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Figure S26: Solid-state structure of 3Cl. Thermal ellipsoids are drawn at the 50% probability 

level. All hydrogen atoms and solvent molecules are omitted for clarity. 

 

Table S3. Significant bond lengths and dihedral angles for 3Cl and literature-known 9,10-B,N-
phenanthrene.5 

Bond 3Cl 8Cl5  10Cl5  

B(1)–N(1) 1.406(3) Å 1.403(3) Å 1.416(2) Å 
N(1)–C(1) 1.418(3) Å 1.420(2) Å 1.429(2) Å 
C(1)–C(2) 1.424(3) Å 1.411(3) Å 1.431(2) Å 
C(2)–C(3) 1.434(3) Å 1.473(3) Å 1.469(3) Å 
C(3)–C(4) 1.422(3) Å 1.411(3) Å 1. 408(3) Å 
C(4)–B(1) 1.540(4) Å 1.523(3) Å 1.534(3) Å 
B(1)–Cl(1) 1.789(3) Å 1.781(2) Å 1.797(2) Å 
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