Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2024

Supporting Information for:

Synthesis of Phenanthrylboroles and Formal Nitrene

Insertion to Access Azaborapyrenes

Harie Zacharias,” Ayesha Begum,® Jianhua Han,® Tyler A. Bartholome,” Todd B. Marder,® and

Caleb D. Martin*?

“Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco,

TX 76798.

b Institut fiir Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron

Julius-Maximilians-Universitit Wiirzburg Am Hubland, 97074.

E-mail: caleb_d martin@baylor.edu

S1



Table of Contents

Experimental details...........ooeoiiiiiiiiiiiieeee e S3
INIMR SPECIIA ...ttt ettt e e e et e e st e et e e e abeesnabeesasbeesasbeesnsaeesaseeesnseeenanes S7
PhotophySiCal STUAIES .....ccvieeiiieiiecie ettt et e e e e s e e beesaaeenbeenens S29
X-ray crystallographic details...........oooveriiriiiiinieeie s S31
RETETEICES ...ttt sttt et sttt st st e bt et s beetesaeens S34

S2



Experimental details

General Considerations: All manipulations were performed under an inert atmosphere in a nitrogen filled
MBraun Unilab glove box or using standard Schlenk techniques. Solvents were purchased from commercial
sources as anhydrous grade, dried further using a JC Meyer Solvent System with dual columns packed with
solvent-appropriate drying agents, and stored over 4 A molecular sieves. Deuterated solvents for NMR
spectroscopy were purchased from Cambridge Isotope Laboratories and dried by stirring for 5 days over
CaH,, distilled, and stored over 4 A molecular sieves. Solutions of #nBuLi in hexanes were purchased from
Acros Organics and titrated to determine the precise molarity before use. Boron trichloride solution (1 M
in methylene chloride) and PhBCl, were purchased from Acros Organics and used as received. Multinuclear
NMR spectra (‘H, “C{'H}, *'P{'H}, ''B) were recorded on a Bruker Ascend 400 MHz instrument. High
Resolution mass spectra (HRMS) were obtained at the Baylor University Mass Spectrometry Center on a
Thermo Scientific LTQ Orbitrap Discovery spectrometer using +ESI. Melting points were measured with
a Thomas Hoover Uni-melt capillary melting point apparatus and are uncorrected. The photophysical
experiments were conducted utilizing standard quartz cuvettes with dimensions of 1 cm % 1 cm. UV-visible
absorption spectra were acquired employing an Agilent 8453 diode array UV-visible spectrophotometer.
Extinction coefficients were derived from five independently prepared samples dissolved in
dichloromethane (DCM). Fluorescence quantum yields were determined employing a calibrated integrating
sphere with an inner diameter of 150 mm, in conjunction with the FLSP920 spectrometer. Fluorescence
lifetimes were recorded using the time-correlated single-photon counting (TCSPC) method employing the
FLSP920 spectrometer. Samples were excited using a picosecond pulsed diode laser emitting at a
wavelength of 273.8 nm. Single crystal X-ray diffraction data were collected on a Bruker Apex [II-CCD
detector using Mo-Ka radiation (A = 0.71073 A). Crystals were selected under paratone oil, mounted on
MiTeGen micromounts, and immediately placed in a cold stream of N,. Structures were solved and refined

using SHELXTL and figures produced using OLEX2."?
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[ 4,5-Diiodophenanthrene: 4,5-Diiodophenathrene was prepared by the
O procedure reported by Bock and Havlas with modifications to the work up
Q detailed below.® A solution of #nBuLi in hexane (2.5 M, 7.12 mL, 17.8 mmol)

was added to a suspension of phenanthrene (1.51 g, 8.45 mmol) in tetramethylethylenediamine
(3.00 mL, 18.9 mmol) at 0 °C. The resulting mixture was stirred at 23 °C for 30 min, then was
refluxed at 70 °C for 2 h. After the reaction cooled to 23 °C, the volatiles were removed under
vacuum. The residue was dissolved in tetrahydrofuran (10 mL) and cooled to —78 °C. A solution
of iodine in tetrahydrofuran (4.73 g, 18.6 mmol, 20 mL) was slowly added over a 15 min period.
The resulting dark purple solution was stirred for 1 h at =78 °C, then the bath was removed to
allow the solution to warm to 23 °C and stirring was continued for 17 h. The reaction mixture was
quenched with 10 % aqueous NaHSO3 (50 mL) and extracted with diethyl ether (3 < 50 mL). The
organic phase was washed twice with brine, dried over MgSOs, filtered, and the volatiles removed
under reduced pressure. Acetone (5 mL) was added to the residue to generate a solid. The solid
was recrystallized by dissolving in warm chloroform and storing at —78 °C to afford pale-yellow

crystals (0.763 g, 21% yield). The multinuclear NMR spectra match the literature data.

\S r{ 1: A hexanes solution of nBuLi (2.37 M in hexanes, 1.30 mL, 2.93 mmol) was

O O added dropwise to a diethyl ether solution of 4,5-diiodophenanthrene (0.600 g,
Q 1.40 mmol, 5.0 mL) at —78 °C. The reaction was stirred for 2 h at 23 °C and a
diethyl ether solution of SnCl(CH3)> (0.43 g, 2.0 mmol, 5 mL) was added dropwise over a 10 min
period to the reaction mixture which was then stirred for 17 h. The reaction mixture was filtered
to obtain a yellow solution. The volatiles were removed from the supernatant under reduced
pressure and the product extracted with 3 mL n-pentane at —78 °C. The solvent was removed under

reduced pressure to obtain the product as a pale-yellow oil (0.380 g, 84% yield). 'H NMR (400

S4



MHz, CDCl3): 6 7.91 (dd, /=7, 1 Hz, 2H), 7.87 (dd, J =8, 1 Hz, 2H), 7.74 — 7.71 (m, 2H), 7.62
(dd, J =8, 7 Hz, 2H), 0.64 (s, 2Ju-sn = 32 Hz, 6H). *C{!H} NMR (75 MHz, CDCl3): § 142.51,
140.60, 134.08, 131.27, 127.99, 126.94, 126.85, —8.07. High-resolution mass spectrometry
(HRMS) electrospray ionization: +ESI-HRMS for [Ci¢HisSni]" caled. m/z 327.0196, found:

327.0189.

Cl 2Cl: A hexanes solution of 1 (0.0925 g, 0.285 mmol, 5.0 mL) was prepared in

O O a pressure tube charged with a magnetic stir bar. A solution of 1 M boron
Q trichloride in CH2Cl> (315 wxL, 0.315 mmol) was added dropwise and the
pressure tube was closed and heated at 70 °C for 48 h while stirring. The reaction mixture was
filtered and the supernatant stripped of volatiles under vacuum. The product was extracted in n-
pentane (5 mL) at —78 °C. Removing the n-pentane at reduced pressure afforded the product as
pale-yellow crystals (0.027 g, 43% yield). Crystals for X-ray crystallography were obtained at 23
°C by dissolving the product in a 1:1 mixture of benzene and hexanes. 'H NMR (400 MHz,
CDCl3): 6 7.78 — 7.73 (m, 4H), 7.62 (s, 2H), 7.44 (t, J = 8 Hz, 2H). BC{'H} NMR (101 MHz,

CDCls): 6 130.63, 130.56, 128.56, 128.26, 127.85, 125.19. ''B NMR (128 MHz, CDCIl3): § 63.3.

2Ph: A hexanes solution of 1 (0.296 g, 1.00 mmol, 10 mL) was prepared in a

© pressure tube charged with a magnetic stir bar. Dichlorophenylborane (0.159
O g, 1.00 mmol) was added dropwise and the mixture was heated at 75 °C for 48
Q h while stirring. The reaction mixture was filtered, the volatiles were removed
under vacuum from the supernatant, and the product was extracted with n-pentane at —78 °C.
Removing the n-pentane at reduced pressure gave the product as a yellow oil (0.084 g, 32% yield).
'"H NMR (400 MHz, CDCl5): § 8.52 - 8.46 (m, 2H), 8.08 (dd, /=7, 1 Hz, 2H), 7.77 (dd, J =8, 0.5

Hz, 2H), 7.70 - 7.58 (m, 5H), 7.46 (dd, J = 8, 7 Hz, 2H). 3C{'H} NMR (101 MHz, CDCls): &
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147.99, 137.30, 137.23, 133.37, 133.18, 133.11, 130.99, 128.46, 128.19, 128.03, 125.18. 'BNMR

(128 MHz, CDCL3): § 63.1.

ol /_@ 3Cl: To a hexanes solution of 2C1 (0.019 g, 0.10 mmol, 5.0 mL), benzyl
N azide (10.7 uL, 0.100 mmol) was added dropwise and the reaction was
OQQ stirred for 15 min at 23 °C. The addition of n-pentane (5 mL) gave a white
precipitate. Filtering and drying the precipitate at reduced pressure gave the product (0.025 g, 76%
yield). Single crystals for X-ray diffraction were grown by vapor diffusion from a chloroform
solution of 3Cl into toluene. 'H NMR (400 MHz, C¢Ds): 6 8.84 (d, J=8, 1H), 7.98 (d, J = 8 Hz,
1H), 7.72 - 7.66 (m, 3H), 7.54 (d, /= 8 Hz, 1H), 7.41 - 7.31 (m, 2H), 7.06 - 6.95 (m, 5H), 5.43 (s,
2H). BC{'H} NMR (101 MHz, C¢Ds) & 138.50, 136.75, 134.59, 132.70, 131.94, 131.18, 129.95,
129.67, 127.87, 127.68, 126.16, 126.04, 125.83, 125.04, 124.97, 120.87, 119.62, 112.99, 50.36.

B NMR (128 MHz, C¢De): & 37.2.

Ph 3Ph: To a hexanes solution of 2Ph (0.237 g, 0.100 mmol, 5.0 mL), benzyl

N azide (10.7 pL, 0.100 mmol) was added dropwise and the reaction was

OQO stirred for 15 min at 23 °C. The addition of n-pentane (5 mL) generated a
precipitate, the supernatant was decanted, and drying the precipitate in vacuo gave a yellow
residue. The residue was loaded onto a silica column and 3Ph was isolated by chromatography
using 9:1 hexanes/CH,Cl, as the eluent, giving 3Ph as a pale-yellow oil (0.025 g, 67% yield). 'H
NMR (400 MHz, CDCIl3) 6 8.27 (dd, J= 8, 1 Hz, 1H), 8.06 (dd, /=7, 1 Hz, 1H), 8.04 - 7.96 (m,
2H), 7.86 - 7.77 (m, 2H), 7.70 (t, J = 8 Hz, 1H), 7.64 - 7.51 (m, 3H), 7.47 - 7.35 (m, 3H), 7.26 -
7.10 (m, 5H), 5.52 (s, 2H). 3C{'H} NMR (101 MHz, C¢Ds¢): & 139.74, 137.96, 137.54, 133.93,
133.46, 133.31, 133.16, 132.42, 131.18, 131.09, 130.90, 129.34, 129.08, 127.38, 127.25, 127.05,

126.27, 126.18, 125.33, 122.09, 120.86, 114.23 "B NMR (128 MHz, CDCls): 8 29.6.

S6



Figure S1: '"H NMR spectrum of 1 in CDCl; (400 MHz)
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Figure S2: '"H NMR spectrum of 1 in CDCl; (400 MHz, expanded view of the aryl region)
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Figure S3: BC{'H} NMR spectrum of 1 in CDCl3 (101 MHz)
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Figure S4: '"H NMR spectrum of 2Cl in CDCI; (400 MHz)
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Figure S5: '"H NMR spectrum of 2Cl in CDCIls (400 MHz, expanded view of the aryl region)
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Figure S6: 3C{'H} NMR spectrum of 2Cl in CDCI; (101 MHz)

130.63

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
145 140 135 130 125 120 115 110 105 100 95 90 85 80 70

S12



Figure S7: ''"B NMR spectrum of 2Cl in CDCl; (128 MHz)
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Figure S8: '"H NMR spectrum of 2Ph in CDCl3 (400 MHz)
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Figure S9: '"H NMR spectrum of 2Ph in CDCl; (400 MHz, expanded view of the aryl region)
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Figure S10: 3C{'H} NMR spectrum of 2Ph in CDCl; (101 MHz)
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Figure S11: ''B NMR spectrum of 2Ph in CDCl3 (128 MHz)
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Determination of the Lewis acidity using Gutmann—Beckett method:

In a small vial, a solution of EtzPO (0.02 mmol in 1.0 mL of CsDs) was added to a solution of the
corresponding phenanthrylboroles (0.02 mmol 2Cl or 2Ph in 1.0 mL of C¢Ds). The reaction
mixture was stirred and the 3'P {'H} spectrum recorded. The 3'P{!H} chemical shifts of EtsPO-2Cl

and EtzPO-2Ph are shown in Figures S12 and S13, respectively.

Figure S12: 3'P{'H} NMR spectrum of 2Cl in CsDs (162 MHz)

80.37

(ppm)

S18



Figure S13: 3'P{'H} NMR spectrum of 2Ph in C¢Ds (162 MHz)
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Figure S14: '"H NMR spectrum of 3Cl in C¢Ds (400 MHz)
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Figure S15: "H NMR spectrum of 3Cl in C¢D¢ (400 MHz, expanded view of the aryl region)
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Figure S16: 3C{'H} NMR spectrum of 3Cl in CsDs (101 MHz)
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Figure S17: ''B NMR spectrum of 3Cl in CDCl; (128 MHz)
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Figure S18: '"H NMR spectrum of 3Ph in CDCl; (400 MHz, * H,O , # grease)
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Figure S19: '"H NMR spectrum of 3Ph in CDCl; (400 MHz, expanded view of the aryl region)
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BC{'H} NMR spectrum of 3Ph in C¢Ds (101 MHz, * grease)

Figure S20
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Figure S21: BC{'H} NMR spectrum of 3Ph in CDCI; (128 MHz, expanded view of the aryl
region)
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Figure S22: ''B NMR spectrum of 3Ph in CDCl3 (128 MHz)
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Figure S23: UV-Vis spectra of 2Ph (a) 3Cl (c) and 3Ph (e) in DCM. Graphs showing their linear

dependence of the absorbance on the concentration in (b, d, f, respectively)
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Figure S24: (a) Emission and excitation spectra of 2Ph, 3Cl, and 3Ph in DCM. (b) Lifetime
measurements of 2Ph, 3Cl, and 3Ph in DCM using a 273.8 nm laser and monitoring PL peaks at
365 nm for 2Ph and 375 nm for 3CI and 3Ph.
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Table S1: X-ray crystallographic details for 2Cl1 and 3CL.

Compound 2C1 3C1
CCDC 2357740 2357741
Empirical Formula C14HsBCl C21H15sBCIN
FW (g/mol) 222.4780 327.6180
Crystal System Monoclinic Orthorhombic
Space Group P2, P2:212:
a(A) 8.5508(5) 5.4556(3)
b(A) 3.8729(3) 16.6414(13)
c(A) 15.8451(10) 17.5759(13)
a (deg) 90° 90°
p (deg) 102.727(3)° 90°
y (deg) 90° 90°
V (A%) 511.84(6) 1595.70(19)
Z 2 4
Dc (g cm™) 1.444 1.364
Radiation (Mo-Ka)A (A) 0.71073 0.71073
Temp (K) 150 150
R1 [I>2(o0)I]* 9.48% 3.52%
wR2 (F?)4 22.73% 8.69%
GOF (S)* 1.228 1.122

@ RU(FTL> 2(D)]) = SH|Fo| - [Fe V'S |Fol; PwRo(F2 [all data]) = {[w(Fo? - F22)/[wW(F22]H2; Sall
data) = [W(F* - F)? /(n - p)]'? (n = no. of data; p = no. of parameters varied; w = 1/6? (F,?) +
(aP)?* + bP] where P = (F,*> + 2F:?)/3 and a and b are constants suggested by the refinement

program.
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Figure S25: Solid-state structure of 2CIl. Thermal ellipsoids are drawn at the 50% probability

level. All hydrogen atoms and solvent molecules are omitted for clarity.

Table S2. Significant bond lengths and angles for 2Cl and 9-C1-9-borafluorene.*

Bond 2C1 9-Cl-9-borafluorene*
B1-C1 1.580(1) A 1.536(4) A
C1-C2 1.417(9) A 1.416(3) A
C2-C3 1.431(8) A 1.481(3) A
C3-C4 1.444(10) A 1.409(3) A
B1-C4 1.541(10) A 1.547(4) A
B1-Cll 1.746(8) A 1.752(3) A

C4-B1-C1 106.6(6)° 105.9(2)°
B1-C1-C2 104.4(5)° 106.8(2)°
C1-C2-C3 112.5(6)° 110.2(2)°
C2-C3-C4 111.5(6)° 110.4(2)°
C3-C4-B1 104.9(5)° 106.6(2)°
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Figure S26: Solid-state structure of 3CI1. Thermal ellipsoids are drawn at the 50% probability

level. All hydrogen atoms and solvent molecules are omitted for clarity.

Bond 3l 8CI° 10CI3
B(1)-N(1) 1.406(3) A 1.403(3) A 1.416(2) A
N(1)-C(1) 1.418(3) A 1.420(2) A 1.429(2) A
C(1)-C(2) 1.424(3) A 1.411(3) A 1.431(2) A
C(2)-C(3) 1.434(3) A 1.473(3) A 1.469(3) A
C(3)-C(4) 1.422(3) A 1.411(3) A 1.408(3) A
C(4)-B(1) 1.540(4) A 1.5233) A 1.5343) A
B(1)-CI(1) 1.789(3) A 1.781(2) A 1.797(2) A

Table S3. Significant bond lengths and dihedral angles for 3Cl and literature-known 9,10-B,N-
phenanthrene.’
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