Supporting Information

Metal-free, photoredox-catalyzed aromatization-driven deconstructive functionalization of *spiro*dihydroquinazolinones with α -CF₃ alkenes

Jin-Hua Zhang,^{†a} Hong-Jie Miao,^{†a} Jia-Yi Li,^a Wenke Li,^a Pengchen Ma,^{*a} Xin-Hua Duan and Li-Na Guo^{*a}

^aDepartment of Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.

E-mail: guoln81@xjtu.edu.cn; mapengchen@xjtu.edu.cn [†] These authors contributed equally to this work.

Table of Contents

1 General Information	S3
2 Starting Materials	S4
2.1 General Procedure (GP) for the Synthesis of <i>spiro</i> -Dihydroquinazolinones	S4
2.2 Characterization of Starting Materials	S5
3. Detailed Optimization of Reaction Conditions	S10
3.1 GP for the Reaction of <i>spiro</i> -Dihydroquinazolinone 1a with α -CF ₃ Alkene 2a	S10
3.2 Optimization of the <i>gem</i> -Difluoroallylation of $1a$ with α -CF ₃ Alkene $2a$	S11
3.3 Optimization of the CF ₃ -Retained Alkylation 1a with α -CF ₃ Alkene 2b	S15
4. General Procedure for the Synthesis of 3 , 4 and 5	S18
5. Scale-up Reaction	S20
6 Derivatizations of the Product 3a	S21
6.1 Synthesis of the Compound 6a	S21
6.2 Synthesis of the Compound 6b	S21
6.3 Synthesis of the Compound 6c	S22
6.4 Synthesis of the Compound 6d	S22
7. Two-Step Telescoping Procedure for the Formation of 3a	S23
8 Mechanistic Investigation	S23
8.1 TEMPO-Trapping Experiment	S23
8.2 BHT-Inhibiting Experiment	S24
8.3 Radical Clock Experiment	S25
8.4 Stern-Volmer Fluorescence Quenching Experiments	S26
8.5 Light On-Off Experiments	S26
8.6 Proposed Mechanism	S28
9. References	S29
10. Characterization Date of Products	S30
11. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of Products	S53

1 General Information

The reactions were conducted in oven-dried Schlenk-tube. And the photoinduced reactions were carried out in oven-dried Schlenk-tube with Wattecs blue LEDs Irradiation Parallel Reactor. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker 400 MHz (100 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR) spectrometer at ambient temperature. Chemical shift are reported in ppm from TMS with the solvent resonance as internal standard (CDCl₃: ¹H NMR: δ = 7.26; ¹³C NMR: δ = 77.0; DMSO-*d*₆: ¹H NMR: δ = 2.50; ¹³C NMR: δ = 39.5). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets) and m (multiplet). FT-IR spectra were recorded on a Bruker V 70 spectrometer and only major peaks are reported in cm⁻¹. HRMS were obtained on a WATERS I-Class VION IMS Q-Tof. Melting points were measured using open glass capillaries in a SGW® X-4A apparatus. Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254. Compounds were visualized by exposure to UV-light.

2 Starting Materials

2.1 General Procedure for the Synthesis of *spiro*-Dihydroquinazolinones¹

Dihydroquinazolinones were prepared according to the literature. A 50 mL oven-dried round bottom flask equipped with a magnetic stirrer was charged with 2-aminobenzamide (10 mmol, 1.0 equiv.), corresponding cyclic ketone (11 mmol, 1.1 equiv.) and Cp₂TiCl₂ (1.0 mol%) were dissolved in 10 mL EtOH in one portion under air. The reaction mixture was stirred at 50-80 °C until the reaction was completed as indicated by TLC. The reaction was cooled to 20 °C generating precipitate that was collected as crude product by suction filtration. The crude material was washed with water and purified by recrystallization (EtOH) to give desired product.

2.2 Characterization of Starting Materials

1'H-Spiro[cyclopentane-1,2'-quinazolin]-4'(3'H)-one (1a): White solid; m.p.: 251-252 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.08$ (s, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.23-7.19 (m, 1H), 6.73-6.68 (m, 2H), 6.64-6.61 (m, 1H), 1.82-1.77 (m, 4H), 1.69-1.64 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 163.4$, 147.5, 133.0, 127.2, 116.5, 114.6, 114.3, 77.0, 39.3, 22.0 ppm; HRMS (ESI) calcd for C₁₂H₁₅N₂O [M+H]⁺ 203.1180, found 203.1188.

6'-Methyl-1'*H***-spiro[cyclopentane-1,2'-quinazolin]-4'(3'***H***)-one (1b): White solid; m.p.: 228-229 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO-d_6): \delta = 8.07 (s, 1H), 7.40-7.39 (m, 1H), 7.04 (dd, J = 8.4, 2.0 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 6.54 (s, 1H), 2.17 (s, 3H), 1.81-1.75 (m, 4H), 1.68-1.62 (m, 4H); ¹³C NMR (100 MHz, DMSO-d_6): \delta = 163.6, 145.4, 133.8, 127.1, 125.1, 114.7, 114.5, 77.1, 39.1, 22.0, 20.1 ppm; HRMS (ESI) calcd for C_{13}H_{17}N_2O [M+H]⁺ 217.1335, found 217.1348.**

6'-Fluoro-1'*H***-spiro[cyclopentane-1,2'-quinazolin]-4'(3'***H***)-one (1c): White solid; m.p.: 231-232 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 8.28 (s, 1H), 7.28 (dd, J = 9.2, 2.8 Hz, 1H), 7.15-7.08 (m, 1H), 6.79-6.71 (m, 2H), 1.85-1.76 (m, 4H), 1.72-1.62 (m, 4H); ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 162.6, 154.4 (d, J = 231.2 Hz), 144.2, 120.5 (d, J = 23.3 Hz), 116.0 (d, J = 6.9 Hz), 115.3 (d, J = 6.6 Hz), 112.4 (d, J = 22.7 Hz), 77.2, 39.7, 22.0 ppm; HRMS (ESI) calcd for C_{12}H_{14}FN_2O [M+H]⁺ 221.1085, found 221.1098.**

7'-Chloro-1'H-spiro[cyclopentane-1,2'-quinazolin]-4'(3'H)-one (1d): White solid; m.p.: 246 -247 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.23$ (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.05 (s, 1H), 6.73 (d, J = 2.0 Hz, 1H), 6.64 (dd, J = 8.0, 1.6 Hz, 1H), 1.82-1.75 (m, 4H), 1.69-1.63 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 162.7$, 148.6,

137.7, 129.4, 116.6, 113.5, 113.4, 77.4, 39.5, 22.0 ppm; HRMS (ESI) calcd for C₁₂H₁₄ClN₂O [M+H]⁺ 237.0789, found 237.0803.

6'-Bromo-1'H-spiro[cyclopentane-1,2'-quinazolin]-4'(3'H)-one (1e): White solid; m.p.: 229-230 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.28$ (s, 1H), 7.63 (s, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.01 (s, 1H), 6.68 (d, J = 8.4 Hz, 1H), 1.83-1.76 (m, 4H), 1.70-1.61 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 162.3$, 146.6, 135.5, 129.4, 116.8, 116.3, 107.5, 77.2, 39.4, 22.1 ppm; HRMS (ESI) calcd for C₁₂H₁₄BrN₂O [M+H]⁺ 281.0284, found 281.0291.

1'H-Spiro[cyclohexane-1,2'-quinazolin]-4'(3'H)-one (1g): White solid; m.p.: 228-229 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.90 (s, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.23-7.19 (m, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.63-6.58 (m, 2H), 1.78-1.71 (m, 2H), 1.64-1.52 (m, 6H), 1.47-1.38 (m, 1H), 1.30-1.21 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 163.2, 146.8, 133.2, 127.2, 116.5, 114.6, 114.5, 67.9, 37.2, 24.7, 20.9 ppm; HRMS (ESI) calcd for C₁₃H₁₇N₂O [M+H]⁺ 217.1335, found 217.1348.

1'*H***-Spiro[cycloheptane-1,2'-quinazolin]-4'(3'***H***)-one (1h): White solid; m.p.: 215-216 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO-***d***₆): δ = 8.03 (s, 1H), 7.55 (d,** *J* **= 7.6 Hz, 1H), 7.22-7.18 (m, 1H), 6.72-6.70 (m, 2H), 6.61-6.58 (m, 1H), 1.91-1.83 (m, 4H), 1.58-1.47 (m, 8H); ¹³C NMR (100 MHz, DMSO-***d***₆): δ = 163.1, 146.9, 133.2, 127.2, 116.4, 114.4, 114.3, 72.0, 41.1, 29.4, 21.0 ppm; HRMS (ESI) calcd for C₁₄H₁₉N₂O [M+H]⁺ 231.1492, found 231.1503.**

1'H-spiro[cyclooctane-1,2'-quinazolin]-4'(3'H)-one (1i): White solid; m.p.: 192-193 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.96 (s, 1H), 7.54 (d, J = 6.4 Hz, 1H), 7.22-7.17 (m, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.62-6.57 (m, 2H), 1.93-1.82 (m, 4H), 1.57-1.48 (m, 10H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 163.0, 146.8, 133.1, 127.0,

116.2, 114.32, 114.26, 71.3, 35.6, 27.7, 24.1, 20.7 ppm; HRMS (ESI) calcd for $C_{15}H_{21}N_2O$ [M+H]⁺ 245.1648, found 245.1659.

1'*H***-spiro[cyclododecane-1,2'-quinazolin]-4'(3'***H***)-one (1j): White solid; m.p.: 197-198 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO-***d***₆): δ = 7.81 (s, 1H), 7.56 (d,** *J* **= 7.6 Hz, 1H), 7.22-7.18 (m, 1H), 6.75 (d,** *J* **= 8.4 Hz, 1H), 6.63-6.60 (m, 1H), 6.38 (s, 1H), 1.78-1.71 (m, 2H), 1.64-1.57 (m, 2H), 1.37-1.25 (m, 18H); ¹³C NMR (100 MHz, DMSO-***d***₆): δ = 163.1, 147.1, 133.2, 127.1, 116.6, 114.8, 114.7, 71.4, 34.1, 25.8, 25.5, 22.3, 21.9, 18.9 ppm; HRMS (ESI) calcd for C₁₉H₂₉N₂O [M+H]⁺ 301.2274, found 301.2286.**

3-Phenyl-1'*H*-spiro[cyclobutane-1,2'-quinazolin]-4'(3'*H*)-one (1k): White solid; m.p.: 249-250 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2, dr = 1:2.3); ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.57$ (s, 0.3H), 8.22 (s, 0.7 H), 7.40-7.35 (m, 1H), 7.22-7.17 (m, 1H), 7.10-7.01(m, 5H), 6.96-6.91 (m, 1H), 6.61-6.56 (m, 1H), 6.49-6.42 (m, 1H), 3.30-3.24 (m, 1H), 2.45-2.39 (m, 1H), 2.26-2.07 (m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 163.6$, 163.0, 147.3, 146.8, 144.6, 144.5, 133.42, 133.40, 128.39, 128.35, 127.3, 126.9, 126.8, 126.7, 126.2, 126.1, 117.2, 117.1, 114.9, 114.71, 114.66, 114.5, 66.6, 66.5, 45.9, 45.7, 30.5, 29.4 ppm; HRMS (ESI) calcd for $C_{17}H_{17}N_2O$ [M+H]⁺ 265.1335, found 265.1344.

2,8'-Dimethyl-1'*H*-spiro[cyclopentane-1,2'-quinazolin]-4'(3'*H*)-one (1m): White solid; m.p.: 169-170 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2, dr = 1:1.5); ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.07$ (s, 0.4H), 7.91 (s, 0.6H), 7.48-7.45 (m, 1H), 7.10-1.06 (m, 1H), 6.57-6.50 (m, 1H), 5.68 (s, 0.6H), 5.40 (s, 0.4H), 2.13-2.09 (m, 3H), 2.03-1.41 (m, 7H), 0.86 (d, *J* = 6.8 Hz, 1.8H), 0.75 (d, *J* = 6.8 Hz, 1.2H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 163.9$, 163.6, 145.9, 145.3, 133.8, 124.9, 121.8, 121.6, 116.3, 115.9, 115.0, 114.0, 78.4, 78.1, 44.9, 44.1, 38.3, 29.7, 29.3, 19.3, 19.0, 17.10, 17.08, 14.4, 14.0 ppm; HRMS (ESI) calcd for C₁₄H₁₉N₂O [M+H]⁺ 231.1492, found 231.1503.

2,7'-Dimethyl-1'H-spiro[cyclopentane-1,2'-quinazolin]-4'(3'H)-one (1n): White solid;

m.p.: 171-172 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2, dr = 1:1); ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.84$ (s, 0.5H), 7.83 (s, 0.5H), 7.43 (d, J = 8.0 Hz, 1H), 6.56-6.51 (m, 1H), 6.45-6.42 (m, 1H), 6.41-6.37 (m, 1H), 2.18 (s, 3H), 1.97-1.84 (m, 2H), 1.79-1.55 (m, 4H), 1.48-1.38 (m, 1H), 0.88-0.84 (m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 163.9$, 163.8, 148.1, 147.8, 143.14, 143.11, 127.3, 127.2, 117.6, 117.4, 114.1, 113.9, 111.83, 111.78, 78.5, 78.3, 44.4, 44.1, 39.6, 39.5, 29.4, 29.2, 21.6, 21.5, 19.0, 14.4, 13.9 ppm; HRMS (ESI) calcd for C₁₄H₁₉N₂O [M+H]⁺ 231.1492, found 231.1504.

2,6'-Dimethyl-1'*H***-spiro[cyclopentane-1,2'-quinazolin]-4'(3'***H***)-one (1q):** White solid; m.p.: 228-229 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2, dr = 1:1); ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.87$ (s, 0.5H), 7.85 (s, 0.5H), 7.36 (s, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.69-6.56 (m, 1H), 6.41-6.30 (m, 1H), 2.15 (s, 3H), 1.99-1.86 (m, 2H), 1.76-1.52 (m, 4H), 1.46-1.38 (m, 1H), 0.89-0.84 (m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 163.9$, 163.8, 145.9, 145.6, 134.02, 133.98, 127.1, 127.0, 124.7, 124.5, 114.13, 114.06, 114.0, 78.5, 78.2, 44.2, 44.0, 39.3, 29.5, 29.2, 20.2, 19.04, 19.00, 14.5, 13.9 ppm; HRMS (ESI) calcd for C₁₄H₁₉N₂O [M+H]⁺ 231.1492, found 231.1503.

2,2-Dimethyl-1'*H***-spiro[cyclopentane-1,2'-quinazolin]-4'(3'***H***)-one (1w): White solid; m.p.: 149-150 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, CDCl₃): \delta = 7.84 (dd, J = 8.0, 1.6 Hz, 1H), 7.29-7.24 (m, 1H), 6.99 (s, 1H), 6.77-6.73 (m, 1H), 6.64 (d, J = 7.6 Hz, 1H), 4.44 (s, 1H), 2.20-2.13 (m, 1H), 2.08-2.01 (m, 1H), 1.82-1.61 (m, 4H), 1.03 (s, 3H), 1.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.7, 146.6, 133.8, 127.9, 117.8, 114.2, 113.6, 80.5, 46.6, 38.5, 36.5, 23.4, 23.1, 17.0 ppm; HRMS (ESI) calcd for C₁₄H₁₉N₂O [M+H]⁺ 231.1492, found 231.1495.**

(3a*S*,5a*R*,11a*R*,11b*S*)-9-Hydroxy-3a-methyl-1,2,3a,4,5,5a,6,11,11a,11b-decahydro-1'*H*spiro[cyclopenta[a]anthracene-3,2'-quinazolin]-4'(3'*H*)-one (1y): White solid; m.p.: 203-204 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:1); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.00-8.98$ (m, 1H), 8.34 (s, 1H), 7.55-7.51 (m, 1H), 7.19-7.14 (m, 1H), 6.95-6.90 (m, 1H), 6.74-6.69 (m, 2H), 6.60-6.54 (m, 1H), 6.50-6.40 (m, 2H), 4.41-4.37 (m, 1H), 2.75-2.64 (m, 2H), 2.06-2.03 (m, 1H), 1.99-1.92 (m, 2H), 1.84-1.78 (m, 1H), 1.73-1.66 (m, 1H), 1.55-1.43 (m, 1H), 1.28-1.22 (m, 2H), 1.17-1.12 (m, 2H), 1.08-1.02 (m, 2H), 0.78-0.75 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 164.0$, 155.1, 147.6, 137.2, 133.1, 130.2, 127.0, 126.1, 116.2, 115.2, 115.0, 113.4, 112.8, 79.8, 56.2, 50.8, 46.6, 43.2, 37.4, 33.2, 29.3, 27.3, 26.1, 22.2, 18.7, 14.9 ppm; HRMS (ESI) calcd for C₂₅H₂₉N₂O₂ [M+H]⁺ 389.2224, found 389.2230.

3. Detailed Optimization of Reaction Conditions

3.1 General Procedure for the Reaction of *spiro*-Dihydroquinazolinone 1a with α -CF₃ Alkene 2a

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with *spiro*-dihydroquinazolinone **1a** (0.24 mmol, 1.2 equiv.), α -CF₃ alkene **2a** (0.20 mmol, 1.0 equiv.), photocatalyst (1.0 mol%), base (0.4 mmol, 2.0 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, solvent (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W blue LED (λ = 460–470 nm; distance app. 1.0 cm from the bulb) for a specified time. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/EtOAc: 5:1 to 3:1) furnishes the desired product **3a** as white solid.

3.2 Optimization of the *gem*-Difluoroallylation of 1a with α -CF₃ Alkene 2a

Base^a

Entry	Base	Yield of 3a (%) ^{<i>a</i>}
1	K ₃ PO ₄	72
2	K ₂ CO ₃	73
3	NaHCO ₃	74
4	Na ₂ CO ₃	70
5	TMG	$71(14)^{b}$
6	TEA	Trace
7	DBU	25
8	Pyridine	50
9	2,4,6-Collidine	67
10	No Base	30

^{*a*}Reaction conditions: **1a** (0.24 mmol, 1.2 equiv.), **2a** (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), Base (2.0 equiv.), DMAc (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N₂, for 18 h. Yields of isolated. ^{*b*}NMR yield of **3a**' was given in parentheses.

Amount of Base^a

	CF3	4CzIPN (1.0 mol%) NaHCO ₃ (x equiv.) Blue LEDs (10 W), DMAc, N ₂	Ph NH F
1a	2a		3a
Entry		NaHCO ₃ (x equiv.)	Yield of 3a (%) ^{<i>a</i>}
1		1.0	41
2		1.5	66
3		2.0	74
4		2.5	62

^aReaction conditions: 1a (0.24 mmol, 1.2 equiv.), 2a (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), NaHCO₃ (x equiv.), DMAc

(2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N_2 , for 18 h. Yields of isolated.

Photocatalyst (PC)^a

NH +	Ph CF ₃	PC (1.0 mol%) NaHCO ₃ (2.0 equiv.) Blue LEDs (10 W), DMAc, N ₂	Ph NH F
1a	2a		3a
Entry		PC	Yield of $3a(\%)^a$
1		4CzIPN	74
2		4CzTPN	38
3		4C _Z PN	56
4		Rhodamine B	Trace
5		Eosin Y	Trace
6		<i>fac</i> -Ir(ppy) ₃	Trace
7		No PC	N.R

^aReaction conditions: **1a** (0.24 mmol, 1.2 equiv.), **2a** (0.20 mmol, 1.0 equiv.), PC (1.0 mol%), NaHCO₃ (2.0 equiv.), DMAc (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N₂, for 18 h. Yields of isolated.

Amount of PC^a

^aReaction conditions: 1a (0.24 mmol, 1.2 equiv.), 2a (0.20 mmol, 1.0 equiv.), 4CzIPN (x mol%), NaHCO₃ (2.0 equiv.), DMAc

(2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under $\mathrm{N_2},$ for 18 h. Yields of isolated.

Solvent^a

NH +	Ph CF ₃	4CzIPN (1.0 mol%) NaHCO ₃ (2.0 equiv.) Blue LEDs (10 W), Solvent , N ₂	Ph Ph F
1a	2a		3a
Entry		Solvent	Yield of $3a (\%)^a$
1		DMAc	74
2		DMF	74
3		DMSO	55
4		NMP	20
5		MeCN	<10
6		MTBE	<10
7		DCE	trace

^aReaction conditions: **1a** (0.24 mmol, 1.2 equiv.), **2a** (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), NaHCO₃, (2.0 equiv.), Solvent

(2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under $N_2,\, for\, 18$ h. Yields of isolated.

Ratio of 1a:2a^a

	Ph CF ₃	4CzIPN (1.0 mol%) NaHCO ₃ (2.0 equiv.)	Ph Ph F F F
Entry	24	1a:2a	Yield of $3a(\%)^a$
1		1.2:1.0	74
2		1.5:1.0	74
3		2.0:1.0	73
4		1:1.2	47
5		1:1.5	59
6		1:2.0	72

^aReaction conditions: 1a:2a = x (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), NaHCO₃ (2.0 equiv.), DMAc (2.0 mL), irradiation

with 10 W Blue LEDs at room temperature, under $N_{\rm 2},$ for 18 h. Yields of isolated.

Light source^a

NH +	Ph CF ₃	4CzIPN (1.0 mol%) NaHCO ₃ (2.0 equiv.)	
1a	2a		3a
Entry		Light Source	Yield of $3a(\%)^a$
1		5 W Blue LDEs	45
2		10 W Blue LDEs	74
3		30W Blue LDEs	69
4		Purple LEDs	29
5		White LDEs	Trace
6		-	N.R

^aReaction conditions: 1a (0.24 mmol, 1.2 equiv.), 2a (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), NaHCO₃ (2.0 equiv.), DMAc

(2.0 mL), irradiation with x W LEDs at room temperature, under $N_{\rm 2},$ for 18 h. Yields of isolated.

Dry Solvent^a

^aReaction conditions: 1a (0.24 mmol, 1.2 equiv.), 2a (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), NaHCO₃ (2.0 equiv.), dry

solvent (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N2, for 18 h. Yields of isolated.

3.3 Optimization of the CF₃-Retained Alkylation 1a with α -CF₃ Alkene

2b

Additive^a

NH NH H H +	CF ₃	4CzIPN (1.0 mol%) TMG (2.0 equiv.) Additive (1.0 equiv.) DMAc, Blue LEDs (10 W), N ₂	NH NH CF ₃
1a	2b		5a
Entry		Additive	Yield of 5a (%) ^{<i>a</i>}
1		None	38
2		EtOH	44
3		MeOH	48
4		'BuOH	50
5		IPA	44
6		EG	51
7		HFIP	54

^aReaction conditions: **1a** (0.24 mmol, 1.2 equiv.), **2b** (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), TMG (2.0 equiv.), Additive (2.0 equiv.), DMAc (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N₂, for 18 h. The yield was determined by ¹⁹F NMR with PhOCF₃ as an internal standard.

Amount of HFIP^a

NH +	CF3	4CzIPN (1.0 mol%) TMG (2.0 equiv.) HFIP (x equiv.) DMAc, Blue LEDs (10 W), N ₂	NH CF3
1a	2b		5a
Entry		HFIP (x equiv.)	Yield of 5a (%) ^{<i>a</i>}
1		1.0	54
2		2.0	58
3		5.0	53
4		10.0	39

^aReaction conditions: **1a** (0.24 mmol, 1.2 equiv.), **2b** (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), TMG (2.0 equiv.), HFIP (x equiv.), DMAc (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N_2 , for 18 h. The yield was determined by ¹⁹F NMR with PhOCF₃ as an internal standard.

Photocatalyst (PC)^a

^aReaction conditions: **1a** (0.24 mmol, 1.2 equiv.), **2b** (0.20 mmol, 1.0 equiv.), PC (1.0 mol%), TMG (2.0 equiv.), HFIP (2.0 equiv.), DMAc (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N₂, for 18 h. The yield was determined by ¹⁹F NMR with PhOCF₃ as an internal standard.

Ratio of 1a:2b^a

^aReaction conditions: 1a:2b = x (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), TMG (2.0 equiv.), HFIP (2.0 equiv.), DMAc (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N₂, for 18 h. The yield was determined by ¹⁹F NMR with PhOCF₃ as an internal standard.

Solvent^a

NH +	CF ₃	4CzIPN (1.0 mol%) TMG (2.0 equiv.) HFIP (2.0 equiv.) Solvent, Blue LEDs (10 W), N ₂	O NH CF3
1a	2b		5a
Entry		Solvent	Yield of 5a (%) ^{<i>a</i>}
1		DMAc	74
2		Dry DMAc	78 (74) ^b
3		Dry DMF	72
4		Dry NMP	70
5		Dry DMSO	21

^{*a*}Reaction conditions: **1a** (0.20 mmol, 1.0 equiv.), **2b** (0.40 mmol, 2.0 equiv.), 4CzIPN (1.0 mol%), TMG (2.0 equiv.), HFIP (2.0 equiv.), Solvent (2.0 mL), irradiation with 10 W Blue LEDs at room temperature, under N₂, for 18 h. The yield was determined by ¹⁹F NMR with PhOCF₃ as an internal standard. ^{*b*}Isolated yield.

4. General Procedure for the Synthesis of 3, 4 and 5

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with *spiro*-dihydroquinazolinones **1** (0.24 mmol, 1.2 equiv.), α -CF₃ alkenes **2** (0.2 mmol, 1.0 equiv.), 4CzIPN (1.577 mg, 1.0 mol%), NaHCO₃ (0.4 mmol, 2.0 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, dry DMAc (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED (λ = 460-470 nm; distance app. 1.0 cm from the bulb) for a specified time. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 5:1 to 3:1) on silica gel to afford compound **3**, **4**.

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with *spiro*-dihydroquinazolinones **1** (0.24 mmol, 1.2 equiv.), α -CF₃ alkenes **2** (0.2 mmol, 1.0 equiv.), 4CzIPN (1.577 mg, 1.0 mol%) Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of TMG (0.40 mmol, 2.0 equiv.) and HFIP (0.2 mmol, 1.0 equiv.) in dry DMAc (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W blue LED (λ = 460-470 nm; distance app. 1.0 cm from the bulb) for a specified time. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 5:1 to 3:1) on silica gel to afford compound **5**.

The Visible-Light Photoredox Catalysis Experimental Setup (photographed by author Li-Na Guo)

5. Scale-up Reaction

A 50 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with *spiro* dihydroquinazolinone **1a** (2.4 mmol, 1.2 equiv.), α -CF₃ alkenes **2a** (2.0 mmol, 1.0 equiv.), 4CzIPN (15.77 mg, 1.0 mol%), NaHCO₃ (4.0 mmol, 2.0 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, dry DMAc (20 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W blue LED (λ = 460-470 nm; distance app. 1.0 cm from the bulb) for 36 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 5:1 to 3:1) on silica gel to afford compound **3a** in 71% yield.

6 Derivatizations of the Product 3a

6.1 Synthesis of the Compound 6a²

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with **3a** (0.2 mmol, 1.0 equiv.) and Selectfluor (2.6 mmol, 1.3 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of H₂O (1.6 mmol, 8.0 equiv.) in MeCN (2.0 mL) was added by a syringe. The reaction mixture was stirred at 40 °C for 4 h. The solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 5:1) on silica gel to afford compound **6a** in 73% yield.

6.2 Synthesis of the Compound 6b³

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with **3a** (0.2 mmol, 1.0 equiv.) and Cs_2CO_3 (0.02 mmol, 0.1 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of TMSCN (0.6 mmol, 3.0 equiv.) in MeCN (2.0 mL) was added by a syringe. The reaction mixture was stirred at 50 °C for 24h. The solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 5:1) on silica gel to afford compound **6b** in 51% yield.

6.3 Synthesis of the Compound 6c⁴

In an oven-dried sealed tube equipped with a Teflon-coated stirring bar, **3a** (0.2 mmol, 1.0 equiv.), Morita–Baylis–Hillman carbonate (0.2mmol, 1.2 equiv.) and DABCO (0.02 mmol, 0.1 equiv.) were dissolved in DCM (2.0 mL). The resulting solution was stirred at room temperature until the reaction was completed as indicated by TLC. The solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 5:1) on silica gel to afford compound **6c** in 88% yield.

6.4 Synthesis of the Compound 6d⁵

In an oven-dried sealed tube equipped with a Teflon-coated stirring bar, **3a** (86.1mg, 0.2 mmol, 1.0 equiv.), BnNH₂ (0.3 mmol, 1.5 equiv.), HMDS (0.3 mmol, 1.5 equv.) and $(NH_4)_2SO_4$ (0.02 mmol, 0.1 equiv.). The resulting solution was stirred at 125 °C for 3 h. The solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 7:1) on silica gel to afford compound **6d** in 81% yield.

7. Two-Step Telescoping Procedure for the Formation of 3a

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 2aminobenzamide (0.4 mmol, 1.0 equiv.), and cyclopentanone (0.44 mmol, 1.1 equiv.). Then a solution of Cp₂TiCl₂ (1.0 mol%) in EtOH (2.0 mL) was added. The reaction mixture was stirred at 50 °C until the reaction was completed as indicated by TLC. The solvent was removed under reduced pressure. Then *a*-CF₃ alkene **2a** (0.2 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%) and NaHCO₃ (0.4 mmol, 2.0 equiv.) were added. Then, the tube was evacuated and backfilled with nitrogen for three times. Subsequently, dry DMAc (2.0 mL) was added by a syringe. The reaction mixture was then irradiated with 10 W blue LEDs at room temperature for 18 h. The reaction mixture was quenched with brine (10 mL) and extracted with EtOAc (3×5 mL). Then the combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc =3:1) on silica gel to afford compound **3a** in 63% yield.

8 Mechanistic Investigation

8.1 TEMPO-Trapping Experiment

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with spiro-dihydroquinazolinone **1a** (0.24 mmol, 1.2 equiv.), α -CF₃ alkene **2a** (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), NaHCO₃ (0.4 mmol, 2.0 equiv.) and TEMPO (0.4 mmol, 2.0 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, dry DMAc (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 18

h. After that, only a trace amount of **3a** was observed, along with the TEMPO adduct **7a** detected by HRMS. This result indicated that a radical pathway might be involved in this transformation.

Figure S1. TEMPO adduct 7a detected by HRMS

8.2 BHT-Inhibiting Experiment

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with spiro-dihydroquinazolinone **1a** (0.24 mmol, 1.2 equiv.), α -CF₃ alkene **2a** (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%), NaHCO₃ (0.4 mmol, 2.0 equiv.) and BHT (0.4 mmol, 2.0 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, dry DMAc (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 18 h. The reaction mixture was quenched with brine (10 mL) and extracted with EtOAc (3×5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc =3:1) on silica gel to afford compound **3a** with yield of 21%. This result indicated that a radical pathway might be involved in this transformation.

8.3 Radical Clock Experiment

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with *spiro*-dihydroquinazolinone **1a** (0.24 mmol, 1.2 equiv.), α -CF₃ alkene **2a** (0.20 mmol, 1.0 equiv.), 4CzIPN (1.0 mol%) and NaHCO₃ (0.4 mmol, 2.0 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of α -cyclopropylstyrene (0.4 mmol, 2.0 equiv.) in dry DMAc (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 18 h. The reaction mixture was quenched with brine (10 mL) and extracted with EtOAc (3×5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc =3:1) on silica gel to afford compound **3a** in 53% yield along with **8a** in 12% yield. This result indicated that a radical pathway might be involved in this transformation.

8.4 Stern-Volmer Fluorescence Quenching Experiments

To a solution of 4CzIPN in anhydrous, N₂-saturated dry DMAc (5×10^{-4} mol/L) in a quartz cuvette, different amounts of *spiro*-dihydroquinazolinones **1a** and α -CF₃ alkenes **2a** were added, respectively, and the resulting changes in fluorescence intensity (concentration of **1a** and **2a**: 2×10^{-4} mol/L, 4×10^{-4} mol/L, 6×10^{-4} mol/L, 8×10^{-4} , 1×10^{-3} mol/L were collected. The emission intensity at 534 nm was collected with excited wavelength of 450 nm. The results are shown in **Figure S2** and **S3**

Figure S2. (a) The fluorescence emission spectra of 4CzIPN with different concentration of 1a added. (b) The Stern–Volmer emission quenching studies of 1a. I_0 is the inherent fluorescence intensity of 4CzIPN. I is the fluorescence intensity of 4CzIPN in the presence of 1a.

Figure S3. (a) The fluorescence emission spectra of 4CzIPN with different concentration of 2a added. (b) The Stern–Volmer emission quenching studies of 2a. I_0 is the inherent fluorescence intensity of 4CzIPN. I is the fluorescence intensity of 4CzIPN in the presence of 2a. Thus, Stern–Volmer fluorescence quenching studies indicated that the 1a interacts with the excited state of 4CzIPN rather than 2a.

8.5 Light On-Off Experiments

To further examine the impact of light, we conducted experiments under alternating periods of irradiation and darkness. The yield of **3a** was determined by crude ¹⁹F NMR spectra

using PhOCF₃ as an internal standard. The results are shown in Figure S4.

Figure S3. Light On-Off Experiments

The results of light on-off experiments indicated that the reaction proceeded only under the irradiation of light. Thus, the reaction maybe proceed via a catalytic process rather than a radical chain process.

8.6 Proposed Mechanism

Based on the above results and the literature⁶, a possible mechanism is proposed (Scheme 7). Under visible light irradiation, 4CzIPN is irradiated to the excited state 4CzIPN*, which undergoes a single electron transfer (SET) event with dihydroquinazolinone 1 to give the amine radical cation I and 4CzIPN⁻⁻. Intermediate I then undergoes deprotonation followed by aromatization-driven C-C bond cleavage to give the alkyl radical intermediate II. The radical II is then added to the α -CF₃ alkene 2 to give the CF₃-containing benzyl radical III. Intermediate III is then reduced by the 4CzIPN⁻⁻ species to form the carbanion IV and regenerate the 4CzIPN. Finally, β -fluoride elimination of the intermediate IV yields the *gem*-difluoroallylated product 3 or 4. Alternatively, the carbanion IV can be protonated to give the CF₃-containing product 5. The chemoselectivity is related to the stability of the carbanion IV. The more stable the carbanion IV, the easier the protonation process.

9. References

- 1. Y. Luo, Y. Wu, Y. Wang, H. Sun, Z. Xie, W. Zhang and Z. Gao, *RSC Adv.*, 2016, 6, 66074.
- 2. J. Shi, L.-Y. Guo, Q.-P. Hu, Y.-T. Liu, Q. Li and F. Pan, Org. Lett., 2021, 23, 8822.
- 3. Y. Li, W.-S. Zhang, S.-N. Yang, X.-Y. Wang, Y. Liu, D.-W. Ji and Q.-A. Chen, *Angew. Chem. Int. Ed.*, 2023, **62**, e202300036.
- 4. X.-Y. Yao, Z.-Y. Li, H.-B. Mei, J. Escorihuela, V. A. Soloshonok and J.-L. Han, *J. Org. Chem.*, 2023, **88**, 13057.
- 5. Z.-L. Shen, X.-F. He, Y.-M. Hong, X.-Q. Hu, W.-M. Mo, B.-X. Hu and N. Sun, *Synth. Commun.*, 2011, **41**, 3644.
- (a) F. Yue, J. Liu, H. Ma, Y. Liu, J. Dong and Q. Wang, *Org. Lett.*, 2022, 24, 4019; (b)
 Z.-H. Yuan, H. Xin, L. Zhang, P. Gao, X. Yang, X.-H. Duan and L.-N. Guo, *Green Chem.*, 2023, 25, 6733.

10. Characterization Date of Products

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(3*H***)-one (3a): White solid (80%, 68.8 mg); m.p.: 164-165 °C; R_f= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.16 (s, 1H), 8.27 (d,** *J* **= 7.2 Hz, 1H), 7.78-7.71 (m, 2H), 7.59-7.54 (m, 4H), 7.46-7.41 (m, 3H), 7.37-7.33 (m, 3H), 2.80 (t,** *J* **= 7.6 Hz, 2H), 2.49-2.44 (m, 2H), 1.94-1.86 (m, 2H), 1.53-1.50 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.4, 156.9, 153.6 (dd,** *J* **= 289.1, 285.7 Hz), 149.1, 140.5, 140.0, 134.9, 132.5, 128.8, 128.5 (t,** *J* **= 3.7 Hz), 127.3, 127.1, 126.97, 126.96, 126.5, 126.1, 120.3, 91.9 (dd,** *J* **= 21.7, 13.4 Hz), 35.6, 28.5, 27.4, 27.3, 27.2; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -90.91 (d,** *J* **= 43.24 Hz), -91.08 (d,** *J* **= 43.62 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₅F₂N₂O [M+H]⁺ 431.1930, found 431.1928.**

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluorohept-6-en-1-yl)-6-methylquinazolin-4(3H)-one

(3b): White solid (75%, 66.6 mg); m.p.: 183-184 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.14$ (s, 1H), 8.08-8.06 (m, 1H), 7.62-7.53 (m, 6H), 7.43 (t, J = 7.2 Hz, 2H), 7.37-7.32 (m, 3H), 2.78 (t, J = 7.6 Hz, 2H), 2.48-2.44 (m, 5H), 1.93-1.86 (m, 2H), 1.54-1.49 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.2$, 155.7, 150.8 (dd, J = 288.2, 284.6 Hz), 147.4, 140.5, 140.0, 136.5, 136.3, 132.5, 128.8, 128.5 (t, J = 2.6 Hz), 127.3, 127.1, 127.00, 126.97, 125.5, 120.2, 91.9 (dd, J = 20.3, 14.4 Hz), 35.7, 28.5, 27.4, 27.3, 27.1, 21.2; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -90.93$ (d, J = 43.62 Hz), -91.09 (d, J = 43.24 Hz) ppm; HRMS (ESI) calcd for C₂₈H₂₇F₂N₂O [M+H]⁺ 445.2086, found 445.2092.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluorohept-6-en-1-yl)-6-fluoroquinazolin-4(3H)-one (3c): White solid (77%, 69.0 mg); m.p.: 164-165 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 12.28$ (s, 1H), 7.75-7.72 (m, 1H), 7.68-7.62 (m, 6H), 7.487.45 (m, 2H), 7.42-7.35 (m, 3H), 2.55 (t, J = 7.2 Hz, 2H), 2.45-2.41 (m, 2H), 1.72-1.65 (m, 2H), 1.38-1.31 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 161.3$ (d, J = 3.6Hz), 160.9, 158.5, 156.9, 153.0 (dd, J = 288.2, 285.8 Hz), 145.9, 139.4 (d, J = 26.9 Hz), 132.0 (t, J = 2.3 Hz),129.6 (d, J = 8.0 Hz), 129.1, 128.7 (t, J = 2.5 Hz), 127.7, 126.9, 126.7, 122.8 (d, J = 23.8 Hz), 122.0 (d, J = 8.3 Hz), 110.3 (d, J = 23.1 Hz), 92.4 (dd, J = 20.3, 13.1 Hz), 34.3, 27.7, 26.9, 26.7, 26.4; ¹⁹F NMR (376 MHz, DMSO- d_6) $\delta = -90.93$ (d, J = 43.62 Hz), -91.09 (d, J = 43.62 Hz), -113.05--113.11 (m) ppm; HRMS (ESI) calcd for C₂₇H₂₄F₂N₂O [M+H]⁺ 449.1835, found 448.1849.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluorohept-6-en-1-yl)-7-chloroquinazolin-4(3H)-one

(3d): White solid (70%, 65.0 mg); m.p.: 164.3-164.9 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 12.29$ (s, 1H), 8.06-8.03 (m, 1H), 7.66-7.59 (m, 6H), 7.48-7.44 (m, 3H), 7.40-7.35 (m, 2H), 2.55 (t, J = 8.4 Hz, 2H), 2.44-2.39 (m, 2H), 1.74-1.62 (m, 2H), 1.39-1.29 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 161.3$, 159.2, 155.8 (dd, J = 283.5, 280.8 Hz), 150.2, 139.6, 139.3, 139.0, 132.0, 129.1, 128.7 (t, J = 2.7 Hz), 127.9, 127.7, 126.9, 126.7, 126.3, 126.0, 119.7, 92.4 (dd, J = 20.3, 12.5 Hz), 34.4, 27.7, 26.9, 26.7, 26.4; ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -91.69$ (d, J = 45.50 Hz), -91.89 (d, J = 45.50 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₄ClF₂N₂O [M+H]⁺ 465.1540, found 465.1549.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluorohept-6-en-1-yl)-6-bromoquinazolin-4(3*H***)-one (3e**): White solid (62%, 63.0 mg); m.p.: 109-110 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 12.34$ (s, 1H), 8.14-8.12 (m, 1H), 7.89-7.86 (m, 1H), 7.67-7.62 (m, 4H), 7.53-7.45 (m, 4H), 7.41-7.38 (m, 2H), 2.55 (t, J = 6.4 Hz, 2H), 2.44-2.40 (m, 2H), 1.70-1.64 (m, 2H), 1.36-1.30 (m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 160.8$, 158.3, 153.0 (dd, J = 287.1, 284.9 Hz,), 148.0, 139.6, 139.3, 137.2, 132.0, 129.3, 129.1, 128.7 (t, J =3.3 Hz), 127.9, 127.7, 126.9, 126.7, 122.5, 118.3, 92.4 (dd, J = 20.1, 12.8 Hz), 34.5, 27.7, 26.9, 26.7, 26.4; ¹⁹F NMR (376 MHz, DMSO-*d*₆): $\delta = -90.88$ (d, J = 43.24 Hz), -90.53 (d, J = 43.24Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₄BrF₂N₂O [M+H]⁺ 509.1035, found 509.1040.

2-(5-([1,1'-Biphenyl]-4-yl)-6,6-difluorohex-5-en-1-yl)quinazolin-4(3*H***)-one (3f)**: White solid (78%, 64.9 mg); m.p.: 162-163 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, CDCl₃): δ = 12.14 (s, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 7.76-7.68 (m, 2H), 7.57-7.52 (m, 4H), 7.46-7.33 (m, 6H), 2.80 (t, *J* = 7.6 Hz, 2H), 2.56-2.51 (m, 2H), 1.99-1.91 (m, 2H), 1.63-1.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.5, 156.7, 153.8 (dd, *J* = 284.0, 280.7 Hz), 149.4, 140.6, 140.1, 135.0, 132.5, 128.9, 128.6 (t, *J* = 3.1 Hz), 127.5, 127.24, 127.20, 127.1, 126.6, 126.3, 120.5, 91.8 (dd, *J* = 20.1, 14.3 Hz), 35.5, 27.4, 27.3, 26.9; ¹⁹F NMR (376 MHz, CDCl₃) δ = -90.60 (d, *J* = 42.86 Hz), -90.74 (d, *J* = 42.86 Hz) ppm; HRMS (ESI) calcd for C₂₆H₂₃F₂N₂O [M+H]⁺ 417.1773, found 417.1783.

2-(7-([1,1'-Biphenyl]-4-yl)-8,8-difluorooct-7-en-1-yl)quinazolin-4(3*H***)-one (3g): White solid (42%, 37.3 mg); m.p.: 189-190 °C; R_f= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.23 (s, 1H), 8.29 (d,** *J* **= 7.6 Hz, 1H), 7.78-7.70 (m, 3H), 7.59-7.55 (m, 4H), 7.47-7.42 (m, 3H), 7.37-7.35 (m, 2H), 2.79 (t,** *J* **= 7.6 Hz, 2H), 2.49-2.40 (m, 2H), 1.94-1.85 (m, 2H), 1.50-1.41 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.5, 156.9, 153.6 (dd,** *J* **= 288.1, 286.2 Hz), 149.5, 140.5, 139.9, 134.8, 132.6, 128.7, 128.5 (t,** *J* **= 3.6 Hz), 127.3, 127.2, 127.0, 126.9, 126.3, 126.1, 120.4, 92.0 (dd,** *J* **= 20.0, 14.2 Hz), 35.8, 28.8, 28.6, 27.5, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -91.91 (d,** *J* **= 44.74 Hz), -92.05 (d,** *J* **= 43.24 Hz) ppm; HRMS (ESI) calcd for C₂₈H₂₇F₂N₂O [M+H]⁺ 445.2086, found 445.2098.**

2-(8-([1,1'-Biphenyl]-4-yl)-9,9-difluoronon-8-en-1-yl)quinazolin-4(3*H***)-one (3h): White solid (44%, 40.3 mg); m.p.: 134-135 °C; R_f= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.17 (s, 1H), 8.28 (dd,** *J* **= 8.0, 1.6 Hz, 1H), 7.77-7.69 (m, 2H), 7.61-7.57 (m, 4H), 7.46-7.41 (m, 3H), 7.38-7.33 (m, 3H), 2.80 (t,** *J* **= 8.0 Hz, 2H), 2.44-2.39 (m, 2H), 1.92-1.85 (m, 2H), 1.49-1.33 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.5, 157.0, 153.7 (dd,** *J* **= 296.0, 282.1 Hz), 149.5, 140.5, 139.9, 134.8, 132.7, 128.8, 128.5 (t,** *J* **= 2.4 Hz), 127.3, 127.2, 127.03, 126.95, 126.3, 126.1, 120.4, 92.1 (dd,** *J* **= 21.9, 12.7 Hz), 35.8, 29.1, 28.9, 28.8,**

27.7, 27.44, 27.40; ¹⁹F NMR (376 MHz, CDCl₃) δ = -90.04 (d, *J* = 44.74 Hz), -91.22 (d, *J* = 43.24 Hz) ppm; HRMS (ESI) calcd for C₂₉H₂₉F₂N₂O [M+H]⁺ 459.2243, found 459.2245

2-(9-([1,1'-Biphenyl]-4-yl)-10,10-difluorodec-9-en-1-yl)quinazolin-4(3*H***)-one (3i): White solid (58%, 54.8 mg); m.p.: 134-135 °C; R_f= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.02 (s, 1H), 8.28 (dd,** *J* **= 7.6, 1.2 Hz, 1H), 7.78-7.70 (m, 2H), 7.60-7.56 (m, 4H), 7.47-7.41 (m, 3H), 7.38-7.32 (m, 3H), 2.79 (t,** *J* **= 7.6 Hz, 2H), 2.42-2.39 (m, 2H), 1.91-1.84 (m, 2H), 1.47-1.30 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.5, 157.0, 153.6 (dd,** *J* **= 285.4, 279.9 Hz), 149.5, 140.5, 139.9, 134.8, 132.7, 128.7, 128.5 (t,** *J* **= 3.1 Hz), 127.3, 127.2, 127.0, 126.9, 126.3, 126.1, 120.4, 92.1 (dd,** *J* **= 20.9, 13.3 Hz), 35.9, 29.14, 29.12, 29.0, 28.9, 27.7, 27.5, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -91.12 (d,** *J* **= 43.62 Hz), -91.3 (d,** *J* **= 43.24 Hz) ppm; HRMS (ESI) calcd for C₃₀H₃₁F₂N₂O [M+H]⁺ 473.2399, found 473.2398.**

2-(13-([1,1'-Biphenyl]-4-yl)-14,14-difluorotetradec-13-en-1-yl)quinazolin-4(3*H***)-one (3j): White solid (57%, 60.2 mg); m.p.: 181-182 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.29 (s, 1H), 8.30 (dd, J = 8.0, 1.2 Hz, 1H), 7.79-7.71 (m, 2H), 7.62-7.58 (m, 4H), 7.48-7.38 (m, 5H), 7.37-7.33 (m, 1H), 2.82 (t, J = 7.6 Hz, 2H), 2.45-2.40 (m, 2H), 1.94-1.86 (m, 2H), 1.51-1.44 (m, 2H), 1.41-1.36 (m, 4H), 1.31-1.20 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.5, 157.1, 153.6 (dd, J = 289.5, 286.3Hz), 149.5, 140.5, 139.8, 134.7, 132.8, 128.7, 128.5 (t, J = 2.9 Hz), 127.3, 127.1, 127.0, 126.9, 126.2, 126.1, 120.4, 92.1 (dd, J = 20.1, 13.8 Hz), 35.9, 29.5, 29.4, 29.2, 29.0, 27.7, 27.6, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -91.29 (d, J = 40.61 Hz), -91.70 (d, J = 39.10 Hz) ppm; HRMS (ESI) calcd for C_{35}H_{39}F_2N_2O [M+H]⁺ 529.3025, found 529.3048.**

2-(5-([1,1'-Biphenyl]-4-yl)-6,6-difluoro-2-phenylhex-5-en-1-yl)quinazolin-4(3*H***)-one (3k): White solid (79%, 77.8 mg); m.p.: 149-150 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.16 (s, 1H), 8.24 (dd, J = 8.4, 1.6 Hz, 1H), 7.75-7.68 (m, 2H), 7.53-7.51 (m, 2H), 7.45-7.41 (m, 5H), 7.40-7.31 (m, 2H), 7.30-7.26 (m, 3H), 7.25-7.18 (m, 3H), 3.46-3.38 (m, 1H), 3.07-2.97 (m, 2H), 2.39-2.30 (m, 2H), 1.93-1.87 (m, 2H); ¹³C NMR** (100 MHz, CDCl₃): δ = 164.2, 155.0, 153.4 (dd, *J* =288.5, 285.4 Hz), 149.2, 142.7, 140.4, 139.8, 134.7, 132.1 (t, *J* =3.4 Hz), 128.7, 128.6, 128.4, (t, *J* = 2.5 Hz), 127.7, 127.3, 127.2, 126.94, 126.92, 126.85, 126.4, 126.1, 120.3, 91.5 (dd, *J* = 20.9, 12.7 Hz), 43.7, 43.3, 33.0, 25.1; ¹⁹F NMR (376 MHz, CDCl₃) δ = -90.19 (d, *J* = 41.36 Hz), -90.59 (d, *J* = 42.86 Hz) ppm; HRMS (ESI) calcd for C₃₂H₂₇F₂N₂O [M+H]⁺ 493.2086, found 493.2088

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluoro-4-methylhept-6-en-1-yl)quinazolin-4(3*H***)-one (3**): White solid (76%, 67.5 mg); m.p.:109-110 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.66$ (s, 1H), 8.32 (d, J = 8.4 Hz, 1H), 7.79-7.73 (m, 2H), 7.59-7.55 (m, 4H), 7.48-7.33 (m, 6H), 2.81 (t, J = 7.2 Hz, 2H), 2.55-2.49 (m, 1H), 2.34-2.28 (m, 1H), 2.06-1.86 (m, 2H), 1.65-1.55 (m, 2H), 1.44-1.34 (m, 1H), 0.97 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.7$, 156.9, 154.0 (dd, J = 282.9, 279.3 Hz), 149.4, 140.3, 139.8, 134.7, 132.6 (t, J = 3.6 Hz), 128.7, 128.5 (t, J = 3.3 Hz), 127.2, 127.1, 127.0, 126.8, 126.2, 126.0, 120.3, 91.0 (dd, J = 21.8, 13.0 Hz), 35.91, 35.86, 34.6, 30.8, 24.8, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.62$ (d, J = 43.24 Hz), -90.96 (d, J = 43.24 Hz) ppm; HRMS (ESI) calcd for C₂₈H₂₇F₂N₂O [M+H]⁺ 445.2086, found 445.2099.

2-(6-([1,1'-biphenyl]-4-yl)-7,7-difluoro-4-methylhept-6-en-1-yl)-8-methylquinazolin-

4(3*H***)-one (3m):** White solid (78%, 71.5 mg); m.p.: 100-101°C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.26$ (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.61-7.53 (m, 5H), 7.45-7.41 (m, 2H), 7.38-7.31 (m, 4H), 2.79 (t, J = 7.2 Hz, 2H), 2.63 (s, 3H), 2.54-2.47 (m, 1H), 2.32-2.26 (m, 1H), 2.02-1.94 (m, 1H), 1.90-1.83 (m, 1H), 1.64-1.53 (m, 2H), 1.41-1.33 (m, 1H), 0.94 (d, J = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.9$, 155.4, 154.4 (dd, J = 288.2, 284.9 Hz), 147.9, 140.4, 139.9, 135.7, 135.3, 132.7 (t, J = 3.7 Hz), 128.7, 128.5 (t, J = 3.2 Hz), 127.3, 127.0, 126.9, 125.7, 123.7, 120.2, 91.1 (dd, J = 21.5, 12.5 Hz), 35.9, 35.6, 34.7, 30.9, 24.5, 19.0, 17.6; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.61$ (d, J = 43.24 Hz), -90.96 (d, J = 43.24 Hz) ppm; HRMS (ESI) calcd for C₂₉H₂₉F₂N₂O [M+H]⁺ 459.2242, found 459.2246.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluoro-4-methylhept-6-en-1-yl)-7-methylquinazolin-

4(3*H***)-one (3n):** White solid (78%, 71.5 mg); m.p.: 131-132 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.34$ (s, 1H), 8.16 (dd, J = 8.0, 3.2 Hz, 1H), 7.57-7.51 (m, 5H), 7.44-7.40 (m, 2H), 7.38-7.32 (m, 3H), 7.27-7.24 (m, 1H), 2.76 (t, J = 8.4 Hz, 2H), 2.52-2.45 (m, 4H), 2.32-2.25 (m, 1H), 1.97-1.81 (m, 2H), 1.62-1.52 (m, 2H), 1.40-1.30 (m, 1H), 0.93 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.4$, 157.0, 154.0 (dd, J = 289.0, 285.2 Hz), 149.4, 145.9, 140.4, 139.9, 132.6 (t, J = 3.4 Hz), 128.7, 128.5 (t, J = 3.3 Hz), 127.9, 127.3, 127.0, 126.9, 126.8, 125.9, 117.9, 91.1 (dd, J = 21.6, 12.8 Hz), 36.0, 35.9, 34.7, 30.9, 24.9, 21.9, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.64$ (d, J = 43.24 Hz), -90.98 (d, J = 43.99 Hz) ppm; HRMS (ESI) calcd for C₂₉H₂₉F₂N₂O [M+H]⁺ 459.2242, found 459.2251.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluoro-4-methylhept-6-en-1-yl)-7-chloroquinazolin-

4(3*H***)-one (3o):** White solid (72%, 68.8 mg); m.p.: 102-103 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.39$ (s, 1H), 8.17 (dd, J = 8.4, 1.2 Hz, 1H), 7.71-7.70 (m, 1H), 7.58-7.54 (m, 4H), 7.45-7.32 (m, 6H), 2.75 (t, J = 6.8 Hz, 2H), 2.51-2.45 (m, 1H), 2.32-2.27 (m, 1H), 1.99-1.92 (m, 1H), 1.88-1.81 (m, 1H), 1.62-1.51 (m, 2H), 1.38-1.26 (m, 1H), 0.94 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.0$, 158.2, 154.0 (dd, J = 289.4, 285.5 Hz), 150.3, 141.0, 140.3, 139.9, 132.6 (t, J = 3.8 Hz), 128.7, 128.5 (t, J = 3.3 Hz), 127.5, 127.3, 127.0, 126.9, 126.85, 126.76, 118.7, 91.0 (dd, J = 21.2, 12.8 Hz), 35.8, 35.7, 34.7, 30.9, 24.6, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.54$ (d, J = 43.24 Hz), -90.85 (d, J = 43.62 Hz) ppm; HRMS (ESI) calcd for C₂₈H₂₆ClF₂N₂O [M+H]⁺ 479.1696, found 479.1702.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluoro-4-methylhept-6-en-1-yl)-7-bromoquinazolin-
4(3*H***)-one (3p):** White solid (67%, 70.0 mg); m.p.: 113-114 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.31$ (s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.91-7.89 (m, 1H), 7.58-7.53 (m, 5H), 7.45-7.32 (m, 5H), 2.74 (t, J = 7.6 Hz, 2H), 2.51-2.44 (m, 1H), 2.35-2.27 (m, 1H), 1.95-1.81 (m, 2H), 1.63-1.51 (m, 2H), 1.36-1.27 (m, 1H), 0.94 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.1$, 158.1, 154.0 (dd, J = 289.1, 284.4 Hz), 150.3, 140.4, 139.9, 132.6, 130.0, 129.8, 129.7, 128.8, 128.5 (t, J = 3.3 Hz), 127.5, 127.4, 127.0, 126.9, 119.1, 91.0 (dd, J = 21.7, 12.6 Hz), 35.82, 35.78, 34.7, 30.9, 24.6, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.54$ (d, J = 43.24 Hz), -90.85 (d, J = 42.86 Hz) ppm; HRMS (ESI) calcd for C₂₈H₂₆BrF₂N₂O [M+H]⁺523.1191, found 523.1200.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluoro-4-methylhept-6-en-1-yl)-6-methylquinazolin-

4(3*H***)-one (3q):** White solid (80%, 73.3 mg); m.p.: 142-143°C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.44$ (s, 1H), 8.10-8.09 (m, 1H), 7.64-7.62 (m, 1H), 7.59-7.52 (m, 5H), 7.44-7.40 (m, 2H), 7.38-7.32 (m, 3H), 2.78 (t, J = 7.6 Hz, 2H), 2.54-2.50 (m, 1H), 2.48 (s, 3H), 2.32-2.26 (m, 1H), 2.01-1.83 (m, 2H), 1.64-1.52 (m, 2H), 1.42-1.32 (m, 1H), 0.95 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.6$, 156.0, 154.0 (dd, J = 289.0, 285.2 Hz), 147.4, 140.4, 139.9, 136.4, 136.3, 132.6 (t, J = 3.2 Hz), 128.7, 128.5 (t, J = 3.3 Hz), 127.3, 127.0, 126.90, 126.88, 125.5, 120.1, 91.1 (dd, J = 21.7, 12.8 Hz), 36.0, 35.8, 34.6, 30.9, 24.9, 21.1, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.62$ (d, J = 43.24 Hz), -90.96 (d, J = 43.24 Hz) ppm; HRMS (ESI) calcd for C₂₉H₂₉F₂N₂O [M+H]⁺459.2242, found 459.2244.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluoro-4-methylhept-6-en-1-yl)-6-fluoroquinazolin-

4(3*H***)-one (3r):** White solid (75%, 69.3 mg); m.p.: 134-135 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.46$ (s, 1H), 7.91 (dd, J = 8.0, 3.2 Hz, 1H), 7.73-7.70 (m, 1H), 7.58-7.54 (m, 4H), 7.51-7.32 (m, 6H), 2.76 (t, J = 8.0 Hz, 2H), 2.55-2.46 (m, 1H), 2.34-2.28 (m, 1H), 2.05-1.94 (m, 1H), 1.91-1.83 (m, 1H), 1.68-1.52 (m, 2H), 1.41-1.30 (m, 1H), 0.96 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.1$, 160.6 (d, J = 146.6 Hz), 156.2, 154.1 (dd, J = 288.6, 284.9 Hz), 146.1, 140.5, 140.0, 132.70 (t, J = 3.4 Hz), 129.6 (d, J = 8.0 Hz), 128.8, 128.6 (t, J = 3.3 Hz),127.4, 127.1, 127.0, 123.5 (d, J = 23.9 Hz),

121.5 (d, J = 8.6 Hz), 110.9 (d, J = 23.3 Hz), 91.1 (dd, J = 21.7, 12.7 Hz), 35.9, 35.8, 34.8, 31.0, 24.8, 19.1; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.59$ (d, J = 42.49 Hz), -90.91 (d, J = 43.24 Hz), -112.99 (s) ppm; HRMS (ESI) calcd for C₂₈H₂₆F₃N₂O [M+H]⁺ 463.1992, found 463.2002.

2-(4-(2-([1,1'-Biphenyl]-4-yl)-3,3-difluoroallyl)undecyl)quinazolin-4(3*H***)-one (3s): White solid (88%, 93.0 mg); m.p.: 77-78 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.29 (s, 1H), 8.30 (d, J = 8.0 Hz, 1H), 7.79-7.70 (m, 2H), 7.57-7.52 (m, 4H), 7.47-7.32 (m, 6H), 2.76 (t, J = 7.6 Hz, 2H), 2.47-2.41 (m, 2H), 1.91-1.85 (m, 2H), 1.49-1.47 (m, 3H), 1.29-1.17 (m, 12H), 0.85 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.6, 156.8, 153.9 (dd, J = 287.9, J = 286.7 Hz), 149.4, 140.4, 139.9, 134.8, 132.6, 128.7, 128.6 (t, J = 1.7 Hz), 127.3, 127.2, 127.0, 126.9, 126.3, 126.1, 120.4, 91.2 (dd, J = 18.4, 16.8 Hz), 36.1, 35.4, 32.8, 32.6, 31.8, 29.8, 29.2, 26.1, 24.3, 22.6, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -90.80 (d, J = 43.24 Hz), -90.99 (d, J = 43.99 Hz) ppm; HRMS (ESI) calcd for C₃₄H₃₉F₂N₂O [M+H]⁺ 529.3025, found 529.3038.**

2-(4-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)undecyl)-3-methylquinazolin-4(3H)-one (3t): White solid (79%, 85.0 mg); $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.26$ (d, J = 8.0 Hz, 1H), 7.72-7.68 (m, 1H), 7.63-7.56 (m, 5H), 7.46-7.40 (m, 3H), 7.38-7.33 (m, 3H), 3.56 (s, 3H), 2.72 (t, J = 8.0 Hz, 2H), 2.48-2.38 (m, 2H), 1.86-1.75 (m, 2H), 1.49-1.42 (m, 3H), 1.32-1.24 (s, 12H), 0.88 (t, J = 4.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.5$, 156.8, 154.0 (dd, J = 287.0, 281.2 Hz), 147.1, 140.4, 140.0, 134.0, 132.6, 128.8, 128.6 (t, J = 3.2 Hz), 127.4, 127.0, 126.9, 126.8, 126.7, 126.3, 120.1, 91.2 (dd, J = 18.2, 15.7 Hz), 35.7, 35.4, 32.9, 32.5, 31.8, 31.8, 30.3, 29.8, 29.2, 26.2, 23.4, 22.6, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -91.50$ (d, J =42.11 Hz), -91.62 (d, J = 42.49 Hz) ppm; HRMS (ESI) calcd for C₃₅H₄₁F₂N₂O [M+H]⁺ 543.3182, found 543.3187.

2-(6-([1,1'-Biphenyl]-4-yl)-4-cyclopentyl-7,7-difluorohept-6-en-1-yl)quinazolin-4(3H)-

one (3u): White solid (68%, 67.8 mg); m.p.: 168-169 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 11.83$ (s, 1H), 8.29 (dd, J = 8.0, 1.2 Hz, 1H), 7.79-7.70 (m, 2H), 7.56-7.51 (m, 4H), 7.48-7.39 (m, 4H), 7.33 (d, J = 7.2 Hz, 2H), 2.72 (t, J = 7.6 Hz, 2H), 2.58-2.40 (m, 2H), 1.92-1.80 (m, 3H), 1.77-1.71 (m, 3H), 1.57-1.43 (m, 6H), 1.19-1.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.3, 156.7, 153.8$ (dd, J = 292.0, 290.2 Hz), 149.4, 140.4, 139.9, 134.8, 132.6, 128.7, 128.6, 127.3, 127.2, 127.0, 126.9, 126.3, 126.2, 120.5, 91.5 (dd, J = 37.7, 20.8 Hz), 42.8, 40.0, 36.3, 30.5, 30.2, 30.0, 29.9, 25.3, 23.6; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.87$ (d, J = 43.62 Hz), -91.01 (d, J = 44.37 Hz) ppm; HRMS (ESI) calcd for $C_{32}H_{33}F_2N_2O$ [M+H]⁺ 499.2556, found 499.2553.

2-(6-([1,1'-Biphenyl]-4-yl)-4-benzyl-7,7-difluorohept-6-en-1-yl)quinazolin-4(3H)-one

(3v): White solid (80%, 83.2 mg); m.p.: 143-144 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.42$ (s, 1H), 8.27 (dd, J = 8.0, 1.2 Hz, 1H), 7.79-7.72 (m, 2H), 7.58-7.56 (m, 2H), 7.52-7.50 (m, 2H), 7.45-7.42 (m, 3H), 7.37-7.33 (m, 1H), 7.25-7.15 (m, 5H), 7.08-7.05 (m, 2H), 2.76 (t, J = 6.8 Hz, 2H), 2.71-2.66 (m, 1H), 2.63-2.57 (m, 1H), 2.52-2.40 (m, 2H), 2.00-1.92 (m, 2H), 1.81-1.74 (m, 1H), 1.57-1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.6, 156.7, 153.9$ (dd, J = 285.9, 281.0 Hz), 149.3, 140.5, 140.4, 139.9, 134.8, 132.1, 129.0, 128.7, 128.5 (t, J = 3.3 Hz), 128.2, 127.3, 127.1, 127.0, 126.9, 126.3, 126.1, 125.8, 120.3, 91.0 (dd, J = 18.2, 15.7 Hz), 39.9, 37.5, 35.8, 32.4, 31.4, 24.2; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.27$ (d, J = 45.12 Hz), -90.45 (d, J = 44.74 Hz); HRMS (ESI) calcd for $C_{34}H_{31}F_2N_2O$ [M+H]⁺ 521.2399, found 521.2415.

2-(3-(3-([1,1'-Biphenyl]-4-yl)-4,4-difluorobut-3-en-1-yl)octahydropentalen-1-yl)quinazol in-4(3H)-one (3w): White solid (77%, 76.4 mg); m.p.: 81-82 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3, dr = 1:1.5); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.25$ (s, 0.6H), 12.23 (s, 0.4H), 8.25 (dd, J = 8.4, 1.6 Hz, 1H), 7.75-7.67 (m, 2H), 7.57-7.51 (m, 4H), 7.46-7.41 (m, 3H), 7.35-7.32 (m, 3H), 2.95-2.90 (m, 1H), 2.74-2.68 (m, 1H), 2.55-2.50 (m, 1H), 2.46-2.41 (m, 1H), 2.30-2.23 (m, 1H), 2.18-2.11 (m, 1H), 1.97-1.82 (m, 2H), 1.52-1.44 (m, 5H), 1.36-1.27 (m, 2H), 1.16-1.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.4, 156.4, 153.9 (dd, *J* = 290.3, 285.5 Hz), 149.5, 140.4, 139.8, 134.7, 132.7 (t, *J* = 3.9 Hz), 128.7, 128.4 (t, *J* = 3.7 Hz), 127.3, 127.2, 127.0, 126.9, 126.3 126.1, 120.4, 91.6 (dd, *J* = 22.0, 11.8 Hz), 50.3, 49.8, 45.34, 45.31, 41.4, 40.7, 33.1, 32.4, 31.7, 25.4; ¹⁹F NMR (376 MHz, CDCl₃) δ = -90.43 (d, *J* = 42.86 Hz), -91.11 (d, *J* = 42.11 Hz) ppm; HRMS (ESI) calcd for C₃₂H₃₁F₂N₂O [M+H]⁺ 497.2399, found 497.2399.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7-difluoro-4,4-dimethylhept-6-en-1-yl)quinazolin-4(3*H***)-one (3x):** White solid (92%, 84.3 mg); m.p.: 125-126 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 11.98$ (s, 1H), 8.28 (dd, J = 8.0, 1.6 Hz, 1H), 7.77-7.73 (m, 1H), 7.69 (d, J = 6.8 Hz, 1H), 7.58-7.53 (m, 4H), 7.47-7.43 (m, 1H), 7.42-7.36 (m, 4H), 7.34-7.30 (m, 1H), 2.62 (t, J = 8.0 Hz, 2H), 2.42 (t, J = 2.4 Hz, 2H), 1.86-1.78 (m, 2H), 1.37-1.33 (m, 2H), 0.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.2, 156.6, 154.4$ (dd, J = 288.1, 285.5 Hz), 149.4, 140.4, 139.8, 134.7, 134.5, 134.4, 128.9, 128.8 (t, J = 2.8 Hz), 127.3, 127.2, 126.9, 126.3, 126.1, 120.5, 90.4 (dd, J = 21.5, 13.2 Hz), 41.9, 39.3, 36.4, 35.3, 27.1, 22.2; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -88.85$ (d, J = 39.48 Hz), -91.34 (d, J = 40.98 Hz) ppm; HRMS (ESI) calcd for C₂₉H₂₉F₂N₂O [M+H]⁺ 459.2242, found 459.2247.

2-(3-(2-([1,1'-Biphenyl]-4-yl)-3,3-difluoroallyl)cyclohexyl)quinazolin-4(3H)-one (3y): White solid (75%, 68.4 mg); m.p.: 140-141 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3, dr = 1:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.34$ (s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.77-7.71 (m, 2H), 7.61-7.55 (m, 4H), 7.47-7.42 (m, 3H), 7.38-7.33 (m, 3H), 2.85-2.77 (m, 2H), 2.73-2.39 (m, 3H), 2.16-1.48 (m, 5H), 1.41-1.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.5$, 156.39, 156.36, 153.94 (dd, J = 288.6, 284.9 Hz), 153.91 (dd, J = 288.1, 284.6 Hz), 149.44, 149.42, 140.5, 139.9, 134.7, 132.6, 128.7, 128.6, 127.3, 127.2, 127.0, 126.9, 126.3, 126.1, 120.4, 91.73 (dd, J = 2 1.6, 12.6 Hz), 91.71 (dd, J = 21.1, 13.2 Hz), 41.9, 41.8, 39.4, 38.5, 38.1, 37.5, 37.3, 36.8, 33.8, 33.7, 32.3, 32.0, 31.0, 30.8; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -91.01$ (d, J = 14.66 Hz), -91.13 (d, J = 14.29 Hz), -91.34 (d, J = 15.04 Hz), -91.46 (d, J = 14.29 Hz) ppm; HRMS (ESI) calcd for C₂₉H₂₇F₂N₂O [M+H]⁺ 457.2086, found 457.2084.

2-(2-(2-([1,1'-Biphenyl]-4-yl)-3,3-difluoroallyl)-7-hydroxy-2-methyl-1,2,3,4,4a,9,10,10a -octahydrophenanthren-1-yl)ethyl)quinazolin-4(3H)-one (3z): White solid (68%, 83.8 mg); m.p.: 198-199 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:1, dr = 1:4); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 12.38$ (s, 0.8H), 12.36 (s, 0.2H), 9.08 (s, 0.2 H), 9.05 (s, 0.8 H), 8.16-8.10 (m, 1H), 7.79-7.72 (m, 1H), 7.71-7.67 (m, 1H), 7.64-7.59 (m, 4H), 7.46-7.40 (m, 5H), 7.34-7.30 (m, 1H), 6.98-6.94 (m, 1H), 6.54-6.45 (m, 2H), 2.86-2.57 (m, 5H), 2.20-1.92 (m, 5H), 1.61-1.42 (m, 2H), 1.25-0.97 (m, 5H), 0.68 (s, 0.6 H), 0.60 (s, 2.4 H); ¹³C NMR (100 MHz, DMSO d_6): $\delta = 162.2$, 157.7, 157.5, 155.1, 153.8 (dd, J = 286.3, 285.2 Hz), 149.24, 149.20, 139.55, 139.50, 139.0, 137.2, 134.4, 130.4, 130.3, 129.1, 129.0, 127.7, 127.0, 126.72, 126.67, 126.6, 126.4, 126.1, 125.9, 121.1, 121.0, 114.8, 113.0, 90.5 (dd, J = 20.9, 12.2 Hz), 52.2, 50.4, 43.3, 43.0, 41.9, 41.4, 38.6, 38.3, 37.0, 36.6, 30.1, 27.4, 27.1, 26.8, 26.5, 26.4, 26.2, 17.7; ¹⁹F NMR (376 MHz, DMSO- d_6) $\delta = -89.19$ (d, J = 42.49 Hz), -89.93 (d, J = 43.24 Hz), -91.52 (d, J =42.86 Hz), -91.65 (d, J = 42.86 Hz) ppm; HRMS (ESI) calcd for C₄₀H₃₉F₂N₂O [M+H]⁺ 617.2974, found 617.2972.

Methyl 2-(4-(4-([1,1'-biphenyl]-4-yl)-5,5-difluoro-2-(3-(4-oxo-3,4-dihydroquinazolin-2yl)pr-opyl)pent-4-en-1-yl)phenyl)propanoate (3za): White solid (67%, 81.2 mg); m.p.: 180-181 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3, dr = 1:1); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 12.46 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.79-7.71 (m, 2H), 7.56 (d, J = 7.6 Hz, 2H), 7.49 (d, J =8.4 Hz, 2H), 7.45-7.41 (m, 3H), 7.36-7.32 (m, 1H), 7.22-7.15 (m, 4H), 7.02 (d, J = 8.0 Hz, 2H), 3.72-3.67 (m, 1H), 3.65 (s, 3H), 2.76 (t, J = 7.6 Hz, 2H), 2.68-2.39 (m, 4H), 2.00-1.91 (m, 2H), 1.80-1.72 (m, 1H), 1.54-1.46 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.1$, 164.5, 156.7, 153.9 (dd, J = 298.1, 294.9 Hz), 149.2, 140.3, 139.9, 139.4, 138.10, 138.07, 134.8, 132.1, 129.3, 128.7, 128.5(t, J = 3.3 Hz), 127.33, 127.26, 127.1, 126.95, 126.88, 126.4, 126.1, 120.3, 91.0 (dd, J = 20.4, 13.5 Hz), 51.9, 44.9, 39.5, 37.5, 35.8, 32.6, 31.4, 24.2, 18.55, 18.47; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.00$ (d, J = 42.86 Hz), -90.18 (d, J = 43.24 Hz) ppm; HRMS (ESI) calcd for C₃₈H₃₇F₂N₂O₃ [M+H]⁺ 607.2767, found 607.2759.

2-(7,7-Difluoro-6-(4-(trimethylsilyl)phenyl)hept-6-en-1-yl)quinazolin-4(3*H***)-one (4a): White solid (58%, 47.7 mg); m.p.: 114-115 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.27 (s, 1H), 8.28 (dd, J = 7.6, 1.2 Hz, 1H), 7.80-7.76 (m, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.49-7.44 (m, 3H), 7.27 (d, J = 7.6 Hz, 2H), 2.80 (t, J = 7.6 Hz, 2H), 2.45-2.41 (m, 2H), 1.92-1.86 (m, 2H), 1.50-1.47 (m, 4H), 0.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.5, 156.9, 153.6 (dd, J = 289.1, 286.6 Hz), 149.3, 139.4, 134.8, 134.0, 133.4, 127.4 (t, J = 2.7 Hz), 126.4, 126.1, 120.4, 92.2 (dd, J = 20.4, 13.4 Hz), 35.7, 28.6, 27.41, 27.35, 27.2, -1.2; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -93.07 (d, J = 44.37 Hz), -93.26 (d, J = 43.62 Hz) ppm; HRMS (ESI) calcd for C₂₄H₂₉F₂N₂OSi [M+H]⁺427.2012, found 427.2022.**

2-(6-(4-(Tert-butyl)phenyl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(3H)-one (4b): White solid (62%, 50.9 mg); m.p.: 112-113 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.24$ (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.79-7.75 (m, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.48-7.44 (m, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 2.79 (t, J = 7.6 Hz, 2H), 2.43-2.38 (m, 2H), 1.92-1.85 (m, 2H), 1.53-1.46 (m, 4H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.5$, 156.8, 153.6 (dd, J = 287.5, 286.0 Hz), 150.0, 149.5, 134.8, 130.5, 127.7 (t, J = 3.2 Hz), 127.2, 126.3, 126.1, 125.3, 120.4, 91.9 (dd, J = 19.4, 14.8 Hz), 35.7, 34.4, 31.2, 28.6, 27.43, 27.40, 27.2; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -93.63$ (d, J = 46.62 Hz), -93.80 (d, J = 45.87 Hz) ppm; HRMS (ESI) calcd for C₂₅H₂₉F₂N₂O [M+H]⁺ 411.2243, found 411.2246.

2-(7,7-Difluoro-6-(p-tolyl)hept-6-en-1-yl)quinazolin-4(3*H***)-one (4c): White solid (56%, 41.2 mg); m.p.: 151-152 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz,**

CDCl₃): $\delta = 11.90$ (s, 1H), 8.26 (d, J = 7.6 Hz, 1H), 7.80-7.75 (m, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.48-7.44 (m, 1H), 7.18-7.11 (m, 4H), 2.76 (t, J = 7.6 Hz, 2H), 2.44-2.38 (m, 2H), 2.32 (s, 3H), 1.91-1.84 (m, 2H), 1.50-1.44 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.3$, 156.7, 153.5 (dd, J = 288.2, 285.6 Hz), 149.4, 136.9, 134.8, 130.6, 129.1, 128.0 (t, J = 2.6 Hz), 127.2, 126.4, 126.2, 120.4, 92.0 (dd, J = 19.8, 16.9 Hz), 35.8, 28.5, 27.4, 27.3, 27.2, 21.1; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -92.02$ (d, J = 45.12 Hz), -92.15 (d, J = 45.12 Hz) ppm; HRMS (ESI) calcd for C₂₂H₂₃F₂N₂O [M+H]⁺ 369.1773, found 369.1774.

2-(7,7-Difluoro-6-(4-methoxyphenyl)hept-6-en-1-yl)quinazolin-4(3*H***)-one (4d): White solid (65%, 49.9 mg); m.p.: 132-133 °C; R_f= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.14 (s, 1H), 8.26 (dd,** *J* **= 8.0, 1.6 Hz, 1H), 7.79-7.75 (m, 1H), 7.70 (d,** *J* **= 7.2 Hz, 1H), 7.48-7.44 (m, 1H), 7.21-7.19 (m, 2H), 6.87-6.84 (m, 2H), 3.78 (s, 3H), 2.77 (t,** *J* **= 7.6 Hz, 2H), 2.41-2.36 (m, 2H), 1.91-1.83 (m, 2H), 1.49-1.44 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.4, 158.6, 156.8, 153.4 (dd,** *J* **= 287.3, 285.7 Hz), 149.4, 134.8, 129.3 (t,** *J* **= 3.1 Hz), 127.2, 126.3, 126.1, 125.7, 120.4, 113.8, 91.6 (dd,** *J* **= 17.8, 16.7 Hz), 55.2, 35.7, 28.5, 27.5, 27.3, 27.2; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -92.53 (d,** *J* **= 45.50 Hz), -92.66 (d,** *J* **= 44.37 Hz) ppm; HRMS (ESI) calcd for C₂₂H₂₃F₂N₂O₂ [M+H]⁺ 385.1722, found 385.1714.**

2-(6-(4-(Benzyloxy)phenyl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(3*H***)-one (4e): White solid (66%, 60.7 mg); m.p.: 147-148 °C; R_f= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 11.97 (s, 1H), 8.27 (d,** *J* **= 7.6 Hz, 1H), 7.79-7.71 (m, 2H), 7.49-7.33 (m, 6H), 7.23-7.19 (m, 2H), 7.00-6.92 (m, 2H), 5.04 (s, 2H), 2.78 (t,** *J* **= 7.6 Hz, 2H), 2.47-2.37 (m, 2H), 1.96-1.85 (m, 2H), 1.60-1.44 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.2, 157.8, 157.0, 156.9, 153.4 (dd,** *J* **= 286.2, 284.4 Hz), 136.8, 134.9, 129.3 (t,** *J* **= 3.2 Hz), 128.6, 128.0, 127.5, 126.9, 126.5, 126.2, 126.0, 120.3, 114.7, 91.6 (dd,** *J* **= 18.2, 16.5 Hz), 70.0, 35.6, 28.5, 27.5, 27.3, 27.2; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -92.63 (d,** *J* **= 46.25 Hz), -92.76 (d,** *J* **= 45.87 Hz) ppm; HRMS (ESI) calcd for C₂₈H₂₇F₂N₂O₂ [M+H]⁺ 461.2035, found 461.2021.**

2-(7,7-Difluoro-6-(4-phenoxyphenyl)hept-6-en-1-yl)quinazolin-4(3*H***)-one (4f): White solid (60%, 53.5 mg); m.p.: 137-138 °C; R_j= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.36 (s, 1H), 8.27 (dd,** *J* **= 8.0, 1.6 Hz, 1H), 7.79-7.70 (m, 2H), 7.47-7.43 (m, 1H), 7.36-7.32 (m, 2H), 7.27-7.23 (m, 2H), 7.13-7.09 (m, 1H), 7.04-7.01 (m, 2H), 6.96-6.94 (m, 2H), 2.80 (t,** *J* **= 7.6 Hz, 2H), 2.44-2.39 (m, 2H), 1.94-1.86 (m, 2H), 1.55-1.48 (m, 4H); ¹³C**

NMR (100 MHz, CDCl₃): δ = 164.6, 156.8, 156.7, 156.4, 153.5 (dd, *J* = 286.9, 285.5 Hz), 149.4, 134.8, 129.7, 129.5 (t, *J* = 3.4 Hz), 128.2, 127.1, 126.3, 126.1, 123.4, 120.3, 119.1, 118.4, 91.6 (dd, *J* = 19.2, 15.6 Hz), 35.6, 28.5, 27.5, 27.3, 27.1;¹⁹F NMR (376 MHz, CDCl₃) δ = -93.42 (d, *J* = 47.75 Hz), -93.57 (d, *J* = 48.50 Hz) ppm; HRMS (ESI) calcd for C₂₇H₂₅F₂N₂O₂ [M+H]⁺ 447.1879, found 447.1893.

2-(7,7-Difluoro-6-(4-((tetrahydro-2*H***-pyran-2-yl)oxy)phenyl)hept-6-en-1-yl)quinazolin-4(***3H***)-one (4g): White solid (61%, 55.4 mg); m.p.: 149-150 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.06 (s, 1H), 8.26 (dd, J = 8.0, 1.6 Hz, 1H), 7.79-7.75 (m, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.48-7.44 (m, 1H), 7.20-7.18 (m, 2H), 7.02-6.98 (m, 2H), 5.39 (t, J = 3.2 Hz, 1H), 3.92-3.86 (m, 1H), 3.62-3.57 (m, 1H), 2.76 (t, J = 7.6 Hz, 2H), 2.40-2.36 (m, 2H), 2.04-1.93 (m, 1H), 1.88-1.82 (m, 4H), 1.70-1.59 (m, 3H), 1.49-1.43 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.4, 156.8, 156.1, 153.4 (dd, J = 287.8, 285.9 Hz), 149.4, 134.8, 129.2(t, J = 3.0 Hz), 127.2, 126.6, 126.3, 126.1, 120.4, 116.3, 96.3, 91.7 (dd, J = 18.4, 16.6 Hz), 62.0, 35.7, 30.3, 28.5, 27.5, 27.3, 27.2, 25.1, 18.7; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -92.39 (d, J = 45.87 Hz), -92.52 (d, J = 45.87 Hz) ppm; HRMS (ESI) calcd for C_{26}H_{29}F_2N_2O_3 [M+H]⁺ 455.2141, found 455.2120.**

2-(6-(4-Chlorophenyl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(3*H***)-one (4h): White solid (59%, 45.8 mg); m.p.: 154-155 °C; R_{f}= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.13 (s, 1H), 8.25 (dd,** *J* **= 8.0, 1.2 Hz, 1H), 7.80-7.76 (m, 1H), 7.70 (d,** *J* **= 7.2 Hz, 1H), 7.48-7.44 (m, 1H), 7.29-7.26 (m, 2H), 7.22-7.19 (m, 2H), 2.77 (t,** *J* **= 7.6 Hz, 2H), 2.42-2.36 (m, 2H), 1.91-1.83 (m, 2H), 1.50-1.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.5, 156.7, 153.5 (dd,** *J* **= 288.3, 285.7 Hz), 149.4, 134.8, 133.0, 132.0, 129.5 (t,** *J* **= 2.7 Hz), 128.6, 127.2, 126.4, 126.1, 120.4, 91.4 (dd,** *J* **= 21.0, 13.5 Hz), 35.6, 28.4, 27.3, 27.2, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -90.69 (d,** *J* **= 42.86 Hz), -90.87 (d,** *J* **= 43.24 Hz) ppm; HRMS (ESI) calcd for C₂₁H₂₀ClF₂N₂O [M+H]⁺ 389.1227, found 389.1239.**

2-(6-(9,9-Dimethyl-9H-fluoren-3-yl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(3H)-one

(4i): White solid (70%, 65.8 mg); m.p.: 90-91 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.21$ (s, 1H), 8.27 (dd, J = 8.0, 1.6 Hz, 1H), 7.77-7.72 (m, 1H), 7.70-7.68 (m, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.45-7.40 (m, 2H), 7.36-7.35 (m, 1H), 7.33-7.30 (m, 2H), 7.27-7.25 (m, 1H), 2.79 (t, J = 7.2 Hz, 2H), 2.52-2.47 (m, 2H), 1.93-1.86 (m, 2H), 1.54-1.51 (m, 4H), 1.46 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.6, 156.9, 153.9, 153.83$, 153.77 (dd, J = 288.8, 285.6 Hz), 149.6, 138.8, 138.5, 134.9, 132.7 (t, J = 3.0 Hz), 127.4, 127.3, 127.13, 127.09, 126.5, 126.2, 122.7, 122.5 (t, J = 4.2 Hz), 120.5, 120.1, 120.0, 92.8 (dd, J = 20.6, 13.4 Hz), 46.9, 35.8, 28.7, 27.8, 27.5, 27.25, 27.20; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -91.25$ (d, J = 45.12 Hz), -91.45 (d, J = 43.99 Hz) ppm; HRMS (ESI) calcd for C₃₀H₂₉F₂N₂O [M+H]⁺ 471.2243, found 471.2240.

2-(6-(Dibenzo[b,d]thiophen-1-yl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(3*H***)-one (4j): White solid (74%, 68.1 mg); m.p.: 101-102 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, DMSO-d_6): \delta = 12.14 (s, 1H), 8.36-8.32 (m, 2H), 8.08 (dd, J = 8.0, 1.6 Hz, 1H), 7.97-7.95 (m, 1H), 7.75-7.71 (m, 1H), 7.56-7.48 (m, 4H), 7.45-7.40 (m, 2H), 2.53 (t, J = 7.6 Hz, 2H), 2.48-2.45 (m, 2H), 1.68-1.60 (m, 2H), 1.36-1.26 (m, 4H); ¹³C NMR (100 MHz, DMSO-d_6): \delta = 161.9, 157.4, 152.4 (dd, J = 287.6, 284.2 Hz), 149.1, 139.0, 138.2, 135.6, 135.3, 134.3, 128.0 (t, J = 3.4Hz), 127.6, 127.5, 126.9, 126.0, 125.8, 125.3, 125.0, 123.0, 122.4, 121.8, 120.9, 91.7 (dd, J = 23.1, 14.8 Hz), 34.4, 27.8, 27.4, 26.8, 26.4; ¹⁹F NMR (376 MHz, DMSO-d_6) \delta = -87.03 (d, J = 39.48 Hz), -91.74 (d, J = 38.73 Hz) ppm; HRMS (ESI) calcd for C_{27}H_{23}F_2N_2OS [M+H]⁺ 461.1494, found 461.1509.**

2-(6-(Benzo[d][1,3]dioxol-4-yl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(3*H***)-one (4k): White solid (49%, 39.0 mg); m.p.: 131-132 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.20 (s, 1H), 8.26 (dd, J = 8.0, 1.6 Hz, 1H), 7.80-7.75 (m, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.49-7.44 (m, 1H), 6.76-6.71 (m, 3H), 5.93 (s, 2H), 2.79 (t, J = 7.2** Hz, 2H), 2.38-2.33 (m, 2H), 1.92-1.84 (m, 2H), 1.51-1.44 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.4$, 157.0, 153.4 (dd, J = 288.4, 284.6 Hz), 149.1, 147.6, 146.6, 134.9, 127.2 (t, J = 3.2 Hz), 127.0, 126.4, 126.1, 121.7, 120.3, 108.7 (t, J = 3.8 Hz), 108.2, 101.0, 91.9 (dd, J = 21.9, 11.9 Hz), 35.5, 28.4, 27.7, 27.20, 27.16; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -91.90$ (d, J = 45.50 Hz), -92.25 (d, J = 45.87 Hz) ppm; HRMS (ESI) calcd for C₂₂H₂₁F₂N₂O₃ [M+H]⁺ 399.1515, found 399.1536.

2-(7,7-Difluoro-6-(phenanthren-9-yl)hept-6-en-1-yl)quinazolin-4(3*H***)-one (4l):** White solid (39 %, 35.4 mg); m.p.: 73-74 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.15$ (s, 1H), 8.72 (d, J = 8.0 Hz, 1H), 8.66 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.75-7.71 (m, 1H), 7.69-7.63 (m, 3H), 7.61-7.55 (m, 3H), 7.41-7.37 (m, 1H), 2.75 (t, J = 8.4 Hz, 2H), 2.65-2.39 (m, 2H), 1.89-1.82 (m, 2H), 1.55-1.48 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.4$, 156.7, 153.5 (dd, J = 287.7, 286.4 Hz), 149.4, 134.7, 131.2, 130.7, 130.5, 130.1, 129.81, 129.76, 128.5, 128.3, 127.1, 126.9, 126.8, 126.6, 126.3, 126.1, 125.6, 123.1, 122.5, 120.4, 90.4 (dd, J = 22.1, 16.6 Hz), 35.7, 29.0, 28.7, 27.4, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -88.56$ (d, J = 43.62 Hz), -92.95 (d, J = 43.62 Hz) ppm; HRMS (ESI) calcd for C₂₉H₂₅F₂N₂O [M+H]⁺ 455.1930, found 455.1946.

2-(6-(4-(3-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-2-oxopropoxy)ph-

enyl)-7,7-difluorohept-6-en-1-yl)quinazolin-4(*3H*)-one (4m): White solid (39%, 56.4 mg); m.p.: 146-147 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta =$ 11.66 (s, 1H), 8.48 (d, J = 8.4 Hz, 1H), 8.01-7.96 (m, 1H), 7.92-7.90 (m, 3H), 7.72-7.66 (m, 3H), 7.51-7.49 (m, 3H), 7.29-7.28 (m, 2H), 7.12 (d, J = 9.2 Hz, 1H), 6.93 (dd, J = 9.2, 6.8 Hz, 1H), 4.14 (s, 2H), 4.07 (s, 3H), 2.95 (t, J = 7.6 Hz, 2H), 2.69 (s, 3H), 2.64-2.60 (m, 2H), 2.11-2.04 (m, 2H), 1.70-1.65 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.3$, 168.3, 163.8, 156.4, 156.1, 153.7 (dd, J = 289.8, 279.3 Hz), 152.8, 149.6, 139.3, 136.2, 134.8, 133.8, 131.4, 131.2, 130.8, 130.5, 129.3 (t, J = 2.9 Hz), 129.1, 127.1, 126.4, 126.2, 121.4, 120.5, 115.0, 111.9, 111.8, 101.2, 91.4 (dd, J = 35.0, 20.4 Hz), 55.7, 35.6, 30.5, 28.4, 27.4, 27.3, 27.0, 13.4; ¹⁹F NMR (376 MHz, CDCl₃) δ = -91.74 (d, J = 43.24 Hz), -91.91 (d, J = 41.36 Hz) ppm; HRMS (ESI) calcd for C₄₀H₃₅ClF₂N₃O₅ [M+H]⁺ 710.2228, found 710.2256.

4-(1,1-Difluoro-7-(4-oxo-3,4-dihydroquinazolin-2-yl)hept-1-en-2-yl)phenyl 2-(4-isobutyl-phenyl)propanoate (4n): White solid (47%, 52.5 mg); m.p.: 149-150 °C; R_j = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): δ = 11.9 (s, 1H), 7.84 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.35-7.28 (m, 2H), 7.04-7.00 (m, 1H), 6.87 (d, *J* = 7.6 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 6.72 (d, *J* = 7.2 Hz, 2H), 6.56-6.53 (m, 2H), 3.51 (q, *J* = 7.2 Hz, 1H), 2.34 (t, *J* = 7.6 Hz, 2H), 2.04 (d, *J* = 7.2 Hz, 2H), 1.99-1.95 (m, 2H), 1.47-1.41 (m, 3H), 1.18 (d, *J* = 7.2 Hz, 3H), 1.06-1.01 (m, 4H), 0.48 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 173.2, 164.4, 156.8, 153.5 (dd, *J* = 288.7, 285.2 Hz), 149.8, 149.4, 140.8, 137.1, 134.8, 131.1, 129.5, 129.1 (t, *J* = 3.7 Hz), 127.17, 127.15, 126.3, 126.1, 121.4, 120.4, 91.6 (dd, *J* = 19.4, 15.2 Hz), 45.2, 45.0, 35.6, 30.1, 28.4, 27.4, 27.2, 27.0, 22.3, 18.4; ¹⁹F NMR (376 MHz, CDCl₃) δ = -91.95 (d, *J* = 43.24 Hz), -92.08 (d, *J* = 43.62 Hz) ppm; HRMS (ESI) calcd for C₃₄H₃₇F₂N₂O₃ [M+H]⁺ 559.2767, found 559.2781.

2-(6-(4-Acetylphenyl)-7,7,7-trifluoroheptyl)quinazolin-4(3*H***)-one (5a): White solid (73%, 60.8 mg); m.p.: 146-147 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, CDCl₃): \delta = 12.30 (s, 1H), 8.24 (dd, J = 8.0, 1.6 Hz, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.80-7.75 (m, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.49-7.45 (m, 1H), 7.35 (d, J = 7.6 Hz, 2H), 3.35-3.24 (m, 1H), 2.76 (t, J = 8.0 Hz, 2H), 2.57 (s, 3H), 2.08-2.01 (m, 1H), 1.92-1.81 (m, 3H), 1.51-1.41 (m, 2H), 1.31-1.22 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): \delta = 197.5, 164.4, 156.7, 149.2, 140.0, 136.8, 134.9, 129.2, 128.6, 127.1, 126.5 (q, J = 278.1 Hz), 126.4, 126.1, 120.3, 49.9 (q, J = 26.6 Hz), 35.5, 28.6, 28.4, 26.9, 26.6, 26.3; ¹⁹F NMR: (376 MHz, CDCl₃) \delta = -69.30 (d, J = 8.6 Hz) ppm; HRMS (ESI) calcd for C₂₃H₂₄F₃N₂O₂ [M+H]⁺ 417.1784, found 417.1789**

Ethyl 4-(1,1,1-trifluoro-7-(4-oxo-3,4-dihydroquinazolin-2-yl)heptan-2-yl)benzoate (5b): White solid (56%, 50.0 mg); m.p.: 150-151 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, CDCl₃): $\delta = 11.93$ (s, 1H), 8.24 (dd, J = 8.0, 1.6 Hz, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.80-7.76 (m, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.49-7.45 (m, 1H), 7.33 (d, J = 8.4 Hz, 2H), 4.37 (q, J = 7.2 Hz, 2H), 3.34-3.24 (m, 1H), 2.75 (t, J = 8.0 Hz, 2H), 2.09-2.01 (m, 1H), 1.94-1.79 (m, 3H), 1.54-1.42 (m, 2H), 1.38 (t, J = 6.8 Hz, 3H), 1.30-1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.4$, 164.6, 156.8, 149.6, 140.0, 135.2, 130.7, 130.2, 129.3, 127.5, 126.9 (q, J = 278.1 Hz), 126.7, 126.4, 120.7, 61.3, 50.3 (q, J = 26.2 Hz), 35.9, 29.0, 28.7, 27.2, 26.6, 14.6; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -69.35$ (d, J = 9.02 Hz) ppm; HRMS (ESI) calcd for C₂₄H₂₆F₃N₂O₃ [M+H]⁺ 447.1890, found 447.1902

2-(7,7,7-Trifluoro-6-(4-(methylsulfonyl)phenyl)heptyl)quinazolin-4(3*H***)-one (5c): White solid (70%, 63.3 mg); m.p.: 149-150 °C; R_{f}= 0.2 (EtOAc/petroleum ether = 1:1); ¹H NMR (400 MHz, CDCl₃): \delta = 12.16 (s, 1H), 8.25 (dd,** *J* **= 8.0, 1.6 Hz, 1H), 7.92 (d,** *J* **= 8.4 Hz, 2H), 7.81-7.76 (m, 1H), 7.69 (d,** *J* **= 8.4 Hz, 1H), 7.50-7.46 (m, 3H), 3.40-3.29 (m, 1H), 3.06 (s, 3H), 2.76 (t,** *J* **= 7.6 Hz, 2H), 2.12-2.03 (m, 1H), 1.95-1.80 (m, 3H), 1.54-1.39 (m, 2H), 1.30-1.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): \delta = 164.4, 156.7, 149.1, 141.1, 140.4, 135.0, 130.1, 127.8, 127.1, 126.6, 126.4 (q,** *J* **= 278.6 Hz), 126.1, 120.4, 50.0 (q,** *J* **= 26.7 Hz), 44.4, 35.4, 28.6, 28.5, 26.9, 26.3; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -68.99 (d,** *J* **= 9.02 Hz) ppm; HRMS (ESI) calcd for C₂₂H₂₄F₃N₂O₃S [M+H]⁺ 453.1454, found 453.1470.**

2-(2-(3-(4-Acetylphenyl)-4,4,4-trifluorobutoxy)ethyl)quinazolin-4(3*H***)-one (5d): White solid (81%, 67.7 mg); m.p.: 149-150 °C; R_{f}= 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 11.66 (s, 1H), 8.29 (d,** *J* **= 8.0 Hz, 1H), 7.83 (d,** *J* **= 7.6 Hz, 2H), 7.79-7.75 (m, 1H), 7.68 (d,** *J* **= 8.4 Hz, 1H), 7.50-7.46 (m, 1H), 7.32 (d,** *J* **= 8.0 Hz, 2H), 3.90-3.84 (m, 1H), 3.78-3.72 (m, 1H), 3.66-3.59 (m, 1H), 3.52-3.48 (m, 1H), 3.21-3.15 (m, 1H), 3.02 (t,** *J* **=**

6.8 Hz, 2H), 2.54 (s, 3H), 2.40-2.30 (m, 1H), 2.06-1.98 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.5$, 163.3, 154.6, 148.9, 139.4, 136.9, 134.9, 129.3, 128.6, 127.0, 126.7, 126.6 (q, J = 278.8 Hz), 126.3, 120.7, 67.7, 67.0, 46.2 (q, J = 27.1 Hz), 35.9, 28.8, 26.5; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -69.33$ (d, J = 9.40 Hz) ppm; HRMS (ESI) calcd for C₂₂H₂₂F₃N₂O₃ [M+H]⁺ 419.1577, found 419.1590

2-(2-((3-(4-Acetylphenyl)-4,4,4-trifluorobutyl)thio)ethyl)quinazolin-4(3*H*)-one (5e): White solid (66%, 57.3 mg); m.p.:128-129 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): δ = 12.39 (s, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 6.8 Hz, 2H), 7.81-7.78 (m, 1H), 7.73-7.69 (m, 1H), 7.52-7.48 (m, 1H), 7.38 (d, *J* = 7.6 Hz, 2H), 3.66-3.59 (m, 1H), 3.12-3.04 (m, 4H), 2.67-2.62 (m, 1H), 2.57 (s, 3H), 2.40-2.30 (m, 2H), 2.26-2.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 197.5, 164.3, 154.7, 148.8, 139.0, 137.0, 135.1, 129.3, 128.7, 127.1, 126.8, 126.4 (q, *J* = 278.8 Hz), 126.2, 120.4, 48.2 (q, *J* = 26.9 Hz), 35.5, 28.8, 28.6, 28.2, 26.6; ¹⁹F NMR (376 MHz, CDCl₃) δ = -69.03 (d, *J* = 9.40 Hz) ppm; HRMS (ESI) calcd for C₂₂H₂₂F₃N₂O₂S [M+H]⁺ 435.1349, found 435.1363.

2-(6-(4-Acetylphenyl)-7,7,7-trifluoro-4-methylheptyl)quinazolin-4(3*H***)-one (5f): White solid (76%, 65.4 mg); m.p.:125-126 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3, dr = 1:1.5); ¹H NMR (400 MHz, CDCl₃): \delta = 12.41 (s, 0.4 H), 12.35 (s, 0.6H), 8.27-8.24 (m, 1H), 7.91-7.86 (m, 2H), 7.80-7.75 (m, 1H), 7.72-7.67 (m, 1H), 7.49-7.44 (m, 1H), 7.38-7.34 (m, 2H), 3.51-3.40 (m, 1H), 2.79-2.71 (m, 2H), 2.55 (s, 3H), 2.10-1.69 (m, 4H), 1.46-1.21 (m, 3H), 0.91-0.88 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta = 197.5, 164.6, 156.6, 149.4, 140.3, 139.8, 136.9, 136.8, 134.9, 134.8, 129.3, 129.2, 128.6, 127.2, 126.7 (q,** *J* **= 281.5 Hz), 126.4, 126.3, 126.0, 120.4, 47.7 (q,** *J* **= 26.4 Hz), 37.1, 35.8, 35.6, 35.0, 34.3, 29.3, 29.2, 26.5, 24.6, 23.9, 20.1, 18.3; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -69.91 (d,** *J* **= 8.65 Hz), -70.17 (d,** *J* **= 8.65 Hz) ppm; HRMS (ESI) calcd for C₂₄H₂₆F₃N₂O₂ [M+H]⁺ 431.1941, found 431.1946.**

2-(6-(4-Acetylphenyl)-7,7,7-trifluoro-4,4-dimethylheptyl)quinazolin-4(3*H***)-one (5g): White solid (81%, 72.0 mg); m.p.:112-113 °C; R_f = 0.2 (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): \delta = 12.09 (s, 1H), 8.27 (dd, J = 8.0, 1.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.80-7.76 (m, 1H), 7.72-7.69 (m, 1H), 7.50-7.46 (m, 1H), 7.40 (d, J = 8.0 Hz, 2H), 3.49-3.40 (m, 1H), 2.68 (t, J = 7.6 Hz, 2H), 2.57 (s, 3H), 2.01-1.97 (m, 2H), 1.90-1.84 (m, 1H), 1.77-1.70 (m, 1H), 1.40-1.34 (m. 1H), 1.30-1.24 (m, 1H), 0.77 (s, 3H), 0.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta = 197.5, 164.4, 156.4, 149.4, 142.0, 136.7, 134.9, 129.6, 128.6, 127.2, 126.4, 126.8 (q, J = 278.5 Hz), 126.1, 120.4, 46.5 (q, J = 26.2 Hz), 41.6, 40.0, 36.1, 33.3, 27.4, 27.3, 26.6, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) \delta = -70.45 (d, J = 10.5 Hz) ppm; HRMS (ESI) calcd for C₂₅H₂₈F₃N₂O₂ [M+H]⁺ 445.2097, found 445.2106.**

2-IsopropyI-5-methylcyclohexyl 4-(1,1,1-trifluoro-7-(4-oxo-3,4-dihydroquinazolin-2-yl)h-eptan-2-yl)benzoate (5h): White solid (58%, 64.5 mg); m.p.:118-119 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.27$ (s, 1H), 8.25 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 8.0 Hz, 2H), 7.79-7.75 (m, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.48-7.45 (m, 1H), 7.33 (d, J = 8.4 Hz, 2H), 4.96-4.89 (m, 1H), 3.34-3.25 (m, 1H), 2.76 (t, J = 8.0 Hz, 2H), 2.11-2.03 (m, 2H), 1.95-1.82 (m, 4H), 1.75-1.69 (m, 2H), 1.57-1.41 (m, 4H), 1.30-1.22 (m, 2H), 1.14-1.03 (m, 2H), 0.96-0.87 (m, 7H), 0.78 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.6$, 164.5, 156.6, 149.4, 139.6, 134.9, 130.7, 129.9, 129.0, 127.2, 126.6 (q, J = 278.2 Hz), 126.4, 126.1, 120.3, 74.9, 49.9 (q, J = 26.7 Hz), 47.2, 40.9, 35.6, 34.2, 31.4, 28.7, 27.0, 26.4, 26.3, 23.5, 22.0, 20.7, 16.4; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -69.35$ (d, J = 10.15 Hz) ppm; HRMS (ESI) calcd for C₃₂H₄₀F₂N₂O₃ [M+H]⁺ 557.2986, found 557.2992.

3,7-Dimethyloct-6-en-1-yl 4-(1,1,1-trifluoro-7-(4-oxo-3,4-dihydroquinazolin-2-yl)heptan-2-yl)benzoate (5i): White solid (61%, 67.9 mg); m.p.:114-115 °C; $R_f = 0.2$ (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 12.35$ (s, 1H), 8.25 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.4 Hz, 2H), 7.79-7.75 (m, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.48-7.44 (m, 1H), 7.33 (d, J = 8.0 Hz, 2H), 5.08 (t, J = 7.6 Hz, 1H), 4.38-4.31 (m, 2H), 3.33-3.26 (m, 1H), 2.76 (t, J = 7.6 Hz, 2H), 2.07-1.79 (m, 8H), 1.65 (s, 3H), 1.58 (s, 3H), 1.50-1.37 (m, 4H), 1.28-1.20 (m, 3H), 0.96 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.1$, 164.6, 156.6, 149.4, 139.7, 134.7, 131.3, 130.3, 129.8, 128.9, 127.2, 126.5 (q, J = 280.0 Hz), 126.3, 126.0, 124.5, 120.3, 63.5, 49.90 (q, J = 27.3 Hz), 36.9, 35.5, 35.4, 29.4, 28.6, 28.4, 26.9, 26.3, 25.6, 25.3, 19.4, 17.5; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -70.02$ (d, J = 8.65 Hz) ppm; HRMS (ESI) calcd for C₃₂H₄₀F₃N₂O₃ [M+H]⁺ 557.2986, found 557.3008.

2-(6-([1,1'-Biphenyl]-4-yl)-7,7,7-trifluoro-6-hydroxyheptyl)quinazolin-4(3*H***)-one (6a): White solid (73%, 68.1mg). m.p.: 109-110 °C. ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 12.11 (s, 1H), 8.04 (d,** *J* **= 8.0 Hz, 1H), 7.74-7.52 (m, 9H), 7.43-7.38 (m, 2H), 7.36-7.29 (m, 1H), 6.43 (s, 1H), 2.52-2.46 (m, 2H), 2.25-2.14 (m, 1H), 2.05-1.92 (m, 1H), 1.74-1.59 (m, 2H), 1.37-1.26 (m, 3H), 1.00-0.85 (m, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 162.0, 157.5, 149.1, 139.8, 139.7, 136.8, 134.3, 129.02, 127.7, 127.4, 126.3 (q,** *J* **= 285.2 Hz), 126.9, 126.8, 126.4, 126.0, 125.8, 120.9, 76.0 (q,** *J* **= 26.7 Hz), 34.6, 33.7, 28.7, 26.7, 21.9; ¹⁹F NMR (376 MHz, DMSO-***d***₆): \delta = -79.86 (s) ppm; HRMS (ESI) calcd for C₂₇H₂₆F₃N₂O₂ [M+H]⁺ 467.1941, found 467.1953.**

3-([1,1'-biphenyl]-4-yl)-2-fluoro-8-(4-oxo-3,4-dihydroquinazolin-2-yl)oct-2-enenitrile (**6b**): White solid (51%, 44.6mg). m.p.: 107-108 °C. ¹H NMR (400 MHz, CDCl₃): δ = 12.34 (s, 1H), 8.27 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.79-7.74 (m, 1H), 7.72-7.69 (m, 1H), 7.62-7.56 (m, 4H), 7.48-7.41 (m, 5H), 7.39-7.35 (m, 1H), 2.79 (t, *J* = 7.2 Hz, 2H), 2.73-2.68 (m, 2H), 1.92-1.86 (m, 2H), 1.55-1.49 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 164.5, 156.6, 149.2, 142.5, 140.5 (d, *J* = 14.8 Hz), 139.9, 134.9, 131.8 (d, *J* = 3.9 Hz), 130.7, 128.8, 128.4, 127.8, 127.6, 127.1, 127.0, 126.5, 126.1, 120.3, 112.6 (d, *J* = 47.1 Hz), 35.4, 30.0, 28.6, 26.9, 26.7; ¹⁹F NMR (376 MHz, CDCl₃): δ = -124.50 (s) ppm. HRMS (ESI) calcd for C₂₈H₂₅FN₃O [M+H]⁺ 438.1976 found 438.1986.

Methyl 2-((2-(6-([1,1'-biphenyl]-4-yl)-7,7-difluorohept-6-en-1-yl)-4-oxoquinazolin-3(4*H*)yl)(phenyl)methyl)acrylate (6c): White solid (88%, 106.2mg). m.p.: 121-122 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13$ (d, J = 7.6 Hz, 1H), 7.65-7.60 (m, 1H), 7.55-7.49 (m, 5H), 7.38 -7.33 (m, 3H), 7.30-7.25 (m, 3H), 7.22-7.14 (m, 5H), 6.70 (s, 1H), 6.46 (s, 1H), 5.53 (s, 1H), 3.62 (s, 3H), 2.80-2.65 (m, 2H), 2.35-2.27 (m, 2H), 1.61-1.52 (m, 2H), 1.31-1.19 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.5$, 162.6, 157.5, 153.6 (dd, J = 291.5, 289.6 Hz,), 147.0, 140.5, 140.0, 138.1, 136.8, 134.3, 132.6, 128.78, 128.76, 128.7, 128.5 (t, J = 3.5 Hz), 127.9, 127.8, 127.4, 127.1, 127.0, 126.9, 126.8, 126.4, 121.1, 91.93 (dd, J = 20.5, 17.0 Hz), 60.0, 52.3, 36.0, 28.6, 27.4, 27.3, 26.8; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.95$ (d, J = 42.86 Hz), -91.13 (d, J = 43.24 Hz) ppm; HRMS (ESI) calcd for C₃₈H₃₅F₂N₂O₃ [M+H]⁺ 605.2610, found 605.2612.

2-(6-([1,1'-biphenyl]-4-yl)-7,7-difluorohept-6-en-1-yl)-*N***-benzylquinazolin-4-amine (6d):** colourless oil (81%, 84.4 mg): ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79$ (d, J = 8.0 Hz, 1H), 7.70-7.64 (m, 2H), 7.60-7.54 (m, 4H), 7.46-7.42 (m, 2H), 7.40-7.29 (m, 9H), 5.99 (s, 1H), 4.87 (d, J = 5.2 Hz, 2H), 2.85 (t, J = 7.2 Hz, 2H), 2.45-2.40 (m, 2H), 1.89-1.82 (m, 2H), 1.47-1.43 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 166.8$, 158.6, 152.9 (dd, J = 288.3, 284.6 Hz), 149.4, 139.9, 139.2, 138.0, 132.1, 131.8, 128.1, 128.0, 127.9 (t, J = 3.7 Hz), 127.4, 127.3, 126.9, 126.6, 126.4, 126.3, 124.4, 119.7, 112.4, 91.5 (dd, J = 21.9, 13.2 Hz), 44.4, 39.2, 28.3, 27.6, 27.1, 26.8; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -91.11$ (d, J = 45.50 Hz), -91.45 (d, J = 45.50 Hz) ppm; ppm. HRMS (ESI) calcd for C₃₄H₃₂F₂N₃ [M+H]⁺ 520.2559, found 520.2564.

2-(11-([1,1'-Biphenyl]-4-yl)-12,12-difluoro-6-phenyldodeca-6,11-dien-1-yl)quinazolin-4(3*H***)-one (8a): colorless oil (12%, 13.7 mg); R_f = 0.2 (EtOAc/petroleum ether = 1:3, Z/E = 7:3); ¹H NMR (400 MHz, CDCl₃): \delta = 11.86 (s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.78-7.69 (m,**

2H), 7.60-7.54 (m, 3H), 7.46-7.37 (m, 4H), 7.34-7.26 (m, 6H), 7.22-7.18 (m, 1H), 7.13-7.08 (m, 1H), 5.59 (t, J = 7.2 Hz, 0.7H), 5.39 (t, J = 7.2 Hz, 0.3H), 2.77-2.70 (m, 2H), 2.52-2.47 (m, 3H), 2.37-2.33 (m, 1H), 2.23-2.13 (m, 2H), 1.97-1.81 (m, 3H), 1.58-1.51 (m, 1H), 1.47-1.39 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.2$, 156.8, 153.6 (dd, J = 289.5, 286.8 Hz), 149.4, 143.1, 143.0, 140.6, 140.4, 139.9, 134.8, 132.5, 128.8, 128.5 (t, J = 3.6 Hz), 128.3, 128.1, 128.0, 127.3, 127.15, 127.06, 126.9, 126.5, 126.3, 126.2, 120.4, 91.9 (dd, J = 21.7, 12.4 Hz), 39.0, 35.8, 29.6, 29.1, 28.22, 28.18, 27.9, 27.6, 27.32, 27.27, 27.1, 26.9; ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -90.64 - -91.16$ (m) ppm; HRMS (ESI) calcd for C₃₈H₃₇F₂N₂O [M+H]⁺ 575.2869, found 575.2874.

11. ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of Products

¹H NMR and ¹³C NMR spectra for product 1a (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra for product 1b (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra for product 1d (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra for product 1e (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra for product 1i (DMSO-*d*₆)

f1 (ppm)

¹H NMR and ¹³C NMR spectra for product 1n (DMSO-*d*₆)

f1 (ppm)

¹H NMR and ¹³C NMR spectra for product 1y (DMSO-*d*₆)

9.0038.9918.89918.89918.89918.89918.89988.89988.89988.89988.89917.75487.75177.75177.75177.75177.75176.67196.67377.2.0452.2.0452.2.0452.2.0452.2.0452.2.0452.2.0452.2.0452.2.0452.2.0452.2.0452.2.0451.19601.17261.102001.102001.102001.102001.102001.102001.102001.102001.102001.10200

f1 (ppm)

8.0 10.0 9.0 7.0 6.0 5.0 4.0 3.0 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3c (DMSO-*d*₆)

f1 (ppm)

S77

3g

200 190 180 170 160 150 140 130 120 110 100 Ó f1 (ppm)

S82

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3j (Chloroform-d)

f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3n (Chloroform-d)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3p (Chloroform-d)

0.75-0.97 ¥ 0.90 ₹ 5.07 ₹ 5.02 Å 2.11 J 1.19 J 3.00 J 2.00 1.05 1.02 2.18 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 f1 (ppm)

f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3r (Chloroform-d)

v 100 9(f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3v (Chloroform-d)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3x (Chloroform-*d*)

50 -25 30 10 -50 -70 -110 -130 -150 -170 -190 -210 -230 -10 -30 -90 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3y (Chloroform-d)

50 30 -210 -230 -25 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 3w (Chloroform-*d*)

0 100 90 fl (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4a (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4b (Chloroform-*d*)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4d (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4f (Chloroform-*d*)

50 30 -70 -90 -110 -130 -190 -210 -230 -25 10 -10 -30 -50 -150 -170 f1 (ppm)

 200
 190
 180
 170
 160
 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 f1 (ppm)
 f1
 fpm)
 f1
 f1

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4h (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4i (Chloroform-*d*)

S123

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4j (DMSO-*d*₆)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4k (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4l (Chloroform-*d*)

 S127

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4m (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 4n (Chloroform-*d*)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 5a (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 5b (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 5c (Chloroform-*d*)

50 30 10 -70 -110 -130 -150 -170 -190 -210 -230 -25 -10 -30 -50 -90 fl (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 5e (Chloroform-*d*)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-25
							f1 (p	pm)							

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 5h (Chloroform-*d*)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 6a (DMSO-*d*₆)

S148

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

-90.897 -91.011 -91.068 -91.183

50 30 10 -50 -70 -110 -130 -150 -170 -190 -210 -230 -25 -10 -30 -90 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for product 8a (Chloroform-d)

