Supporting Information

Stepwise construction of a metallocatenane based on non-labile bis(terpyridine)-Cd^{II} complexes

Shih-Yu Wang,^a Lin-Ting Lin,^a Alisha Rani,^a Guan-Sian Lee,^a and Yi-Tsu Chan^{*a} ^aDepartment of Chemistry, National Taiwan University, Taipei 10617, Taiwan E-mail: <u>ytchan@ntu.edu.tw</u>

Table of Contents

1.	Materials and general methods	S2
2.	Synthesis and ligand exchange behavior of [CdL ^a 2]	S4
3.	Synthesis of L^1 and compounds 1-2	S6
4.	Synthesis of P ¹ , P ² , P ³ , and ML ¹	S12
5.	Synthesis of compounds $3-4$, L^2 , and ML^2	S22
6.	Synthesis of complexes C^1 and C^2	S28
7.	Collision cross-sections	S35
8.	AFM images	S36
9.	TEM images	S37
10.	. Molecular modeling	S38
11.	. Crystal data	S40
12.	. References	S41

Materials and general methods. Unless noted, reagents and solvents were purchased from Fisher Scientific, AK Scientific, and Sigma-Aldrich without further purification. Column chromatography was conducted using silica gel (45-75 μ m) from Fuji Silysia GS series and basic Al₂O₃ (50-200 μ m) from Acros. ¹H and ¹³C NMR spectra were recorded at 25 °C on Bruker DPX-400, Bruker AVIII-400, and Bruker AVIII-500 NMR spectrometers, where chemical shifts (δ in ppm) were determined with respect to the nondeuterated solvents as a reference. 2D COSY, DOSY, and ROESY spectra were recorded at 25 °C on a Bruker AVIII-500 NMR spectrometer. Atomic force microscopy (AFM) images were recorded on a Bruker Dimension Icon AFM system with ScanAsyst and the data were processed by NanoScope Analysis version 1.5 (Bruker Software, Inc.). Samples for AFM were prepared by spin-coating (500 rpm for 1 min) a sample solution (1 × 10⁻⁵ M) on a freshly cleaved mica surface. Transmission electron microscopy (TEM) was conducted on a JEOL 1200 EX microscope (80 kV) and a Philips Tecnai F30 Field Emission Gun Transmission Microscope (300 kV). TEM samples were prepared by drop-casting a sample solution (1 × 10⁻⁵ M) onto a carbon-coated copper grid and dried *in vacuo* for 24 h.

Mass spectrometry and ion mobility. ESI mass spectrometry and traveling wave ionmobility (TWIM) experiments were conducted on a Waters Synapt HDMS G2 instrument with a LockSpray ESI source using the literature parameters.¹ Matrix-assisted laser desorption/ionization coupled with a time-of-flight detector (MALDI-TOF) mass spectrometry was conducted on a Bruker autoflexTM speed MALDI TOF/TOF mass spectrometer with a 355 nm frequency tripled Nd:YAG SmartBeam[®] laser. 1 µL of α cyano-4-hydroxycinnamic acid (CHCA) matrix solution (10 mg/mL in a mixture of MeCN/H₂O/TFA = 50/49.9/0.1 wt%) was deposited on a MALDI plate and air-dried. Aliquots of sample solution (1 mg/mL in CHCl₃) were added onto the matrix spots for the measurements acquired in reflection mode. **Molecular modeling.** Energy-minimized structures were obtained following the settings in the literature.^{1,2} Calculations were proceeded with Geometry Optimization and followed by Anneal in Forcite module of Materials Studio version 7.0 program (Accelrys Software, Inc.). 200 conformations were generated after annealing and converted into the corresponding collision cross-sections (CCSs) using projection approximation (PA) in DriftScope 2.0 from Waters and trajectory method (TM) in MOBCAL.³

X-ray crystallography. Single-crystal X-ray data were collected on an Oxford Diffraction Gemini A CCD diffractometer and processed with CrysAlisPro software (Agilent Technologies). Graphite monochromated Cu-K α radiation ($\lambda = 1.54178$ Å) at 200(2) K was used in the diffraction data collection. Empirical absorption correction was done by spherical harmonics from SCALE3 ABSPACK.⁴ The structure was solved and refined by applying SHELXS-97⁵ and SHELXL-97⁶ programs. The structure was deposited at the Cambridge Crystallographic Data Center with the deposition number of CCDC 2363052.

Synthesis of [CdL^a₂].

L^a was synthesized according to the literature procedure.⁷

Complex [CdL^a₂]. Cd(NO₃)₂·4H₂O (5.4 mg, 17.5 µmol) in MeOH (1 mL) was mixed with L^a (20.0 mg, 34.3 µmol) in CHCl₃ (1 mL). After refluxing for 8 h, NH₄PF₆ (56.0 mg, 343.8 µmol) was added into the mixture, which then was stirred for additional 1 h at room temperature. The mixture was precipitated by Et₂O, filtered, washed with Et₂O, and dried under reduced pressure to give [CdL^a₂] as a white solid (25.6 mg, 16.3 µmol) in 95% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.49 (d, *J* = 7.4 Hz, 4H), 8.38 (s, 4H), 8.13 (d, *J* = 7.4 Hz, 4H), 8.05 (t, *J* = 7.4 Hz, 4H), 7.84–7.75 (m, 6H), 7.07 (d, *J* = 8.2 Hz, 4H), 6.77 (t, *J* = 8.2 Hz, 4H), 5.99 (d, *J* = 8.9 Hz, 8H), and 2.85 (s, 24H). ESI-MS (*m/z*): 638.2808 [M – 2PF₆]²⁺ (calcd *m/z* = 638.2847).

Figure S2. ESI-MS spectrum of [CdL^a₂].

Ligand exchange behavior of [CdL^a₂].

An equimolar mixture of $[CdL^{a}_{2}]$ and L^{a} in CDCl₃/CD₃CN (1/1, v/v) was prepared for EXSY experiments (Fig. S3). 2D/1D exchange spectroscopy (EXSY) NMR (500 MHz) experiments were conducted at 25 °C to estimate the ligand exchange rate constants. A peak at δ 3.72 ppm, corresponding to H^{c} in the free ligand L^{a} , was identified as the diagonal signal. It was anticipated that a cross peak at δ 2.84 ppm, corresponding to H^{c} in [CdL^a₂], would appear at different mixing times. However, no signals were detected at δ 2.84 ppm in the selective excitation 1D EXSY NMR (Fig. S3b). The 2D EXSY NMR spectrum (Fig. S3a) also showed the absence of cross signals, indicating that no ligand exchange occurred between [CdL^a₂] and L^a at 25°C.

Figure S3. (a) ${}^{1}\text{H}{-}^{1}\text{H}$ 2D EXSY, (b) selective excitation (H^{c}) 1D EXSY, and (c) ${}^{1}\text{H}$ NMR spectra of an equimolar mixture of [CdL^a₂] and L^a.

Synthesis of L¹ and compounds 1-2.

2-Acetyl-6-(2,6-dimethoxyphenyl)pyridine and 4'-(4-pinacolborylphenyl)-6,6"-di(2,6-dimethoxyphenyl)-2,2':6',2"-terpyridine were synthesized according to the literature procedures.⁸

Scheme S1. Synthesis of L¹. *Reagents and conditions*: (a) NaOH, MeOH, 25 °C; (b) NH4OH_(aq), reflux.

Ligand L¹. To a solution of 2-acetyl-6-(2,6-dimethoxyphenyl)pyridine (2.5 g, 9.7 mmol) and 3-bromobenzaldehyde (0.8 g, 4.4 mmol) in EtOH (70 mL), NaOH (0.4 g, 10.0 mmol) was added. The mixture was stirred at room temperature for 24 h, and then NH4OH_(aq) (28 wt%, 4 mL) was added into the reaction mixture. After refluxing for 24 h, the solution was cooled to room temperature and the mixture was filtered, washed with EtOH, and dried under reduced pressure to give L¹ as a light grey solid (1.5 g, 2.2 mmol) in 50% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.62 (s, 2H), 8.58 (d, *J* = 8.2 Hz, 2H), 7.92 (t, *J* = 1.5 Hz, 1H), 7.89 (t, *J* = 7.6 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.37–7.32 (m, 4H), 7.28 (t, *J* = 8.1 Hz, 1H), 6.69 (d, *J* = 8.6 Hz, 4H), and 3.76 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 158.35, 156.57, 155.94, 153.88, 148.18, 141.25, 136.41, 131.45, 130.36, 130.22, 129.63, 126.32, 126.07, 122.82, 119.74, 119.51, 119.20, 104.62, and 56.16. MALDI-TOF-MS: calcd for C₃₇H₃₁BrN₃O₄ [M + H]⁺: *m/z* = 660.1498; found: 660.1503.

Figure S5. MALDI-TOF-MS spectrum of L¹. S7

Scheme S2. Synthesis of 1 and 2. *Reagents and conditions*: (a) $Pd(PPh_3)_4$, K_2CO_3 , toluene/H₂O/*t*-BuOH (3/3/1, v/v/v), reflux; (b) bis(pinacolato)diboron, Pd(dppf)Cl₂, KOAc, 1,4-dioxane, 80 °C.

Compound 1. To a degassed two-necked flask containing 4'-(4-pinacolborylphenyl)-6,6"di(2,6-dimethoxyphenyl)-2,2':6',2"-terpyridine (1.0 g, 1.4 mmol), 1,3-dibromobenzene (1.0 g, 4.2 mmol), and K₂CO₃ (390.0 mg, 2.8 mmol), a mixed solvent (40 mL) of toluene/H2O/t-BuOH (3/3/1, v/v/v) was added. After being purged with N2 for 30 min, Pd(PPh₃)₄ (99.2 mg, 70.6 μ mol) was added into the mixture, which was then refluxed for 1 day under N₂. After cooling to room temperature, the mixture was extracted with CH₂Cl₂, and the combined organic extract was dried over MgSO4 and then evaporated to dryness under reduced pressure. The residue was recrystallized from a mixture of CH₂Cl₂/MeOH to give 1 as a yellow solid (676.7 mg, 0.9 mmol) in 65% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.74 (s, 2H), 8.64 (d, J = 8.0 Hz, 2H), 7.96–7.91 (m, 4H), 7.79 (t, J = 1.7 Hz, 1H), 7.66 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.41–7.31 (m, 6H), 6.74 (d, J = 8.3 Hz, 4H), and 3.80 (s, 12H). ¹³C NMR (100 MHz, CDCl₃ with trace amount of trifluoroacetic acid): δ (ppm) 158.06, 151.64, 150.57, 150.22, 149.85, 143.19, 141.99, 141.33, 135.57, 133.26, 130.73, 130.41, 130.01, 129.79, 128.05, 127.92, 125.76, 122.93, 122.77, 122.42, 110.61, 104.17, and 56.05. MALDI-TOF-MS: calcd for C₄₃H₃₄BrN₃O₄ $[M + H]^+$: m/z = 736.1811; found: 736.1825.

Compound 2. To a degassed flask containing **1** (0.5 g, 0.8 mmol), bis(pinacolato)diboron (0.4 g, 1.7 mmol), KOAc (0.4 g, 4.1 mmol), and Pd(dppf)Cl₂ (24.8 mg, 33.9 μ mol), anhydrous 1,4-dioxane (5 mL) was added. The mixture was stirred at 80 °C for 12 h under N₂. After cooling to room temperature, the reaction mixture was poured into water and extracted with CH₂Cl₂. The combined organic extract was dried over anhydrous MgSO₄, and then evaporated to dryness under reduced pressure. The crude product was recrystallized from a mixture of CH₂Cl₂/MeOH to give **2** as a dark brown solid (462.8 mg,

0.6 mmol) in 87% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.75 (s, 2H), 8.63 (d, J = 7.8 Hz, 2H), 8.10 (s, 1H), 7.96–7.89 (m, 4H), 7.82 (d, J = 7.1 Hz, 1H), 7.76–7.71 (m, 3H), 7.48 (d, J = 7.1 Hz, 2H), 7.41–7.35 (m, 4H), 6.74 (d, J = 7.8 Hz, 2H), 3.80 (s, 12H), and 1.39 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 158.35, 155.44, 153.35, 149.62, 146.27, 141.51, 139.79, 137.35, 136.77, 133.88, 133.42, 130.03, 129.91, 128.21, 128.06, 127.81, 127.58, 126.67, 126.36, 119.99, 119.78, 104.64, 83.88, 56.22, and 24.87. MALDI-TOF-MS: calcd for C₄₉H₄₆BN₃O₆ [M + H]⁺: m/z = 784.3558; found: 784.3551.

Figure S6. ¹H and ¹³C NMR spectra of 1.

Figure S7. MALDI-TOF-MS spectrum of 1.

Figure S8. 1 H and 13 C NMR spectra of 2.

Figure S9. MALDI-TOF-MS spectrum of 2.

Synthesis of P¹, P², P³, and ML¹.

4'-(4-Pinacolborylphenyl)-6,6"-di(2,6-dimethoxyphenyl)-2,2':6',2"-terpyridine and 4'-(4-boromophenyl)-6,6"-di(2,6-dimethoxyphenyl)-2,2':6',2"-terpyridine were synthesized according to the literature procedures.⁸

Scheme S3. Synthesis of P^1 , P^2 , P^3 , and ML^1 . *Reagents and conditions*: (a) Cd(NO₃)₂[.] 4H₂O, CHCl₃/MeOH (1/1, v/v), reflux; (b) NH₄PF₆, r.t.; (c) Pd(PPh₃)₄, K₂CO₃, 4'-(4pinacolborylphenyl)-6,6"-di(2,6-dimethoxyphenyl)-2,2':6',2"-terpyridine, 1,4dioxane/MeCN/MeOH (10/10/1, v/v/v), 80 °C; (d) Cd(NO₃)₂·4H₂O, 4'-(4-boromophenyl)-6,6"-di(2,6-dimethoxyphenyl)-2,2':6',2"-terpyridine, CHCl₃/MeCN/MeOH (5/5/1, v/v/v), reflux; (e) Pd(PPh₃)₄, K₂CO₃, **3**, 1,4-dioxane/MeCN/MeOH (10/10/1, v/v/v), 80 °C.

Precursor P¹. Ligand L¹ (500.0 mg, 0.8 mmol) in CHCl₃ (5 mL) was mixed with Cd(NO₃)₂·4H₂O (119.1 mg, 0.4 mmol) in MeOH (5 mL). After refluxing for 8 h, NH₄PF₆ (1.2 g, 7.6 mmol) was added and the mixture was stirred for additional 1 h at room temperature. The mixture was precipitated by Et₂O, filtered, washed with Et₂O, and dried under reduced pressure to give P¹ as a white solid (619.7 mg, 0.4 mmol) in 95% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.49 (d, J = 7.9 Hz, 4H), 8.38–8.36 (m, 6H), 8.11 (d, J = 7.6 Hz, 2H), 8.06 (t, J = 7.9 Hz, 4H), 7.92 (d, J = 7.6 Hz, 2H), 7.73 (t, J = 7.9 Hz, 2H), 7.08 (d, J = 7.6 Hz, 4H), 6.74 (t, J = 8.3 Hz, 4H), 5.98 (d, J = 8.3 Hz, 8H), and 2.85 (s, 24H). ESI-MS (m/z): 717.0964 [M – 2PF₆]²⁺ (calcd m/z = 717.0952).

Precursor P². To a degassed two-necked flask containing **P**¹ (200.0 mg, 0.1 mmol), 4'-(4pinacolborylphenyl)-6,6"-di(2,6-dimethoxyphenyl)-2,2':6',2"-terpyridine (246.4 mg, 0.3 mmol), K₂CO₃ (64.1 mg, 0.5 mmol), and Pd(PPh₃)₄ (13.4 mg, 11.6 µmol), a mixed solvent (3 mL) of 1,4-dioxane/MeCN/MeOH (10/10/1, v/v/v) was added. After being purged with N₂ for 30 min, the reaction mixture was stirred at 80 °C for 8 h under N₂. After cooling to room temperature, the mixture was poured into water, and the precipitate was collected by filtration. The residue was recrystallized from a mixture of CHCl₃/MeCN/MeOH to give **P**² as a white solid (189.7 mg, 69.6 µmol) in 60% yield. ¹H NMR (400 MHz, CD₃CN/CDCl₃ = 9/1, v/v): δ (ppm) 8.76 (s, 4H), 8.70 (d, *J* = 7.8 Hz, 4H), 8.50 (d, *J* = 7.8 Hz, 4H), 8.43 (s, 4H), 8.34 (s, 2H), 8.12–8.00 (m, 20H), 7.91 (t, *J* = 7.8 Hz, 2H), 7.42–7.38 (m, 8H), 7.08 (d, *J* = 7.4 Hz, 4H), 6.80–6.77 (m, 12H), 5.99 (d, *J* = 8.3 Hz, 8H), 3.75 (s, 24H), and 2.86 (s, 24H). ESI-MS (*m*/*z*): 1217.4141 [M – 2PF₆]²⁺ (calcd *m*/*z* = 1217.4005), and 811.8734 [M – 2PF₆ + H]³⁺ (calcd *m*/*z* = 811.9352).

Precursor P³. Precursor **P²** (200.0 mg, 73.4 µmol), 4'-(4-boromophenyl)-6,6"-di(2,6dimethoxyphenyl)-2,2':6',2"-terpyridine (145.4 mg ,0.2 mmol), and Cd(NO₃)₂·4H₂O (69.2 mg, 0.2 mmol) were dissolved and mixed in CHCl₃/MeCN/MeOH (5/5/1, v/v/v, 25 mL). After the mixture was refluxed for 12 h, the solvent was removed under reduced pressure, and the residue dissolved in MeCN was subjected to column chromatography (SiO₂, sat. KNO_{3(aq)}/H₂O/MeCN = 1/1/30, v/v/v). The combined fractions were evaporated under reduced pressure to afford the residue, which was washed with H₂O and Et₂O to give **P³** as a pale-yellow solid (35.0 mg, 8.0 µmol) in 11% yield. Due to the irreversible complexation, which lacks selectivity, oligomers from **P²** and the homoleptic complex of monotopic tpy ligands, along with **P³**, were produced, resulting in a low isolated yield of **P³**. ¹H NMR (400 MHz, CD₃CN/CDCl₃ = 9/1, v/v): δ (ppm) 8.70 (d, *J* = 8.3 Hz, 4H), 8.63–8.66 (m, 6H), 8.63 (d, *J* = 8.3 Hz, 4H), 8.56 (s, 4H), 8.51 (d, *J* = 8.3 Hz, 4H), 8.49–8.43 (m, 10H), 8.39 (s, 4H), 8.30 (d, J = 6.9 Hz, 2H), 8.26 (d, J = 6.9 Hz, 2H), 8.30–8.03 (m, 18H), 8.00 (d, J = 8.9 Hz, 4H), 7.15 (d, J = 7.6 Hz, 4H), 7.12–7.09 (m, 8H), 6.90–6.83 (m, 8H), 6.77 (t, J = 8.9 Hz, 4H), 6.12 (d, J = 8.3 Hz, 8H), 6.07 (d, J = 8.3 Hz, 8H), 5.99 (d, J = 8.3 Hz, 8H), 2.94 (s, 24H), 2.90 (s, 24H), and 2.87 (s, 24H). ESI-MS (m/z): 663.6084 [M – 6NO₃]⁶⁺ (calcd m/z = 663.6180), 808.5351 [M – 5NO₃]⁵⁺ (calcd m/z = 808.5353), and 1026.2264 [M – 4NO₃]⁴⁺ (calcd m/z = 1026.2160).

Metalloligand ML¹. To a degassed two-necked flask containing **P**³ (100.0 mg, 23.0 μmol), **2** (54.0 mg, 68.9 μmol), K₂CO₃ (12.7 mg, 91.9 mmol), and Pd(PPh₃)₄ (4.6 mg, 4.6 μmol), a mixed solvent (3 mL) of 1,4-dioxane/MeCN/MeOH (10/10/1, v/v/v) was added. After being purged with N₂ for 30 min, the mixture was stirred at 80 °C for 8 h under N₂. After cooling to room temperature, the mixture was poured into water, and the precipitate was collected by filtration. The residue was subjected to column chromatography (SiO₂, sat. KNO_{3(aq,)}/H₂O/MeCN = 1/1/28, v/v/v) to give **ML**¹ as a white solid (38.0 mg, 6.9 μmol) in 30% yield. ¹H NMR (400 MHz, CD₃CN/CDCl₃ = 9/1, v/v): δ (ppm) 8.76–8.67 (m, 12H), 8.66–8.61 (m, 8H), 8.58–8.52 (m, 8H), 8.50–8.43 (m, 10H), 8.30–8.24 (m, 12H), 8.20–8.02 (m, 24H), 8.00–7.97 (m, 8H), 7.91 (d, *J* = 7.7 Hz, 2H), 7.83 (d, *J* = 7.8 Hz, 2H), 7.72 (t, *J* = 7.2 Hz, 2H), 7.41–7.38 (m, 8H), 7.17–7.08 (m, 12H), 6.92–6.78 (m, 20H), 6.11 (d, *J* = 8.6 Hz, 8H), 6.07 (d, *J* = 8.6 Hz, 8H), 6.03 (d, *J* = 8.6 Hz, 8H), 3.76 (s, 24H), 2.95 (s, 24H), 2.91 (s, 24H), and 2.89 (s, 24H). ESI-MS (*m/z*): 1039.3177 [M – 5NO₃]⁵⁺ (calcd *m/z* = 1039.3119), 1773.5160 [M – 4NO₃]⁴⁺ (calcd *m/z* = 1773.5145), and 1314.6447 [M – 3NO₃]³⁺ (calcd *m/z* = 1314.6468).

Figure S10. ¹H NMR spectrum of P¹.

Figure S11. ESI-MS spectrum of P¹.

Figure S13. Partial ROESY NMR spectrum of P^2 (yellow: ROESY signals, black: COSY signals).

Figure S14. ESI-MS spectrum of P².

Figure S15. ¹H NMR spectrum of P³.

Figure S16. Partial ROESY NMR spectrum of P³ (yellow: ROESY signals, black: COSY signals).

Figure S17. ESI-MS spectrum of P³.

Figure S18. ¹H NMR spectrum of ML¹.

Figure S19. Partial ROESY NMR spectrum of ML¹. (yellow: ROESY signals, black: COSY signals).

Figure S20. ESI-MS spectrum of ML¹.

Synthesis of compounds 3-4, L², and ML².

2-Acetyl-5-bromopyridine,⁹ 4-methoxybenzaldyhyde,¹⁰ and 4'-(4-boronophenyl)-2,2':6',2"-terpyridine¹¹ were synthesized according to the literature procedures.

Scheme S4. Synthesis of 3, 4, L^2 , and ML^2 . *Reagents and conditions*: (a) NaOH, MeOH, 25 °C; (b) NH₄OH_(aq), reflux; (c) Pd(PPh₃)₄, K₂CO₃, 4'-(4-boronophenyl)-2,2':6',2"-terpyridine, toluene/H₂O/*t*-BuOH (3/3/1, v/v/v), reflux; (d) RuCl₃·3H₂O, EtOH, reflux; (e) 7, 4-ethylmorpholine, EtOH/CHCl₃ (1/1, v/v), reflux; (f) Pd(PPh₃)₄, K₂CO₃, 4'-(4-boronophenyl)-2,2':6',2"-terpyridine, 1,4-dioxane/MeCN (1/1, v/v), reflux.

Compound 3. To a solution of 2-acetyl-5-bromopyridine (2.0 g, 10.0 mmol) and 4methoxybenzaldehyde (0.6 g, 4.5 mmol) in EtOH (80 mL), NaOH (0.4 g, 10.0 mmol) was added. The mixture was stirred at room temperature for 24 h, and then NH₄OH_(aq) (28 wt%, 4 mL) was added into the reaction mixture. After refluxing for 24 h, the solution was cooled to room temperature and the mixture was filtered and washed with EtOH under reduced pressure to give **3** as a light grey solid (1.6 g, 3.2 mmol) in 71% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.74 (d, J = 2.7 Hz, 2H), 8.65 (s, 2H), 8.50 (d, J = 8.7 Hz, 2H), 7.96 (dd, J = 8.7 and 2.7 Hz, 2H), 7.83 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), and 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 160.67, 154.97, 154.65, 150.13, 150.00, 139.44, 130.39, 128.48, 122.56, 121.22, 118.42, 114.42, and 55.41. MALDI-TOF-MS: calcd for C₂₂H₁₆Br₂N₃O [M + H]⁺: m/z = 495.9660; found: 495.9658.

Ligand L². To a degassed two-necked flask containing 3 (1.0 g, 2.0 mmol), 4'-(4boronophenyl)-2,2':6',2"-terpyridine (1.7 g, 4.8 mmol), and K₂CO₃ (1.1 g, 8.0 mmol), a mixed solvent (50 mL) of toluene/H2O/t-BuOH (3/3/1, v/v/v) was added. After being purged with N₂ for 30 min, Pd(PPh₃)₄ (232.4 mg, 201.1 µmol) was added into the mixture, which was then refluxed for 1 day under N₂. After cooling to room temperature, the mixture was extracted with CHCl₃, and the combined organic extract was dried over MgSO₄ and then evaporated to dryness under reduced pressure. The residue was subjected to flash column chromatography (Al₂O₃, CHCl₃). The crude was recrystallized from a mixture of CH₂Cl₂/MeOH to give L^2 as a grey solid (1.1 g, 1.1 mmol) in 55% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.05 (d, J = 2.4 Hz, 2H), 8.81 (s, 4H), 8.79–8.76 (m, 4H), 8.74 (dd, J = 5.12, and 1.79 Hz, 4H), 8.68 (d, J = 8.2 Hz, 4H), 8.16 (dd, J = 8.2, and 2.6 Hz, 2H), 8.07 (d, J = 8.4 Hz, 4H), 7.94–7.81 (m, 8H), 7.36 (ddd, J = 7.4, 4.6, and 1.0 Hz, 4H), 7.06 (d, J = 8.9 Hz, 2H), and 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 160.56, 156.19, 156.08, 155.61, 155.49, 149.81, 149.47, 149.17, 147.55, 138.33, 138.29, 136.92, 135.78, 135.14, 130.77, 128.57, 128.10, 127.58, 123.90, 121.40, 120.90, 118.73, 118.39, 114.38, and 55.41. MALDI-TOF-MS: calcd for C₆₄H₄₄N₉O $[M + H]^+$: m/z = 954.3669; found: 954.3672.

Compound 4. A mixture of **3** (1.0 g, 2.0 mmol) and RuCl₃·3H₂O (788.8 mg, 3.0 mmol) in EtOH (20 mL) was refluxed for 2 days. After cooling to room temperature, the crude was filtered and the residue was washed with EtOH and acetone. The dark residue, **3** (1.0 g, 2.0 mmol), and three drops of 4-ethylmorpholine were mixed in EtOH/CHCl₃ (30 mL, 1/1, v/v). After the mixture was refluxed overnight, the solvent was removed under reduced pressure, and the residue dissolved in MeCN was subjected to column chromatography (SiO₂, sat. KNO_{3(aq,)}/H₂O/MeCN = 1/1/20, v/v/v). The combined fraction was evaporated and then washed with H₂O and Et₂O to give **4** as a red solid (1.8 g, 1.5 mmol) in 73% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.97 (s, 4H), 8.54 (d, *J* = 8.3 Hz, 4H), 8.20 (d, *J* = 8.9 Hz, 4H), 8.14 (dd, *J* = 8.8, and 2.1 Hz, 4H), 7.42 (d, *J* = 1.8 Hz, 4H), 7.30 (d, *J* = 8.9 Hz, 4H), and 3.97 (s, 6H). ESI-MS (*m/z*): 547.9107 [M – 2NO₃]⁴⁺ (calcd *m/z* = 547.9120).

Metalloligand ML². To a degassed two-necked flask containing 4 (150.0 mg, 123.0 μ mol), 4'-(4-boronophenyl)-2,2':6',2"-terpyridine (260.7 mg, 738.0 μ mol), K₂CO₃ (135.8 mg, 984.0 μ mol), and Pd(PPh₃)₄ (56.9 mg, 49.2 μ mol), a mixed solvent (15 mL) of 1,4-dioxane/MeCN (1/1, v/v) was added. After being purged with N₂ for 30 min, the mixture was refluxed for 12 h under N₂. After cooling to room temperature, the mixture was poured into water, and the precipitate was filtered and then subjected to column chromatography

(Al₂O₃, CHCl₃) to give **ML**² as a dark red solid (170.6 mg, 80.0 µmol) in 65% yield. ¹H NMR (400 MHz, CD₃CN/CDCl₃ = 9/1, v/v): δ (ppm) 9.41 (s, 4H), 9.31 (d, *J* = 8.4 Hz, 4H), 8.68–8.75 (m, 16H), 8.66 (d, *J* = 8.4 Hz, 8H), 8.54 (d, *J* = 8.4 Hz, 4H), 8.30 (d, *J* = 6.7 Hz, 4H), 7.97 (d, *J* = 7.5 Hz, 8H), 7.89 (t, *J* = 7.5 Hz, 8H), 7.68 (s, 4H), 7.50 (d, *J* = 7.5 Hz, 8H), 7.37 (t, *J* = 6.7 Hz, 8H), and 3.95 (s, 6H). ESI-MS (*m/z*): 502.6619 [M – 2NO₃ + H]⁴⁺ (calcd *m/z* = 502.6603), 669.8823 [M – 2NO₃ + H]³⁺ (calcd *m/z* = 669.8805), and 1004.3228 [M – 2NO₃]²⁺ (calcd *m/z* = 1004.3129).

Figure S21. ¹H and ¹³C NMR spectra of 3.

S25

Figure S24. MALDI-TOF spectrum of L².

Figure S26. ESI-MS spectrum of 4.

Figure S28. ESI-MS spectrum of ML².

Synthesis of complexes C¹ and C².

Complex C¹. To a solution (3.5 mL) of ML¹ (10.0 mg, 1.8 μ mol) and L² (1.7 mg, 1.8 μ mol) in CHCl₃/MeOH (6/1, v/v), Cd(NO₃)₂·4H₂O (1.1 mg, 3.7 µmol) in MeOH (0.5 mL) was added. The mixture was heated at 60 °C for 8 h. After removal of solvent, the residue was washed with H₂O and MeOH to afford C^1 in 96% yield (12.2 mg, 1.7 µmol). ¹H NMR (400 MHz, CD₃OD/CDCl₃ = 9/1, v/v): δ (ppm) 9.33 (s, 2H), 9.24 (s, 4H), 9.20 (d, J = 6.2 Hz, 2H), 8.99 (d, J = 8.0 Hz, 4H), 8.93-8.80 (m, 12H), 8.79-8.72 (m, 12H), 8.71-8.58 (m, 18H), 8.47-8.38 (m, 18H), 8.35-8.30 (m, 8H), 8.29-8.10 (m, 30H), 8.07-7.99 (m, 6H), 7.96–7.91 (m, 4H), 7.85 (d, J = 7.2 Hz, 2H), 7.78 (t, J = 7.7 Hz, 2H), 7.60 (t, J = 5.7 Hz, 4H), 7.25 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 7.7 Hz, 4H), 7.19–7.07 (m, 12H), 6.99–6.83 (m, 16H), 6.15 (d, J = 8.6 Hz, 8H), 6.10 (d, J = 8.6 Hz, 8H), 6.07 (d, J = 8.6 Hz, 8H), 5.93 (d, J = 8.6 Hz, 8H), 3.97 (s, 3H), 2.99 (s, 24H), 2.98 (s, 24H), 2.95 (s, 24H), and 2.94 (s, 24H). The counter anion was changed from NO_3^- to PF_6^- in order to reduce fragmentation during MS analysis. ESI-MS (m/z): 1407.7178 [M - 5PF₆]⁵⁺ (calcd m/z = 1407.7136), 1148.9335 $[M - 6PF_6]^{6+}$ (calcd m/z = 1148.9301), 964.0896 $[M - 7PF_6]^{7+}$ (calcd m/z = 964.0903), 825.4606 $[M - 8PF_6]^{8+}$ (calcd m/z = 825.4584), 717.6337 $[M - 9PF_6]^{9+}$ (calcd m/z =717.6320), and 631.3731 $[M - 10PF_6]^{10+}$ (calcd m/z = 631.3708).

Complex C². To a solution (3.5 mL) of ML¹ (10.0 mg, 1.8 μ mol) and ML² (1.9 mg, 0.9 μmol) CHCl₃/MeOH (6/1, v/v), Cd(NO₃)₂·4H₂O (1.1 mg, 3.7 μmol) in MeOH (0.5 mL) was added. The mixture was heated at 60 °C for 8 h. After removal of solvent, the residue was washed with H₂O and MeOH to afford C^2 in 95% yield (11.9 mg, 0.9 µmol). ¹H NMR (400 MHz, CD₃OD/CDCl₃ = 9/1, v/v): δ (ppm) 9.49 (s, 4H), 9.27–9.19 (m, 12H), 8.91-8.81 (m, 16H), 8.80-8.68 (m, 40H), 8.67-8.54 (m, 20H), 8.53-8.41 (m, 28H), 8.37-8.31 (m, 12H), 8.30-8.13 (m, 68H), 8.09-8.02 (m, 12H), 8.00 (d, J = 1.9 Hz, 4H), 7.98–7.92 (m, 8H), 7.88 (d, J = 7.6 Hz, 8H), 7.80–7.74 (m, 4H), 7.58 (d, J = 6.2 Hz, 8H), 7.26–7.11 (m, 28H), 6.99–6.87 (m, 24H), 6.74 (d, J = 8.3 Hz, 8H), 6.19–6.04 (m, 48H), 5.86 (d, J = 8.9 Hz, 16H), 3.79 (s, 6H), 3.00 (s, 48H), 2.97 (s, 48H), 2.96 (s, 48H), and 2.92 (s, 48H). The counter anion was changed from NO₃⁻ to PF₆⁻ in order to reduce fragmentation during MS analysis. ESI-MS (m/z): 2129.3550 [M - 7PF₆]⁷⁺ (calcd m/z = 2129.2659), 1845.0475 $[M - 8PF_6]^{8+}$ (calcd m/z = 1844.9871), 1624.0475 $[M - 9PF_6]^{9+}$ (calcd m/z = 1623.9832), 1447.1410 [M - 10PF₆]¹⁰⁺ (calcd m/z = 1447.1169), 1302.3020 $[M - 11PF_6]^{11+}$ (calcd m/z = 1302.2910), 1181.6885 $[M - 12PF_6]^{12+}$ (calcd m/z = 1302.2910) 1181.6834), 1079.6339 [M - 13PF6]¹³⁺ (calcd m/z = 1079.6243), 992.1533 [M - 14PF6]¹⁴⁺ (calcd m/z = 992.1508), 916.3499 [M - 15PF₆]¹⁵⁺ (calcd m/z = 916.3458), 850.0132 [M - $16PF_6$ ¹⁶⁺ (calcd m/z = 850.0115), 791.4770 [M - 17PF₆]¹⁷⁺ (calcd m/z = 791.4781), and 739.4597 $[M - 18PF_6]^{18+}$ (calcd m/z = 739.4595).

Figure S29. ¹H NMR spectrum of C¹.

Figure S30. Partial ROESY NMR spectrum of C^1 (yellow: ROESY signals, black: COSY signals).

Figure S31. DOSY NMR spectrum of C¹.

Figure S32. ESI-MS spectrum and TWIM-MS plot of C¹.

Figure S33. ¹H NMR spectrum of C².

Figure S34. Partial ROESY NMR spectrum of C^2 (yellow: ROESY signals, black: COSY signals).

Figure S35. DOSY NMR spectrum of C^2 .

Figure S36. ESI-MS spectrum and TWIM-MS spectrum of C².

Table S1. Experimental and theoretical values of collision cross-sections for C^1 and C^2 .

	Exp. CCS	PA	ТМ
C ¹	1031.7±26.5	953.4±3.8	1096.9±5.2
C ²	1920.8±45.6	1658.3±45.1	1934.4±48.5

AFM images

Figure S37. AFM images of (a) C^1 and (b) C^2 , and the statistical analysis for the heights.

Figure S38. AFM images of C¹.

Figure S39. AFM images of C².

Figure S40. TEM images of (a) C^1 and (b) C^2 , and the statistical analysis for the diameters.

Figure S41. TEM images of C¹.

Figure S42. TEM images of C².

Molecular Modeling

Figure S43. Energy-minimized structures of (a) C^1 and (b) C^2 .

Identification code	ic18379		
Empirical formula	C79 H69.50 Cd F12 N8.50 O8 P2		
Formula weight	1668.27		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 12.4369(2) Å	a= 90°.	
	b = 24.8732(5) Å	b=101.228(2)°.	
	c = 25.4913(5) Å	$g = 90^{\circ}$.	
Volume	7734.7(3) Å ³		
Z	4		
Density (calculated)	1.433 Mg/m ³		
Absorption coefficient	0.414 mm ⁻¹		
F(000)	3412		
Crystal size	0.25 x 0.20 x 0.10 mm ³		
Theta range for data collection	2.94 to 27.50°.		
Index ranges	-15<=h<=16, -30<=k<=32, -31<=l<=33		
Reflections collected	57324		
Independent reflections	17384 [R(int) = 0.0521]		
Completeness to theta = 27.50°	97.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.99507		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	17384 / 31 / 1106		
Goodness-of-fit on F ²	1.125		
Final R indices [I>2sigma(I)]	R1 = 0.0747, wR2 = 0.1944		
R indices (all data)	R1 = 0.1074, wR2 = 0.2114		
Largest diff. peak and hole	1.399 and -0.707 e.Å ⁻³		

Table S2. Crystal data and structure refinement for $[CdL^{a}_{2}]$.

References

- 1 Y.-P. Liang, Y.-J. He, Y.-H. Lee and Y.-T. Chan, *Dalton Trans.*, 2015, 44, 5139.
- 2 Y.-T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R. Newkome and C. Wesdemiotis, *J. Am. Chem. Soc.*, 2011, **133**, 11967.
- 3 M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz and M. F. Jarrold, *J. Phys. Chem.*, 1996, **100**, 16082.
- 4 SCALE3 ABSPACK An Oxford Diffraction program (1.0.4,gui:1.0.3) (C) 2005 Oxford Diffraction Ltd.
- 5 G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution; University of Göttingen, Germany, 1997.
- 6 G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures; University of Göttingen, Germany, 1997.
- 7 S.-Y. Wang, J.-H. Fu, Y.-P. Liang, Y.-J. He, Y.-S. Chen and Y.-T. Chan, *J. Am. Chem. Soc.*, 2016, **138**, 3651.
- S. Y. Wang, J. Y. Huang, Y. P. Liang, Y. J. He, Y. S. Chen, Y. Y. Zhan, S. Hiraoka,
 Y. H. Liu, S. M. Peng and Y. T. Chan, *Chem. Eur. J.*, 2018, 24, 9274.
- 9 J. J. Danon, D. A. Leigh, P. R. McGonigal, J. W. Ward and J. Wu, J. Am. Chem. Soc., 2016, 138, 12643.
- 10 E. Jeong, S. Yoon, H. S. Lee, A. Kumar and P. S. Chae, *Dyes Pigm.*, 2019, **162**, 348.
- 11 P. Jarosz, K. Lotito, J. Schneider, D. Kumaresan, R. Schmehl and R. Eisenberg, *Inorg. Chem.*, 2009, **48**, 2420.