Supporting Information for

Entropically-driven Melting of Cu-based 1D Coordination

Polymers

Yuki Ohara^a, Taichi Nishiguchi^a, Xin Zheng^b, Shin-ichiro Noro^b, Daniel Packwood,^c Satoshi Horike^{c,d,e}

^aDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

^bGraduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan

^cInstitute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

^dDepartment of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

^eDepartment of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand

Synthesis of crystalline powders of Cu(A)₂(L)₂

All chemicals and solvents used in the synthesis were of reagent grade and used without further purification.

Cu(TFSI)₂(bpp)₂

Crystalline powders were synthesized according to the previous report.¹

$Cu(Ms_2N)_2(bpp)_2$

Crystalline powders were synthesized according to the previous report.¹

Cu(TFSI)₂(bpe)₂

Crystalline powders were synthesized as follows: 20 mmol HTFSI and 10 mmol $Cu(OH)_2$ were mixed in 100 ml H₂O and stirred at room temperature for 1 h. The mixture were evaporated, and dried at 80 °C for 6 h under vacuum, then blue powders were obtained. The obtained blue powders were dissolved in H₂O, then 50mL 0.1 M Cu(TFSI)₂ aqueous solution was prepared. The solution was mixed wth 50 mL 0.2 M bpp MeOH solution, and stirred at room temperature for 2 h. The purple precipitates were filtered and washed with MeOH, then dried at 80°C for 6 h under vacuum. Single

crystal of $Cu(TFSI)_2(bpe)_2$ was synthesized as follows: Purple single crystals were collected.

Cu(BF₄)₂(bpp)₂

Crystalline powders were synthesized according to the previous report.²

Single crystal X-ray diffraction and structure analysis

Single crystal X-ray diffraction measurements were performed using a Rigaku Micro Max-007 HF diffractometer and a Pilatus 200 K detector with Cu K α radiation (λ = 1.54184 Å) at 173 K. The crystal structures were solved by using direct method (SHELXT)³ and refined by using full-matrix least-squares techniques on F^2 using SHELXL-2018 (ver. 2018/3).⁴

Powder X-ray diffraction

Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku SmartLab diffractometer with CuK α radiation ($\lambda = 1.54$ Å).

Elemental analysis

CHN elemental analysis was conducted on a MICRO CORDER JM11 (J-Science Lab Co., Ltd.).

Thermal property measurements

Thermogravimetry-differential thermal analysis (TG-DTA) was performed using a Rigaku Thermo plus TG 8120 apparatus in the temperature range between 25 and 500 °C with Ar gas flow (50-60 mL min⁻¹) and at the heating rate of 10 °C min⁻¹. Differential scanning calorimetry (DSC) was carried out with a Hitachi DSC7200 at the heating rate of 10 °C min⁻¹. Sample preparations for DSC were conducted under Ar. The ΔH_{fus} was calculated as an amount per sample weight by integrating the endothermic peak in the 1st heating of DSC profile, then converted to per molecular weight. Determination of T_{m} and peak integration were performed using the analysis software supplied with the equipment (Hitachi High-Tech NEXTA software).

Variable temperature Powder X-ray diffraction (VT-PXRD)

VT-PXRD patterns were collected on a Rigaku SmartLab diffractometer with CuK α radiation ($\lambda = 1.54$ Å) at temperatures between 30°C and 210°C for Cu(TFSI)₂(bpp)₂ and between 30°C and 180°C for Cu(Ms₂N)₂(bpp)₂. with N₂ gas flow (20 mL min⁻¹).

Variable temperature X-ray absorption spectroscopy (XAS)

Cu K-edge X-ray absorption spectroscopy (XAS) including X-ray absorption near

edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions were performed in the transmission mode at BL14B2 beamline at SPring-8. Cu foil internal energy calibration was carried out before sample measurements. The sample was pelletized with boron nitride powder prior to the measurement. The temperature-dependent XAS study was performed by heating the sample under N₂. Variable temperature radial distribution function (VT-RDF) profiles were obtained from the analysis of EXAFS spectra by using Arthemis software.⁵

Density functional theory (DFT) calculations

DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP),⁶ using the projector augmented wave method (PAW) with a plane-wave basis set.⁷ The rev-vdW-DF2 exchange-correlation functional⁸ was used. The cutoff energy of 600 eV was used with a $3 \times 2 \times 1$ Γ -centered k-point mesh. Gaussian smearing was employed with $\sigma = 0.05$ eV. The energy convergence threshold is set as 10^{-5} eV. $2 \times 2 \times 2$ supercells were generated from the relaxed structures and used for calculation of chain-chain interaction ($E_{\text{chain-chain}}$). $E_{\text{chain-chain}}$ was computed as the energy difference per mole between isolated 1D chains (E_{chain}) and the crystal containing the same number of chains (E_{crystal}):

 $E_{\text{chain-chain}} = (E_{\text{crystal}} - n E_{\text{chain}})/(2n)$

where n is the number of chains in the crystal. In all cases, the supercells of crystal contains 8 chains (n = 8). As an example, the supercell of crystal and the isolated 1D chain of Cu(TFSI)₂(bpp)₂ are shown in Figure S5. E_{chain} and $E_{crystal}$ were calculated by DFT in corresponding simulation cells with the same level of theory but without structural relaxation. Calculated E_{chain} , $E_{crystal}$ and $E_{chain-chain}$ in each compound are shown in Table S2.

Discussion on the thermodynamic parameters in $Cu(TFSI)_2(bpp)_2$ and $Cu(BF_4)_2(bpp)_2$

Based on the discussion on the case of Cu(TFSI)₂(bpp)₂ and Cu(Ms₂N)₂(bpp)₂ or Cu(TFSI)₂(bpe)₂, the more complex cases of Cu(TFSI)₂(bpp)₂ ($T_m = 196^{\circ}$ C) and Cu(BF₄)₂(bpp)₂ (no melting) were investigated. For E_{ionic} , Cu(BF₄)₂(bpp)₂ is expected to have a larger E_{ionic} than Cu(TFSI)₂(bpp)₂ due to the smaller size of BF₄^{-.9} $E_{\text{chain-chain}}$, on the other hand, is 33 kJ mol⁻¹ larger for Cu(TFSI)₂(bpp)₂ (Table 2). It is not possible to claim a larger or smaller relationship for ΔH_{fus} due to the opposite trend in E_{ionic} and $E_{\text{chain-chain}}$. For S_{kin} , based on the $E_{\text{chain-chain}}$ values, S_{kin} in the crystal was expected to be smaller for Cu(TFSI)₂(bpp)₂. In terms of S_{confor} , TFSI⁻ can adopt multiple

conformations whereas BF_4^- adopts only a single conformation. S_{confor} in the liquid phase is expected to be larger for $Cu(TFSI)_2(bpp)_2$. For these reasons, ΔS_{fus} was expected to be higher in $Cu(TFSI)_2(bpp)_2$ than in $Cu(BF_4)_2(bpp)_2$. Considering that the effect of ΔH_{fus} derived from E_{ionic} and $E_{chain-chain}$ is small in this structural system, suggested in the study in other compounds, the effect of ΔS_{fus} increase is considered dominant in the T_m decrease in $Cu(TFSI)_2(bpp)_2$.

Figure S1. PXRD patterns of simulated and as-synthesized or degassed (A) $Cu(TFSI)_2(bpp)_2$, (B) $Cu(Ms_2N)_2(bpp)_2$, (C) $Cu(TFSI)_2(bpe)_2$ and (D) $Cu(BF_4)_2(bpp)_2$. For the dehydrated form of $Cu(Ms_2N)_2(bpp)_2$, the sample was degassed at 100°C and measured under inert atmosphere.

	H (calcd)	H (found)	C (calcd)	C (found)	N (calcd)	N (found)
Compound	/%	/%	/%	/%	/%	/%
Cu(TFSI) ₂ (bpp) ₂	2.77	2.70	35.31	35.11	8.24	8.43
Cu(Ms ₂ N) ₂ (bpp) ₂	5.01	4.90	44.79	44.56	10.45	10.40
Cu(TFSI) ₂ (bpe) ₂	4.45	4.40	49.28	49.45	8.84	8.66
Cu(BF ₄) ₂ (bpp) ₂	2.44	2.39	33.89	33.73	8.47	8.26

Table S1. Elemental analysis.

Compound	Cu(TFSI) ₂ (bpe) ₂		
Formula	$C_{28}H_{24}Cu_{6}F_{12}N_{6}O_{8}S_{4}$		
MW (g/mol)	992.31		
<i>T</i> (K)	173		
Wavelength (Å)	1.54187		
Crystal system	Monoclinic		
Space group	<i>C</i> 2		
<i>a</i> (Å)	19.966(6)		
b (Å)	9.159(2)		
<i>c</i> (Å)	11.301(4)		
β (Å)	108.602(9)		
V (Å ³)	1958.6(10)		
Z	2		
ρ (g cm ⁻³)	1.683		
μ (mm ⁻¹)	3.812		
Number of			
collected/independent	3438/3018		
reflection			
$R_1, WR_2 [I \Box 2\sigma(I)]$	0.0278, 0.0592		
R_1 , w R_2 (all data)	0.0330, 0.0602		
GOF	0.945		

Table S2. Parameters of crystal structures of Cu(TFSI)₂(bpe)₂. CCDC depositednumber is #2321776.

_

Figure S2. Crystal structure of the one-dimensional ribbon-chain and 3D packing structure of (A) $Cu(TFSI)_2(bpp)_2$, (B) $Cu(Ms_2N)_2(bpp)_2$ (C) $Cu(TFSI)_2(bpe)_2$. (D) $Cu(BF_4)_2(bpp)_2$. Orange, grey, blue, red, green, yellow, and purple spheres represent Cu, C, N, O, F, S and B atoms, respectively. H atoms have been omitted for clarity except for that of Ms_2N^- in $Cu(Ms_2N)_2(bpp)_2$.

Figure S3. TG-DTA profiles of (A) $Cu(TFSI)_2(bpp)_2$, (B) $Cu(Ms_2N)_2(bpp)_2$, (C) $Cu(TFSI)_2(bpe)_2$, and (D) $Cu(BF_4)_2(bpp)_2$.

Figure S4. DSC profiles of (A) Cu(TFSI)₂(bpp)₂ and (B) Cu(Ms₂N)₂(bpp)₂.

Figure S5. DSC profiles of Cu(TFSI)₂(bpp)₂ and determination of $T_{\rm m}$ and $\Delta H_{\rm fus}$. Measurements were conducted three times.

Figure S6. DSC profiles of Cu(Ms₂N)₂(bpp)₂ and determination of $T_{\rm m}$ and $\Delta H_{\rm fus}$. Measurements were conducted three times.

Commound		$T / \circ C$	$\Delta H_{ m fus}$	$\Delta H_{ m fus}$	$\Delta S_{ m fus}$
Compound		$I_{\rm m}/C$	/ mJ mg ⁻¹	/ kJ mol ⁻¹	/ J mol ⁻¹ K ⁻¹
Cu(TFSI)2(bpp)2	Meas. 1	194.8	44.6	45.5	97.3
	Meas. 2	201.7	41.3	42.1	88.7
	Meas. 3	199.4	44.4	45.3	95.9
	Ave.	198.6	43.4	44.3	94.0
	S.D.	2.9	1.5	1.5	3.7
Cu(Ms ₂ N) ₂ (bpp) ₂	Meas. 1	170.4	54.5	43.8	98.8
	Meas. 2	166.2	53.5	43.0	98.0
	Meas. 3	166.2	54.2	43.6	99.2
	Ave.	167.6	54.1	43.5	98.7
	S.D.	2.0	0.4	0.3	0.5

Table S3. $T_{\rm m}$, $\Delta H_{\rm fus}$, and $\Delta S_{\rm fus}$ for Cu(TFSI)₂(bpp)₂ and Cu(Ms₂N)₂(bpp)₂ determined by DSC measurements.

Figure S7. Microscope images of melting in TG-DTA measurement of (A) Cu(TFSI)₂(bpp)₂ and (B) Cu(Ms₂N)₂(bpp)₂.

Figure S8. VT-PXRD patterns of (A) Cu(TFSI)₂(bpp)₂ and (B) Cu(Ms₂N)₂(bpp)₂.

Figure S9. DSC profile with cooling and 2nd heating branches of (A) $Cu(TFSI)_2(bpp)_2$ and (B) $Cu(Ms_2N)_2(bpp)_2$.

Figure S10. Simulation cell of (A) crystal and (B) isolated 1D chain in a 2 2 2 supercell in the $E_{\text{chain-chain}}$ calculations of Cu(TFSI)₂(bpp)₂.

	Cu(TFSI) ₂ (bpp) ₂	$Cu(Ms_2N)_2(bpp)_2$	Cu(TFSI) ₂ bpe) ₂	Cu(TFSI) ₂ (BF ₄) ₂
$E_{\rm chain}$ /eV	-1018.997	-1035.912	-954.883	-826.325
$E_{ m crystal}$ /eV	-8196.475	-8345.887	-7681.954	-6649.614
$E_{\text{chain-chain}}$	-268.3	-353.3	-258.7	-235.3
/kJ mol ⁻¹				

Table S4. Calculated values E_{chain} , E_{crystal} and $E_{\text{chain-chain}}$ in each compound.

Figure S11. VT-RDF profiles of Cu(TFSI)₂(bpp)₂.

References

1. X. Zheng, K. Fukuhara, Y. Hijikata, J. Pirillo, H. Sato, K. Takahashi and S. Noro, *Commun. Chem.* 2020, **3**, 143.

2. T. Suzuki, R. Kotani, A. Kondo and K. Maeda, J. Phys. Chem. C, 2016, 120, 21571-21579.

3. G. M. Sheldrick, SHELXT–Integrated space-group and crystal-structure determination. *Acta Cryst.* 2015, A**71**, 3–8.

4. G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

5. B. Ravel and M. Newville, J. Synchrotron Radiat. 2005, 12, 537-541.

6. G. Kresse and J. Furthmuller, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, **54**, 11169–11186.

7. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758–1775.

8. I. Hamada, Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 89, 121103.

9. Y. L. Wang, B. Li, S. Sarman, F. Mocci, Z. Y. Lu, J. Yuan, A. Laaksonen and M. D. Fayer, *Chem. Rev.*, 2020, **120**, 5798–5877.