Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Radical-polar Crossover Reaction of Glycine Derivatives

Youwan Ye, Xin Zhang, Peng Kong, Yong Yuan, Xiaolong Zhao, Congde Huo*

Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China

E-mail: huocongde1978@hotmail.com

Table of Contents Graphic

Table of Contents

General experimental methods	(Page S2)
The synthesis of substrates	(Page S2)
Optimization of reaction conditions	(Page S2)
General Procedure of Glycine Derivatives A with alkene B	(Page S5)
Scale-up experiment	(Page S7)
Radical trapping experiments	(Page S7)
The isotope labelling experiments with D ₂ O	(Page S7)
Trap plausible carbanionic species using CO ₂	(Page S8)
The light on-off experiment	(Page S8)
Time course experiments	(Page S9)
Stern-Volmer luminescence quenching analysis	(Page S10)
Cyclic voltammetry study	(Page S11)
Characterization of the products	(Page S13)
Reference	(Page S42)
NMR spectra of the products	(Page S34)
X-Ray Diffraction Data of C8 (CCDC 2345482)	(Page S107)
HRMS spectra of key intermediates	(Page S108)

General Information

The starting materials, reagents and solvents, purchased from commercial suppliers, were used without further purification. Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. Flash chromatography was carried out using silica gel 200 - 300. ¹HNMR (400 MHz or 600 MHz) and ¹³CNMR (151 MHz) spectra were measured with CDCl₃ as solvent. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. High-resolution mass spectra (HRMS) were performed on Agilent 6520 with an ultra-high resolution quadruple Time-of-Flight (qTOF) detector and recorded under electrospray ionization (ESI) conditions.

The synthesis of substrates

The synthesis of glycine derivatives **A** used in this work were prepared according to the methods reported in literature.^[1] The synthesis of 1,1-diarylethylenes **B** used in this work were prepared according to the methods reported in literature.^[2]

Optimization of reaction conditions

Table S1: Screening of photocatalysts

^a Reaction conditions: ethyl *p*-tolylglycinate (0.1 mmol), 1,1-diphenylethylene (0.4 mmol), photocatalysts (1 mol %), H₂O (30 mol %), DMSO (0.25 mL), Ar, blue LEDs, 50 °C, 24 h. ^b Isolated yield.

Table S2: Screening of additive

^a Reaction conditions: ethyl *p*-tolylglycinate (0.1 mmol), 1,1-diphenylethylene (0.4 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6(1 mol %)$, additive (30 mol %), DMSO (0.25 mL), Ar, blue LEDs, 50 °C, 24 h. ^b Isolated yield.

Table S3: Screening the loading of additive

^a Reaction conditions: ethyl *p*-tolylglycinate (0.1 mmol), 1,1-diphenylethylene (0.4 mmol), [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (1 mol %), H₂O (x mol %), DMSO (0.25 mL), Ar, blue LEDs, 50 °C, 24 h. ^b Isolated yield.

Table S4: Screening of solvent

^a Reaction conditions: ethyl*p*-tolylglycinate (0.1 mmol), 1,1-diphenylethylene (0.4 mmol), [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (1 mol %), H₂O (2.0 equiv), solvent (0.25 mL), Ar, blue LEDs, 50 °C, 24 h. ^b Isolated yield.

Ĺ	JH I ON	+ Ph Ph Ph [Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]PF ₆ (1 mol %) H ₂ O (2.0 equiv) blue LEDs, 50 °C, solvent, Ar	H U Ph Ph
	entry	solvent	yield (%) ^b
·	1	DMSO (0.1 mL)	26
	2	DMSO (0.25 mL)	82
	3	DMSO (0.5 mL)	71
	4	DMSO (1.0 mL)	57
	5	DMSO (2.0 mL)	20

Table S5: Screening the loading of solvent

^a Reaction conditions: ethyl *p*-tolylglycinate (0.1 mmol), 1,1-diphenylethylene (0.4 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %), H₂O (2.0 equiv), solvent (x mL), Ar, blue LEDs, 50 °C, 24 h. ^b Isolated yield.

General procedure of radical addition of glycine derivatives with alkenes

General procedure 1: To a dried Schlenk tube (10 mL) with a magnetic stirring bar were added glycine esters (A, 0.2 mmol) and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, alkenes (B, 0.8 mmol), H₂O (2.0 equiv) and degassed DMSO (0.5 mL) were added under argon atmosphere. Then, the resulting reaction mixture was 50 °C under blue LEDs (30 W) irradiation for 24 hours. The reaction progress was monitored by TLC. After the reaction was completed, the reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, and the residue was purified by column chromatography to afford the desired compounds C1-C31 (EA/PE = 1:3 - 1:150).

General procedure 2: To a dried Schlenk tube (10 mL) with a magnetic stirring bar were added glycine esters (**A**, 0.2 mmol) and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, alkenes (**B**, 0.4 mmol), 2, 4, 6-triisopropylbenzenethiol (30 mol %) and degassed DCE (2 mL) were added under argon atmosphere. Then, the resulting reaction mixture was performed at 50 °C under blue LEDs (30 W) irradiation for 60 hours. The reaction progress was monitored by TLC. After the reaction was completed, the reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography to afford the desired compounds **C32 - C46** (EA/PE = 1:20 - 1:200).

General procedure 3: To a dried Schlenk tube (10 mL) with a magnetic stirring bar were added glycine esters (**A**, 0.2 mmol) and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, alkenes (**B**, 0.8 mmol) and degassed DMSO (0.5 mL) were added under argon atmosphere. Then, the resulting reaction mixture was 50 °C under blue LEDs (30 W) irradiation for 24 hours. The reaction progress was monitored by TLC. After the reaction was completed, the reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, and the residue was purified by column chromatography to afford the desired compounds **C47**

-C54 (EA/PE = 1:20 - 1:80).

Scale-up experiment

To a dried Schlenk tube (25 mL) with a magnetic stirring bar were added ethyl p-tolylglycinate (5 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, 1,1-diphenylethylene (20 mmol), H₂O (2.0 equiv) and degassed DMSO (12.5 mL) were added under argon atmosphere. Then, the resulting reaction mixture was 50 °C under blue LEDs (30 W) irradiation for 24 hours. The reaction progress was monitored by TLC. After the reaction was completed, the reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, and the residue was purified by column chromatography to afford the desired compounds (1.31 g, 70%).

Radical trapping experiments

To a dried Schlenk tube (10 mL) with a magnetic stirring bar were added ethyl p-tolylglycinate (0.1 mmol) and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, 1,1-diphenylethylene (0.4 mmol), H₂O (2.0 equiv), TEMPO (2.0 equiv) and degassed DMSO (0.25 mL) were added under argon atmosphere. Then, the resulting reaction mixture was 50 °C under blue LEDs (30 W) irradiation for 1 hours. then reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, and detected by HRMS analysis of the reaction mixture.

The isotope labelling experiments with D₂O

To a dried Schlenk tube (10 mL) with a magnetic stirring bar were added ethyl p-tolylglycinate (0.1 mmol) and $Ir(dF(CF_3)ppy)_2(dtbpy)PF_6$ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, 1,1-diphenylethylene (0.4 mmol), D₂O

(2.0 equiv) and DMSO degassed (0.25 mL) were added under argon atmosphere. Then, the resulting reaction mixture was 50 °C under blue LEDs (30 W) irradiation for 24 hours. The reaction progress was monitored by TLC. After the reaction was completed, the reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, and the residue was purified by column chromatography to afford the desired compounds in 58% yield with 26% deuterium incorporation.

Trapping plausible carbanionic species with CO₂

To a dried Schlenk tube (25 mL) with a magnetic stirring bar were added ethyl p-tolylglycinate (0.1 mmol) and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (1 mol %) successively. hen evacuated and back-filled with CO₂ atmosphere 3 times. Subsequently, 1,1-diphenylethylene (0.4 mmol) and DMSO (0.25 mL) were added under CO₂ atmosphere and the tube was sealed at atmospheric pressure of CO₂ (1 atm). Then, the resulting reaction mixture was performed at 50 °C under blue LEDs (30 W) irradiation for 24 hours. The reaction progress was monitored by TLC. After the reaction was completed, CH₃I (2 equiv) and Cs₂CO₃ (2 equiv) was added and stirred at 50 °C for 4 hours, the reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration, and the residue was purified by column chromatography to afford the desired compounds (EA/PE = 1:30). ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.21 (m, 10H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.51 (d, *J* = 8.6 Hz, 2H), 4.21 (t, *J* = 5.5 Hz, 1H), 3.96 - 3.76 (m, 2H), 3.58 (s, 3H), 3.22 (dd, *J* = 14.3, 6.0 Hz, 1H), 3.00 (dd, *J* = 14.3, 5.1 Hz, 1H), 2.70 (s, 3H), 2.23 (s, 3H), 1.02 (t, *J* = 7.1 Hz, 3H).

The light on-off experiment^[3]

To a dried Schlenk tube (10 mL) with a magnetic stirring bar were added ethyl p-tolylglycinate (0.1 mmol) and $Ir(dF(CF_3)ppy)_2(dtbpy)PF_6$ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, 1,1-diphenylethylene (0.4 mmol), H₂O (2.0 equiv) and DMSO (0.25 mL) were added under argon atmosphere. Then, the resulting reaction mixture was performed 50 °C under blue LEDs (30 W) irradiation. The reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration Sixteen identical reactions were carried out simultaneously and yield was determined by ¹H NMR of the crude mixture using 1,3,5-Trimethoxybenzene as internal standard. These experiments with continuous intervals of irradiation and dark periods leaded to total interruption of the reaction proceed in the absence of light, and reactivity is restored under further light. These results indicated that light is an essential component of the reaction.

Time course experiments^[4]

To a dried Schlenk tube (10 mL) with a magnetic stirring bar were added ethyl p-tolylglycinate (0.1 mmol) and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %) successively. Air was then withdrawn and backfilled with argon for 3 times. Subsequently, 1,1-diphenylethylene (0.4 mmol), H₂O (2.0 equiv) and DMSO (0.25 mL) were added under argon atmosphere. Then, the resulting

reaction mixture was performed 50 °C under blue LEDs (30 W) irradiation. The reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine 3 times. Twelve identical reactions were carried out simultaneously and yield was determined by ¹H NMR of the crude mixture using 1,3,5-trimethylbenzene as internal standard. Reaction times 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 5 h, 7 h, 9 h, 11 h,14 h, 17 h were plotted for the increase of product with time and decrease of feedstock ethyl p-tolylglycinate with time.

Stern-Volmer luminescence quenching analysis^[5]

DMSO was degassed with a stream of argon for 1 h. $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6(3.4 mg, 15 \mu mol)$ was dissolved in 200 mL DMSO to prepare a 1.5×10^{-5} M solution. 9.5 mL of this solution was added to each of a set of 5 volumetric flasks (10 mL). Subsequently, the solution of quencher ethyl p-tolylglycinate or 1,1-diphenylethylene in DMSO (1.0 mL, 0.0125 M) was added in increasing amounts (0, 50 µL, 100 µL, 150 µL and 200 µL) to the volumetric flasks and the volume of volumetric flasks were adjusted to 10 mL by adding DMSO. Emission intensities were recorded by using F-4700 Fluorescence Spectrometer. All solutions were excited at 380 nm and the fluorescence emission spectra were recorded. The ratio of the maximum fluorescence emission intensities maximum between samples without and with quencher were plotted against the quencher concentration to generate the Stern-Volmer plots below.

Cyclic voltammetry study

Cyclic voltammograms were performed on a CH Instruments Electrochemical Workstation model CHI660E at room temperature. Samples were prepared with 0.2 mmol of substrate in 10 mL of 0.1 M tetrabutylammonium hexafluorophosphate in dry, degassed acetonitrile. Measurements employed a glassy carbon working electrode, a Pt counter electrode, and an Ag/AgCl reference electrode, and a scan rate of 100 mV/s. The obtained value was referenced to Ag/AgCl and converted to SCE by subtracting 0.03 V.^[6]

Characterization of the products

Methyl 4,4-diphenyl-2-(p-tolylamino)butanoate (C1). The desired pure product was obtained in 76% yield (54.6 mg) as a white solid. m.p. = 132 - 133 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.23 (m, 8H), 7.23 - 7.16 (m, 2H), 6.92 (d, *J* = 6.7 Hz, 2H), 6.37 (d, *J* = 8.5 Hz, 2H), 4.31 - 4.25 (m, 1H), 4.01 - 3.86 (m, 2H), 3.62 (s, 3H), 2.63 - 2.55 (m, 1H), 2.40 - 2.32 (m, 1H), 2.20 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.7, 144.6, 144.2, 143.4, 129.7, 128.6, 128.5, 128.1, 127.8, 126.5, 126.4, 114.0, 55.6, 52.0, 47.2, 39.1, 20.4. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₆NO₂ 360.1958; found 360.1957.

Methyl 2-((4-methoxyphenyl)amino)-4,4-diphenylbutanoate (C2). The desired pure product was obtained in 81% yield (64.0 mg) white solid. m.p. = 93 - 95 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.31 - 7.25 (m, 8H), 7.22 - 7.17 (m, 2H), 6.69 (d, J = 8.9 Hz, 2H), 6.42 (d, J = 8.9 Hz, 2H), 4.30 (dd, J = 9.4, 6.1 Hz, 1H), 3.84 (dd, J = 9.0, 5.1 Hz, 1H), 3.79 (s, 1H), 3.71 (s, 3H), 3.62 (s, 3H), 2.61 - 2.55(m, 1H), 2.37 - 2.31 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 175.0, 152.9, 144.2, 143.3, 140.9, 128.7, 128.5, 128.1, 127.8, 126.6, 126.4, 115.6, 114.8, 56.5, 55.6, 52.0, 47.2, 39.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₆NO₃ 376.1907; found 376.1908.

Methyl 2-((4-((2-(4-isobutylphenyl)propanoyl)oxy)phenyl)amino)-4,4-diphenylbutanoate (C3). The desired pure product was obtained in 80% yield (87.8mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.29 - 7.21 (m, 10H), 7.20 - 7.16 (m, 2H), 7.11 (d, *J* = 8.1 Hz, 2H), 6.73 (d, *J* = 8.9 Hz, 2H), 6.35 (d, *J* = 8.8 Hz, 2H), 4.24 (dd, *J* = 9.5, 6.5 Hz, 1H), 4.01 (s, 1H), 3.89 - 3.84(m, 2H), 3.61 (s, 2H), 2.61 - 2.55 (m, 1H), 2.46 (d, *J* = 7.1 Hz, 2H), 2.37 - 2.31 (m, 1H), 1.89 - 1.81 (m, 1H), 1.56 (d, *J* = 7.1 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 173.6, 144.6, 144.1, 143.2 143.0, 140.6, 137.4, 129.4, 128.7, 128.5, 128.0,

127.7, 127.2, 126.6, 126.5, 121.9, 114.2, 55.6, 52.1, 47.2, 45.2, 45.0, 39.0, 30.1, 22.4, 18.5. HRMS (ESI-Q-TOF) m/z: $[M + H]^+$ calcd for C₃₆H₄₀NO₄ 550.2952; found 550.2950.

Methyl 2-((4-fluorophenyl)amino)-4,4-diphenylbutanoate (C4). The desired pure product was obtained in 71% yield (51.6 mg) a white solid. m.p. = 136 - 138 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.23 - 7.16 (m, 8H), 7.15 - 7.09 (m, 2H), 6.75 - 6.70 (m, 2H), 6.31 - 6.26 (m, 2H), 4.19 (dd, J = 7.6, 6.9 Hz, 1H), 3.85 (s, 1H), 4.21 - 4.17 (m, 1H), 3.55 (s, 3H), 2.55 - 2.50 (m, 1H), 2.31 - 2.24 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.5, 156.4 (d, J = 236.4 Hz), 144.1, 143.2, 143.2 (d, J = 1.9 Hz), 128.7, 128.6, 128.0, 127.8, 126.6, 126.5, 115.7 (d, J = 22.5 Hz), 115.0 (d, J = 7.5 Hz), 56.1, 52.1, 47.2, 39.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.45. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₃FNO₂ 364.1707; found 364.1708.

Methyl 2-((4-chlorophenyl)amino)-4,4-diphenylbutanoate(C5). The desired pure product was obtained in 66% yield (50.1 mg) a white solid. m.p. = 155 - 157 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.33 - 7.20 (m, 10H), 7.06 (d, *J* = 8.8 Hz, 2H), 6.36 (d, *J* = 8.9 Hz, 2H), 4.26 (dd, *J* = 9.2, 6.2 Hz, 1H), 4.08 (s, 1H), 3.93 - 3.88 (m, 1H), 3.66 (s, 3H), 2.66 - 2.60 (m, 1H), 2.42 - 2.35 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 145.4, 144.0, 143.1, 129.1, 128.7, 128.6, 128.0, 127.8, 126.7, 126.5, 123.1, 114.9, 55.3, 52.2, 47.2, 38.9. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₃CINO₂ 380.1412; found 380.1413.

Methyl 2-((4-bromophenyl)amino)-4,4-diphenylbutanoate (C6). The desired pure product was obtained in 78% yield (66.6 mg) a white solid. m.p. = 146 - 148 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.31 - 7.16 (m, 10H), 7.17 (d, *J* = 8.8 Hz, 2H), 6.28 (d, *J* = 8.8 Hz, 2H), 4.23 (dd, *J* = 9.4, 6.4

Hz, 1H), 4.07 (d, J = 9.8 Hz, 1H), 3.90 - 3.85 (m, 1H), 3.63 (s, 3H), 2.64 - 2.58 (m, 1H), 2.39 - 2.33 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 145.8, 143.9, 143.1, 131.9, 128.7, 128.6, 128.0, 127.7, 126.7, 126.5, 115.3, 110.2, 55.1, 52.2, 47.2, 38.9. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₃BrNO₂ 424.0907; found 424.0906.

Methyl 2-((4-iodophenyl)amino)-4,4-diphenylbutanoate (C7). The desired pure product was obtained in 28% yield (26.3 mg) as yellow solid. m.p. = 157 - 159 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, *J* = 8.8 Hz, 2H), 7.31 - 7.19 (m, 10H), 6.20 (d, *J* = 8.8 Hz, 2H), 4.22 (dd, *J* = 9.2, 6.4 Hz, 1H), 4.07 (s, 1H), 3.91 - 3.86 (m, 1H), 3.65 (s, 3H), 2.64 - 2.58 (m, 1H), 2.40 - 2.33 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.1, 146.5, 143.9, 143.1, 137.8, 128.7, 128.6, 128.0, 127.7, 126.7, 126.6, 115.9, 79.5, 55.0, 52.2, 47.2, 38.9. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₃INO₂ 472.0768; found 472.0766.

Ethyl 4,4-diphenyl-2-(p-tolylamino)butanoate (C8). The desired pure product was obtained in 82% yield (61.2 mg) as a white solid. m.p. = 113 - 115 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.31 - 7.23 (m, 8H), 7.21 - 7.17 (m, 2H), 6.91 (d, *J* = 8.3 Hz, 2H), 6.37 (d, *J* = 8.4 Hz, 2H), 4.28 (dd, *J* = 9.1, 6.5 Hz, 1H), 4.13 - 4.04 (m, 2H), 3.94 - 3.86 (m, 1H), 2.60 - 2.54 (m, 1H), 2.40 - 2.34 (m, 1H), 2.20 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 144.6, 144.2, 143.4, 129.7, 128.6, 128.5, 128.1, 127.8, 127.7, 126.5, 126.4, 114.1, 61.0, 55.7, 47.3, 39.2, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₅H₂₈NO₂ 374.2115; found 374.2114.

Benzyl 4,4-diphenyl-2-(p-tolylamino)butanoate (C9). The desired pure product was obtained in 75% yield (65.2 mg) as a white solid. m.p. = 166 - 168 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.35 (m, 3H), 7.35 - 7.21 (m, 10H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.44 (d, *J* = 8.0 Hz, 2H), 5.12 (s, 2H), 4.29 (t, *J* = 8.6 Hz, 1H), 4.07 - 3.96 (m, 2H), 2.69 - 2.59 (m, 1H), 2.50 - 2.41 (m, 1H), 2.27 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 174.1, 144.5, 144.0, 143.4, 135.5, 129.7, 128.6, 128.5, 128.5, 128.2, 128.2, 128.0, 127.8, 127.8, 126.5, 126.4, 114.1, 66.7, 55.7, 47.2, 39.1, 20.4. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₀H₃₀NO₂ 436.2271; found 436.2269.

Isobutyl 4,4-diphenyl-2-(p-tolylamino)butanoate (C10). The desired pure product was obtained in 75% yield (50.4 mg) as a white solid. m.p. = 121 - 123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.23 (m, 8H), 7.23 - 7.17 (m, 2H), 6.90 (d, *J* = 6.4 Hz, 2H), 6.36 (d, *J* = 6.2 Hz, 2H), 5.01 - 4.93 (m, 1H), 4.33 - 4.25 (m, 1H), 3.92 (s, 1H), 3.87 - 3.81 (m, 1H), 2.59 - 2.50 (m, 1H), 2.41 - 2.31 (m, 1H), 2.20 (s, 3H), 1.19 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.8, 144.6, 144.2, 143.5, 129.6, 128.6, 128.5, 128.0, 127.9, 127.7, 126.5, 126.4, 114.1, 68.6, 55.8, 47.3, 39.2, 21.8, 21.7, 20.4. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₆H₃₀NO₂ 388.2271; found 388.2272.

(3S,8R,9S,10S,13S,14S)-10,13-dimethyl-17-oxohexadecahydro-1H-

cyclopenta[a]phenanthren-3-yl 4,4-diphenyl-2-(p-tolylamino)butanoate (C11). The desired pure product was obtained in 64% yield (78.7 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.23 (m, 8H), 7.23 - 7.17 (m, 2H) 6.90 (d, *J* = 8.0 Hz, 2H), 6.36 (d, *J* = 8.3 Hz, 2H), 4.71 - 4.61 (m, 1H), 4.32 - 4.25 (m, 1H), 3.91 (s, 1H), 3.83 (s, 1H), 2.58 - 2.49 (m, 1H), 2.48 -2.31 (m, 2H), 2.20 (s, 3H), 2.12 - 2.00 (m, 1H), 1.97 - 1.87 (m, 1H), 1.83 - 1.69 (m, 4H), 1.67-1.42 (m, 6H), 1.38 - 1.16 (m, 6H), 1.05 - 0.91 (m, 2H), 0.85 (d, *J* = 4.4 Hz, 6H), 0.74 - 0.65 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 221.1, 173.8, 173.8, 144.6, 144.6, 144.2, 144.2, 143.5, 143.5, 129.6, 128.6, 128.5, 128.1, 128.0, 127.9, 127.7, 127.7, 127.7, 126.5, 126.4, 114.1, 114.1, 74.3, 55.8, 54.2, 51.3, 47.7, 47.3, 44.6, 44.6, 39.3, 36.6, 36.6, 35.8, 35.6, 35.0, 33.8, 33.8, 31.5, 30.8, 30.7, 28.2, 28.2, 27.4, 27.3, 21.7, 20.4, 20.4, 13.8, 12.2. HRMS (ESI-Q-TOF) $[M + H]^+$ calcd for C₄₂H₅₂NO₃ 618.3942; found 618.3940.

Neopentyl 4,4-diphenyl-2-(*p*-tolylamino)butanoate (C12). The desired pure product was obtained in 72% yield (57.7 mg) as a white solid. m.p. = 147 - 149 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.35 - 7.26 (m, 8H), 7.25 - 7.19 (m, 2H), 6.92 (d, *J* = 8.3 Hz, 2H), 6.36 (d, *J* = 8.5 Hz, 2H), 4.34 - 4.27 (m, 1H), 3.89 (s, 1H), 3.78 (d, *J* = 7.0 Hz, 1H), 2.58 - 2.52 (m, 1H), 2.38 - 2.30 (m, 1H), 2.22 (s, 3H), 1.43 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 173.5, 144.8, 144.3, 143.6, 129.6, 128.6, 128.5, 128.1, 127.9, 127.5, 126.5, 126.4, 114.1, 81.5, 56.2, 47.4, 39.4, 28.0, 20.4. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₃₂NO₂ 402.2428; found 402.2427.

(3s,5s,7s)-adamantan-1-yl 4,4-diphenyl-2-(p-tolylamino)butanoate (C13). The desired pure product was obtained in 60% yield (57.5 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.24 (m, 8H), 7.23 - 7.17 (m, 2H), 6.90 (d, J = 8.3 Hz, 2H), 6.33 (d, J = 8.4 Hz, 2H), 4.34 - 4.25 (m, 1H), 3.91 (s, 1H), 3.80 - 3.73 (m, 1H), 2.57 - 2.49 (m, 1H), 2.38 - 2.28 (m, 1H), 2.20 (s, 3H), 2.14 (s, 3H), 2.07 (s, 6H), 1.64 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.2, 144.8, 144.3, 143.6, 129.6, 128.6, 128.5 128.1, 127.9, 127.4, 126.4, 126.4, 114.1, 81.6, 56.2, 47.4, 41.3, 39.5, 36.1, 30.8, 20.4. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₃H₃₈NO₂ 480.2897; found 480.2896.

Methyl 4,4-diphenyl-2-(o-tolylamino)butanoate (C14). The desired pure product was obtained in 75% yield (53.9 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.22 (m, 8H),

7.22 - 7.16 (m, 2H), 7.03 (d, J = 7.3 Hz, 1H), 6.99 - 6.94 (m, 1H), 6.68 - 6.63 (m, 1H), 6.24 (d, J = 8.0 Hz, 1H), 4.31 - 4.21 (m, 1H), 4.03 (dd, J = 8.1, 5.3 Hz, 1H), 3.63 (s, 3H), 2.70 - 2.61 (m, 1H), 2.51 - 2.43 (m, 1H), 2.13 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.7, 144.8, 144.2, 143.5, 130.3, 128.7, 128.6, 128.0, 127.8, 127.0, 126.6, 126.5, 122.9, 118.1, 110.7, 55.2, 52.1, 47.4, 39.2, 17.4. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₆NO₂ 360.1958; found 360.1957.

Methyl 4,4-diphenyl-2-(*m*-tolylamino)butanoate (C15). The desired pure product was obtained in 78% yield (56.1 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.23 (m, 8H), 7.23 - 7.17 (m, 2H) 7.02 - 6.96 (m, 1H), 6.54 (d, *J* = 7.4 Hz, 1H), 6.28 - 6.23 (m, 2H), 4.27 (dd, *J* = 9.3, 6.4 Hz, 1H), 4.05 - 3.90 (m, 2H), 3.64 (s, 3H), 2.64 - 2.55 (m, 1H), 2.41 - 2.33 (m, 1H), 2.20 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.6, 146.9, 144.2, 143.3, 139.0, 129.1, 128.6, 128.5, 128.1, 127.8, 126.5, 126.4, 119.5, 114.6, 110.9, 55.1, 52.1, 47.2, 39.2, 21.5. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₆NO₂ 360.1958; found 360.1959.

Methyl 4,4-diphenyl-2-(phenylamino)butanoate (C16). The desired pure product was obtained in 58% yield (40.0 mg) as a white solid. m.p. = 125- 127 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.32 - 7.23 (m, 8H), 7.22 - 7.16 (m, 2H), 7.14 - 7.07 (m, 2H), 6.74 - 6.68 (m, 1H), 6.45 (d, *J* = 7.6 Hz, 2H), 4.30 - 4.23 (m, 1H), 4.05 (s, 1H), 3.95 (s, 1H), 3.63 (s, 3H) 2.65 - 2.57 (m, 1H), 2.42 - 2.36 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.5, 146.8, 144.1, 143.3, 129.2, 128.7, 128.6, 128.0, 127.8, 126.6, 126.5, 118.5, 113.8, 55.2, 52.1, 47.2, 39.1. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₄NO₂ 346.1802; found 346.1804.

methyl 2-((2,4-dimethylphenyl)amino)-4,4-diphenylbutanoate (C17). The desired pure product was obtained in 62% yield (48.1 mg) as a white solid. m.p. = 102- 104 °C . ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.23 (m, 8H), 7.23 - 7.16 (m, 2H), 6.85 (d, *J* = 5.3 Hz, 1H), 6.26 (s, 1H), 6.21 (d, *J* = 7.6 Hz, 1H), 4.33 - 4.25 (m, 1H), 4.13 - 4.03 (m, 2H), 3.91 - 3.83 (m, 1H), 2.64 - 2.50 (m, 1H), 2.41 - 2.26 (m, 1H), 2.11 (s, 6H), 1.22 (t, *J* = 7.0 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 174.3, 145.0 144.3, 143.5, 137.3, 130.2, 128.6, 128.5, 128.2, 128.1, 127.8, 126.5, 126.4, 115.8, 111.4, 61.0, 55.6, 47.2, 39.3, 19.9, 18.7, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₆H₃₀NO₂ 388.2271; found 388.2272.

N-methyl-4,4-diphenyl-2-(p-tolylamino)butanamide (C18). The desired pure product was obtained in 58% yield (41.6 mg) as a white solid. m.p. = 193- 195 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 - 7.11 (m, 10H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.76 (s, 1H), 6.27 (d, *J* = 8.0 Hz, 2H), 4.16 - 4.03 (m, 1H), 3.78 (s, 1H), 3.63 (dd, *J* = 9.3, 3.9 Hz, 1H), 2.89 - 2.79 (m, 1H), 2.76 (d, *J* = 4.9 Hz, 3H), 2.45 - 2.33 (m, 1H), 2.23 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 144.3 144.1, 143.8, 129.8, 128.8, 128.7, 128.4, 127.8, 127.8, 126.6, 126.54, 113.7, 59.1, 48.7, 39.1, 26.0, 20.4. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₇N₂O 359.2118; found 359.2118.

4,4-diphenyl-1-(pyrrolidin-1-yl)-2-(p-tolylamino)butan-1-one (*C19*). The desired pure product was obtained in 74% yield (58.9 mg) as a white solid. m.p. = 129- 131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.25 (m, 8H), 7.23 - 7.11 (m, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.40 (d, *J* = 8.4 Hz, 2H), 4.33 - 4.26 (m, 1H), 4.22 (s, 1H), 3.94 - 3.87 (m, 1H), 3.45 - 3.30 (m, 2H), 3.10 - 3.03 (m, 1H), 2.92 - 2.84 (m, 1H), 2.43 - 2.33 (m, 2H), 2.21 (s, 3H), 1.81 - 1.69 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 171.8, 145.2, 144.2, 144.2, 129.7, 128.5, 128.5, 128.2, 127.7, 127.6, 126.5, 126.3, 114.5, 54.3, 47.3, 45.7, 45.6, 39.0, 25.9, 24.0, 20.3. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₃₁N₂O 399.2431; found 399.2432.

Ethyl (4,4-diphenyl-2-(p-tolylamino)butanoyl)glycinate (C20). The desired pure product was obtained in 43% yield (40.1 mg) as a white solid. m.p. = 121- 123 °C. ¹H NMR (600 MHz, CDCl₃) 7.29 - 7.24 (m, 4H), 7.24 - 7.14 6.93 (m, 6H), (d, J = 8.6 Hz, 2H), 6.30 (d, J = 8.5 Hz, 2H), 4.18 - 4.13 (m, 3H), 4.05 (dd, J = 18.2, 6.3 Hz, 1H), 3.84 (dd, J = 18.1, 5.0 Hz, 1H), 3.71 (s, 1H), 3.68 (d, J = 5.5 Hz, 1H), 2.84 - 2.77 (m, 1H), 2.47 - 2.37 (m, 1H), 2.22 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 169.6, 144.2, 144.1, 143.6, 129.7, 128.7, 128.6, 128.2, 127.8, 127.7, 126.5, 113.7, 61.3, 58.7, 48.3, 41.0, 39.0, 20.3, 14.0. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₃₁N₂O₃ 431.2329; found 431.2329.

Ethyl (4,4-diphenyl-2-(p-tolylamino)butanoyl)-L-valinate (C21). The desired pure product was obtained in 44% yield (41.4 mg, dr = 1.2:1) as a white solid. m.p. = 149-151 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.37 - 7.13 (m, 10H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.31 (dd, *J* = 23.2, 8.3 Hz, 2H), 4.51 - 4.46 (m, 1H), 4.22 - 4.13 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 3.74 - 3.48 (m, 2H), 2.86 - 2.75 (m, 1H), 2.47 - 2.36 (m, 1H), 2.21 (s, 3H), 2.17 - 2.04 (m, 1H), 1.20 (m, 3H), 0.87 (dd, *J* = 32.9, 6.8 Hz, 3H), 0.75 (dd, *J* = 65.0, 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 173.4, 171.8, 171.3, 144.3, 144.2, 144.1, 144.0, 143.6, 143.5, 129.7, 129.6, 128.8, 128.7, 128.7, 128.3, 128.2, 127.9, 127.8, 127.8, 127.7, 126.6, 126.5, 126.5, 114.2, 113.7, 61.2, 61.1, 59.1, 59.0, 57.1, 56.8, 48.4, 48.4, 39.2, 39.1, 31.1, 31.1, 20.4, 20.4, 19.0, 17.7, 17.4, 14.2, 14.0. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₀H₃₇N₂O₃ 473.2799; found 473.2798.

Ethyl (2S)-2-(4,4-diphenyl-2-(p-tolylamino)butanamido)-2-phenylacetate (C22). The desired pure product was obtained in 45% yield (45.5mg, dr = 1:1) as a white solid. m.p. = 180 -182 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, *J* = 77.2, 7.6 Hz, 1H), 7.38 - 7.10 (m, 14H), 6.92 (dd, *J* = 22.0, 8.0 Hz, 2H), 6.30 (dd, *J* = 43.2, 8.4 Hz, 2H), 5.54 - 5.46 (m, 1H), 4.25 - 4.03 (m, 3H), 3.73 - 3.61 (m, 2H), 2.84 - 2.69 (m, 1H), 2.49 - 2.33 (m, 1H), 2.23 (d, *J* = 5.1 Hz, 3H), 1.21 - 1.11 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.11, 173.06, 170.6, 170.3, 144.14, 144.08, 143.58, 143.56, 136.42, 136.36, 129.69, 129.65, 128.9, 128.73, 128.69, 128.6, 128.44, 128.36, 128.3, 127.9, 127.84, 127.75, 127.2, 126.6, 126.5, 114.2, 114.0, 61.8, 61.7, 58.87, 58.86, 56.5, 56.3, 48.4, 48.3, 39.2, 38.9, 20.41, 20.37, 14.0, 13.9. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₃H₃₅N₂O₃ 507.2642; found 507.2643.

Ethyl (4,4-diphenyl-2-(p-tolylamino)butanoyl)-L-tryptophanate (C23). The desired pure product was obtained in 67% yield (74.9 mg, dr = 1.1:1) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 117.2 Hz, 1H), 7.45 (dd, *J* = 72.1, 7.9 Hz, 1H), 7.31 - 7.23 (m, 3H), 7.23 - 7.13 (m, 7H), 7.13 - 7.09 (m, 1H), 7.09 - 6.97 (m, 1H), 6.91 - 6.87 (m, 2H), 6.62 (d, *J* = 238.6 Hz, 1H), 6.22 - 6.17 (m, 2H), 4.92 - 4.85 (m, 1H), 4.15 - 4.02 (m, 3H), 3.66 - 3.42 (m, 2H), 3.34 - 3.26 (m, 1H), 3.24 - 3.10 (m, 1H), 2.77 - 2.59 (m, 1H), 2.23 (d, *J* = 21.7 Hz, 3H), 2.35 - 2.10 (m, 1H), 1.21 - 1.03 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.3, 171.8, 171.5, 144.23, 144.17, 144.1, 144.0, 143.6, 143.5, 136.0, 129.6, 129.5, 128.7, 128.59, 128.56, 128.0, 127.9, 127.8, 127.7, 127.7, 127.3, 126.5, 126.4, 123.0, 122.7, 122.1, 122.0, 119.51, 119.47, 118.54, 118.47, 114.0, 113.5, 111.3, 111.0, 110.10, 110.08, 109.5, 61.4, 61.3, 58.7, 58.6, 52.9, 52.04,

52.02, 48.3, 48.2, 39.0, 38.7, 27.5, 27.4, 20.39, 20.35, 14.0, 13.9. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for $C_{36}H_{38}N_3O_3$ 560.2908; found 560.2908.

Ethyl (4,4-diphenyl-2-(p-tolylamino)butanoyl)-L-methioninate (C24). The desired pure product was obtained in 43% yield (43.4 mg, dr = 1.3:1) as a white solid. m.p. = 102 -104 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.30 - 7.14 (m, 10H), 6.93 (d, J = 8.0 Hz, 2H), 6.31 (dd, J = 34.4, 8.5 Hz, 2H), 4.70 - 4.58 (m, 1H), 4.17 (q, J = 7.2 Hz, 2H), 4.11 (q, J = 7.1 Hz, 1H), 3.81 - 3.56 (m, 2H), 2.83 - 2.75 (m, 1H), 2.44 - 2.38 (m, 2H), 2.28 -2.24 (m, 1H), 2.21 (d, J = 2.4 Hz, 3H), 2.16 - 2.04 (m, 1H), 1.96 (d, J = 65.0 Hz, 3H), 1.95 - 1.80 (m, 1H), 1.28 - 1.14 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 173.4, 171.7, 171.3, 144.2, 144.1, 144.0, 143.9, 143.51, 143.49, 129.7, 129.6, 128.73, 128.70, 128.6, 128.3, 128.2, 127.84, 127.81, 127.72, 127.69, 126.6, 126.5, 114.1, 113.5, 61.53, 61.46, 58.8, 58.7, 51.5, 51.1, 48.4, 48.3, 39.1, 38.9, 31.51, 31.46, 30.0, 29.7, 20.4, 20.3, 15.4, 15.2, 14.1, 14.0. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₀H₃₇N₂O₃S 505.2519; found 505.2518.

Methyl (4,4-diphenyl-2-(p-tolylamino)butanoyl)-L-prolinate (C25). The desired pure product was obtained in 56% yield (51.1 mg, dr = 6:1) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.32 - 7.23 (m, 8H), 7.22 - 7.16 (m, 2H), 6.94 (d, *J* = 8.1 Hz, 2H), 6.44 - 6.27 (m, 2H), 4.38 (dd, *J* = 8.1, 2.7 Hz, 1H), 4.24 (t, *J* = 7.9 Hz, 1H), 4.05 (s, 1H), 3.97 - 3.88 (m, 1H), 3.54 (d, *J* = 17.8 Hz, 3H), 3.36 - 3.25 (m, 1H), 3.00 - 2.93 (m, 1H), 2.49 - 2.35 (m, 2H), 2.22 (s, 3H), 2.14 - 1.98 (m, 2H), 1.96 - 1.85 (m, 2H), 1.85 - 1.74 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 172.0, 144.8, 144.2, 144.0, 129.8, 129.6, 128.53, 128.49, 128.1, 127.8, 126.47, 126.45, 114.3, 59.0,

54.2, 52.0, 47.4, 46.1, 38.6, 28.9, 24.6, 20.4. HRMS (ESI-Q-TOF) m/z: $[M + H]^+$ calcd for $C_{29}H_{33}N_2O_3$ 457.2486; found 457.2486.

Ethyl 4,4-di-p-tolyl-2-(p-tolylamino)butanoate (C26). The desired pure product was obtained in 37% yield (29.7 mg) as a white solid. m.p. = 107 -109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 - 7.02 (m, 8H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.38 (d, *J* = 8.2 Hz, 2H), 4.23 - 4.17 (m, 1H), 4.09 (q, *J* = 7.1 Hz, 1H), 3.98 - 3.83 (m, 2H), 2.57 - 2.48 (m, 1H), 2.38 - 2.31 (m, 1H), 2.30 (s, 6H), 2.21 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 144.5, 141.5, 140.7, 135.9, 135.8, 129.7, 129.3, 129.2, 127.8, 127.7, 127.6, 114.1, 61.0, 55.7, 46.5, 39.3, 21.0, 21.0, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₃₂NO₂ 402.2428; found 402.2427.

Ehyl 4,4-bis(*4-methoxyphenyl*)-*2-(p-tolylamino)butanoate (C27).* The desired pure product was obtained in32% yield (27.7 mg) as a white solid. m.p. = 82 -84 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.11 - 7.04 (m, 4H), 6.84 (d, *J* = 7.9 Hz, 2H), 6.75 (d, *J* = 7.6 Hz, 4H), 6.31 (d, *J* = 7.2 Hz, 2H), 4.14 - 4.08(m, 1H), 4.02 (q, *J* = 7.2 Hz, 1H), 3.81 - 3.76 (m, 1H), 3.69 (s, 6H), 2.46 - 2.37 (m, 1H), 2.26 - 2.12 (m, 1H), 2.13 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 158.1, 158.0, 144.7, 136.8, 135.9, 129.7, 128.9, 128.6, 127.7, 114.1, 114.0, 113.9, 61.0, 55.7, 55.2, 55.2, 45.7, 39.6, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₃₂NO₄ 434.2326; found 434.2325.

Ethyl 4,4-bis(*4-fluorophenyl*)-2-(*p-tolylamino*)*butanoate* (*C28*). The desired pure product was obtained in 65% yield (40.9 mg) as a white solid. m.p. = 93 -95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.16 (m, 4H), 7.03 - 6.90 (m, 6H), 6.38 (d, *J* = 7.9 Hz, 2H), 4.28 (dd, *J* = 9.0, 6.0 Hz, 1H), 4.14 - 4.02 (m, 2H), 3.92 (s, 1H), 3.83 - 3.79 (m, 1H), 2.55 - 2.45 (m, 1H), 2.35 - 2.26 (m, 1H), 2.21 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.1, 161.6 (d, *J* = 245.1 Hz), 161.5 (d, *J* = 245.1 Hz), 144.5, 139.8 (d, *J* = 3.3 Hz), 139.0 (d, *J* = 3.4 Hz), 129.8, 129.4 (d, *J* = 7.9 Hz), 129.2 (d, *J* = 7.6 Hz), 128.0, 115.5 (d, *J* = 22.4 Hz), 115.4 (d, *J* = 21.4 Hz), 114.1, 61.1, 55.5, 45.7, 39.4, 20.4, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.22, -116.40. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₅H₂₆F₂NO₂ 410.1926; found 410.1928.

Ethyl 4,4-bis(4-chlorophenyl)-2-(*p*-tolylamino)butanoate (C29). The desired pure product was obtained in 59% yield (52.0 mg) as a white solid. m.p. = 114 - 116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 - 7.21 (m, 4H), 7.19 - 7.12 (m, 4H), 6.93 (d, J = 8.0 Hz, 2H), 6.39 (d, J = 8.3 Hz, 2H), 4.26 (dd, J = 9.4, 6.0 Hz, 1H), 4.15 - 4.04 (m, 2H), 3.94 (s, 1H), 3.82 (dd, J = 8.8, 5.0 Hz, 1H), 2.55 - 2.45 (m, 1H), 2.34 - 2.25 (m, 1H), 2.21 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 144.4, 142.2, 141.4, 132.5, 132.4, 129.8, 129.3, 129.1, 128.9, 128.7, 128.1, 114.1, 61.2, 55.4, 45.9, 38.9, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₅H₂₆Cl₂NO₂ 442.1335; found 442.1335.

Ethyl 4,4-bis(4-bromophenyl)-2-(p-tolylamino)butanoate (C30). The desired pure product was obtained in 45% yield (47.8mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃)δ 7.42 (d, J = 8.2 Hz, 4H), 7.13 - 7.06 (m, 4H), 6.94 (d, J = 8.0 Hz, 2H), 6.39 (d, J = 8.0 Hz, 2H), 4.24 (dd, J = 9.5, 6.2 Hz, 1H), 4.15 - 4.04 (m, 2H), 3.92 (s, 1H), 3.82 (dd, J = 8.8, 5.2 Hz, 1H), 2.54 - 2.45 (m, 1H), 2.33 - 2.25 (m, 1H), 2.22 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz,

CDCl₃) δ 173.9, 144.4, 142.6, 141.9, 131.9, 131.7, 129.8, 129.8, 129.5, 128.1, 120.7, 120.5, 114.2, 61.2, 55.4, 46.1, 38.8, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₅H₂₆Br₂NO₂ 530.0324; found 530.0325.

Ethyl 4-([1,1'-biphenyl]-4-yl)-4-phenyl-2-(p-tolylamino)butanoate (C31). The desired pure product was obtained in 52% yield (46.7 mg, dr = 6.1:1) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 - 7.53 (m, 4H), 7.46 - 7.41 (m, 2H), 7.38 - 7.31 (m, 7H), 7.27 - 7.20 (m, 1H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.42 (dd, *J* = 8.5, 2.6 Hz, 2H), 4.36 (dd, *J* = 9.1, 6.5 Hz, 1H), 4.12 - 4.07 (m, 2H), 3.98 - 3.92 (m, 2H), 2.68 - 2.59 (m, 1H), 2.48 - 2.36 (m, 1H), 2.23 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 144.6, 144.6, 144.1, 143.4, 143.3, 142.6, 140.8, 140.8, 139.4, 139.3, 129.7, 128.7, 128.7, 128.6, 128.5, 128.2, 128.1, 127.9, 127.8, 127.8, 127.3, 127.1, 127.0, 127.0, 126.6, 126.5, 114.1, 114.1, 61.0, 55.70, 55.66, 47.0, 46.9, 39.2, 39.2, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₁H₃₂NO₂ 450.2428; found 450.2429.

Ethyl 4-phenyl-2-(p-tolylamino)butanoate (C32). The desired pure product was obtained in 50% yield (29.7 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 - 7.27 (m, 2H), 7.22 - 7.17 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.52 (d, *J* = 8.5 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 4.05 - 4.01 (m, 2H), 2.76 (t, *J* = 7.7 Hz, 2H), 2.23 (s, 3H), 2.19 - 2.11 (m, 1H), 2.08 - 1.99 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 174.1, 144.6, 141.0, 129.88, 128.5, 128.5, 127.6, 126.1, 113.8, 61.0, 56.5, 34.7, 31.8, 20.4, 14.3. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₉H₂₄NO₂ 298.1802; found 298.1803.

Ethyl 4-(p-tolyl)-2-(p-tolylamino)butanoate (C33). The desired pure product was obtained in 32% yield (19.9 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.11 -7.05 (m, 4H), 6.97 (d, *J* = 8.1 Hz, 2H), 6.52 (d, *J* = 8.5 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 4.02 (t, *J* = 5.7 Hz, 1H), 2.75 - 2.69 (m, 2H), 2.32 (s, 3H), 2.22 (s, 3H), 2.16 - 2.08 (m, 1H), 2.05 - 1.97 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 144.6, 137.9, 135.6, 129.8, 129.1, 128.4, 127.6, 113.8, 61.0, 56.5, 34.8, 31.4, 21.0, 20.4, 14.3. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₀H₂₆NO₂ 312.1958; found 312.1958.

Ethyl 4-(m-tolyl)-2-(p-tolylamino)butanoate (C34). The desired pure product was obtained in 40% yield (24.8 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.21 - 7.14 (m, 1H), 7.03 - 6.94 (m, 5H), 6.52 (d, *J* = 8.4 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 4.02 (s, 2H), 2.72 (t, *J* = 7.9 Hz, 2H), 2.32 (s, 3H), 2.23 (s, 3H), 2.17 - 2.10 (m, 1H), 2.08 - 1.97 (m, 1H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 144.6, 140.9, 138.0, 129.8, 129.3, 128.4, 127.6, 126.8, 125.5, 113.8, 61.0, 56.6, 34.7, 31.8, 21.4, 20.4, 14.3. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₀H₂₆NO₂ 312.1958; found 312.1960.

Ethyl 4-(4-(tert-butyl)phenyl)-2-(p-tolylamino)butanoate (C35). The desired pure product was obtained in 38% yield (26.8 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.97 (d, *J* = 7.9 Hz, 2H), 6.51 (d, *J* = 8.4 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 4.08 – 3.97 (m, 2H), 2.73 (t, *J* = 7.9 Hz, 2H), 2.22 (s, 3H), 2.19 - 2.11 (m, 1H), 2.08 - 1.98 (m, 1H), 1.31 (s, 9H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

174.2, 148.9, 144.6, 137.9, 129.8, 128.1, 127.5, 125.3, 113.8, 61.0, 56.6, 34.6, 34.4, 31.4, 31.3, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₃₂NO₂ 354.2428; found 354.2428.

Ethyl 4-([1,1'-biphenyl]-4-yl)-2-(p-tolylamino)butanoate (C36). The desired pure product was obtained in 35% yield (26.1 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.45 - 7.41 (m, 2H), 7.35 - 7.31 (m, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.53 (d, *J* = 8.4 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 4.08 - 4.03 (m, 2H), 2.81 (t, *J* = 7.9 Hz, 2H), 2.23 (s, 3H), 2.20 - 2.16 (m, 1H), 2.11 - 2.02 (m, 1H), 1.25 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.1, 144.6, 141.0, 140.1, 139.1, 129.8, 128.9, 128.7, 127.7, 127.2, 127.1, 127.0, 113.8, 61.1, 56.5, 34.7, 31.4, 20.4, 14.3. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₅H₂₈NO₂ 374.2115; found 374.2113.

Ethyl 4-(4-methoxyphenyl)-2-(p-tolylamino)butanoate (C37). The desired pure product was obtained in 29% yield (19.0 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 7.8 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 6.52 (d, J = 8.4 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 4.03 - 3.98 (m, 2H), 3.79 (s, 3H), 2.71 (t, J = 7.7 Hz, 2H), 2.23 (s, 3H), 2.16- 2.06 (m, 1H), 2.05 - 1.94 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 174.2, 158.0, 144.6, 133.0, 129.8, 129.4, 127.6, 113.9, 113.8, 61.0, 56.4, 55.3, 34.9, 30.9, 20.4, 14.3. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₀H₂₆NO₃ 328.1907; found 328.1908.

Ethyl 4-(4-acetoxyphenyl)-2-(p-tolylamino)butanoate (C38). The desired pure product was obtained in 45% yield (31.9 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 8.2 Hz, 2H), 7.03 - 6.94 (m, 4H), 6.52 (d, J = 8.4 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 4.06 - 4.00 (m, 2H), 2.75 (t, J = 7.8 Hz, 2H), 2.28 (s, 3H), 2.23 (s, 3H), 2.18 - 2.10 (m, 1H), 2.09 - 1.93 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 169.6, 149.0, 144.5, 138.5, 129.8, 129.4, 127.6, 121.5, 113.8, 61.1, 56.4, 34.6, 31.1, 21.1, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₆NO₄ 356.1856; found 356.1855.

Ethyl 4-(4-((2-(4-isobutylphenyl)propanoyl)oxy)phenyl)-2-(p-tolylamino)butanoate (C39). The desired pure product was obtained in 30% yield (30.1 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.29 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.1 Hz, 4H), 6.96 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.51 (d, J = 8.4 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 4.00 (s, 2H), 3.92 (q, J = 7.2 Hz, 1H), 2.76 -2.70 (m, 2H), 2.47 (d, J = 7.2 Hz, 2H), 2.22 (s, 3H), 2.15 - 2.07 (m, 1H), 2.02 - 1.95 (m, 1H), 1.89 – 1.83 (m, 1H), 1.59 (d, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 0.91 (d, J = 6.5 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 174.1, 173.3, 149.2, 144.5, 140.8, 138.4, 137.26, 129.8, 129.5, 129.3, 127.7, 127.2, 121.3, 113.8, 61.0, 56.3, 45.2, 45.0, 34.6, 31.1, 30.2, 22.4, 20.4, 18.5, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₂H₄₀NO₄ 502.2952; found 502.2954.

Ethyl 4-((8*R*,9*S*,13*S*,14*S*)-14-methyl-15-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[a]phenanthren-2-yl)-2-(p-tolylamino)butanoate (C40). The desired pure product was obtained in 18% yield (17.1 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.21 (d, J = 8.0 Hz, 1H), 7.02 - 6.94 (m, 3H), 6.92 (s, 1H), 6.53 (d, J = 8.3 Hz, 2H), 4.20 - 4.13 (m, 2H), 4.04 (t, J = 7.6, 5.4 Hz, 2H), 2.91 - 2.85 (m, 2H), 2.50 (dd, J = 18.6, 8.4 Hz, 1H), 2.44 - 2.37

(m, 1H), 2.32 - 2.26 (m, 1H), 2.23 (s, 3H), 2.19 - 2.11 (m, 2H), 2.09 - 1.92 (m, 4H), 1.68 - 1.57 (m, 2H), 1.55 - 1.38 (m, 4H), 1.24 (t, J = 7.1 Hz, 3H), 0.91 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 220.9, 174.2, 144.6, 138.5, 137.5, 136.5, 129.8, 129.2, 129.1, 127.6, 125.93, 125.92, 125.5, 113.8, 61.0, 56.62, 56.61, 50.5, 48.0, 44.3, 38.2, 35.9, 34.8, 31.6, 31.3, 29.4, 26.5, 25.7, 21.6, 20.4, 14.3, 13.8. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₃₁H₄₀NO₃ 474.3003; found 474.3003.

Ethyl 4-(4-fluorophenyl)-2-(p-tolylamino)butanoate (C41). The desired pure product was obtained in 32% yield (20.1 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.13 (dd, J = 8.5, 5.5 Hz, 2H), 7.01 - 6.91 (m, 4H), 6.51 (d, J = 8.3 Hz, 2H), 4.16 (q, J = 7.2 Hz, 2H), 4.04 - 3.95 (m, 2H), 2.74 (t, J = 8.4 Hz, 2H), 2.23 (s, 3H), 2.15 - 2.08 (m, 1H), 2.04 - 1.97 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 174.1, 161.4 (d, J = 243.9 Hz), 144.5, 136.5 (d, J = 3.3 Hz), 129.9 (d, J = 7.6 Hz), 129.8, 127.7, 115.2 (d, J = 21.1 Hz). 113.8, 61.1, 56.3, 34.8, 31.0, 20.4, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.25. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₉H₂₃FNO₂ 316.1707; found 316.1706.

Ethyl 4-(4-chlorophenyl)-2-(p-tolylamino)butanoate (C42). The desired pure product was obtained in 36% yield (23.8 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.51 (d, J = 8.4 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 4.03 - 3.95 (m, 2H), 2.74 (t, J = 8.1 Hz, 2H), 2.23 (s, 3H), 2.17 - 2.08 (m, 1H), 2.06 - 1.95 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 144.5, 139.4, 131.9, 129.9, 129.8, 128.6, 127.8, 113.8, 61.1, 56.3, 34.5, 31.1, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₉H₂₃ClNO₂ 332.1412; found 332.1412.

Ethyl 2-(*p*-tolylamino)-4-(4-(trifluoromethyl)phenyl)butanoate (C43). The desired pure product was obtained in 27% yield (19.7mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.52 (d, J = 8.0 Hz, 2H), 4.16 (q, J = 7.3 Hz, 2H), 4.02 (dd, J = 7.4, 5.6 Hz, 1H), 2.83 (t, J = 8.0 Hz, 2H), 2.23 (s, 3H), 2.22 - 2.12 (m, 1H), 2.08 - 1.99 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 173.9, 145.1, 144.4, 129.8, 128.8, 128.5 (q, J = 31.9 Hz), 127.9, 125.4 (q, J = 3.9 Hz), 124.3 (q, J = 271.7 Hz), 113.8, 61.2, 56.3, 34.3, 31.6, 20.4, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.39. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₀H₂₃F₃NO₂ 366.1675; found 366.1676.

Methyl 4-(4-ethoxy-4-oxo-3-(p-tolylamino)butyl)benzoate (C44). The desired pure product was obtained in 37% yield (26.3 mg) as a white solid. m.p. = 83 - 85 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 6.97 (d, *J* = 8.1 Hz, 2H), 6.52 (d, *J* = 8.5 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 4.01 (dd, *J* = 7.4, 5.6 Hz, 1H), 3.90 (s, 3H), 2.85 - 2.78 (m, 2H), 2.23 (s, 3H), 2.19 - 2.13 (m, 1H), 2.08 - 2.01 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 167.0, 146.5, 144.4, 129.8, 129.8, 128.6, 128.2, 127.8, 113.9, 61.1, 56.4, 52.0, 34.2, 31.8, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₆NO₄ 356.1856; found 356.1857.

Prop-2-yn-1-yl 4-(4-ethoxy-4-oxo-3-(p-tolylamino)butyl)benzoate (C45). The desired pure product was obtained in 30% yield (22.7 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ

7.99 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.52 (d, J = 8.4 Hz, 2H), 4.92 (d, J = 2.4 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 4.07 - 3.98 (m, 2H), 2.87 - 2.79 (m, 2H), 2.51 (t, J = 2.5 Hz, 1H), 2.23 (s, 3H), 2.20 - 2.12 (m, 1H), 2.09 - 1.99 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 173.9, 165.7, 147.0, 144.4, 130.1, 129.8, 128.6, 127.8, 127.4, 113.8, 77.8, 74.9, 61.1, 56.3, 52.3, 34.2, 31.8, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₆NO₄ 380.1856; found 380.1858.

Ethyl 4-(*pyridin-2-yl*)-2-(*p-tolylamino*)*butanoate* (*C*46). The desired pure product was obtained in 40% yield (25.0 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 4.3 Hz, 1H), 7.60 - 7.54 (m, 1H), 7.21 - 7.06 (m, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.53 (d, *J* = 8.4 Hz, 2H), 4.20 - 4.11 (m, 3H), 4.05 (s, 1H), 2.99 - 2.92 (m, 2H), 2.36 - 2.26 (m, 1H), 2.22 (s, 3H), 2.20 - 2.13 (m, 1H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ k, 32.6, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₈H₂₃N₂O₂ 299.1754; found 299.1753.

1-ethyl 5-methyl p-tolylglutamate (C47). The desired pure product was obtained in 54% yield (30.1 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 8.4 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 4.10 - 4.01 (m, 2H), 3.67 (s, 3H), 2.56 - 2.41 (m, 2H), 2.22 (s, 3H), 2.21 - 2.13 (m, 1H), 2.11 - 2.01 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 173.4, 144.4, 129.8, 127.8, 113.8, 61.2, 56.4, 51.7, 30.2, 27.9, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₂₂NO₄ 280.1543; found 280.1544.

Diethyl p-tolylglutamate (C48). The desired pure product was obtained in 66% yield (38.6 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 8.6 Hz, 2H), 6.55 (d, *J* = 8.4 Hz, 2H), 4.20 - 4.05 (m, 5H), 2.53 - 2.39 (m, 2H), 2.23 (s, 3H), 2.20 - 2.12 (m, 1H), 2.11 - 2.00 (m, 1H), 1.28 - 1.20 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 172.9, 144.4, 129.8, 127.8, 113.8, 61.2, 60.6, 56.5, 30.5, 28.0, 20.4, 14.2, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₂₄NO₄ 294.1700; found 294.1700.

5-benzyl 1-ethyl p-tolylglutamate (C49). The desired pure product was obtained in 42% yield (29.8 mg) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.31 (m, 5H), 6.96 (d, *J* = 8.5 Hz, 2H), 6.52 (d, *J* = 8.3 Hz, 2H), 5.14 - 5.08 (m, 2H), 4.20 - 4.12 (m, 2H), 4.10 - 4.06 (m, 1H), 4.03 (s, 1H), 2.59 - 2.48 (m, 2H), 2.22 (s, 3H), 2.21 - 2.16 (m, 1H), 2.11 - 2.04 (m, 1H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 172.7, 144.4, 135.8, 129.8, 128.5, 128.3, 127.8, 113.9, 66.4, 61.2, 56.4, 30.4, 28.0, 20.4, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₆NO₄ 356.1856; found 356.1858.

Ethyl 2-(3-oxocyclohexyl)-2-(*p*-tolylamino)acetate (C50). The desired pure product was obtained in 57% yield (32.9 mg, dr = 1.1:1) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 6.99 (dd, J = 8.3, 2.5 Hz, 2H), 6.57 (dd, J = 8.5, 2.0 Hz, 2H), 4.22 - 4.15 (m, 2H), 4.12 - 4.04 (m, 1H), 4.01 - 3.90 (m, 1H), 2.49 - 2.25 (m, 5H), 2.23 (d, J = 2.1 Hz, 3H), 2.15 - 2.07 (m, 1H), 1.99 - 1.90 (m, 1H), 1.72 - 1.52 (m, 2H), 1.30 - 1.22 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 210.5, 210.3, 172.8, 172.6, 144.9, 144.7, 129.9, 129.8, 128.2, 128.0, 114.3, 114.1, 61.6, 61.4, 61.4, 61.3, 45.0, 43.7, 42.0, 41.8, 41.1, 41.1, 28.1, 26.6, 24.9, 24.7, 20.3, 14.2, 14.2. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₇H₂₄NO₃ 290.1751; found 290.1750.

Ethyl 4-cyano-2-(p-tolylamino)butanoate (C51). The desired pure product was obtained in 61% yield (30.1 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.00 (d, *J* = 7.9 Hz, 2H), 6.59 (d, *J* = 8.4 Hz, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 4.16 - 4.10 (m, 1H), 4.05 (d, *J* = 8.9 Hz, 1H), 2.61 - 2.44 (m, 2H), 2.27 - 2.20 (m, 4H), 2.07 - 2.01 (m, 1H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.6, 143.9, 129.9, 128.5, 118.9, 114.2, 61.7, 55.8, 28.6, 20.3, 14.1, 13.6. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₄H₁₉N₂O₂ 247.1441; found 247.1441.

Ethyl 4-(phenylsulfonyl)-2-(p-tolylamino)butanoate (C52). The desired pure product was obtained in 30% yield (21.6 mg) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.1 Hz, 2H), 7.67 -7.62 (m, 1H), 7.58 - 7.52 (m, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.50 (d, *J* = 8.4 Hz, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 4.11 - 4.06 (m, 1H), 3.96 (d, *J* = 8.9 Hz, 1H), 3.29 - 3.20 (m, 2H), 2.33 - 2.28 (m, 1H), 2.21 (s, 3H), 2.13 - 2.07 (m, 1H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.8, 143.9, 138.9, 133.8, 129.9, 129.4, 128.4, 128.0, 114.1, 61.6, 55.7, 52.6, 26.0, 20.4, 14.1. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₉H₂₄NO₄S 362.1421; found 362.1421.

5-ethyl 1-methyl 2-methyl-2-(p-tolylamino)pentanedioate (C53). The desired pure product was obtained in 40% yield (23.5 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 6.96 (d, J = 7.9 Hz, 2H), 6.53 (d, J = 8.3 Hz, 2H), 4.09 (q, J = 7.2 Hz, 2H), 3.71 (s, 3H), 2.44 - 2.38 (m, 1H), 2.36 - 2.28 (m, 2H), 2.27 - 2.23 (m, 1H), 2.22 (s, 3H), 1.50 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.0, 173.2, 142.6, 129.6, 128.2, 116.4, 60.5, 60.3, 52.5, 33.1, 29.1, 23.3, 20.4, 14.1. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₂₄NO₄ 294.1700; found 294.1696.

5-ethyl 1-methyl 2-benzyl-2-(phenylamino)pentanedioate (*C54*). The desired pure product was obtained in 10% yield (7.1 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.22 - 7.17 (m, 5H), 6.95 - 6.92 (m, 2H), 6.78 - 6.72 (m, 1H), 6.70 - 6.67 (m, 2H), 4.56 (s, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 3.71 (s, 3H), 3.49 (d, *J* = 13.7 Hz, 1H), 3.17 (d, *J* = 13.8 Hz, 1H), 2.58 - 2.51 (m, 1H), 2.44 - 2.35 (m, 2H), 2.23 - 2.16 (m, 1H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 172.9, 144.8, 135.8, 130.0, 129.4, 128.1, 126.9, 117.8, 114.8, 65.0, 60.5, 52.6, 40.1, 31.1, 29.2, 14.1. HRMS (ESI-Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₆NO₄ 356.1856; found 356.1855.

References

- [1] a) Nithinchandra, B. Kalluraya, S. Aamir, A. R. Shabaraya, *Eur. J. Med. Chem.* 2012, 54, 597-604; b) H. Zhi, S. P.-M. Ung, Y. Liu, L. Zhao, C.-J. Li, *Adv. Synth. Catal.* 2016, 358, 2553-2557.
- [2] a) P. Han, R. Wang, D. Z. Wang, *Tetrahedron* 2011, 67, 8873-8878; b) G. Zhang, R.-X. Bai,
 C.-H. Li, C.-G. Feng, G.-Q. Lin, *Tetrahedron* 2019, 75, 1658-1662.
- [3] a) Y. Miyake, K. Nakajima, Y. Nishibayashi, J. Am. Chem. Soc. 2012, 134, 3338-3341; b)
 C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson, J. Am. Chem. Soc. 2012, 134, 8875-8884.
- [4] E. Rideau, H. You, M. Sidera, T. D. W. Claridge, S. P. Fletcher, J. Am. Chem. Soc. 2017, 139, 5614-5624.
- [5] D. Wang, F. Loose, P. J. Chirik, R. R. Knowles, J. Am. Chem. Soc. 2019, 141, 4795-4799.
- [6] N. A. Romero, K. A. Margrey, N. E. Tay and D. A. Nicewicz, *Science*, 2015, 349, 1326-1330.

¹H NMR (400 MHz, CDCl₃)

C1

fl (ppm)

0. 0 Ĥ Ph Ph

C2

¹H NMR (600 MHz, CDCl₃)

 7.3075

 7.2822

 7.2822

 7.2822

 7.2822

 7.2822

 7.2551

 7.25531

 7.25531

 7.25531

 7.25531

 7.25531

 7.25531

 7.25531

 7.25531

 7.25531

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

 7.1923

¹H NMR (600 MHz, CDCl₃) 0 0 Ph `Ph C3

0. н Ph Ph C4

0. 0 CI Ĥ Ph Ph C5

Ph

C6

Ph

н Ph `Ph

C7

0 0. н Ph Ph

C8

н Ph Ph

C10

Ph н C11

7.3157 7.2966 7.2793 7.2793 7.2793 7.2595 7.2595 7.2595 7.2595 7.2593 7.2593 7.2593 7.2932 7.2932 7.2993 7.2932 7.2932 7.2932 7.2932 7.2932 7.2932 7.2932 7.2932 7.2933 7.2932 7.20327.20

7.3275 7.3275 7.3275 7.323245 7.32384 7.32384 7.32384 7.30384 7.30384 7.2978 7.2978 7.28639 7.28337 7.28337 7.28639 7.28639 7.28639 7.22699 7.22865 7.22855 7.22865 7.22855 7.2255533 7.225553 7.225553 7.225553 7.225553 7.225553 7.2255533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.2555533 7.25555533 7.25555533 7.25555533 7.2555553 7.2555533 7

Ph Ph CI3

C14

Ĥ Ph Ph C15

 7.3122

 7.2943

 7.2943

 7.2944

 7.2944

 7.2944

 7.2595

 7.2595

 7.2595

 7.2595

 7.2595

 7.2595

 7.2595

 7.2595

 7.2595

 7.25038

 7.25038

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.25252

 7.26612

 6.5427

 6.5427

 6.5427

 6.5428

 3.95617

 7.26573

 2.26573

 2.255673

 2.255673

 2.255673

 2.255673

 2.255673

 2.255673

 2.255673

 2.255673

 2.255673

 2.255673

 2.255673

 $\begin{array}{c} 7.2993\\ 7.2993\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.158\\ 8.772\\ 7.1923\\ 6.7252\\ 7.1923\\ 7.1923\\ 7.1923\\ 7.1923\\ 7.1923\\ 7.1923\\ 7.2552\\ 7$

955 955 955 955 955 955 955 955 955 955	$ \begin{array}{c} 0.00\\ 0.00$
	7 7 3 3 3 2 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	<u>4</u> <u></u>

0 .0. N H Ph Ph

C17

0 Ph Ph C18

 $.01_{\text{H}}^{\text{A}}$.03 $^{\text{H}}_{\text{A}}$.03 $^{\text{H}}_{\text{A}}$.03 $^{\text{H}}_{\text{A}}$.00 $^{\text{H}}_{\text{A}}$.06 $^{\text{H}}_{\text{A}}$

2.5

0 0 - - 0 0 4

3.0

Ъ

1.5

1.0

0.5

0.0 -0.5 -1.0 -1.5 -2

2.0

.04∄ .73∄ .099 .04∄

3.5

Ö.

4.0

ЧЦ

-

4.5

8.01 2.02 1.93 1.98

6.5

6.0

5.5

5.0

fl (ppm)

7.0

¹H NMR (400 MHz, CDCl₃)

C19

9.5

11.5

.0

11.0

10.5

10.0

9.0

8.5

8.0

7.5

C21 (dr = 1.2:1)

7.2930 7.2930 7.2930 7.2933 7.2930 7.2561 7.2561 7.2583 7.2561 7.2580 7.2580 7.2580 7.2580 7.2580 7.2580 7.2580 7.2580 7.2580 7.22332 7.2580 7.22332 7.222332 7.22332 7.22332 7.223327.2

0 ŃН н Ph Ph C22 (dr = 1:1)

 7.7139

 7.75206

 7.75206

 7.75206

 7.75206

 7.75206

 7.75206

 7.75206

 7.73243

 7.73262

 7.73262

 7.73262

 7.73262

 7.73262

 7.73262

 7.73262

 7.73262

 7.73062

 7.73062

 7.73062

 7.73062

 7.73062

 7.73062

 7.73062

 7.73062

 7.73063

 7.73063

 7.73063

 7.73063

 7.73063

 7.73063

 7.73063

 7.73063

 7.73063

 7.73063

 6.3449

 6.35533

 6.36493

 6.36493

 6.36493

 6.36493

 6.36493

 6.36493

 6.36493

 6.36493

 6.36493

 6.36493

 6.114433

70870707070707070707	- NO 8 8 1 - NO 8 9 1 - O 0 0 - O 0 0 - O 0 0 0 - O 0 0 0 0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	100×400000	4 / ୦ ୦ ୦ 4 ୦ ୦ ୦ ୦ ୯	$0 \leftarrow 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
NOO800N9400800N) 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00007~00N	0000400000000000000000000000000000000
らら 4 3 3 2 2 2 2 2 2 2 2 2		0 4 0 - - 0 0 - 0 0 C	
		<u>;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</u>	\dot{f}

C24 (dr = 1.3:1)

C25 (dr = 6:1)

C26

V 0 0 0 4 0 4 0 4 4	10000000	40040	\circ
<u>ดิ</u> ท๗ <u>๗</u> ๗ <u>๗</u> ₫	0007-4000	\odot \leftarrow \odot \leftarrow \leftarrow \odot \odot \odot \odot \circ	40040000000000000
\circ \lor \lor \circ \lor \circ	$\Lambda \leftarrow \bigcirc \oslash 4 \lor 0 \odot \odot \bigcirc$	∞	<u>- ω ω ω ω ο ο ω ω ω ω </u> -
$\bigcirc \bigcirc $	- $ -$	VVV04444	40000000
<u></u>	4 4 4 4 4 4 M M	\vec{n}	~~~~~

044700070000000	ら 4 の ら て ら て て の	- ト ら 4 の 4 ら 0 - 4 0 0	10040000000000
-0004N00000	0 - N - 4 5 6 - N - 0 0	-0-0000000000000000000000000000000000	100 L G G G L 4 4 8 0 N
-0000-0-000400r	1000 - 1000	~ 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 	$0 - N - 0 \\ 0 \\ 0 \\ - N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
000000777770	0007777000	000000000000000) 4 4 4 M M M M M M M M M –
0.0000000000000000000000000000000000000	4 4 4 4 4 4 4 4 4 4	44400000000000000	· · · · · · · · · · · · · · · · · · ·

0 .0 C28

0 - 0 0 - 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 0 - 0	- O T O T O T O T O T O T O T O T O T O	0000000000000	- U 4 8 0 U 8 U V
4000004000044000000000000000000000000	0004000004000	0 0 0 0 $ 4$ $ 0$ 0 0 0	0 ~ < 0 0 0 0 4
~ % S 4 3 S S S S S S S S S S S S S S S S S	、0 / 0 0 / 0 / 0 / 0 0 / 0 / 0	4482408070707	80572400
000000000000000000000000000000000000000	10007770000	00000000004444	- 0 0 0 0 0 0 0 0
······································	i	4	· · · · · · · · · · · · · · · · · · ·

 \cap

C31 (dr = 6.1:1)

7.1924 7.1553 7.1553 7.0231 6.9772 6.9583 6.5282 6.5071

4.1856 4.1677 4.1677 4.1501 4.1501 4.0238 2.7437 2.7437 2.7437 2.7437 2.7437 2.7437 2.7437 2.7437 2.7437 2.7437 2.7437 2.7437 2.71465 2.1138 2.1138 2.1138 2.0108 1.2593 1.2593 1.2593 1.22421 1.2593

 7.3180

 7.1328

 7.1328

 7.1328

 6.9751

 6.9751

 6.9751

 6.9751

 6.9532

 6.9533

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9553

 6.9563

 6.9563

 6.9563

 6.9563

 6.1244

 6.1244

 6.1234

 6.1234

 6.1234

 6.1234

 6.1235

 6.1234

 6.1234

 6.1234

 6.1234

 6.1234

 6.1235

 6.1235

 6.12375

 6.123

0, н C36

7 7 7 7 7 7 7 N	004000	001000000000000000000000000000000000000
$0 \\ \neg \\ 0 \\ \neg \\ 0 \\ \neg \\ 0 \\ 0 \\ 0 \\ 0 \\ $	-000 - 000	N0000-N-N-0004N000
-004-00	ଷ	O O O O O O O O O O
$- \bigcirc \bigcirc$	000V	VVOOOOOOOOOO
\overline{N}	4444400	

0. .0. C37

¹H NMR (600 MHz, CDCl₃) 0 Ο. н C39

-7.2201-6.9882 -6.9882 -6.9882 -6.9882 -6.9882 -6.9882 -6.95330 -6.9882 -6.95333 -6.9882 -6.95333 -6.9783 -6.9783 -4.1727 -4.1609 -4.1609 -2.8824 -2.8824 -2.8824 -2.1436 -2.1436 -2.1436 -2.1436 -2.1436 -2.16926 -2.1436 -2.16928 -2.12335 -1.5525 -1.55256 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.55566 -1.555

40000-0001	იიი 4 0 – თ ო – ო ფ	00040000440400	0400000000000000000000000000000000000
000000000000	- 0 / - 0 0 0 - 4 0 0	NOTOON04004N4T	007000000000000000000000000000000000000
らすらすてのこうて	04 M U – O D O M U –	00000000000444	ろて の ら す す き き う う う ち ら ち す き う う う う う す す き う う う う す き う う う う
$-\gamma \Omega \Omega O O O O O O O O - \gamma$		$0 \\ 0 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	-000000000000000000000000000000000000
∇ ∇ ∇ ∇ ∇ \odot \odot \odot \odot \odot $+$	4 4 4 4 4 4 m m m m m m	i	

0 .0. H C44 COOCH3

00000-40000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 > 8 < 8 < 6 < 6 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7	77077070707828787670707
40007707407070700740074000	- N N N N N N N N N N N N N N N N N N N
000000000000000000000000000000000000000	\circ
88.000000000000000000000000000000000000	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$

0 .0. Ĥ C46

0 C47 0

0 \cap C48

6.9876 6.9661 6.5394 6.5394 6.5394 6.5394 4.1994 4.1994 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 4.1816 1.22554 2.4775 2.4953 2.4953 1.22931 1.2582 1.2583

0.

C49

 \cap

'Bn

04744600004060) 3704800174	4 0 0 4 0 7 0 0 0	$7 \times 7 \times$	ω
ら ー ー ア ー 8 7 4 0 4 3 1 9 ら ら) の (– ト ら の 4 の 4 の ()	$ \circ \circ$		\sim
00000000000000000000000000000000000000	00070210070070	0 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IN-000N4N-0P0044	З
000000000000000000000000000000000000000	· 4 4 M M M M M M N N	N N N N N N N	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
\mathbf{G}	i	i		<u> </u>
				<u> </u>

C50 (dr = 1.1:1)

ο. 0 Ph 0

 7.8985

 7.8850

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 7.6610

 6.69598

 6.9598

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.9568

 6.12008

 6.12008

 6.12128

 6.12128

 6.12128

 6.12128

 6.12128

 6.12128

 6.12128

 6.12128

 6.12128

 6.12128

 6.12128

6.

C53

 6.9621

 6.9489

 6.9489

 6.9489

 6.5412

 6.5412

 6.5412

 6.5412

 6.5412

 6.5412

 6.5412

 6.5413

 6.5413

 6.5413

 6.5413

 6.5413

 6.5413

 6.5273

 6.5273

 6.5273

 6.5273

 6.5273

 6.5273

 6.5273

 6.5273

 6.523361

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523363

 6.523364

 6.523364

 6.523363

 6.523364

 6

110 101 f1 (ppm)

 $\begin{array}{c} 152.88 \\ 144.24 \\ 144.24 \\ 140.93 \\ 128.65 \\ 128.65 \\ 128.09 \\ 128.09 \\ 128.09 \\ 126.56 \\ 1126.56 \\ 115.57 \\ 115.57 \\ 114.75 \end{array}$ 174.89 √77.21 -77.00 √76.79 56.48 55.62 52.00 47.23 -39.17

¹³C NMR (151 MHz, CDCl₃)

0 0 Ĥ Ph `Ph C3

¹³C NMR (151 MHz, CDCl₃)

.13		7 4 7 7 9 7 9	9222 888 88
174	1437 127128 1127128 1126 1126 1126 1156	79.4	54.5 52.3 38.9
			1775

0. 0 H Ph `Ph C8

$$\begin{array}{c} 174.24 \\ 144.60 \\ 144.22 \\ 144.22 \\ 128.63 \\ 128.6$$

C9

0. N H Ph' `Ph

05 00 00 00 00 00 00 00 00 00 00 00 00 0	- 00 v	က္ဆက္	Q
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.6 6.7	5.7 7.1 9.0	0.3
		346	

2	000000000000000000000000000000000000	-000	アアイ	N 4 10
С	440088877094	0.0.0	でえる	ν, ν, κ,
17	444000000000	77 58 58	55 47 39	2121
			\sim \sim \sim	

13C NMR (151 MHz, CDCl3)

110 10(f1 (ppm)

¹³C NMR (151 MHz, CDCl₃)

H Ph' Ph C12

н Ph Ph C13

-20.36

110 10(f1 (ppm)

¹³C NMR (151 MHz, CDCl₃)

C14

C19

0. Ph Ph

¹³C NMR (151 MHz, CDCl₃)

145.20 144.19 144.15 129.71 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 126.47 126.30 171.76 √77.21 -77.00 √76.79 54.29 47.32 45.70 45.64 39.02

∠25.87 ~23.96 ~20.33

 $\begin{array}{c} 77.21 \\ 76.79 \\ 76.79 \\ 61.32 \\ 61.32 \\ 58.72 \\ -48.32 \\ -48.32 \\ -39.00 \\ -39.00 \\ -14.03 \\ -14.03 \end{array}$

C20

13C NMR (151 MHz, CDCl₃)

н Ph 'Ph C22 (dr = 1:1)

0 ŇΗ

 $\begin{bmatrix} 173.33\\ 144.03\\ 135.98\\ 135.98\\ 129.54\\ 1229.54\\ 1228.55\\ 1228.56\\ 1228.56\\ 1228.56\\ 1227.35\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1122.32\\ 1227.35\\ 1227.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1227.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1332.32\\ 1227$

C25 (dr = 6:1)

$$-174.35$$

$$-174.35$$

$$-174.36$$

$$158.09$$

$$-144.66$$

$$144.66$$

$$136.75$$

$$136.75$$

$$129.68$$

$$1129.68$$

$$1128.64$$

$$127.21$$

$$127.28$$

$$113.98$$

$$-127.00$$

$$77.21$$

$$77.21$$

$$77.20$$

$$-60.96$$

$$55.20$$

$$-45.56$$

$$-39.57$$

-14.20

 162.39

 162.31

 162.31

 162.31

 160.77

 160.68

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 139.74

 129.45

 1129.47

 115.33

 115.33

 174.06 77.21 77.00 76.79 -61.13 -55.49 14.19 -45.66 -39.36 -20.37

 $\begin{array}{c} 144.39\\ 142.18\\ 141.42\\ 132.53\\ 132.41\\ 132.41\\ 129.76\\ 129.34\\ 129.06\\ 128.73\\ 1128.73\\ 114.13\end{array}$ 173.94

 $\begin{array}{c} 77.21\\ 77.00\\ 76.79\\ -61.15\\ -55.39\\ -45.90\\ -38.88\\ -38.88\\ -14.16\\ -14.16\end{array}$

C31 (dr = 6.1:1)

 143.35

 142.55

 142.55

 142.55

 140.77

 140.77

 139.35

 128.59

 128.69

 127.75

 127.75

 126.60

 126.61

 126.61

 114.08

 77.21

 77.21

 77.00

 77.00

 176.79

 55.70

 55.70

 55.70

 146.96

 146.94

 39.19

 139.15

 14.20

 61 58 13 22 144. 144. 144. 4 Ň <u>_</u>

-174.14 -174.55 -144.55 -140.98 -140.98 -129.78 128.45 1128.45 113.79 -113.79	$\overbrace{76.79}^{77.21} \\ \overbrace{76.79}^{-61.03} \\ -56.49$	~34.69 ~31.81 -20.37 -14.25
--	---	--------------------------------------

F.21	.98	I.58	2.98 .77 .43 .43	.77	21 00 79	99 25 25	0 0 0 0	37 25
174	157	144	120120	113 113	777	00.0 05.0	34.9	20.0
Ì		Ì		$\dot{\checkmark}$				

174.03 169.55	148.96 144.48 138.51 129.78 127.63 121.46 113.79 113.79	77.21 77.00 76.79	51.05 56.38	34.56 31.14	21.07 20.35 14.22
	/// / /			\ /	\langle / \rangle

0. 0 Ĥ 0 C39

110 101 f1 (ppm)

-173.9 -167.0 -167.0 -167.0 -167.0 -129.8 -129.8 -1128.1 -113.87	76.79 -61.14 -56.38 -52.00	~34.23 ~31.80	-20.38 14.23
--	-------------------------------------	------------------	-----------------

¹³C

77.21 ₹77.00 76.79	-61.03 -56.78	34.28 ~32.59	<pre>20.37 20.36 14.21</pre>
--------------------------	------------------	-----------------	------------------------------

$$\begin{array}{c} 173.69 \\ -144.41 \\ -144.41 \\ -144.41 \\ -113.84 \\ -127.78 \\ -113.84 \\ -113.84 \\ -113.84 \\ -113.84 \\ -127.28 \\ -27.98 \\ -20.37 \\ -27.98 \\ -27.98 \\ -27.98 \\ -14.18 \\ -14.19 \end{array}$$

21 00 79	42 21 40	
77. 77. 76.	66. 56.	
	7 7 7	

4	QI	\geq c	α
ব্	တ္ဝ	∡ زي	-
0	$\sim c$	⊃ ¬	4
က္၊	\mathcal{O}	N 4	

$ \begin{array}{c} 210.50\\ 210.32\\ 172.75\\ 172.60\\ 144.91\\ 144.73\\ 129.85\\ 129.83\\ 114.26\\ 114.26\\ 114.05\\ 114.05 \end{array} $	77.21 77.21 76.79 61.58 61.39 61.31 61.31 44.95 44.95 44.95 44.95 44.95 44.95 44.95 44.95 41.11 24.34 24.85 24.85 14.22 14.22
--	---

C50 (dr = 1.1:1)

-172.63	 √129.90 √128.51 −118.91 −114.21 	77.21 77.00 76.79 -61.69 -55.83	~28.64 20.34 14.10 13.63

	ning a subscription of the	n bankin bana an m			auto-march, develo-1 (ULA							(and a strate White									
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 ıpm)	90	80	70	60	50	40	30	20	10	0

0 0 0 ď `Ph C52

-172.75

143.89 138.86 138.86 133.81 129.85 129.35 129.35 128.40 -114.11

77.21 76.79 -61.60 55.65 -52.55 -20.35 74.12

	~175.98 ~173.20	110 FF	7129.58	∼128.19 —116.36		77.21 77.00 76.79		√60.29 √60.29 ~52.48		-33.06 ~29.12	-23.30 -20.36 11 11		
¹³ C NMR (151 MHz, CDCl ₃)													
210 200 190	 180 170	160 150	 140 13() 120	110 100 fl (ppm)	 80	70	60 5	0 40	 30	20	 10	

174.2 172.9 172.9 135.8 129.4 129.4 120.9 120.8 120.8 120.8 120.8 120.8 120.8 120.8 120.8 120.8 114.7 126.8 114.7 125.56	~40.14 ∕_31.08 ∕_29.18	-14.10
--	------------------------------	--------

C54

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F NMR (376 MHz, CDCl₃)

C4

--126.45

¹⁹F NMR (376 MHz, CDCl₃)

C28

-116.22 -116.40

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)
40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F NMR (376 MHz, CDCl₃)

---117.25

¹⁹F NMR (376 MHz, CDCl₃)

--62.3918

X-Ray Diffraction Data of C8 (CCDC 2345482)

Table S6. Crystal data

Bond precision:	C-C = 0.0018 A	Wavelength=0.71073	
Cell:	a=11.3592(3)	b=8.7279(2)	c=21.5003(5)
Temperature:	alpha=90 150 K	beta=93.109(1)	gamma=90
	Calculated	Reported	
Volume	2128.45(9)	2128.44(9))
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C25 H27 N O2	C25 H27 N O2	
Sum formula	C25 H27 N 02	C25 H27 N O2	
Mr	373.48	373.47	
Dx,g cm-3	1.166	1.165	
Z	4	4	
Mu (mm-1)	0.073	0.073	
F000	800.0	800.0	
F000'	800.33		
h,k,lmax	14,11,27	14,11,27	
Nref	4875	4819	
Tmin, Tmax	0.991,0.994	0.710,0.7	48
Tmin'	0.987		
Correction method= # Reported T Limits: Tmin=0.710 Tmax=0.748 AbsCorr = NONE			
Data completeness= 0.989 Theta(max) = 27.484			
R(reflections) =	0.0480(4537)		wR2(reflections) = 0.1265(4819)
S = 1.037	Npar= 2	55	

HRMS spectra of key intermediates

H

C₂₀H₃₃N₂O₃⁺ [M+H]⁺m\z 349.2486 found 349.2488

[M+H]⁺ m\z 745.4000 found 745.4006

