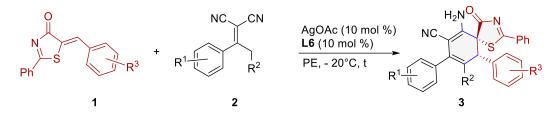
Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Ag(I)-Catalyzed Asymmetric (2 + 4) Annulation Reaction of 5-Alkenyl Thiazolones: Synthesis of Enantioenriched Spiro[cyclohexenaminesthiazolone]

Kavita Choudhary, Akanksha Santosh Deshpande, and Vinod K. Singh*

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh (India) *E-mail: <u>vinodks@iitk.ac.in</u>

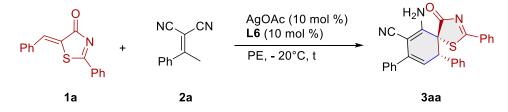
Contents:


General information	S2
Synthetic procedure for asymmetric annulation reactions	S 3
Detailed optimization studies	S 4
Characterization of annulated products 3	S 9
Synthetic procedure and characterization for products 4	S18
X-ray crystallographic figures and data of 3aa	S19
Quantum yield calculation	S22
References	S22
NMR spectra	S23
HPLC graphs	S48

General information

All reactions were carried out in oven-dried glassware with magnetic stirring. ¹H and ¹³C{¹H} NMR spectra were recorded on Joel (500 MHz and 400 MHz) spectrometers in CDCl₃. Chemical shifts are reported in delta (δ) units, in parts per million (ppm). Tetramethylsilane or residual solvent peak was used as an internal standard for ¹H and ¹³C{¹H} NMR, respectively. Coupling constants were reported in Hz. Splitting patterns are designated as s for singlet, d for doublet, t for triplet, q for a quartet, dd for doublet of doublet, and m for multiplet. Mass spectrometric analysis was done using the ESI-TOF method. Routine monitoring of reactions was performed using precoated silica gel TLC plates from E-Merck. All the chromatographic separations were carried out using silica gel (Merck's, 100–200 mesh). Enantiomeric excess was determined by HPLC analysis using Daicel chiral columns at 25 °C. Optical rotations were measured on a commercially available automatic polarimeter. Melting points were recorded on a digital melting point apparatus. α, α -Dicyanoalkenes (1)^{1,} and 5-alkenyl thiazolones (2)² were prepared by the previously reported methods.

Compound **3aa** was crystallized by slow evaporation of DCM/Hexane (1:1). The X-ray crystallography data of **3aa** was collected on a Bruker SMART APEX CCD diffractometer equipped with CRYO Industries low-temperature apparatus, and intensity data were collected using graphite-monochromated Mo Ka radiation (λ = 0.71073 Å) at 100 K. The CCDC number of compounds **3aa**: 2359432 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223- 336-033; or (deposit@ccdc.cam.ac.uk).


Synthetic procedure (A) for asymmetric annulation reactions:

In an oven-dried round bottom flask equipped with a magnetic stir bar, Ag(OAc) (10 mol %, 1.6 mg, 0.01 mmol), ligand **L6** (10 mol %, 11.7 mg, 0.01 mmol) were taken, and 2 mL petroleum ether (PE) was added to it. The reaction mixture was stirred for 1 hour at room temperature. The round bottom flask containing the catalyst mixture was then cooled down to -20 °C. 5-alkenyl thiazolones, **1** (0.1 mmol, 1.0 equiv) and α,α -Dicyanoalkenes, **2** (0.15 mmol, 1.5 equiv) were added sequentially into the reaction mixture and continued stirring at the same temperature (-20 °C). After the complete consumption of the starting material (monitored by TLC), the reaction mixture was passed through a small silica pad to remove the catalyst. The resulting mixture was purified by flash column chromatography to get pure product **3**.

Notes: The diastereomeric ratio was determined by ¹H NMR of the crude reaction mixture. Racemic samples were prepared using the same procedure using AgOAc (10 mol %) with racemic BINAP (10 mol %).

Procedure for 2 mmol scale-up reaction:

In an oven-dried round bottom flask equipped with a magnetic stir bar, Ag(OAc) (10 mol %, 33.3 mg, 0.2 mmol), ligand **L6** (10 mol %, 235.9 mg, 0.2 mmol) were taken, and 5 mL petroleum ether was added to it. The reaction mixture was stirred for 1 hour at room temperature. The round bottom flask containing the catalyst mixture was then cooled down to -20 °C. **1a** (530.6 mg, 2.0 mmol, 1.0 equiv) and **2a** (504.57 mg, 3.0 mmol, 1.5 equiv) were added sequentially into the reaction mixture and continued stirring at the same temperature (-20 °C). After the complete consumption of the starting material (monitored by TLC), the reaction mixture was passed through a small silica pad to remove the catalyst. The resulting mixture was purified by flash column chromatography to get pure product **3aa** in 78% yield (676 mg). **HPLC: 97% ee,** (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 25.04 min (major), 32.69 min (minor).

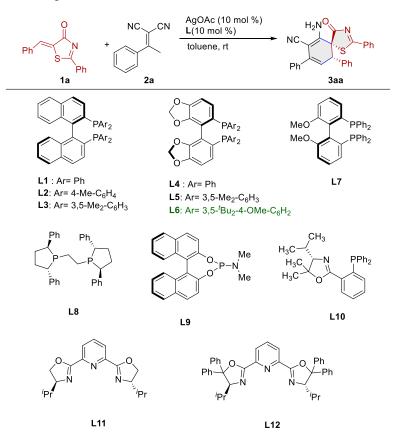
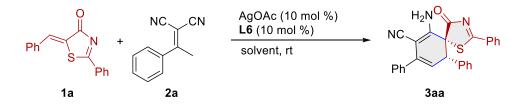

Detailed optimization studies:

Table S1. Evaluation of Lewis acids

Ph S Ph S Ph 1a	+ NC CN + 2a	Lewis acid (10 mol %) L(10 mol %) toluene, rt	H ₂ NO NC Ph 3aa		PAr ₂ PAr ₂ PAr ₂ PTBM-Segphos Bu ₂ -4-OMe-C ₆ H ₂
Entry	Lewis acid	Time (h)	$\mathbf{Yield}^{b}\left(\%\right)$	ee^{c} (%)	\mathbf{dr}^d
1	Ag(OCOCF ₃)	7	85	79	>20:1
2	AgOAc	6	96	89	>20:1
3	Ag(NO ₃)	8	75	35	>20:1
4	Ag(OTf)	12	79	75	>20:1
5	Ag ₂ CO ₃	12	85	80	>20:1
6	Cu(OAc)	24	78	20	>20:1
7	Cu(OTf) ₂	48	68	55	>20:1
8	AgF	72	56	54	>20:1
9	AgI	48	trace	-	-

^{*a*}Reaction conditions: **1a** (26.5 mg, 0.1 mmol, 1.0 equiv), **2a** (16.8 mg, 0.15 mmol, 1.5 equiv), **L** (10 mol %, 0.10 equiv) Lewis acid (10 mol %, 0.10 equiv), toluene (1.0 mL), rt. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}Diastereomeric ratio (dr) determined by ¹H NMR of crude reaction mixture.

Table S2. Evaluation of ligands



Entry	Ligand	Time (h)	$\mathbf{Yield}^{b}\left(\%\right)$	ee^{c} (%)	\mathbf{dr}^d
1	L1	4	80	46	>20:1
2	L2	5	81	67	>20:1
3	L3	7	51	47	>20:1
4	L4	5	85	44	>20:1
5	L5	6	89	76	>20:1
6	L6	6	96	89	>20:1

_	7	L7	8	82	53	>20:1
	8	L8	8	78	44	>20:1
	9	L9	5	65	30	>20:1
	10	L10	8	70	28	>20:1
	11	L11	24	60	20	>20:1
	12	L12	72	trace	-	-

^{*a*}Reaction conditions: **1a** (26.5 mg, 0.1 mmol, 1.0 equiv), **2a** (16.8 mg, 0.15 mmol, 1.5 equiv), **L** (10 mol %, 0.10 equiv), AgOAc (1.6 mg, 10 mol %, 0.10 equiv), toluene (1.0 mL), rt. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}Diastereomeric ratio (dr) determined by ¹H NMR of crude reaction mixture.

Table S3. Solvent screening

Entry	Solvent	Time(h)	Yield ^b (%)	ee ^c (%)	$\mathbf{d}\mathbf{r}^{d}$
1	toluene	6	96	89	>20:1
2	PhCF ₃	12	80	83	>20:1
3	PhCl	18	95	88	>20:1
4	PhF	22	79	63	>20:1
5	1,4-dioxane	22	70	38	>20:1
6	<i>p</i> -xylene	24	60	10	>20:1
7	Et ₂ O	18	85	82	>20:1
8	tert butyl methyl ether	24	65	56	>20:1
9	THF	18	70	60	>20:1
10	CH ₃ CN	24	78	38	>20:1
11	EtOAc	20	80	79	>20:1
12	DCM	72	trace	-	>20:1
13	CCl_4	20	88	80	>20:1
14	DCE	18	78	62	>20:1
15	hexane	20	95	88	>20:1
16	cyclohexane	22	78	79	>20:1
17	heptane	20	80	86	>20:1
18	pentane	20	82	83	>20:1
19	petroleum ether	22	96	91	>20:1

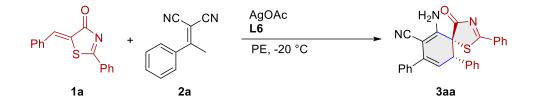

^{*a*}Reaction conditions: **1a** (26.5 mg, 0.1 mmol, 1.0 equiv), **2a** (16.8 mg, 0.15 mmol, 1.5 equiv), **L6** (11.7 mg, 10 mol %, 0.10 equiv), AgOAc (1.6 mg, 10 mol %, 0.10 equiv), solvent (1.0 mL), rt. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}Diastereomeric ratio (dr) determined by ¹H NMR of crude reaction mixture.

Table S4. Effect of temperature

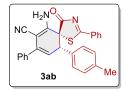
Ph	0 N + S (Ph		gOAc (10 mol %) 6 (10 mol %) E, T	H ₂ NO NC Ph	N Ph Ph
	1a	2a		3aa	
Entry	Τ (° C)	Time (h)	Yield ^b (%)	ee ^c (%)	\mathbf{dr}^d
1	rt	22	96	91	>20:1
2	0	30	90	90	>20:1
3	-10	35	88	92	>20:1
4	-20	45	80	96	>20:1

^{*a*}Reaction conditions: **1a** (26.5 mg, 0.1 mmol, 1.0 equiv), **2a** (16.8 mg, 0.15 mmol, 1.5 equiv), **L6** (11.7 mg, 10 mol %, 0.10 equiv), AgOAc (1.6 mg, 10 mol %, 0.10 equiv), Petroleum ether (PE) (1.0 mL). ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}Diastereomeric ratio (dr) determined by ¹H NMR of the crude reaction mixture. PE: Petroleum ether

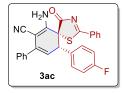
Table S5. Effect of catalyst loading

Entry	Ag(OCOCF3) (mol %)	L6 (mol %)	Time(h)	Yield ^b (%)	ee ^c (%)	$\mathbf{d}\mathbf{r}^{d}$
1	10	10	45	80	96	>20:1
2	5	5	72	90	90	>20:1
3	2	2	80	88	92	>20:1

^{*a*}Reaction conditions: **1a** (26.5 mg, 0.1 mmol, 1.0 equiv), **2a** (16.8 mg, 0.15 mmol, 1.5 equiv), **L6**, AgOAc, Petroleum ether (PE) (1.0 mL). ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}Diastereomeric ratio (dr) determined by ¹H NMR of the crude reaction mixture. PE: Petroleum ether

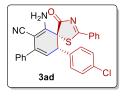

Characterization of annulated products 3:

(5*R*,10*S*)-6-amino-4-oxo-2,8,10-triphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3aa):

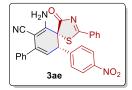

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (34.6 mg, 80% yield). $[a]_D^{20} = + 62.8$ (c = 0.5, CHCl₃). **HPLC: 96% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 24.95$ min (major), 32.44 min (minor). **mp**: 188-190 °C. ¹**H NMR (400 MHz, CDCl₃) \delta 7.80 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.40 (dd, J = 7.6, 5.4 Hz, 4H), 7.37 – 7.33 (m, 3H), 7.18 (dd, J = 5.0, 2.2 Hz, 3H), 5.88 (d, J = 2.7 Hz, 1H), 5.32 (s, 2H), 4.61 (d, J = 2.9 Hz, 1H). ¹³C{¹H**} **NMR (100 MHz, CDCl₃)** δ 197.2, 191.5, 155.0, 137.6, 137.3, 135.9, 135.5, 131.4, 130.3, 129.2, 128.9, 128.74, 128.68, 128.5, 128.3, 127.7, 120.9, 117.2, 83.5, 74.2, 50.4. **HRMS (ESI, m/z):** [M + Na]⁺ calculated for C₂₇H₁₉N₃NaOS⁺: 456.1142; found: 434.1144.

(5*R*,10*S*)-6-amino-4-oxo-2,8-diphenyl-10-(p-tolyl)-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7 carbonitrile (3ab):

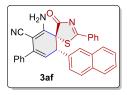
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow semi-solid (31.3 mg, 70% yield). $[\alpha]_D^{20} = + 66.8 \text{ (c} = 0.5, \text{ CHCl}_3)$. **mp**: 188-190 °C. **HPLC**: **92% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$), $t_R = 28.82 \text{ min}$ (major), 37.62 min (minor). ¹H **NMR (400 MHz, CDCl**_3) δ 7.99 (d, J = 7.6 Hz, 2H), 7.76 (t, J = 7.5 Hz, 1H), 7.62 – 7.50 (m, 7H), 7.41 – 7.34 (m, 2H), 7.14 (d, J = 7.8 Hz, 2H), 6.01 (d, J = 2.8 Hz, 1H), 5.41 (s, 2H), 4.71 (d, J = 2.9 Hz, 1H), 2.34 (s, 3H). ¹³C{¹H} **NMR (100 MHz, CDCl**_3) δ 197.2, 191.5, 155.2, 138.2, 137.7, 137.2, 135.8, 132.4, 131.5, 130.1, 129.2, 129.0, 128.9, 128.6, 127.6, 121.2, 117.2, 83.3, 74.4, 49.9, 21.2. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₈H₂₂N₃OS⁺: 448.1479; found: 448.1465


(5*R*,10*S*)-6-amino-10-(4-fluorophenyl)-4-oxo-2,8-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ac):

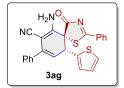
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (30.7 mg, 68% yield).


 $[a]_D^{20}$ = + 49.3 (c = 0.45, CHCl₃). HPLC: 97% ee, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 19.05 min (major), 31.51 min (minor). mp: 187-189 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.7 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.47 – 7.38 (m, 7H), 7.34 (dd, J = 8.7, 5.3 Hz, 2H), 6.89 (t, J = 8.7 Hz, 2H), 5.83 (d, J = 2.9 Hz, 1H), 5.15 (s, 2H), 4.59 (d, J = 2.8 Hz, 1H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 197.3, 191.5, δ 162.70 (d, J = 247.8 Hz), 154.9, 137.6, 137.5, 136.1, 131.96 (d, J = 8.3 Hz), 129.3, 129.0, 128.7, 127.7, 120.6, 117.0, 115.34 (d, J = 21.1 Hz), 83.8, 74.3, 49.6. ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -113.05 HRMS (ESI, m/z): [M + H]⁺ calculated for C₂₇H₁₉FN₃OS⁺: 452.1228; found: 452.1234.

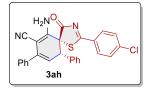
(5*R*,10*S*)-6-amino-10-(4-chlorophenyl)-4-oxo-2,8-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ad):


The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (33.7 mg, 72% yield). $[\alpha]_D^{20} = + 46.4$ (c = 0.37, CHCl₃). **HPLC: 90% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 18.11$ min (major), 29.84 min (minor). **mp**: 199-201 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 7.86 (dd, J = 8.4, 1.3 Hz, 2H), 7.68 – 7.60 (m, 1H), 7.48 – 7.36 (m, 7H), 7.30 (d, J = 6.6 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 5.80 (d, J = 2.9 Hz, 1H), 5.26 (s, 2H), 4.58 (d, J = 2.8 Hz, 1H). ¹³**C** {¹**H** } **NMR (125 MHz, CDCl₃)** δ 197.3, 191.3, 155.0, 137.8, 137.5, 136.2, 134.5, 134.1, 131.6, 131.3, 129.3, 129.0, 128.8, 128.7, 128.6, 127.6, 120.1, 117.0, 83.4, 74.0, 49.6. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₇H₁₉ClN₃OS⁺: 468.0932; found: 468.0924.

(5*R*,10*S*)-6-amino-10-(4-nitrophenyl)-4-oxo-2,8-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ae):

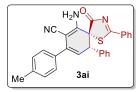

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (20:80 = EtOAc/Hexanes, v/v) to afford a yellow solid (31.1mg, 65% yield). $[a]_D^{20} = +45.2$ (c = 0.42, CHCl₃). **HPLC: 85% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 36.81$ min (major), 65.58 min (minor). **mp**: 202-204 °C. ¹**H NMR (400 MHz, CDCl₃)** $\delta 8.07$ (d, J = 8.5 Hz, 2H), 7.86 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 8.6 Hz, 2H), 7.47 – 7.43 (m, 5H), 7.43 (s, 2H), 5.81 (d, J = 2.7 Hz, 1H), 5.18 (s, 2H), 4.73 (d, J = 2.8 Hz, 1H). ¹³C{¹H } **NMR (100 MHz, CDCl₃)** $\delta 197.3$, 190.9, 154.7, 147.9, 143.1, 138.4, 137.2, 136.6, 131.4, 131.0, 129.6, 129.5, 129.3, 129.1, 128.9, 128.8, 127.7, 123.5, 118.6, 116.7, 83.8, 73.7, 49.8. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₇H₁₉N₄O₃S⁺: 479.1173; found: 479.1171.

(5*R*,10*S*)-6-amino-10-(naphthalen-2-yl)-4-oxo-2,8-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3af):

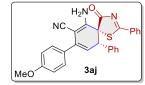

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (33.8 mg, 70% yield). $[\boldsymbol{\alpha}]_D^{20} = + 66.9$ (c = 0.62, CHCl₃). **HPLC: 82% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 31.41$ min (major), 39.46 min (minor). **mp**: 199-201 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.86 - 7.77 (m, 3H), 7.76 - 7.67 (m, 3H), 7.55 (d, J = 7.4 Hz, 1H), 7.53 - 7.46 (m, 3H), 7.46 - 7.38 (m, 5H), 7.35 (t, J = 7.8 Hz, 2H), 6.00 (d, J = 2.9 Hz, 1H), 5.17 (s, 2H), 4.79 (d, J = 2.9 Hz, 1H). ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 197.2, 191.4, 155.1, 137.6, 137.4, 135.9, 133.2, 133.1, 133.0, 131.4, 129.9, 129.1, 128.9, 128.8, 128.7, 128.2, 128.0, 127.8, 127.7, 127.6, 126.4, 126.3, 121.1, 117.1, 83.8, 74.4, 50.2. **HRMS (ESI, m/z)**: [M + H]⁺ calculated for C₃₁H₂₂N₃OS⁺: 484.1479; found: 484.1478

(5*R*,10*S*)-6-amino-4-oxo-2,8-diphenyl-10-(thiophen-2-yl)-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ag):

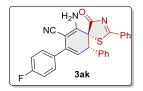
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (31.6 mg, 72% yield). $[\alpha]_D^{20} = +60.6$ (c = 0.47, CHCl₃). **HPLC:** 73% ee, (IB, IPA/n-hexane = 30/75, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 10.23$ min (major), 15.56 min (minor). mp: 191-193 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.66 (dd, J = 8.2, 6.7 Hz, 1H), 7.49 – 7.44 (m, 4H), 7.43 – 7.38 (m, 3H), 7.12 (dd, J = 5.1, 1.3 Hz, 1H), 7.06 (dd, J = 3.6, 1.2 Hz, 1H), 6.86 (dd, J = 5.2, 3.5 Hz, 1H), 5.87 (d, J = 2.9 Hz, 1H), 5.19 (s, 2H), 4.94 (d, J = 2.9 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 197.8, 191.3, 155.4, 137.6, 137.5, 137.3, 136.1, 131.6, 129.3, 129.1, 128.9, 128.7, 127.7, 126.7, 126.1, 121.6, 116.9, 83.6, 74.4, 46.1. HRMS (ESI, m/z): [M + H]⁺ calculated for C₂₅H₁₈N₃OS₂⁺: 440.0886; found: 440.0868


(5*R*,10*S*)-6-amino-2-(4-chlorophenyl)-4-oxo-8,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ah):

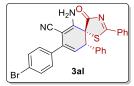
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow semi-solid (31.8 mg, 68% yield). $[\alpha]_D^{20} = +45.3$ (c = 0.37, CHCl₃). **HPLC: 96% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 22.98$ min (major), 30.93 min (minor). **mp**: 197-199 °C. ¹**H NMR (500 MHz**,


CDCl₃) δ 7.74 (d, J = 8.7 Hz, 2H), 7.47 – 7.41 (m, 4H), 7.40 – 7.35 (m, 4H), 7.35 – 7.31 (m, 2H), 7.18 (dd, J = 5.1, 2.0 Hz, 2H), 5.88 (d, J = 2.8 Hz, 1H), 5.29 (s, 2H), 4.58 (d, J = 2.8 Hz, 1H). ¹³C{¹H} **NMR (125 MHz, CDCl**₃) δ 195.7, 191.3, 154.8, 142.6, 137.6, 137.4, 135.3, 130.2, 130.0, 129.7, 129.6, 128.74, 128.66, 128.6, 128.3, 127.6, 120.7, 117.1, 83.4, 74.6, 50.5. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₇H₁₉ClN₃OS⁺: 468.0932; found: 468.0922.

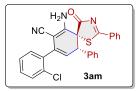
(5*R*,10*S*)-6-amino-4-oxo-2,10-diphenyl-8-(p-tolyl)-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ai):


The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85= EtOAc/Hexanes, v/v) to afford a yellow solid (34.8 mg, 78% yield). $[\alpha]_D^{20} = + 44.0$ (c = 0.40, CHCl₃). **HPLC: 95% ee**, (IC, IPA/n-hexane = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 23.41$ min (major), 30.80 min (minor). **mp**: 195-197 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.81 (d, J = 7.9 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.44 – 7.32 (m, 6H), 7.25 – 7.14 (m, 5H), 5.85 (d, J = 3.0 Hz, 1H), 5.28 (s, 2H), 4.59 (d, J = 2.9 Hz, 1H), 2.39 (s, 3H). ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 197.2, 191.6, 155.0, 138.6, 137.2, 135.8, 135.6, 134.8, 131.4, 130.3, 129.3, 129.1, 128.8, 128.5, 128.3, 127.5, 120.1, 117.3, 83.5, 74.3, 50.4, 21.4. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₈H₂₂N₃OS⁺: 448.1479; found: 448.1479.

(5*R*,10*S*)-6-amino-8-(4-methoxyphenyl)-4-oxo-2,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3aj):

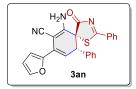

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (20:80 = EtOAc/Hexanes, v/v) to afford a yellow solid (33.3mg, 72% yield). $[\alpha]_D^{20} = +46.4$ (c = 0.37, CHCl₃). **HPLC**: **92% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 31.71$ min (minor), 45.78 min (major). **mp**: 193-195 °C. ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.91 – 7.84 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.47 – 7.37 (m, 8H), 7.28 (s, 1H), 6.72 (d, J = 8.6 Hz, 2H), 5.87 (d, J = 3.1 Hz, 1H), 5.12 (s, 2H), 4.56 (d, J = 2.8 Hz, 1H), 3.68 (s, 3H). ¹³C{¹H} **NMR** (**100 MHz, CDCl**₃) δ 197.3, 191.7, 159.6, 155.1, 137.7, 137.2, 135.9, 131.5, 131.4, 129.2, 129.0, 128.7, 127.7, 127.5, 121.5, 117.1, 113.7, 83.7, 74.5, 55.3, 49.6. **HRMS** (**ESI, m/z)**: $[M + H]^+$ calculated for C₂₈H₂₂N₃O₂S⁺: 464.1428; found: 464.1421

(5*R*,10*S*)-6-amino-8-(4-fluorophenyl)-4-oxo-2,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ak):

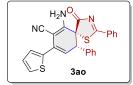

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (8:92 = EtOAc/Hexanes, v/v) to afford a yellow solid (29.3 mg, 65% yield). $[\alpha]_D^{20} = + 48.0 \ (c = 0.32, CHCl_3)$. **HPLC: 95% ee**, (IC, IPA/n-hexane = 70/30, flow rate = 1.0 mL/min, $\lambda = 254 \text{ nm}$), $t_R = 19.11 \text{ min}$ (major), 25.01 min(minor). **mp**: 190-192 °C. ¹**H NMR (400 MHz, CDCl_3)** δ 7.86 – 7.80 (m, 2H), 7.64 – 7.59 (m, 1H), 7.45 – 7.38 (m, 4H), 7.35 (dd, J = 7.6, 2.0 Hz, 2H), 7.22 – 7.16 (m, 3H), 7.10 (t, J = 8.6 Hz, 2H), 5.85 (d, J = 2.8 Hz, 1H), 5.19 (s, 2H), 4.59 (d, J = 2.8 Hz, 1H). ¹³C{¹H } **NMR (100 MHz, CDCl_3)** δ 197.1, 191.4, δ 163.13 (d, J = 247.9 Hz), 155.1, 136.4, 135.9, 135.4, 133.7, 130.3, 129.49 (d, J = 8.4 Hz), 129.2, 128.9, 128.6, 128.4, 120.8, 115.68 (d, J = 21.8 Hz), 83.5, 74.1, 50.4. ¹⁹F{¹H } **NMR (471 MHz, CDCl_3**) δ -112.9. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₇H₁₉FN₃OS⁺: 452.1228; found: 452.1229.

(5*R*,10*S*)-6-amino-8-(4-bromophenyl)-4-oxo-2,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3al):

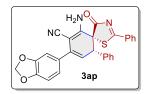
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (35.8 mg, 70% yield). $[\alpha]_D^{20} = + 44.0$ (c = 0.45, CHCl₃). **HPLC: 93% ee**, (IB, IPA/n-hexane = 30/70, flow rate = 0.9 mL/min, $\lambda = 254$ nm), $t_R = 22.57$ min (major), 30.28 min (minor). **mp**: 199-201 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 7.91 – 7.80 (m, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 7.9 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.20 (dd, J = 5.1, 2.0 Hz, 3H), 5.89 (d, J = 2.8 Hz, 1H), 5.10 (s, 2H), 4.58 (d, J = 2.8 Hz, 1H). ¹³C{¹**H } NMR (125 MHz, CDCl₃**) δ 197.3, 191.2, 154.9, 137.8, 137.4, 137.1, 136.2, 134.6, 132.7, 132.0, 131.9, 131.5, 131.3, 129.4, 129.3, 129.1, 129.0, 128.8, 128.7, 127.6, 122.7, 120.0, 116.9, 83.6, 76.9, 74.0, 49.6. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₇H₁₉BrN₃OS⁺: 512.0427, 514.0407 found: 512.0419, 514.0400


(5*R*,10*S*)-6-amino-8-(2-chlorophenyl)-4-oxo-2,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3am):

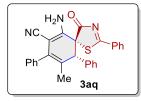
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (37.4 mg, 80% yield). $[\alpha]_D^{20} = + 61.3$ (c = 0.67, CHCl₃). **HPLC: 91% ee**, (IC, IPA/n-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 22.88$ min (minor), 32.44 min (major). **mp**: 191-193 °C. ¹**H NMR (500 MHz, CDCl₃)** δ


7.88 – 7.78 (m, 2H), 7.62 – 7.56 (m, 1H), 7.47 (dt, J = 7.4, 1.2 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.37 – 7.28 (m, 5H), 7.23 – 7.11 (m, 3H), 5.77 (d, J = 2.7 Hz, 1H), 5.19 (s, 2H), 4.62 (d, J = 2.7 Hz, 1H). ¹³C{¹H} **NMR (125 MHz, CDCl₃)** δ 197.4, 191.6, 153.4, 137.0, 135.8, 135.3, 133.5, 131.5, 130.9, 130.3, 130.0, 129.9, 129.1, 128.9, 128.5, 128.3, 127.1, 122.3, 116.4, 84.8, 74.2, 50.1 **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₇H₁₉ClN₃OS⁺: 468.0932; found: 468.0941

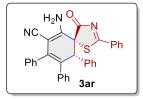
(5*R*,10*S*)-6-amino-8-(furan-2-yl)-4-oxo-2,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3an):


The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (8:92 = EtOAc/Hexanes, v/v) to afford a yellow solid (33.0 mg, 78% yield). $[\alpha]_D^{20} = + 44.5$ (c = 0.40, CHCl₃). **HPLC: 74% ee**, (ID, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 18.50$ min (minor), 24.03 min (major). **mp**: 197-199 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.84 – 7.74 (m, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.44 – 7.31 (m, 5H), 7.24 – 7.14 (m, 3H), 6.89 (d, J = 3.5 Hz, 1H), 6.47 (dd, J = 3.5, 1.8 Hz, 1H), 6.25 (d, J = 3.1 Hz, 1H), 5.31 (s, 2H), 4.58 (d, J = 3.1 Hz, 1H). ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 197.3, 191.3, 155.6, 149.9, 142.6, 135.9, 135.3, 131.3, 130.3, 129.2, 128.8, 128.5, 128.3, 126.1, 117.7, 117.4, 111.7, 108.5, 80.0, 73.9, 49.9. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₅H₁₈N₃O₂S⁺: 424.1115 found: 424.1115.

(5*R*,10*S*)-6-amino-4-oxo-2,10-diphenyl-8-(thiophen-2-yl)-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ao):

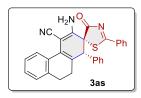

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (8:92 = EtOAc/Hexanes, v/v) to afford a yellow solid (31.6 mg, 72% yield). $[\alpha]_D^{20} = +52.8$ (c = 0.5, CHCl₃). **HPLC**: **80% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, λ = 254 nm), $t_R = 20.78$ min (minor), 28.16 min (major). **mp**: 197-199 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.84 – 7.78 (m, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.39 – 7.33 (m, 3H), 7.27 (d, J = 5.9 Hz, 1H), 7.23 – 7.16 (m, 3H), 7.08 (dd, J = 5.4, 3.7 Hz, 1H), 6.00 (d, J = 3.1 Hz, 1H), 5.34 (s, 2H), 4.58 (d, J = 3.1 Hz, 1H). ¹³C{¹H } **NMR (100 MHz, CDCl₃)** δ 197.2, 191.2, 155.6, 139.8, 135.9, 135.2, 131.3, 130.3, 130.2, 129.2, 128.9, 128.6, 128.3, 127.9, 126.2, 125.5, 120.2, 117.2, 82.5, 73.9, 50.2. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₅H₁₈N₃OS₂⁺: 440.0886 found: 440.0887.

(5*R*,10*S*)-6-amino-8-(benzo[d][1,3]dioxol-5-yl)-4-oxo-2,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ap):

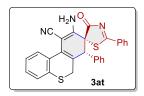

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (20:80 = EtOAc/Hexanes, v/v) to afford a yellow solid (33.4 mg, 70% yield). $[\alpha]_D^{20} = +49.7$ (c = 0.45, CHCl₃). **HPLC: 80% ee**, (IC, IPA/n-hexane = 30/70, flow rate = 1 mL/min, $\lambda = 254$ nm), $t_R = 34.76$ min (minor), 52.22 min (major). **mp**: 195-197 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.86 – 7.81 (m, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.19 (dd, J = 5.0, 2.1 Hz, 3H), 6.96 – 6.90 (m, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.00 (d, J = 1.6 Hz, 2H), 5.82 (d, J = 2.9 Hz, 1H), 5.12 (s, 2H), 4.57 (d, J = 2.9 Hz, 1H). ¹³C{¹H } **NMR (100 MHz, CDCl₃)** δ 197.2, 191.5, 154.9, 148.2, 147.9, 137.0, 135.9, 135.5, 131.8, 131.5, 130.3, 129.2, 128.9, 128.5, 128.3, 121.5, 120.2, 117.1, 108.5, 108.3, 101.5, 83.9, 74.3, 50.3. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₈H₂₀N₃O₃S⁺: 478.1220 found: 478.1216.

(5*R*,10*R*)-6-amino-9-methyl-4-oxo-2,8,10-triphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3aq):

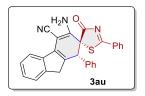
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (31.3 mg,70% yield). $[\alpha]_D^{20} = -71.6$ (c = 0.65, CHCl₃). **HPLC: 74% ee** (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, 1 = 254 nm), $t_R = 18.76$ min (minor), 43.86 min (major). **mp**: 191-193°C. ¹**H NMR (400 MHz, CDCl₃) \delta 7.99 (d, J = 7.5 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.44 – 7.33 (m, 6H), 7.30 (d, J = 7.7 Hz, 2H), 7.25 (d, J = 3.6 Hz, 2H), 4.94 (s, 2H), 4.07 (s, 1H), 1.51 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 194.9, 189.7, 150.8, 138.2, 136.9, 135.9, 131.6, 130.0, 129.9, 129.4, 129.3, 129.1, 129.0, 128.6, 127.9, 125.6, 124.8, 117.6, 86.0, 73.2, 55.0, 19.1. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₈H₂₂N₃OS⁺: 448.1479 found: 448.1475.


(5*R*,10*R*)-6-amino-4-oxo-2,8,9,10-tetraphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (3ar):

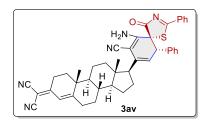
The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (39.8 mg, 78% yield).


 $[α]_D^{20} = -72.0$ (c = 0.57, CHCl₃). HPLC: 66% ee (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, 1 = 254 nm), $t_R = 14.63$ min (minor), 32.38 min (major). mp: 199-201 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 7.7 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.25 (d, J = 1.9 Hz, 2H), 7.19 (d, J = 4.6 Hz, 4H), 7.16 (t, J = 5.2 Hz, 4H), 6.90 (t, J = 3.0 Hz, 3H), 6.72 – 6.61 (m, 2H), 5.18 (s, 2H), 4.43 (s, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 194.2, 188.9, 152.4, 139.5, 137.9, 136.9, 136.0, 132.4, 131.5, 130.5, 130.2, 129.7, 129.3, 129.1, 129.0, 128.4, 128.3, 128.1, 127.7, 127.6, 126.3, 117.6, 86.1, 73.4, 55.0. HRMS (ESI, m/z): [M + H]⁺ calculated for C₃₃H₂₄N₃OS⁺: 510.1635 found: 510.1635.

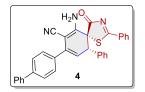
(1*R*,2*R*)-3-amino-4'-oxo-1,2'-diphenyl-9,10-dihydro-1H,4'H-spiro[phenanthrene-2,5'-thiazole]-4-carbonitrile (3as):


The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (36.7 mg,80% yield). $[\alpha]_D^{20} = +42.5$ (c = 0.47, CHCl₃). **HPLC**: **81% ee** (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, 1 = 254 nm), $t_R = 21.04$ min (minor), 41.82 min (major). mp: 201-203 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 2H), 7.73 – 7.59 (m, 2H), 7.43 (t, J = 7.8 Hz, 2H), 7.36 – 7.26 (m, 3H), 7.25 – 7.15 (m, 5H), 5.11 (s, 2H), 4.57 (d, J = 3.1 Hz, 1H), 2.73 – 2.56 (m, 2H), 2.28 (dddd, J = 17.7, 14.4, 6.1, 3.5 Hz, 1H), 1.98 – 1.86 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.7, 190.7, 154.0, 136.7, 135.9, 133.6, 132.2, 131.5, 130.8, 130.5, 129.2, 128.9, 128.7, 128.3, 127.7, 127.5, 127.2, 126.7, 124.6, 117.9, 81.8, 73.6, 54.5, 29.1, 27.3. HRMS (ESI, m/z): [M + H]⁺ calculated for C₂₉H₂₂N₃OS⁺: 460.1479 found: 460.1479.

(7*R*,8*R*)-9-amino-4'-oxo-2',7-diphenyl-4'H,6H,7H-spiro[benzo[c]thiochromene-8,5'-thiazole]-10-carbonitrile (3at):

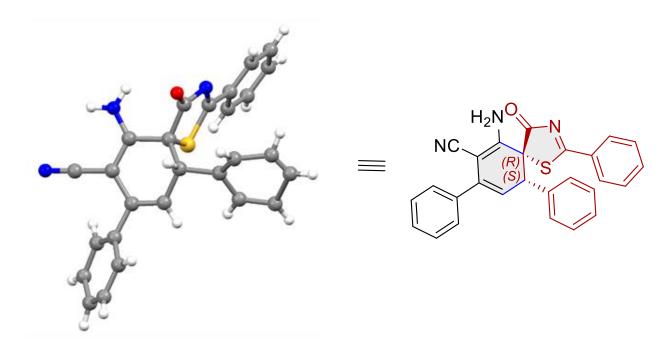

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (20:80 = EtOAc/Hexanes, v/v) to afford a yellow solid (39.2 mg, 82% yield). $[\alpha]_D^{20} = +77.7$ (c = 0.60, CHCl₃). **HPLC: 69% ee** (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, 1 = 254 nm), $t_R = 24.18$ min (minor), 37.83 min (major). **mp**: 200-201 °C. ¹**H NMR (400 MHz, CDCl₃) \delta 7.86 (d, J = 7.7 Hz, 2H), 7.64 (dd, J = 10.9, 7.4 Hz, 2H), 7.44 (t, J = 7.8 Hz, 2H), 7.38 (d, J = 7.6 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.24 – 7.16 (m, 4H), 5.28 (s, 2H), 4.70 (d, J = 3.0 Hz, 1H), 3.45 (dd, J = 15.8, 3.1 Hz, 1H), 2.82 (d, J = 15.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 196.4, 190.3, 154.6, 136.0, 134.0, 132.8, 132.0, 131.3, 130.8, 129.4, 129.3, 129.0, 128.9, 128.6, 128.4, 128.3, 126.9, 126.1, 126.0, 117.6, 82.1, 73.1, 54.1, 28.8. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₈H₂₀N₃OS₂⁺: 478.1043 found: 478.1035.

(1*R*,2*R*)-3-amino-4'-oxo-1,2'-diphenyl-1,9-dihydro-4'H-spiro[fluorene-2,5'-thiazole]-4-carbonitrile (3au):


The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (15:85 = EtOAc/Hexanes, v/v) to afford a yellow solid (30.3 mg, 68% yield). $[\alpha]_D^{20} = +74.1$ (c = 0.57, CHCl₃). **HPLC: 84% ee** (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, 1 = 254 nm), $t_R = 14.96$ min (minor), 28.95 min (major). **mp**: 198-200 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.01 (d, J = 7.7 Hz, 1H), 7.85 (dd, J = 8.4, 1.3 Hz, 2H), 7.65 – 7.60 (m, 1H), 7.46 – 7.34 (m, 7H), 7.25 – 7.22 (m, 3H), 5.06 (s, 2H), 4.76 (d, J = 2.1 Hz, 1H), 3.59 (dd, J = 24.0, 2.1 Hz, 1H), 3.10 (dd, J = 24.1, 2.2 Hz, 1H). ¹³C{¹H } **NMR (125 MHz, CDCl₃)** δ 197.1, 190.9, 154.0, 143.4, 140.7, 135.9, 134.2, 133.8, 132.8, 131.4, 130.8, 130.7, 129.4, 129.2, 129.0, 128.9, 128.8, 128.3, 126.9, 125.6, 123.9, 119.7, 116.9, 79.6, 75.0, 51.9, 38.8. **HRMS (ESI, m/z):** [M + H]⁺ calculated for C₂₈H₂₀N₃OS⁺: 446.1322 found 446.1333.

2-((8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-((5*R*,10*S*)-6-amino-7-cyano-4-oxo-2,10-diphenyl-1-thia-3-azaspiro [4.5]deca-2,6,8-trien-8-yl)-10,13-dimethyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3Hcyclopenta[a]phenanthren-3-ylidene)malononitrile (3av):

The compound was prepared following the synthetic procedure A. The desired product was isolated by flash column chromatography (20:80 = EtOAc/Hexanes, v/v) to afford a yellow solid (45.9 mg, 68% yield). $[a]_D^{20} = +55.2$ (c = 0.50, CHCl₃). mp: 199-201 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.39 (t, J = 7.7 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.19 (dd, J = 10.4, 5.0 Hz, 3H), 6.47 (s, 1H), 5.62 (d, J = 2.5 Hz, 1H), 5.06 (s, 2H), 4.41 (s, 1H), 2.92 (dt, J = 17.4, 3.8 Hz, 1H), 2.71 – 2.35 (m, 4H), 2.02 – 1.87 (m, 2H), 1.86 – 1.74 (m, 3H), 1.73 – 1.66 (m, 1H), 1.66 – 1.52 (m, 3H), 1.47 (td, J = 13.9, 13.4, 3.7 Hz, 2H), 1.31 (t, J = 8.1 Hz, 2H), 1.17 (s, 3H), 1.12 – 0.96 (m, 2H), 0.81 (s, 3H). ¹³C{¹H} } NMR (100 MHz, CDCl₃) δ 196.8, 191.5, 171.2, 170.2, 153.4, 135.8, 134.2, 131.4, 130.2, 129.1, 128.8, 128.4, 128.2, 119.4, 119.0, 117.7, 113.3, 112.5, 86.4, 74.9, 55.4, 53.8, 53.1, 50.1, 43.7, 39.3, 37.8, 36.4, 34.6, 33.8, 32.2, 26.3, 25.3, 24.1, 21.3, 17.7, 13.7. HRMS (ESI, m/z): [M + H]⁺ calculated for C₄₃H₄₂N₅OS⁺: 676.3105 found: 676.3103.


(5R,10S)-8-([1,1'-biphenyl]-4-yl)-6-amino-4-oxo-2,10-diphenyl-1-thia-3-azaspiro[4.5]deca-2,6,8-triene-7-carbonitrile (4):

To a stirred solution of **3am** (51.1 mg, 0.1 mmol, 1.0 equiv), in THF (2 ml), Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 10 mol %), phenylboronic acid (18.3 mg, 0.15 mmol, 1.5 equiv) and K₂CO₃ (27.6 mg, 0.2 mmol, 2.0 equiv) were added. The reaction mixture was stirred at 70 °C for 12 h. After the reaction was completed (monitored by TLC), the resulting mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel to give the product **4** (30.5 mg, 60% yield). $[a]_D^{20} = +$ 71.3 (c = 0.62, CHCl₃) **HPLC**: **94% ee** (IC, IPA/n-hexane = 30/70, flow rate = 1.0 mL/min, 1 = 254 nm), *t_R* = 25.48 min (minor), 37.78 min (major). **mp**: 197-199 °C ¹**H NMR (400 MHz, CDCl₃)** δ 7.84 (d, *J* = 7.7 Hz, 2H), 7.64 (t, *J* = 8.2 Hz, 5H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.49 – 7.40 (m, 4H), 7.38 (dd, *J* = 7.1, 3.2 Hz, 3H), 7.20 (d, *J* = 5.7 Hz, 3H), 5.96 (d, *J* = 2.9 Hz, 1H), 5.29 (s, 2H), 4.63 (d, *J* = 2.9 Hz, 1H). ¹³C{¹H</sup> **NMR (100 MHz, CDCl₃)** δ 197.2, 191.5, 155.2, 141.6, 140.6, 136.9, 136.5, 135.9, 135.5, 131.4, 130.3, 129.2, 129.0, 128.9, 128.6, 128.4, 128.1, 127.6, 127.4, 127.2, 120.9, 117.2, 83.4, 74.2, 50.4. **HRMS (ESI, m/z)**: [M + H]⁺ calculated for C₂₃H₂₄N₃OS⁺: 510.1635 found: 510.1634.

X-ray crystallographic figures and data of 3aa

A suitable single crystal of **3aa** was grown by slow evaporation of a solution of **3aa** compound in a mixture of solvent (Ethyl acetate/hexane=1:1) at room temperature.

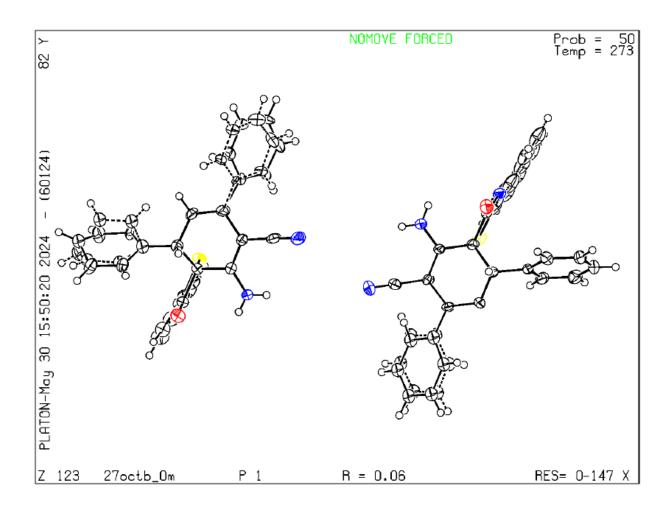


Figure S1: Crystal structure (with 50% ellipsoid probability) of **3aa** (CCDC No. 2359432) (Note: Asymmetric unit is represented; thermal splitting has been removed for clarity)

Table S8: Crystal data and structure refinement for 3aa (CCDC No. 2359432)

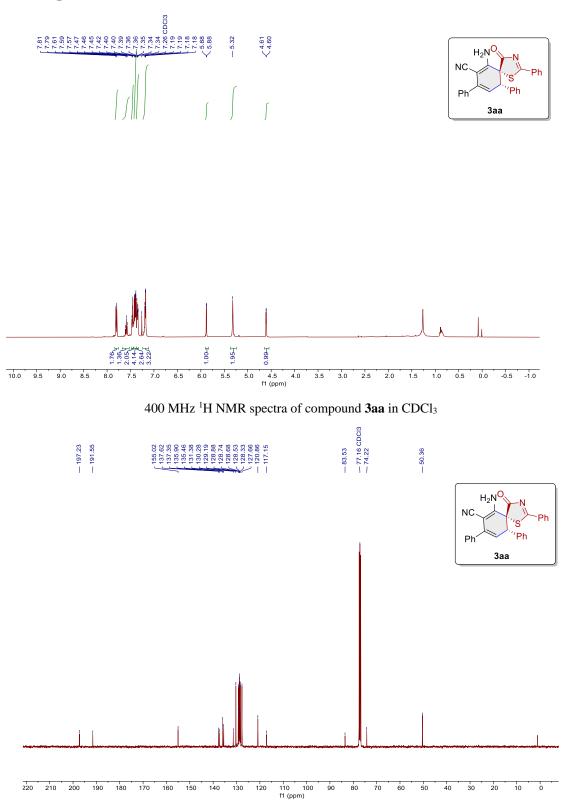
Table 1 Crystal data and st	tructure refinement for 27octb_0m.
Identification code	27octb_0m
Empirical formula	$C_{62}H_{53}N_6O_6S_2$
Formula weight	1042.22
Temperature/K	273.15
Crystal system	triclinic
Space group	P1
a/Å	10.2217(3)
b/Å	11.1542(3)
c/Å	13.1904(4)
α/\circ	95.1110(10)
β/°	94.0180(10)
$\gamma/^{\circ}$	111.2480(10)
Volume/Å ³	1387.58(7)
Z	1
$\rho_{calc}g/cm^3$	1.247
μ/mm^{-1}	0.153
F(000)	547.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	^{°°} 6.836 to 56.68
Index ranges	$-13 \le h \le 13, -14 \le k \le 14, -17 \le l \le 17$
Reflections collected	22503
Independent reflections	13648 [$R_{int} = 0.0263$, $R_{sigma} = 0.0515$]
Data/restraints/parameters	13648/71/648
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0517, wR_2 = 0.1256$
Final R indexes [all data]	$R_1 = 0.0577, wR_2 = 0.1310$
Largest diff. peak/hole / e Å ⁻	³ 0.35/-0.61
Flack parameter	0.13(3)

Table 1 Crystal data and structure refinement for 27octb_0m.

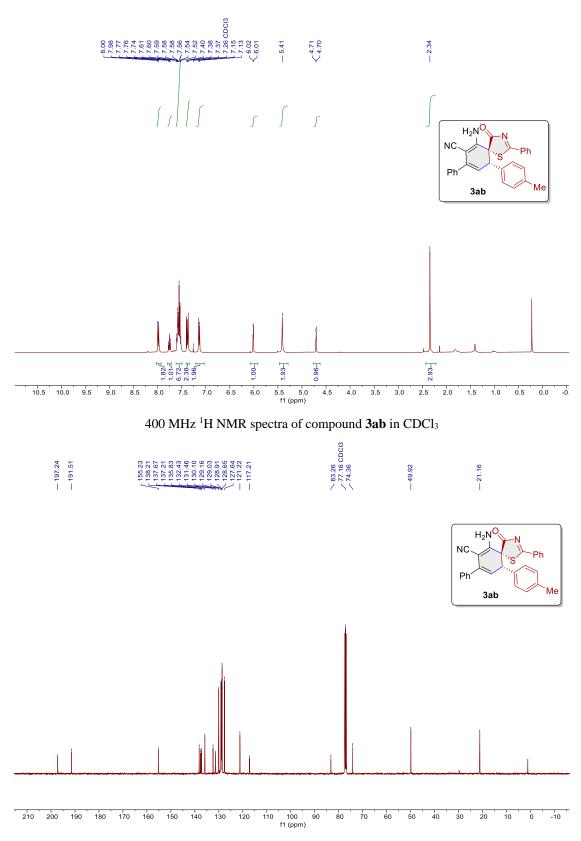
Quantum yield calculation:

Calculated quantum yield (ϕ) for compound **3aa** = 5.89%.

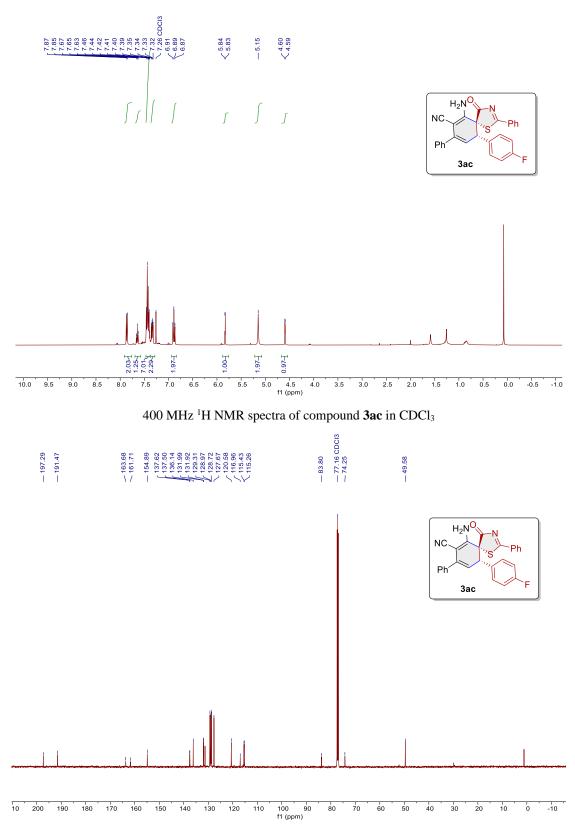
Here, we used quinine sulfate as the internal standard with $\phi = 54.6\%$ in 0.5 M H₂SO₄. Using formula:

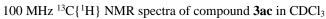

$$\phi_{\rm X} = \left(\frac{A_R}{A_X}\right) \left(\frac{E_X}{E_R}\right) \left(\frac{\eta_X}{\eta_R}\right)^2 \phi_R$$

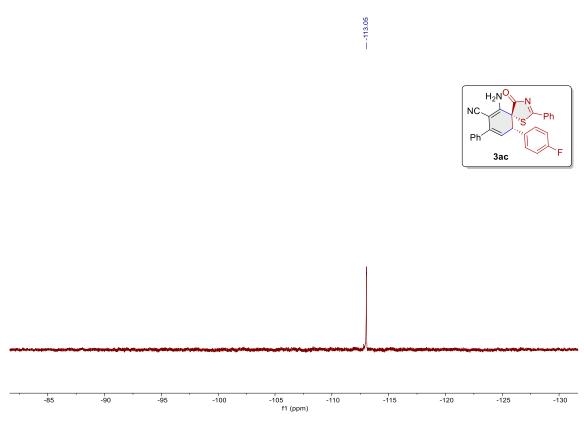
Here, the absorbance was set to 0.2 at λ = 350 nm for both the sample and internal standard, E_X is the area under the curve for the sample (**3aa**), and E_R is the area under the curve for quinine sulfate (internal standard). η_X is the refractive index for methanol, and η_R is the refractive index for H₂O. ϕ_R is the quantum yield for quinine sulfate.

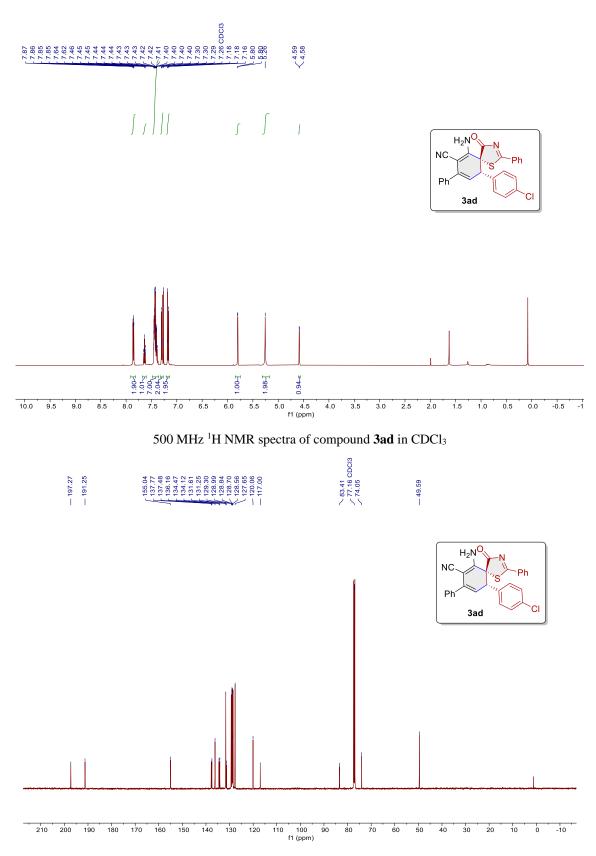

References:

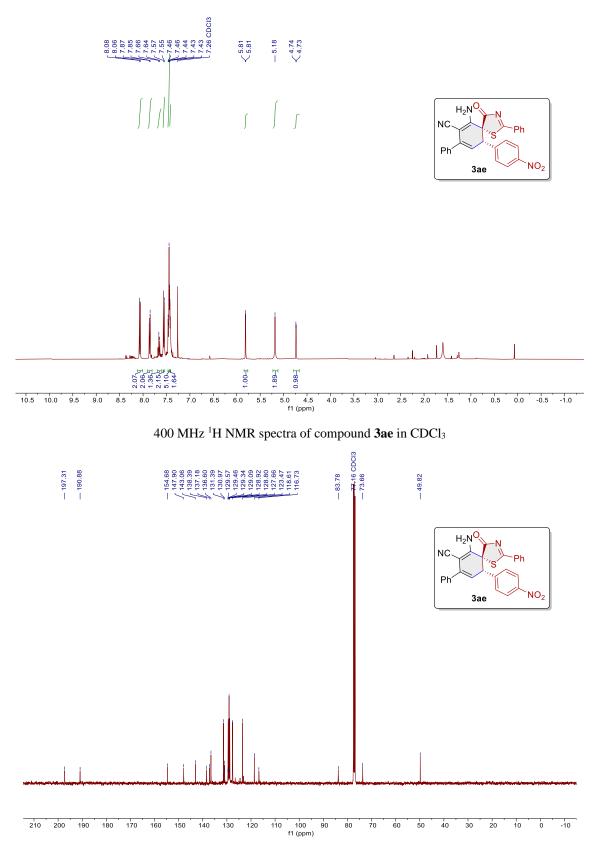
- (a) Zhu, X.-L.; He, W.-J.; Yu, L.-L.; Cai, C.-W.; Zuo, Z.-L.; Qin, D.-B.; Liu, Q.-Z.; Jing, L.-H. Organocatalytic Asymmetric Vinylogous Michael Addition of Dicyanoolefins to Imine Intermediates Generated *in situ* from Arenesulfonylalkylindoles. *Adv. Synth. Catal.* 2012, *354*, 2965-2970. (b) Dhara, H. N.; Rakshit, A.; Alam, T.; Sahoo, A. K.; Patel, B. K. Visible-Light-Mediated Solvent-Switched Photosensitizer-Free Synthesis of Polyfunctionalized Quinolines and Pyridines. *Org. Lett.* 2023, *25*, 471-476.
- (a) Lin, L.; Yang, Y.; Wang, M.; Lai, L.; Guo, Y.; Wang, R. Oxidative *N*-Heterocyclic Carbene Catalyzed Stereoselective Annulation of Simple Aldehydes and 5-Alkenyl Thiazolones *Chem. Commun.* 2015, *51*, 8134-8137. (b) Manna, A.; Rohilla, S.; Singh, V. K. Enantioselective Synthesis of Thiazolopyran Derivatives via a Direct Vinylogous Michael–*oxa*-Michael Sequence. *Org. Lett.* 2024, *26*, 280-285.

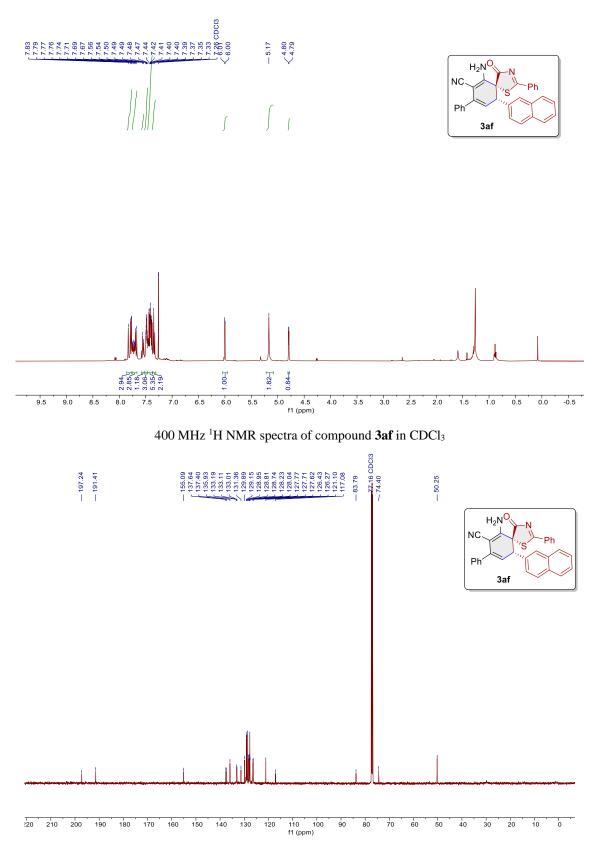

NMR Spectra:

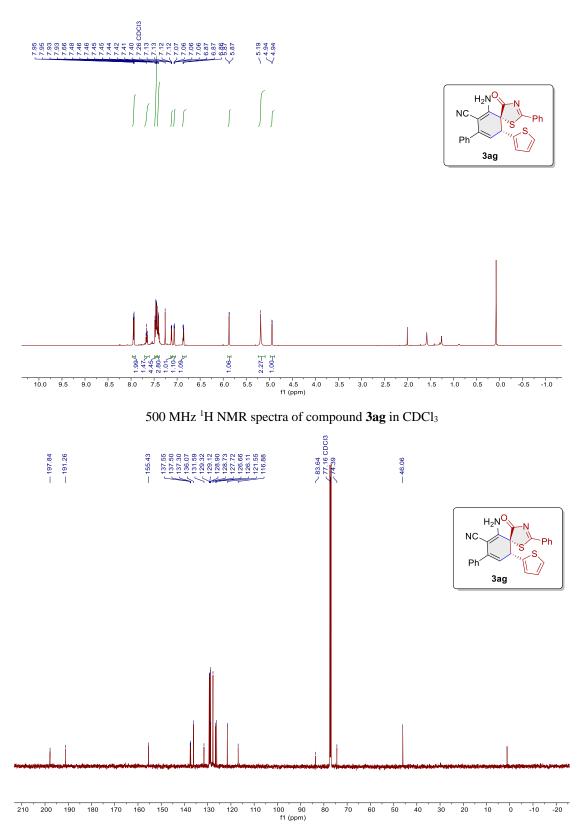


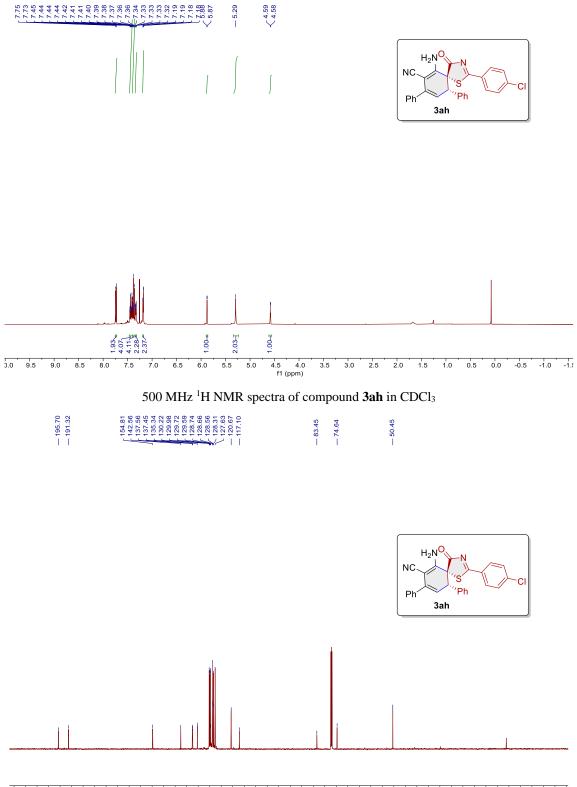

100 MHz ¹³C{¹H} NMR spectra of compound **3aa** in CDCl₃

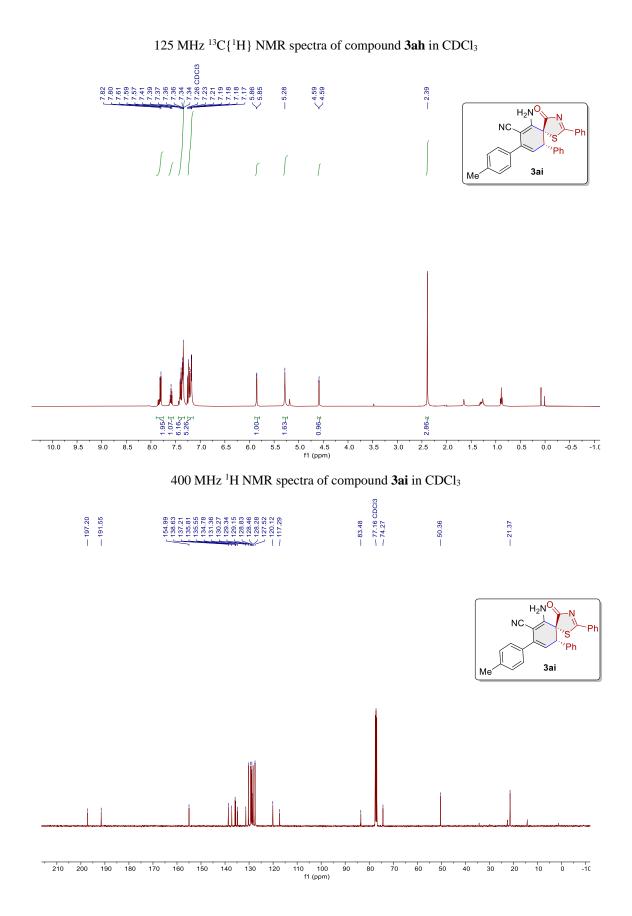

100 MHz $^{13}C\{^{1}H\}$ NMR spectra of compound **3ab** in CDCl₃

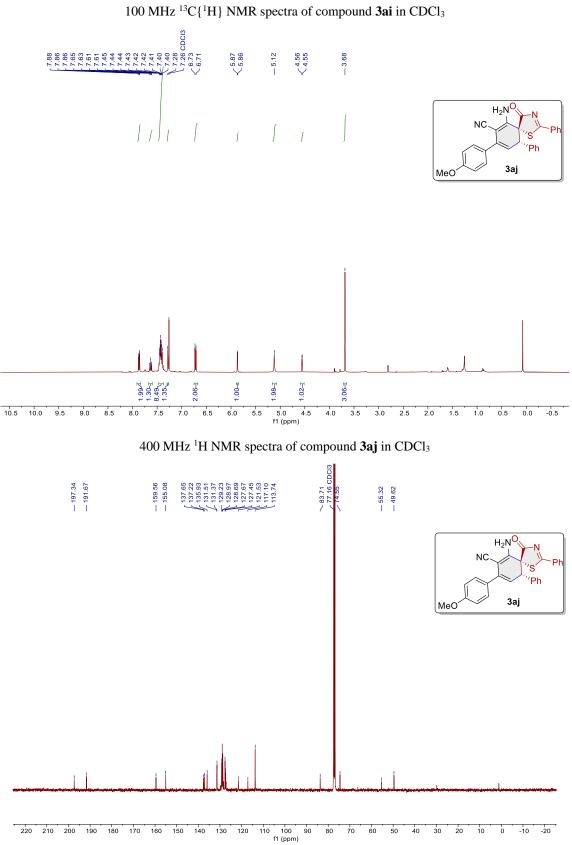


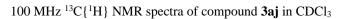

471 MHz $^{19}F\{^1H\}$ NMR spectra of compound $\boldsymbol{3ac}$ in CDCl_3

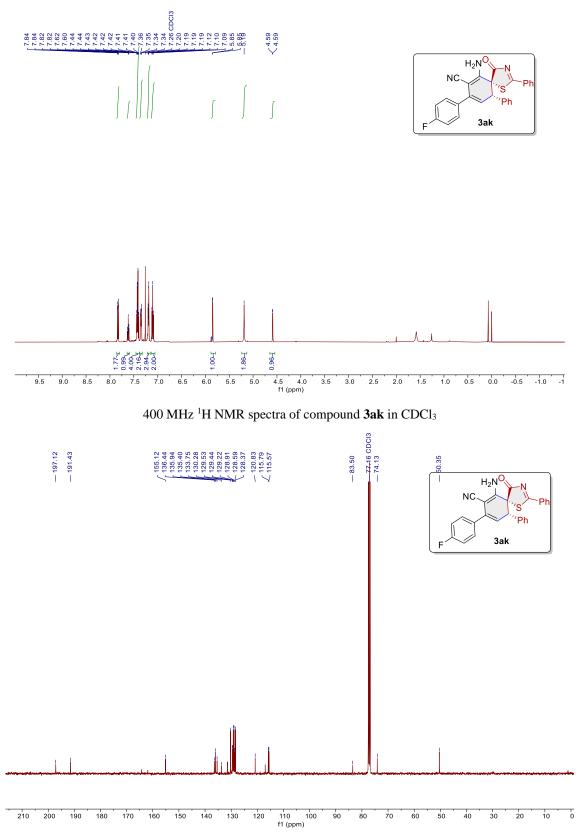

125 MHz $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of compound 3ad in CDCl_3


100 MHz ¹³C{¹H} NMR spectra of compound **3ae** in CDCl₃

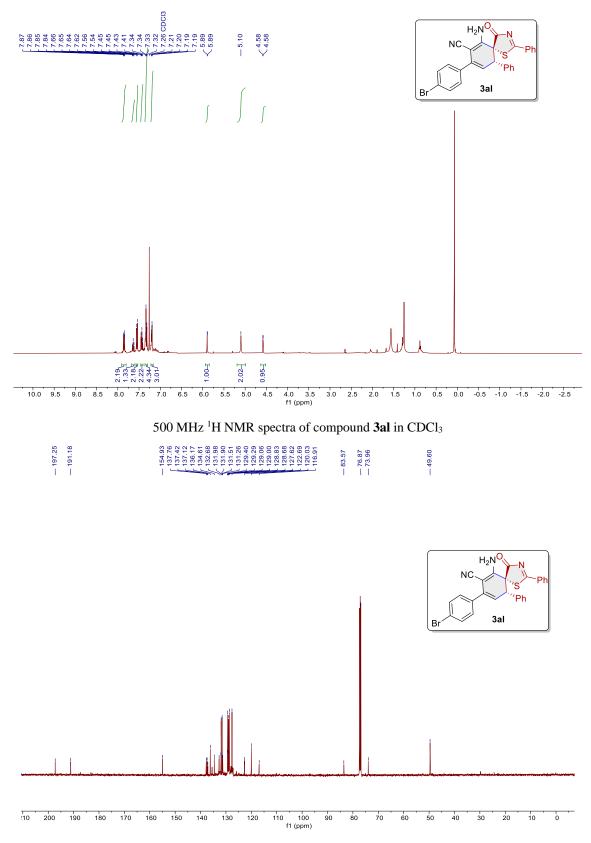

100 MHz $^{13}C\{^{1}H\}$ NMR spectra of compound **3af** in CDCl₃

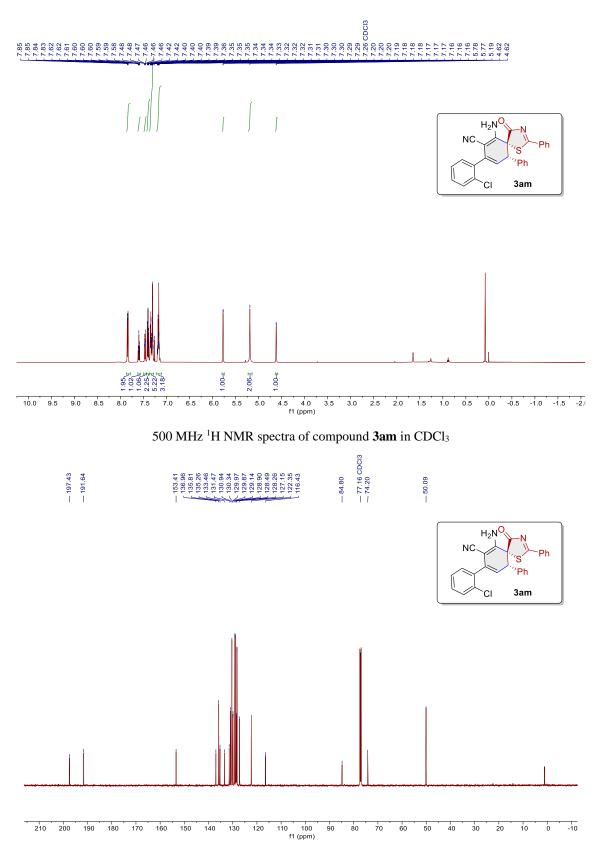

125 MHz $^{13}C\{^{1}H\}$ NMR spectra of compound 3ag in CDCl₃

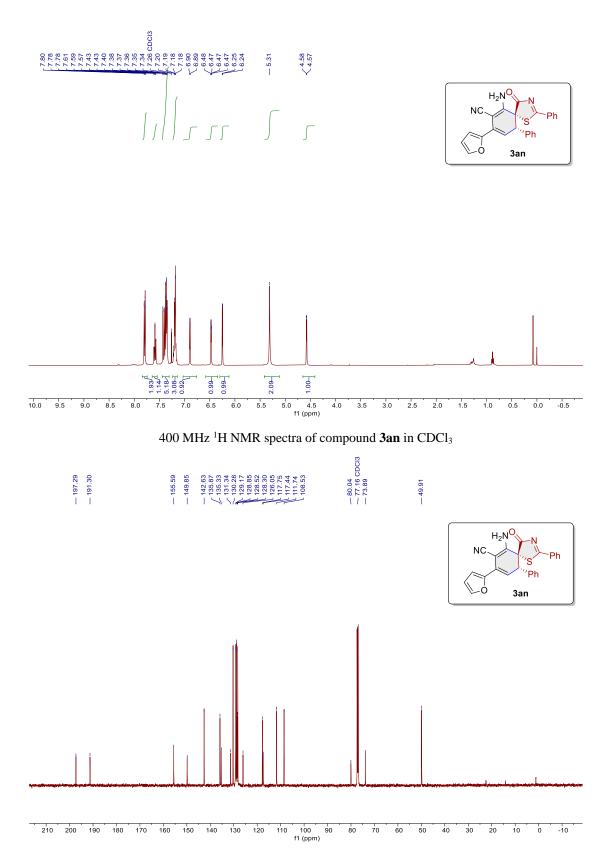


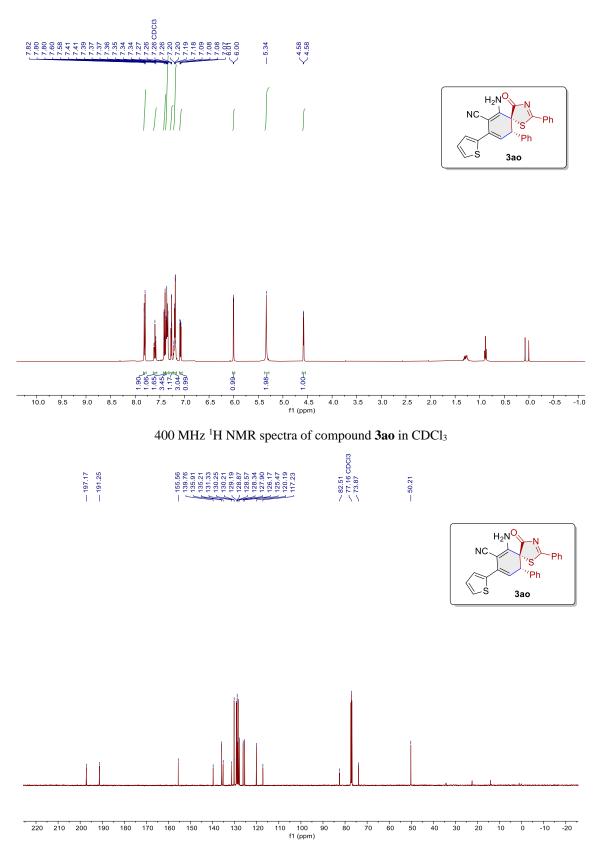

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

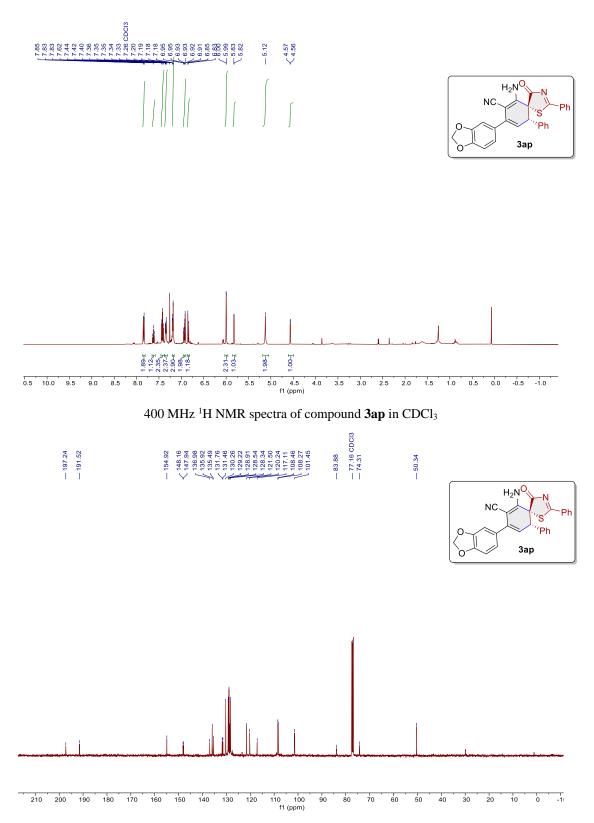
S32

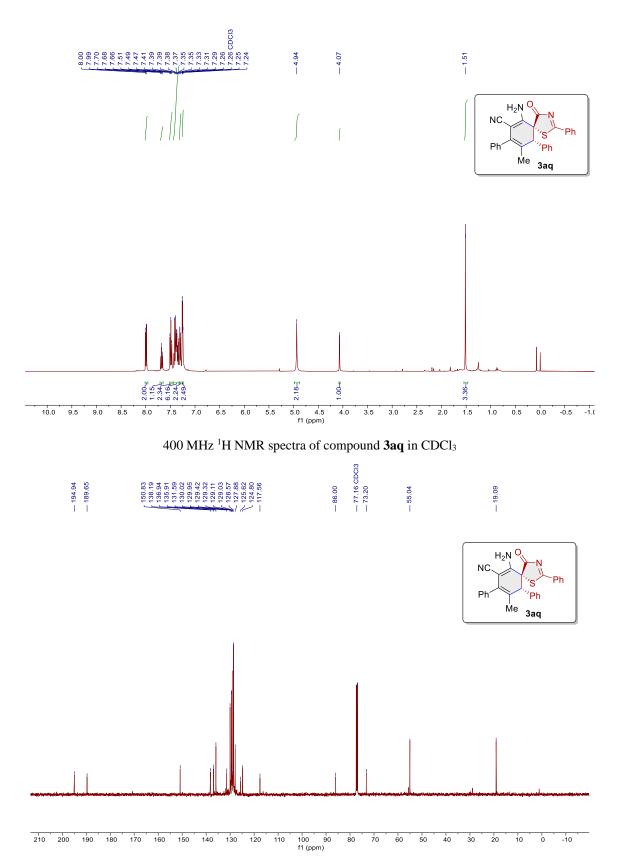


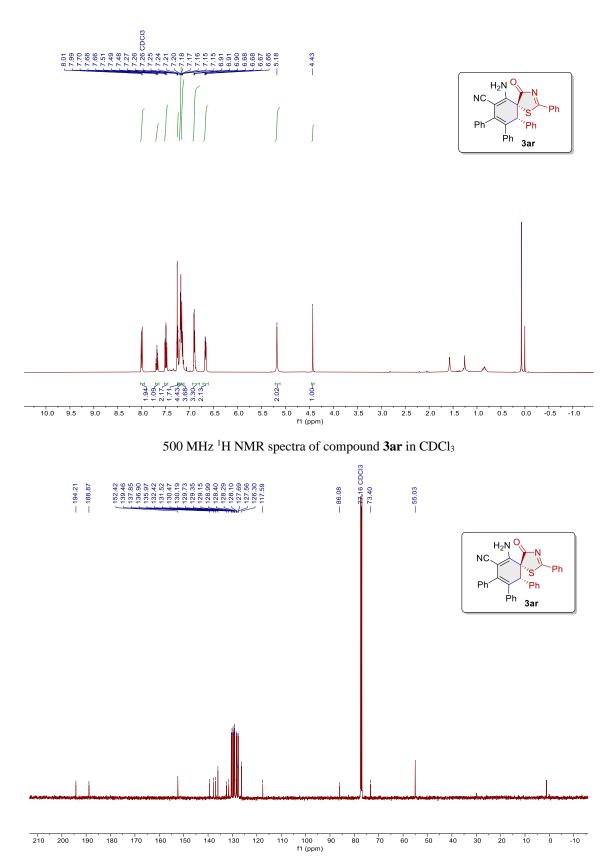

100 MHz ¹³C{¹H} NMR spectra of compound **3ak**in CDCl₃

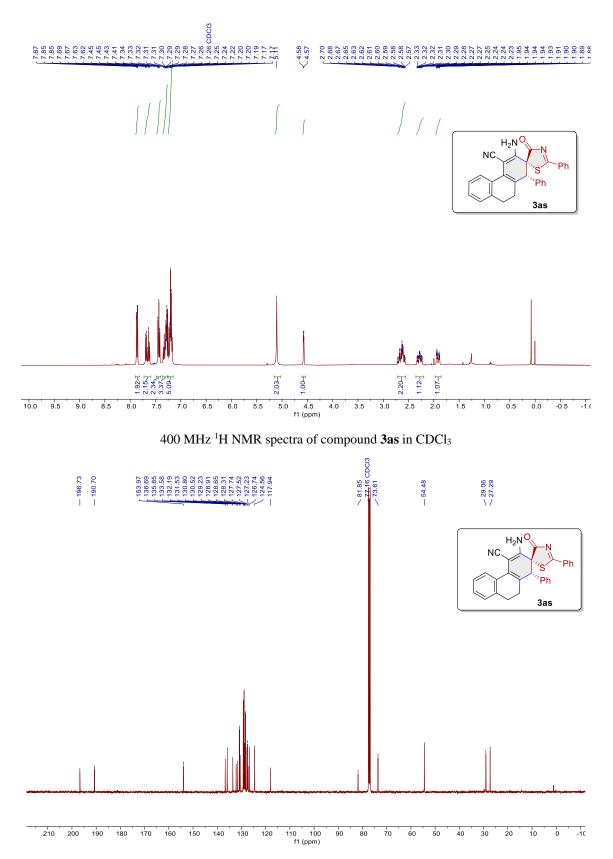

471 MHz $^{19}F\{^1H\}$ NMR spectra of compound ${\bf 3ak}$ in CDCl3

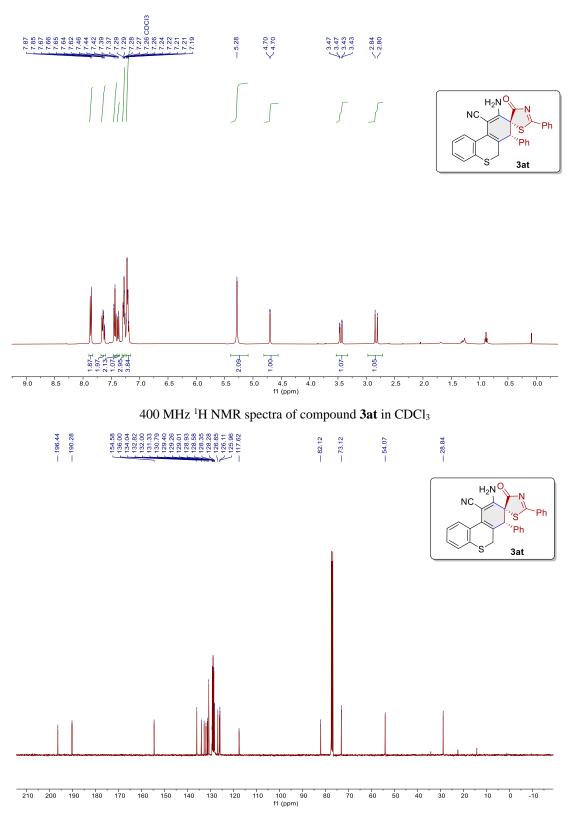

125 MHz $^{13}C\{^{1}H\}$ NMR spectra of compound **3al** in CDCl₃

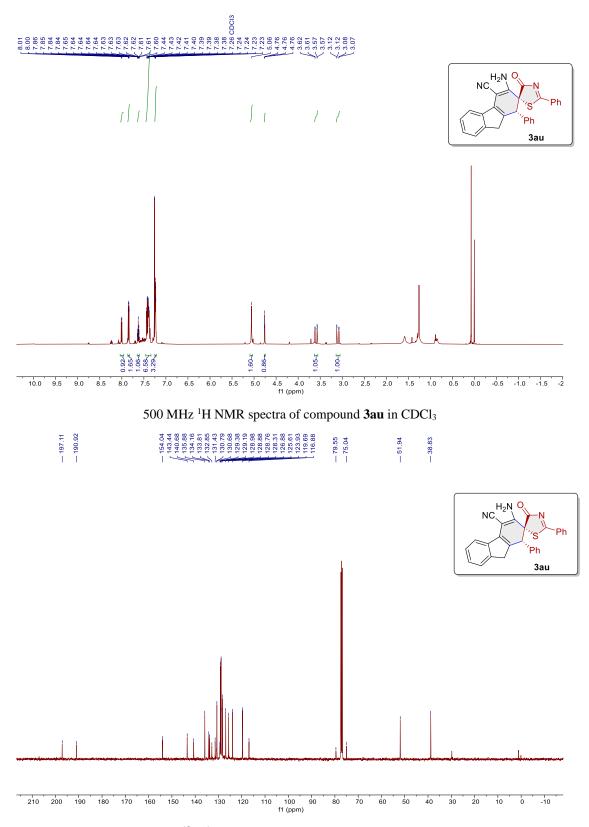

125 MHz ¹³C{¹H} NMR spectra of compound **3am** in CDCl₃

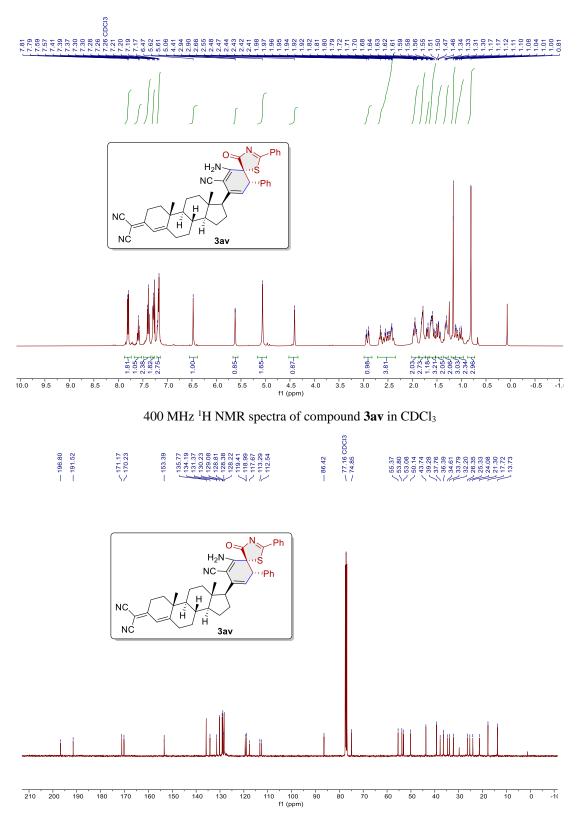

100 MHz $^{13}C\{^{1}H\}$ NMR spectra of compound **3an** in CDCl₃

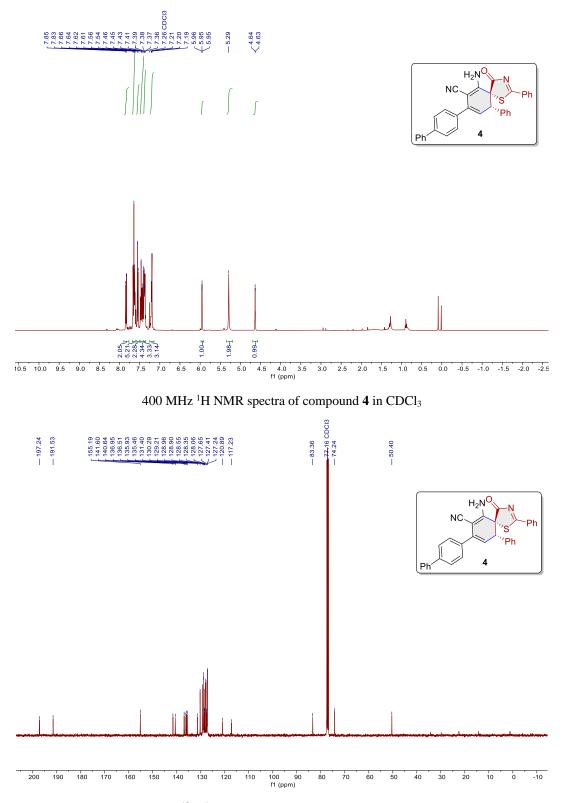

100 MHz ¹³C{¹H} NMR spectra of compound **3ao** in CDCl₃


100 MHz $^{13}C\{^1H\}$ NMR spectra of compound 3ap in CDCl3

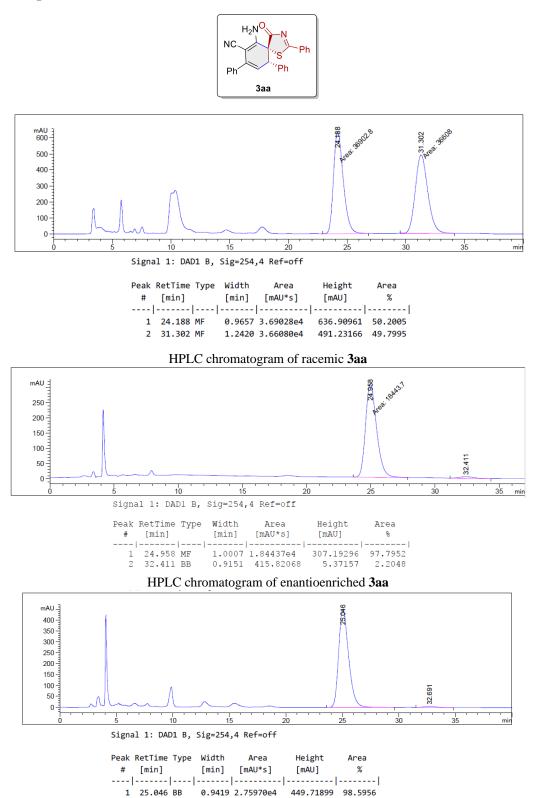

100 MHz ¹³C{¹H} NMR spectra of compound **3aq** in CDCl₃

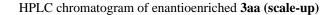

125 MHz ¹³C{¹H} NMR spectra of compound **3ar** in CDCl₃


100 MHz ¹³C{¹H} NMR spectra of compound **3as** in CDCl₃


100 MHz ¹³C{¹H} NMR spectra of compound **3at** in CDCl₃

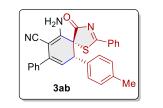
125 MHz ¹³C{¹H} NMR spectra of compound **3au** in CDCl₃

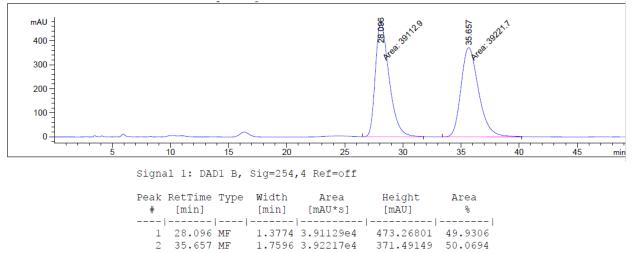



100 MHz $^{13}C\{^1H\}$ NMR spectra of compound $\boldsymbol{3av}$ in CDCl_3

100 MHz ¹³C{¹H} NMR spectra of compound 4 in CDCl₃

HPLC spectra:

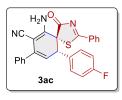


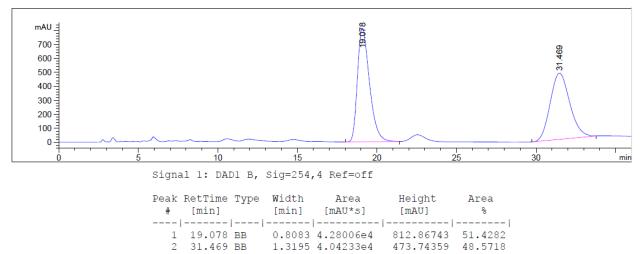

5.24392

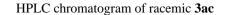
1.4044

0.8866 393.10608

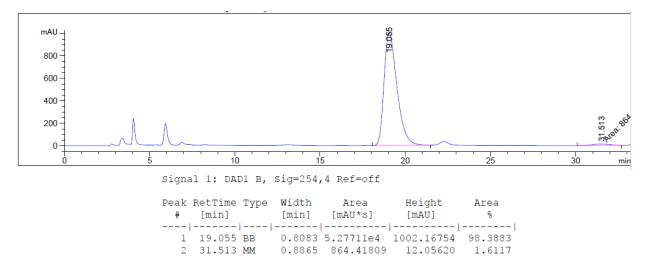
2 32.691 BB

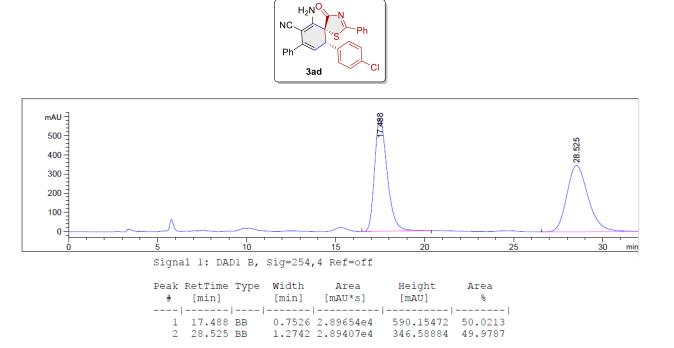


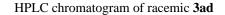

1.7596 3.92217e4 371.49149 50.0694

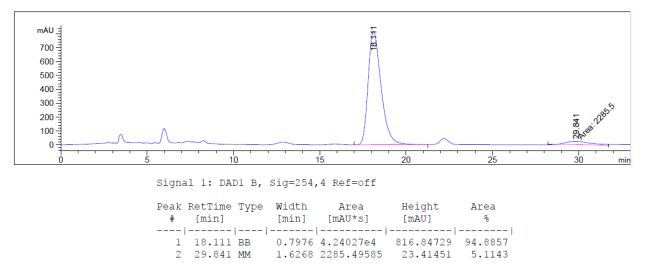

HPLC chromatogram of racemic 3ab

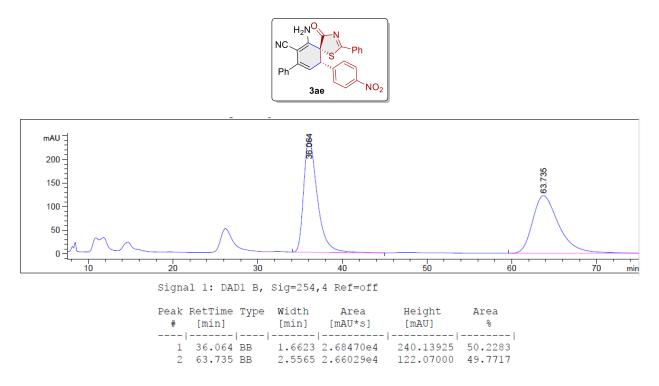
HPLC chromatogram of enantioenriched 3ab

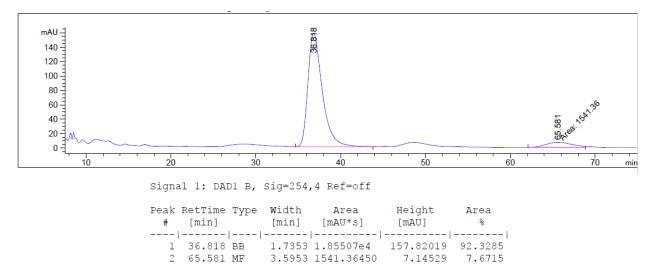


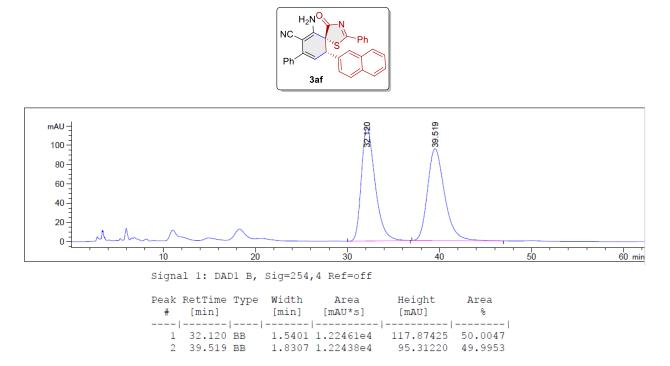

1.3195 4.04233e4

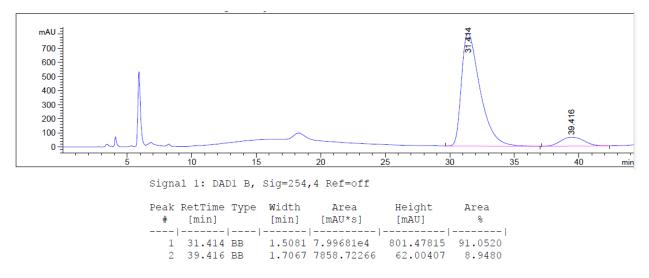

473.74359

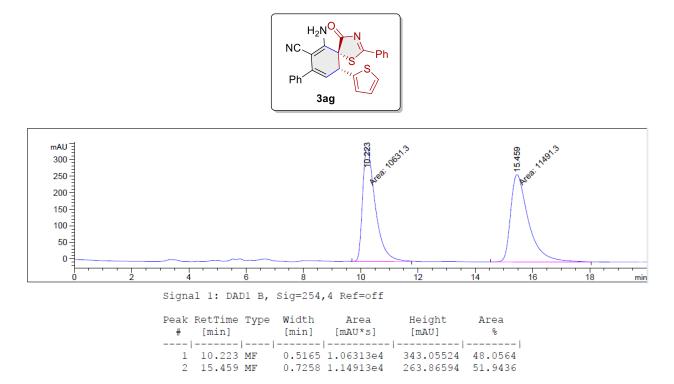

48.5718

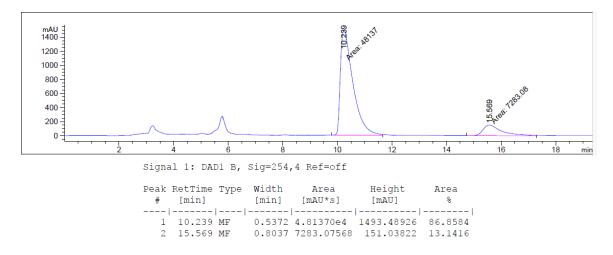

HPLC chromatogram of enantioenriched 3ac

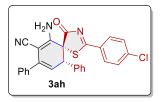


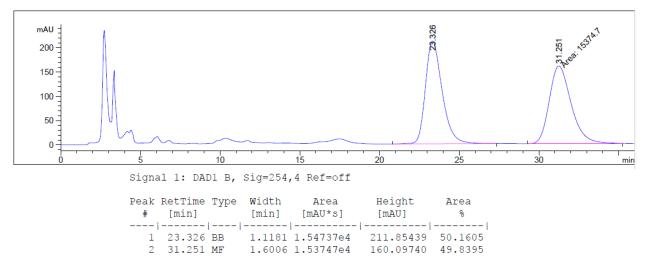

HPLC chromatogram of enantioenriched 3ad


HPLC chromatogram of racemic 3ae

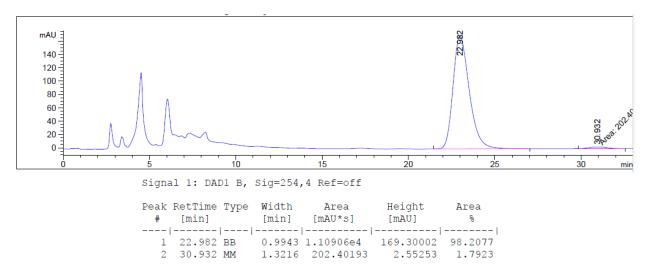

HPLC chromatogram of enantioenriched 3ae



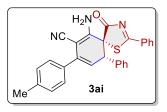

HPLC chromatogram of enantioenriched 3af

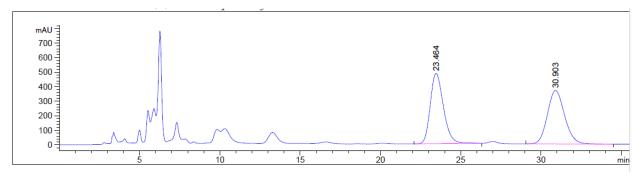


HPLC chromatogram of racemic 3ag

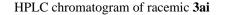


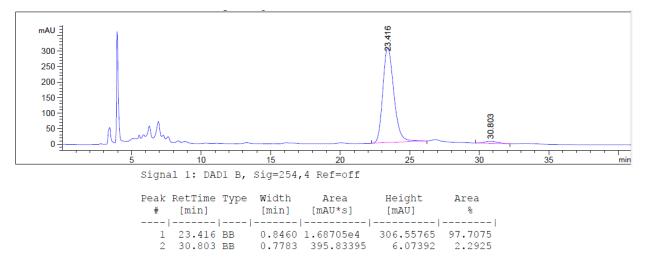
HPLC chromatogram of enantioenriched 3ag

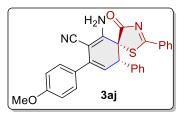


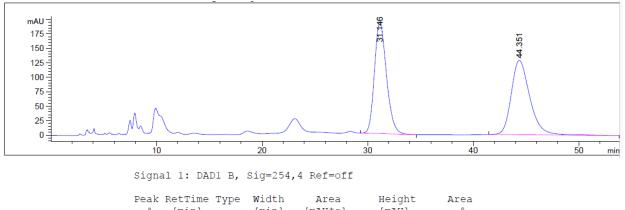


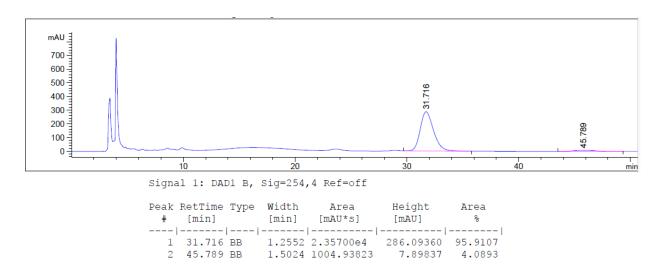
HPLC chromatogram of racemic 3ah

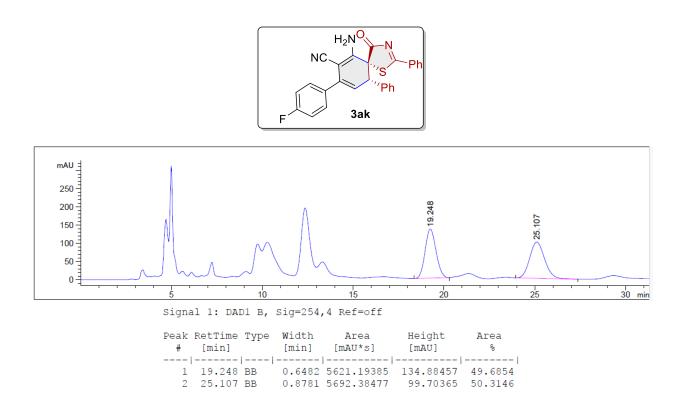

HPLC chromatogram of enantioenriched 3ah

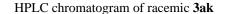



Signal 1: DAD1 B, Sig=254,4 Ref=off

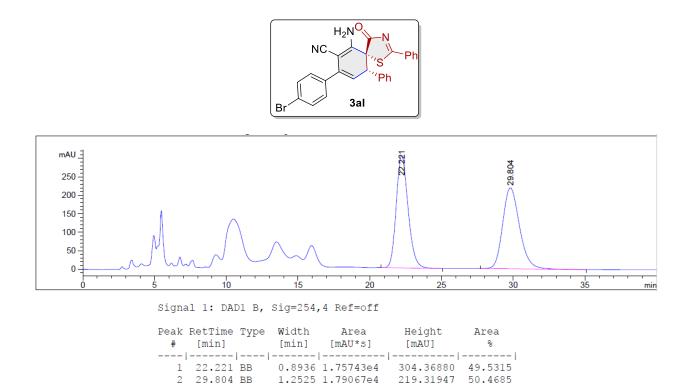

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	23.464	BB	0.8787	2.75781e4	484.02240	50.2476
2	30.903	BB	1.1442	2.73062e4	367.78412	49.7524

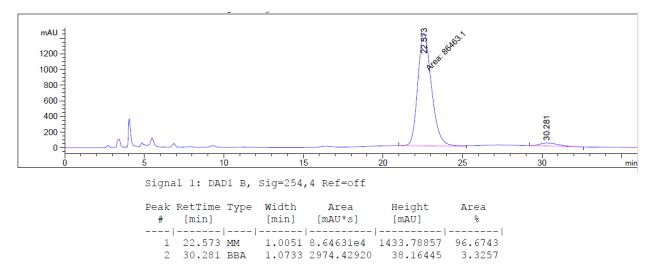

HPLC chromatogram of enantioenriched 3ai

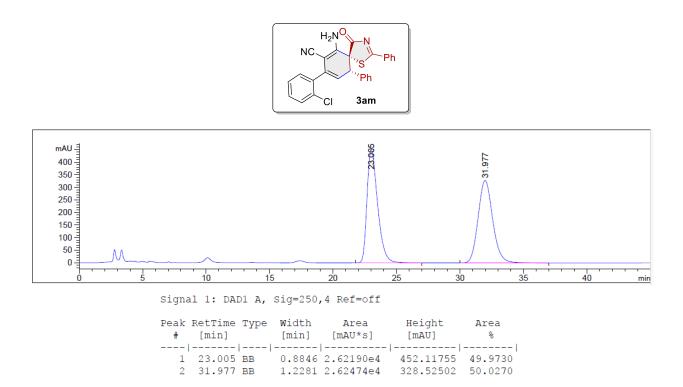


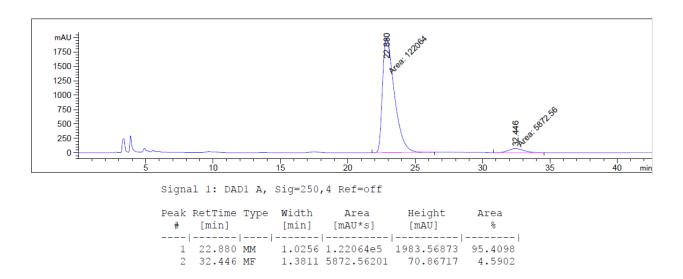

					8	
31.146	BB	1.2055	1.51911e4	192.31912	49.1216	
44.351	BBA	1.7238	1.57344e4	128.39061	50.8784	
	[min] 31.146	[min] 31.146 BB	[min] [min] 31.146 BB 1.2055	[min] [min] [mAU*s] 	31.146 BB 1.2055 1.51911e4 192.31912	[min] [min] [mAU*s] [mAU] % 31.146 BB 1.2055 1.51911e4 192.31912 49.1216 44.351 BBA 1.7238 1.57344e4 128.39061 50.8784

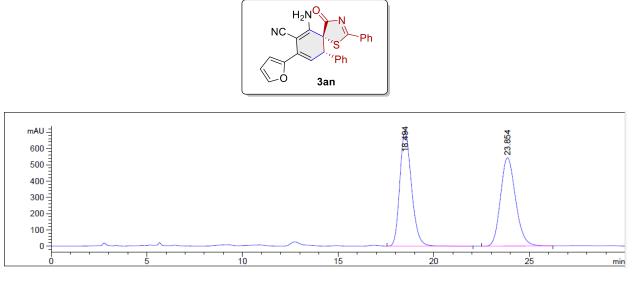
HPLC chromatogram of racemic 3aj


HPLC chromatogram of enantioenriched 3aj

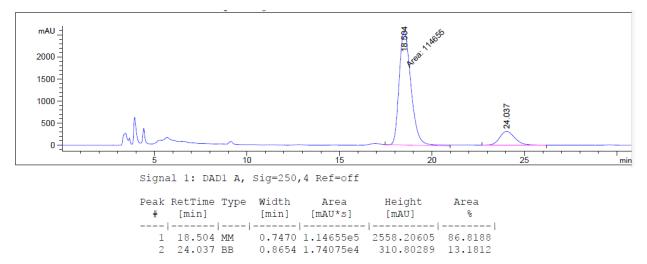


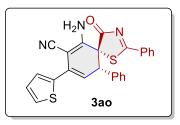

HPLC chromatogram of enantioenriched 3ak

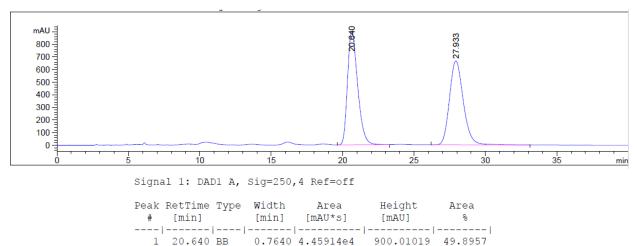

HPLC chromatogram of racemic 3al


HPLC chromatogram of enantioenriched 3al

HPLC chromatogram of racemic 3am

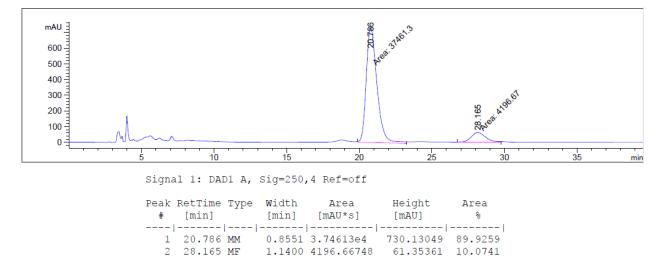

HPLC chromatogram of enantioenriched 3am


Signal 1: DAD1 A, Sig=250,4 Ref=off

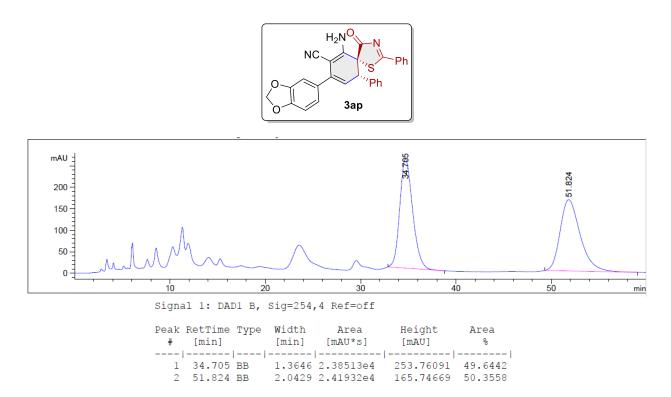

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	18.494	BB	0.6592	3.00459e4	702.24933	50.2101
2	23.854	BB	0.8484	2.97945e4	542.82422	49.7899

HPLC chromatogram of racemic 3an

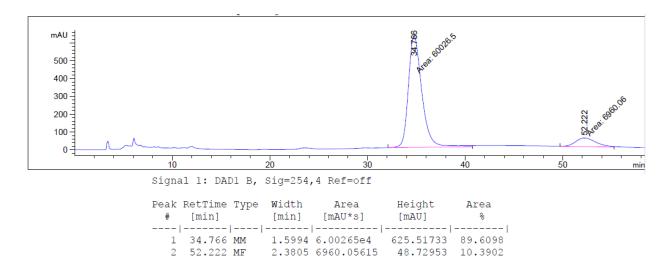
HPLC chromatogram of enantioenriched 3an

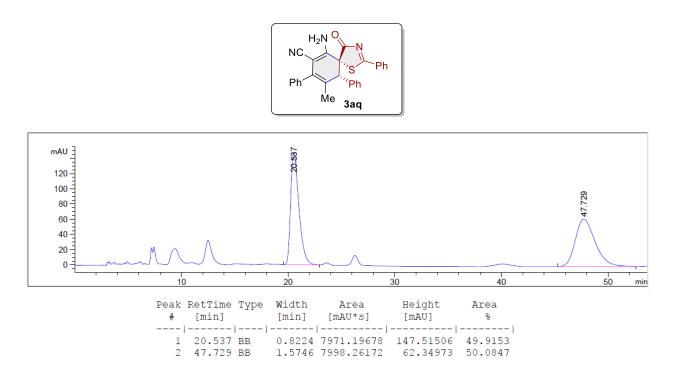


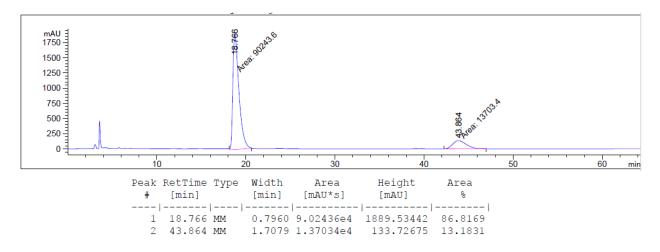
666.42883

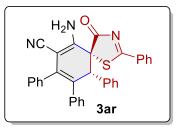

50.1043

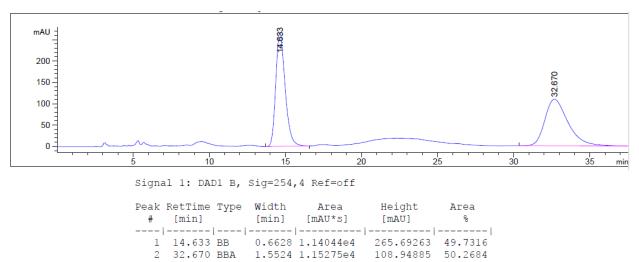
1.0379 4.47778e4


2 27.933 BB

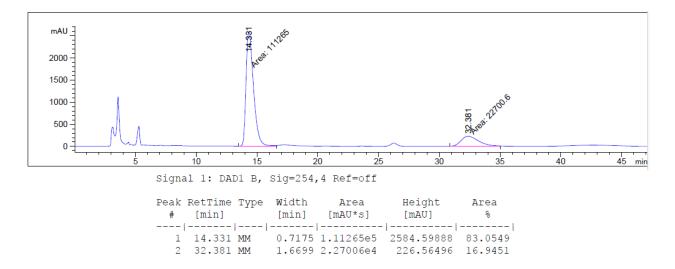

HPLC chromatogram of enantioenriched 3ao


HPLC chromatogram of racemic 3ap

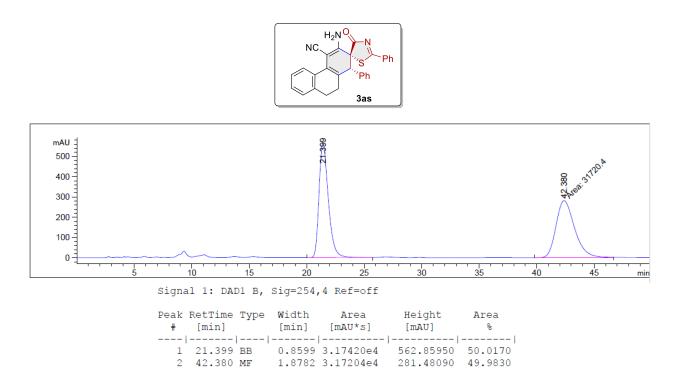

HPLC chromatogram of enantioenriched 3ap

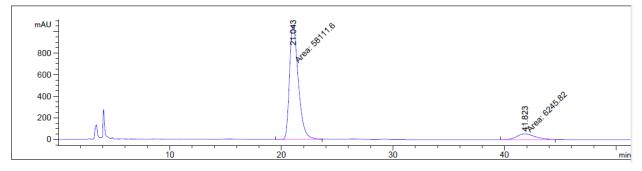


HPLC chromatogram of racemic **3aq**

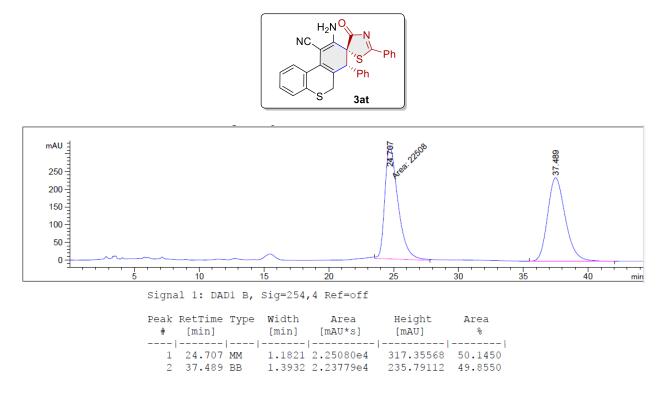


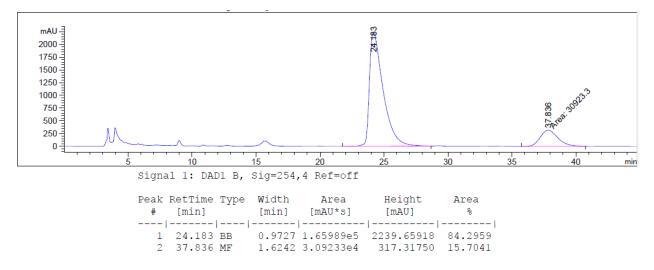
HPLC chromatogram of enantioenriched 3aq



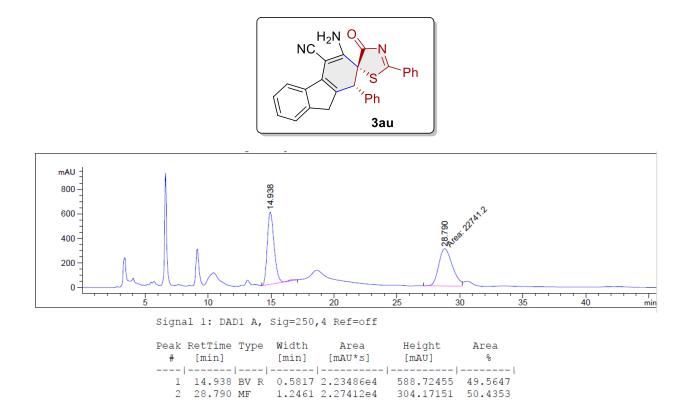

HPLC chromatogram of racemic 3ar

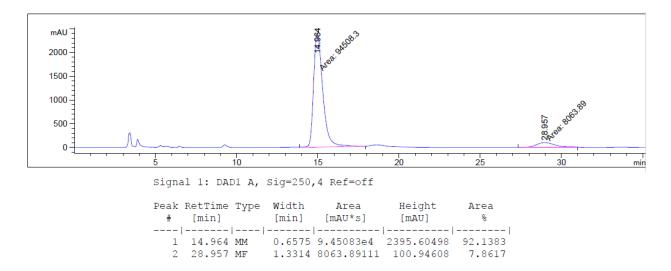
HPLC chromatogram of enantioenriched 3ar

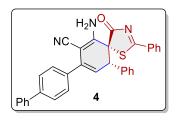

HPLC chromatogram of racemic 3as

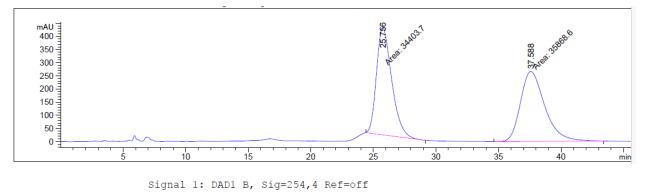

Signal 1: DAD1 B, Sig=254,4 Ref=off

	etTime [min]			Area [mAU*s]	Height [mAU]	Area %
-						
1	21.043	MF	0.9174	5.81116e4	1055.75635	90.2951
2	41.823	MF	1.9124	6245.82031	54.43129	9.7049

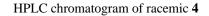

HPLC chromatogram of enantioenriched 3as

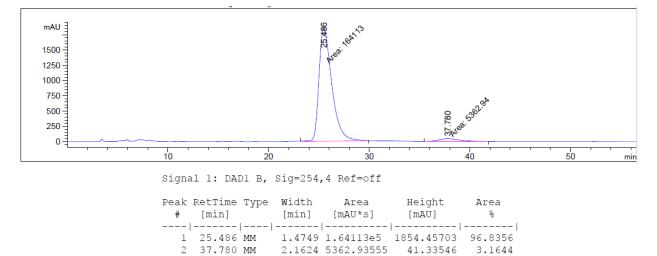

HPLC chromatogram of racemic 3at


HPLC chromatogram of enantioenriched 3at



HPLC chromatogram of racemic 3au




HPLC chromatogram of enantioenriched 3au

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	25.756	MM	1.4109	3.44037e4	406.39673	48.9576
2	37.588	MM	2.2467	3.58686e4	266.08871	51.0424

HPLC chromatogram of enantioenriched 4