.

Supplementary Material

Sequential Nucleophilic Substitution of Pseudorotaxanes Forms Rotaxanes with Various Linking Functionalities and Recycling of the Surrogate Stopper

Chun-Tung Chang and Sheng-Hsien Chiu*

Data	Page Number	
Experimental procedures and characterizati	on data for new compounds	S2–S15
¹ H and ¹³ C NMR spectra of the rotaxanes a	nd their synthetic precursors	S16–S78

General Methods. All stirrer bars, syringes, needles, and glassware were either heat gun– or oven–dried before use. Unless otherwise indicated, all chemicals were obtained from commercial sources. Reactions were performed under an inert atmosphere of Ar or N₂. Reactions conducted at elevated temperatures were performed using an oil bath as the heating apparatus. Thin-layer chromatography (TLC) was conducted using Merck Art. 5715 silica gel with a thickness of 0.25 mm. Column chromatography was performed employing Kieselgel 60 from Merck (70–230 mesh) or Chromatorex DIOL or NH series from Fuji Silysia (MB100-40/75). Melting points were determined using a Fargo MP-2D melting point apparatus. For NMR spectroscopy, a deuterated solvent was used to stabilize the magnetic field (lock) and for shimming, with the residual protons of the solvent serving as the internal standard. High-resolution mass spectrometry (HRMS) was conducted using either a Bruker microTOF-QII (Q-TOF) or Sciex QSTAR XL (Q-TOF) instrument.

Pyridinium salt 1·TFPB: A solution of the pyridine derivative **S1**^[1] (100 mg, 370 µmol), the dibromide **S2**^[2] (296 mg, 750 µmol), and NaTFPB (331 mg, 370 µmol) in DMF (3.7 mL) was stirred at room temperature for 16 h. The solution was partitioned between EtOAc (3 × 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (SiO₂; CH₂Cl₂/hexane, 5:1) to afford the salt **1**·TFPB as a pale-yellow oil (390 mg, 73%). ¹H NMR (400 MHz, CD₂Cl₂) δ = 8.43 (d, *J* = 6.8 Hz, 2H), 8.14 (d, *J* = 6.8 Hz, 2H), 7.75 (t, *J* = 2.0 Hz, 1H), 7.68 (s, 8H), 7.53 (d, *J* = 2.0 Hz, 2H), 7.51 (s, 4H), 7.33–7.20 (m, 6H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.53 (s, 2H), 4.46 (s, 2H), 2.66 (t, *J* = 6.8 Hz, 2H), 2.60 (t, *J* = 6.8 Hz, 2H), 1.66–1.60 (m, 4H), 1.34 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 161.7 (q, *J*_{CB} = 50 Hz), 160.2, 153.5, 146.3, 142.9, 142.2, 135.2, 134.8, 132.2, 130.3, 130.2, 129.0, 129.0 (q, *J* = 31.3 Hz), 128.8, 128.3, 127.2, 125.6, 124.5 (q, *J*_{CF} = 271 Hz), 122.1, 117.5, 64.5, 64.5, 35.3, 35.1, 33.8, 31.0, 30.7, 30.5; HR-MS (ESI): calcd for [**1**]⁺ C₃₇H₄₅BrN⁺, *m/z* 582.2730; found 582.2707.

Surrogate rotaxane 3-2TFPB (through the ISEM): A solution of the pyridinium salt 1. TFPB (1.45 g, 1.00 mmol) and BPX26C6^[3] (418 mg, 1.00 mmol) in CH₂Cl₂ (10 mL) was concentrated. A solution of the aniline derivative $2^{[4]}$ (350 mg, 1.50 mmol, dissolved in a few drops of CH₂Cl₂) was added to the residue and then the solution was concentrated. After sitting at room temperature for 16 h, EtOAc (100 mL) and NaTFPB (886 mg, 1.00 mmol) were added sequentially to the greasy residue. The mixture was partitioned between EtOAc (3 \times 100 mL) and H₂O (100 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel; CH₂Cl₂/hexane, 3:1) to afford the rotaxane **3**·2TFPB as a white solid (1.70 g, 61%). M.p. 74–75 °C; ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 7.95$ (d, J = 6.8 Hz, 2H), 7.71 (s, 17H), 7.65–7.60 (m, 3H), 7.54 (s, 10H), 7.36–7.26 (m, 4H), 7.07 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 1.2 Hz, 2H), 6.69 (d, J = 8.0Hz, 2H), 6.52 (s, 8H), 4.62 (s, 2H), 4.56 (s, 2H), 4.14 (d, J = 10.0 Hz, 4H), 4.03 (d, J = 10.0 Hz, 4H), 3.74–3.60 (m, 16H), 3.43 (s, 6H), 2.66 (t, J = 7.4 Hz, 2H), 2.56 $(t, J = 7.4 \text{ Hz}, 2\text{H}), 1.68-1.54 \text{ (m, 4H)}, 1.45 \text{ (s, 18H)}, 1.25 \text{ (s, 18H)}; {}^{13}\text{C} \text{ NMR} (100)$ MHz, CDCl₃) δ = 161.7 (q, J_{CB} = 50 Hz), 154.9, 154.2, 152.4, 147.1, 145.0, 143.4, 142.6, 136.6, 134.8, 132.8, 131.7, 130.1, 129.3–128.4 (m), 129.3, 128.3, 126.5, 125.7, 124.8, 124.5 (q, *J*_{CF} = 271 Hz), 122.4, 121.9, 117.4, 113.8, 75.8, 73.4, 71.1, 70.2, 62.9, 52.6, 35.4, 35.3, 35.3, 35.1, 31.2, 31.1, 30.7, 30.6 (two signals were missing, possibly because of signal overlap); HR-MS (ESI): calcd for $[3]^{2+}$ C₇₇H₁₀₄N₂O₆²⁺, m/z576.3942; found 576.3966.

Surrogate rotaxane 3.2TFPB (in solution): The aniline **2** (12.1 mg, 51.9 µmol) was added to a solution of the pyridinium salt **1**.TFPB (50.0 mg, 34.5 µmol) and BPX26C6 (14.4 mg, 34.5 µmol) in CH₂Cl₂ (0.35 mL) and then the mixture was stirred at room temperature for 16 h. After addition of EtOAc (20 mL) and NaTFPB (30.6 mg, 34.5 µmol), the mixture was partitioned between EtOAc (3×20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel; CH₂Cl₂/hexane, 3:1) to afford the rotaxane **3**.2TFPB as a white solid (31.4 mg, 32%).

Rotaxane 4.TFPB (from 3.2TFPB in solution): A solution of 3,5-di-tertbutylbenzylamine^[5] (6.86 mg, 31.3 µmol) and the rotaxane **3**·2TFPB (30.0 mg, 10.4 μmol) in MeCN (100 μL) was stirred at 60 °C for 72 h. After evaporating the solvent under reduced pressure, the residue was purified chromatographically (NH-silica gel; CH₂Cl₂/hexane, 1:4) to afford the rotaxane 4 TFPB (15.7 mg, 75%) and the surrogate stopper 2 (1.82 mg, 75%) as a pale-yellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CD₃CN) δ = 8.09 (d, J = 6.4 Hz, 2H), 7.77–7.65 (m, 15H), 7.57 (s, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.36 (s, 1H), 7.18 (s, 2H), 7.15 (d, J = 7.6 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 6.52 (s, 8H), 4.93 (s, 2H), 4.16 (d, J = 10.0 Hz, 4H), 4.06 (d, J = 10.0 Hz, 4H), 3.80-3.62 (m, 20H), 2.74 (t, J = 6.8Hz, 2H), 2.55 (t, J = 6.8 Hz, 2H), 1.66–1.59 (m, 4H), 1.50 (s, 18H) , 1.32 (s, 18H); ¹³C NMR (100 MHz, CD₂Cl₂) δ = 162.2 (q, *J*_{CB} = 50 Hz), 154.6, 152.8, 151.3, 151.0, 145.8, 144.0, 141.6, 141.4, 137.2, 135.3, 133.5, 130.7, 129.9, 129.3–128.4 (m), 129.2, 128.8, 128.7, 126.9, 125.4, 125.1 (q, J_{CF} = 271 Hz), 123.2, 122.9, 122.5, 121.4, 117.9, 73.8, 71.6, 70.8, 63.4, 57.9, 35.9, 35.8, 35.7, 35.5, 35.1, 31.6, 31.5, 31.4; HR-MS (ESI): calcd for $[4]^+$ C₇₆H₁₀₁N₂O₆⁺, *m*/*z* 1137.7654; found 1137.7687.

Rotaxane 4·TFPB (from 3·2TFPB through the ISEM): A solution of 3,5-di-*tert*butylbenzylamine (6.90 mg, 31.5 µmol) and the rotaxane **3**·2TFPB (30.0 mg, 10.4 µmol) in MeCN (1 mL) was concentrated. After sitting at 60 °C for 72 h, EtOAc (20 mL) was added to the greasy residue. The mixture was partitioned between EtOAc ($3 \times 20 \text{ mL}$) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (NH-silica gel; CH₂Cl₂/hexane, 1:4) to afford the rotaxane **4**·TFPB as a pale-yellow oil (12.7 mg, 61%).

Rotaxane 4·TFPB (directly from 1·TFPB in solution): 3,5-Di-*tert*butylbenzylamine (6.90 mg, 31.5 μ mol) was added to a solution of the pyridinium salt 1·TFPB (30.0 mg, 20.7 μ mol) and BPX26C6 (8.60 mg, 20.7 μ mol) in CH₂Cl₂ (0.21 mL) and then the mixture was stirred at room temperature for 16 h. EtOAc (20 mL) was added and then the mixture was partitioned between EtOAc (3×20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (NH-silica gel; CH₂Cl₂/hexane, 1:4) to afford the rotaxane **4**·TFPB as a pale-yellow oil (12.0 mg, 28%).

Rotaxane 4·TFPB (directly from 1·TFPB through the ISEM): A solution of the pyridinium salt **1**·TFPB (30.0 mg, 20.7 µmol) and BPX26C6 (8.60 mg, 20.7 mmol) in CH₂Cl₂ (1 mL) was concentrated. A solution of 3,5-di-*tert*-butylbenzylamine (6.90 mg, 31.5 µmol, dissolved in a few drops of CH₂Cl₂) was added to the residue and then the mixture was concentrated. After sitting at room temperature for 16 h, EtOAc (20 mL) was added to the greasy residue. The mixture was partitioned between EtOAc (3 × 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (NH-silica gel; CH₂Cl₂/hexane, 1:4) to afford the rotaxane **4**·TFPB as a pale-yellow oil (15.1 mg, 38%).

Rotaxane 5. TFPB (from 3.2 TFPB in solution): A solution of 3,5-bis(1,1dimethylethyl)benzoic acid (17.1 mg, 73.0 µmol) and TBAOH (1M in MeOH, 73.0 µL) in MeOH (0.73 mL) was stirred for 3 min. After evaporating the solvent under reduced pressure, the rotaxane 3.2TFPB (70.0 mg, 24.3 µmol) and MeCN (0.24 mL) were added to the residue and then the mixture was stirred at 60 °C for 8 h. After cooling to room temperature, the solvent was evaporated and the residue purified chromatographically (Diol-silica gel, CH₂Cl₂/hexane, 1:4) to afford the rotaxane 5. TFPB (38.2 mg, 78%) and the surrogate stopper 2 (5.30 mg, 91%) as a pale-yellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 7.93$ (d, J = 6.8 Hz, 2H), 7.87 (d, J = 1.6 Hz, 2H), 7.70 (s, 9H), 7.63 (s, 1H), 7.60 (d, J = 1.6 Hz, 2H), 7.70 (s, 9H), 7.63 (s, 100 Hz), 7.60 (d, J = 1.6 Hz), 7.70 (s, 90 Hz), 7.63 (s, 100 Hz), 7.60 (s, 100 Hz), 7.606.8 Hz, 2H), 7.56–7.49 (m, 6H), 7.34–7.24 (m, 6H), 7.04 (d, J = 7.6 Hz, 2H), 6.52 (s, 8H), 5.26 (s, 2H), 4.61 (s, 2H), 4.14 (d, J = 9.6 Hz, 4H), 4.02 (d, J = 9.6 Hz, 4H), 3.70–3.60 (m, 16H), 2.69 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.2 Hz, 2H), 1.68–1.55 (m, 4H), 1.45 (s, 18H), 1.31 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.1, 161.6 (q, J_{CB} = 50 Hz), 154.2, 152.4, 151.0, 145.2, 143.4, 142.0, 136.5, 134.7, 133.8, 132.8, 130.0, 129.4, 129.3, 129.3–128.4 (m), 129.0, 128.3, 128.2, 128.0, 127.2, 126.4, 124.7, 124.4 (q, J_{CF} = 272.5 Hz), 123.7, 121.8, 117.3, 73.4, 71.1, 70.2, 66.2, 62.9, 35.4, 35.3, 35.1, 34.8, 31.3, 31.2, 31.0, 30.7; HR-MS (ESI): calcd for $[5]^{2+}$ C₇₆H₉₈NO₈⁺, m/z1152.7287; found 1152.7247.

Rotaxane 5·TFPB (directly from 1·TFPB through the ISEM): A solution of the pyridinium salt **1**·TFPB (30.0 mg, 20.7 μ mol) and BPX26C6 (8.60 mg, 20.7 μ mol) in CH₂Cl₂ (1 mL) was concentrated. A solution of TBA·3,5-di-*tert*-butylbenzoate (12.6 mg, 34.5 μ mol, dissolved in a few drops of CH₂Cl₂) was added to the residue and then the solvent was evaporated. After sitting at room temperature for 16 h, EtOAc (20 mL) was added to the greasy residue. The mixture was partitioned between EtOAc (3 × 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel, CH₂Cl₂/hexane, 1:4) to afford the rotaxane **5**·TFPB as a pale-yellow oil (9.10 mg, 22%).

Rotaxane 5.TFPB (directly from 1.TFPB in solution): A solution of the pyridinium salt **1**.TFPB (30.0 mg, 20.7 μ mol) and BPX26C6 (8.60 mg, 20.7 μ mol) in CH₂Cl₂ (0.21 mL) was concentrated. TBA·3,5-di-*tert*-butylbenzoate (12.6 mg, 34.5 μ mol) was added and then the mixture was stirred at room temperature for 16 h. EtOAc (20 mL) was added. The mixture was partitioned between EtOAc (3 × 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel, CH₂Cl₂/hexane, 1:4) to afford the rotaxane **5**.TFPB as a pale-yellow oil (5.30 mg, 13%).

Rotaxane 6-TFPB: A solution of 3,5-bis(1,1-dimethylethyl)benzenemethanethiol^[6] (38.3 mg, 162 µmol), the rotaxane 3.2TFPB (150 mg, 52.0 µmol), and TBAOH (1 M in MeOH, 162 µL) in degassed MeCN (0.52 mL) was stirred at 60 °C for 3 h. After evaporating the solvent under reduced pressure, the residue was purified chromatographically (Diol-silica gel, CH₂Cl₂/hexane, 1:4) to afford the rotaxane 6 TFPB (72.2 mg, 70%) and the surrogate stopper 2 (9.80 mg, 80%) as a pale-yellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.94$ (d, J = 6.4 Hz, 2H), 7.71 (s, 9H), 7.61 (d, J = 6.4 Hz, 2H), 7.57-7.49 (m, 6H), 7.35-7.26 (m, 5H), 7.13–6.95 (m, 6H), 6.52 (s, 8H), 4.61 (s, 2H), 4.14 (d, J = 9.6 Hz, 4H), 4.03 (d, J = 9.6 Hz, 4H), 3.70–3.60 (m, 16H), 3.56 (s, 2H), 3.54 (s, 2H), 2.70 (t, J = 7.2 Hz, 2H), 2.55 (t, J = 7.2 Hz, 2H), 1.67–1.55 (m, 4H), 1.45 (s, 18H), 1.28 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 161.6 (q, *J*_{CB} = 50 Hz), 154.2, 152.4, 150.7, 145.3, 143.4, 140.8, 136.9, 136.5, 135.6, 134.7, 132.8, 130.1, 129.3, 129.0, 128.9–128.4 (m), 128.8, 128.2, 127.5, 127.4, 126.4, 124.8, 124.5 (q, $J_{CF} = 271$ Hz), 123.1, 120.9, 117.4, 73.4, 71.1, 70.2, 62.9, 36.3, 35.4, 35.4, 35.2, 35.1, 34.7, 31.3, 31.3, 31.0, 30.8; HR-MS (ESI): calcd for $[6]^+$ C₇₆H₁₀₀NO₆S⁺, m/z 1154.7266; found 1154.7244.

Rotaxane 7.TFPB: A solution of 3.5-di-tert-butylphenol (2.1 mg, 10 umol) and TBAOH (1 M in MeOH, 10 µL) in MeOH (0.01 mL) was stirred for 3 min. After evaporating the solvent under reduced pressure, MeCN (0.07 mL) and the rotaxane 3.2TFPB (20 mg, 6.9 μ mol) were added to the residue and then the mixture was stirred at 60 °C for 6 h. The solvent was evaporated under reduced pressure and the residue purified chromatographically (Diol-silica gel, CH₂Cl₂/hexane, 1:4) to afford the rotaxane 7. TFPB (8.90 mg, 64%) and the surrogate stopper 2 (1.30 mg, 80%) as a pale-yellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.93$ (d, J = 6.4 Hz, 2H), 7.70 (s, 9H), 7.60 (d, J = 6.4 Hz, 2H), 7.55–7.48 (m, 6H), 7.34–7.22 (m, 6H), 7.06 (s, 1H), 7.02 (d, J = 7.2 Hz, 2H), 6.76 (s, 2H), 6.52 (s, 8H), 4.93 (s, 2H), 4.61 (s, 2H), 4.14 (d, J = 9.6 Hz, 4H), 4.03 (d, J = 9.6 Hz, 4H), 3.70– 3.60 (m, 16H), 2.70 (t, J = 6.8 Hz, 2H), 2.57 (t, J = 6.8 Hz, 2H), 1.70–1.58 (m, 4H), 1.44 (s, 18H), 1.26 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 161.7 (g, J_{CB} = 50 Hz), 158.5, 154.2, 152.5, 152.2, 145.3, 143.5, 142.0, 136.6, 134.8, 134.7, 132.9, 130.1, 129.4, 129.1, 129.1-128.4 (m), 129.0, 128.5, 128.4, 127.9, 126.5, 124.9, 124.6 $(q, J_{CF} = 271 \text{ Hz}), 121.9, 117.4, 115.2, 109.0, 73.5, 71.2, 70.3, 69.9, 63.0, 35.5, 35.4,$ 35.2, 35.0, 31.4, 31.1, 30.8; HR-MS (ESI): calcd for $[7]^+$ C₇₅H₉₈NO₇⁺, m/z, 1124.7338; found 1124.7363.

Rotaxane 8-TFPB: A mixture of dibenzyl malonate^[7] (44.4 mg, 160 µmol) and K₂CO₃ (28.1 mg, 200 µmol) in DMSO (0.52 mL) was stirred at room temperature for 3 min. After adding the rotaxane 3.2TFPB (150 mg, 52.0 µmol), the mixture was stirred at 60 °C for 24 h. The mixture was partitioned between EtOAc $(3 \times 100 \text{ mL})$ and H₂O (100 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel; CH₂Cl₂/hexane,1:4) to afford the [2]rotaxane 8 TFPB (47.5 mg, 44%) and its derived [3]rotaxane S1 · TFPB (15.2 mg, 16%) as light-yellow oils and the surrogate stopper 2 (10.91 mg, 90%) as a sticky oil. ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 7.93$ (d, J = 6.0 Hz, 2H), 7.69 (s, 9H), 7.59 (d, J = 6.0 Hz, 2H), 7.56–7.46 (m, 6H), 7.34–7.21 (m, 10H), 7.21–7.12 (m, 4H), 6.96 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 7.8 Hz, 2H), 6.51 (s, 8H), 5.08–4.97 (m, 4H), 4.59 (s, 2H), 4.14 (d, J = 9.6 Hz, 4H), 4.02 (d, J = 9.6 Hz, 4H), 3.71–3.60 (m, 17H), 3.12 (d, J = 8.0 Hz, 2H), 2.68 (t, J = 6.8 Hz, 2H), 2.51 (t, J = 6.8 Hz, 2H), 1.63–1.51 (m, 4H), 1.44 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.5, 161.6 (q, J_{CB} = 50 Hz), 154.2, 152.4, 145.3, 143.4, 140.5, 136.5, 135.1, 134.8, 134.7, 132.8, 130.0 129.3, 129.3-128.4(m), 128.6, 128.4, 128.3, 128.2, 128.0, 126.4, 124.8, 124.5 (q, $J_{CF} = 271$ Hz), 121.8, 117.3, 73.4, 71.1, 70.2, 67.1, 62.9, 53.8, 35.4, 35.2, 35.1, 34.2, 31.3, 31.0, 30.7 (two signals were missing, possibly because of signal overlap); HR-MS (ESI): calcd for $[8]^+ C_{78}H_{92}NO_{10}^+$, m/z 1202.6716; found 1202.6711.

Data for [3]rotaxane **S1**·TFPB: ¹H NMR (400 MHz, CD₂Cl₂) δ 8.02 (d, *J* = 6.8 Hz, 4H), 7.82–7.77 (m, 18H), 7.69 (d, *J* = 6.8 Hz, 4H), 7.62 (s, 8H), 7.60 (d, *J* = 1.6 Hz, 4H), 7.42–7.37 (m, 14H), 7.22–7.16 (m, 4H), 7.06–7.00 (m, 8H), 6.60 (s, 16H), 5.01 (s, 4H), 4.69 (s, 4H), 4.22 (d, *J* = 9.6 Hz, 8H), 4.11 (d, *J* = 9.6 Hz, 8H), 3.84–3.66 (m, 36H), 3.20 (s, 4H), 2.77 (t, *J* = 7.2 Hz, 4H), 2.61 (t, *J* = 7.2 Hz, 4H), 1.76–1.66 (m, 8H), 1.53 (s, 36H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 170.4, 161.6 (q, *J*_{CB} = 50 Hz), 154.1, 152.2, 145.2, 143.4, 141.1, 136.7, 135.1, 134.7, 133.3, 132.9, 130.1, 130.0, 129.3–128.4 (m), 129.3, 128.3, 128.2, 128.2, 128.0, 126.4, 124.9, 124.5 (q, *J*_{CF} = 271 Hz), 122.0, 117.4, 73.3, 71.1, 70.2, 66.9, 62.9, 60.5, 38.6, 35.4, 35.2, 35.0, 31.2, 31.1, 30.9 (two signals were missing, possibly because of signal overlap); HR-MS (ESI): calcd for [M]²⁺ C₁₃₉H₁₆₈N₂O₁₆²⁺, *m*/*z* 1060.6191; found 1060.6189.

Amide S2: EDCI (933 mg, 4.87 mmol) was added to a solution of 4bromophenylacetic acid (1.05 g, 4.87 mmol) in CH₂Cl₂ (40 mL) and DMF (40 mL) at 0 °C. After stirring at 0 °C for 15 min, 3,5-di-*tert*-butylaniline (500 mg, 2.47 mmol) was added and then the mixture was stirred at room temperature for 6 h. The mixture was partitioned between EtOAc (100 mL) and 1 M HCl (100 mL). The organic phase was washed with NaHCO₃ (2 × 100 mL), dried (MgSO₄), and concentrated. The residue was purified chromatographically (SiO₂; EtOAc/hexane, 1:9) to afford the amide **S2** as a white solid (868 mg, 87%). M.p. = 229–230 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.50 (d, *J* = 8.4 Hz, 2H), 7.27 (s, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.16 (s,

1H), 7.01 (br, 1H), 3.66 (s, 2H), 1.28 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.1, 151.6, 136.8, 133.4, 132.0, 131.1, 121.4, 118.7, 114.4, 44.0, 34.8, 31.3; HR-MS (ESI): calcd for [**S2** + H]⁺C₂₂H₂₉BrNO⁺, *m/z* 402.1427; found 402.1429.

Alcohol S3: Degassed TEA (1.26 g, 124 mmol) was added to a mixture of the amide S2 (5.00 g, 12.4 mmol), CuI (118 mg, 620 µmol), and PdCl₂(PPh₃)₂ (436 mg, 620 µmol) in degassed DMF (62 mL). After stirring at room temperature for 5 min, 2-methyl-3-butyn-2-ol (3.10 g, 37.2 mmol) was added and then the mixture was heated at 70 °C for 16 h. After cooling to room temperature, the mixture was partitioned between EtOAc (100 mL) and H₂O (3 × 100 mL). The organic phase was dried (MgSO₄) and concentrated. The residue was purified chromatographically (SiO₂; EtOAc/hexane, 1:3) to afford the amide S3 as a white solid (4.50 g, 89%). M.p. = 209–210 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.47 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.32 (s, 2H), 7.21 (s, 1H), 7.14 (br, 1H), 3.72 (s, 2H), 2.11 (s, 1H), 1.63 (s, 6H), 1.33 (s, 18H); ¹³C NMR (100MHz, CDCl₃) δ = 168.8, 151.5, 137.1, 134.8, 132.1, 129.3, 121.8, 118.6, 114.5, 94.2, 81.6, 65.5, 44.4, 34.8, 31.4, 31.3; HR-MS (ESI): calcd for [S3 + H]⁺ C₂₇H₃₆NO₂⁺, *m/z* 406.2741; found 406.2743.

Alkyne S4: A mixture of the amide S3 (294 mg, 0.725 mmol) and NaOH (58.0 mg, 1.45 mmol) in toluene (24 mL) was heated at 110 °C for 2 h. After cooling to room temperature, the mixture was partitioned between EtOAc (50 mL) and H₂O (3 × 50mL). The organic phase was dried (MgSO₄) and concentrated. The solid residue was washed with hexane to afford the alkyne S4 as pale-yellow solid (141 mg, 56%). M.p. = 208.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.50 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.26 (s, 2H), 7.15 (s, 1H), 6.98 (br, 1H), 3.70 (s, 2H), 3.08 (s, 1H), 1.27 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.3, 151.6, 136.9, 135.3, 132.6, 129.4, 121.2, 118.7, 114.4, 83.1, 77.6, 44.5, 34.8, 31.3; HR-MS (ESI): calcd for [S4 + H]⁺ C₂₄H₃₀NO⁺, *m/z* 348.2322; found 348.2328.

Alcohol S5: CuCl (12.5 mg, 127 µmol) and NH₂OH·HCl (26.4 mg, 38.0 µmol) were mixed in *n*-BuNH₂ (1.9 mL) and deionized water (4.5 mL). After adding a solution of the alkyne S4 (441 mg 1.27 mmol) in CH₂Cl₂ (5.6 mL), the mixture was stirred at 0 °C for 5 min. A solution of 4-(2-bromoethynyl)benzenemethanol^[8] (295 mg, 1.39 mmol) in CH₂Cl₂ (2.8 mL) was added to the mixture via syringe pump over a period of 1 h. The mixture was stirred at room temperature for 2 h before adding saturated NH₄Cl_(aq) (50 mL) and partitioning between CH₂Cl₂ (50 mL) and H₂O (3 × 50 mL). The organic phase was dried (MgSO₄) and concentrated. The residue was purified chromatographically (SiO₂; EtOAc/hexane, 1:3) to afford the alcohol S5 as a white solid (405 mg, 67%). M.p. = 210–211 °C; ¹H NMR (400 MHz, CD₃SOCD₃) δ = 10.09 (s, 1H), 7.61–7.55 (m, 4H), 7.49 (s, 2H), 7.44–7.35 (m, 4H), 7.10 (s, 1H), 5.33 (t, *J* = 5.6 Hz, 1H), 4.55 (d, *J* = 5.6 Hz, 2H), 3.69 (s, 2H), 1.26 (s, 18H); ¹³C NMR (100 MHz, CD₃SOCD₃) δ = 168.6, 151.0, 145.2, 139.0, 138.6, 132.7, 132.6, 130.1, 127.0, 119.0, 118.9, 117.4, 113.8, 82.4, 82.0, 73.9, 73.5, 62.8, 43.6, 34.9, 31.6; HR-MS (ESI): calcd for [S5 + H]⁺ C₃₃H₃₆NO₂⁺, *m/z* 478.2741; found 478.2729.

Alcohol S6: Pd/C (5%, 90 mg) was added to a solution of the alcohol S4 (405 mg, 848 µmol) in THF/EtOH (1:1, 42 mL). The mixture was purged with H₂ for 15 min and then stirred under a H₂ atmosphere at room temperature for 45 min. The mixture was filtered through Celite and the filtrate concentrated under reduced pressure. The residue was purified chromatographically (SiO₂; EtOAc/hexane, 1:7) to afford the alcohol S6 as a white solid (386 mg, 94%). M.p. = 162–163 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.25–7.18 (m, 6H), 7.17–7.10(m, 5H) 7.06 (s, 1H), 4.57 (s, 2H), 3.60 (s, 2H), 2.64–2.56 (m, 4H), 1.64–1.59 (m, 4H), 1.24 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.8, 151.5, 141.7, 141.5, 138.4, 137.4, 132.1, 129.4, 129.0, 128.5, 127.1, 118.5, 114.7, 64.9, 44.2, 35.4, 35.4, 31.4, 31.1, 30.9, 30.4; HR-MS (ESI): calcd for [S6 + Na]⁺ C₃₃H₄₃NNaO⁺, m/z 508.3186; found 508.3167.

Amide 9: PBr₃ (520 mg, 1.92 mmol) was added to a solution of the alcohol **S6** (888 mg, 1.83 mmol) in CH₂Cl₂ (18.3 mL) at 0 °C and then the mixture was stirred at room temperature for 16 h. After partitioning between CH₂Cl₂ (2 × 100 mL) and H₂O (100 mL), the combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (SiO₂; EtOAc/hexane, 1:19) to afford the amide **9** as a white solid (926 mg, 92%). M.p. = 163–164 °C; ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.28–7.17 (m, 6H), 7.17–7.08 (m, 5H), 7.06 (s, 1H), 4.46 (s, 2H), 3.60 (s, 2H), 2.68–2.53 (m, 4H), 1.68–1.58 (m, 4H), 1.24 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.6, 151.5, 142.9, 141.5, 137.4, 135.1, 132.1, 129.4, 129.0, 129.0, 128.8, 118.5, 114.6, 44.31, 35.5, 35.4, 34.9, 33.8, 31.4, 31.0, 30.8; HR-MS (ESI): calcd for [**9** + H]⁺ C₃₃H₄₃BrNO⁺, *m*/*z* 548.2523; found 548.2516.

Surrogate rotaxane 10. TFPB (through the ISEM, 2 equiv. of BPX26C6 and **NaTFPB):** A solution of the amide 9 (17.8 mg, 32.4 µmol), BPX26C6 (27.0 mg, 64.8 μmol), and NaTFPB (57.4 mg, 64.8 μmol) in CH₂Cl₂ (1 mL) was concentrated. The aniline derivative 2 (11.4 mg, 48.8 µmol, dissolved in a few drops of CH₂Cl₂) was added to the residue and then the solvent was evaporated. After sitting at room temperature for 16 h, EtOAc (20 mL) was added to the greasy residue. The mixture was partitioned between EtOAc (3 \times 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel; CH₂Cl₂/hexane, 1:2) to afford the rotaxane **10** TFPB as a white solid. (27.7 mg, 43%). M.p. = 102-103 °C; ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 7.70$ (s, 9H), 7.53 (s, 4H), 7.34 (d, J = 1.6 Hz, 2H), 7.27–7.12 (m, 10H), 7.01 (d, J = 8.0 Hz, 2H), 6.70–6.55 (br, 8H), 4.20–4.10 (m, 8H), 3.95–3.80 (m, 4H), 3.67-3.44 (m, 14H), 3.03 (s, 2H), 2.79-2.62 (m, 4H), 2.01 (s, 6H), 1.76-1.65 (m, 4H), 1.55 (s, 18H), 1.26 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.2, 161.6 (q, J_{CB} = 50 Hz), 152.3, 151.6, 146.8, 144.8, 141.5, 137.1, 136.8, 134.7, 133.5, 131.9, 130.1, 129.4, 129.3–128.4 (m), 129.0, 128.5, 125.5, 124.4 (q, $J_{CF} = 271$ Hz), 123.8, 118.6, 117.4, 117.0 114.4, 73.8, 72.0, 70.5, 68.0, 50.1, 44.3, 35.8, 35.5, 35.2, 34.8, 31.6, 31.2, 31.0, 30.6; HR-MS (ESI): calcd for $[10]^+$ C₇₃H₁₀₁N₂O₇⁺, m/z 1117.7603; found 1117.7604.

Surrogate rotaxane 10 TFPB (through the ISEM, 1 equiv. of BPX26C6 and NaTFPB): A solution of the amide 9 (243 mg, 442 μ mol), BPX26C6 (184 mg, 442 μ mol), and NaTFPB (392 mg, 442 μ mol) in CH₂Cl₂ (5 mL) was concentrated. The aniline derivative 2 (155 mg, 663 μ mol, dissolved in a few drops of CH₂Cl₂) was added to the residue and then the solvent was evaporated. After sitting at room temperature for 16 h, EtOAc (50 mL) was added to the greasy residue. The mixture was partitioned between EtOAc (3 × 50 mL) and H₂O (50 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified

chromatographically (Diol-silica gel; CH_2Cl_2 /hexane, 1:2) to afford the rotaxane **10** TFPB as a white solid (216 mg, 25%).

Surrogate rotaxane 10·TFPB (in solution): The bulky aniline **2** (12.6 mg, 54.0 μ mol) was added to a solution of the amide **9** (20.0 mg, 36.4 μ mol), BPX26C6 (15.2 mg, 36.4 μ mol), and NaTFPB (32.3 mg, 36.4 μ mol) in CH₂Cl₂ (0.36 mL). After stirring at room temperature for 16 h, EtOAc (20 mL) was added. The mixture was partitioned between EtOAc (3 × 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel; CH₂Cl₂/hexane, 1:2) to afford the rotaxane **10**·TFPB as a white solid (10.0 mg, 14%).

Rotaxane 11 (from 10. TFPB in solution): A solution of 3,5-di-tertbutylbenzylamine (33.2 mg, 150 µmol) and the rotaxane 10 TFPB (100 mg, 50.0 µmol) in MeCN (0.5 mL) was stirred at 60 °C for 72 h. After evaporating the solvent under reduced pressure, the residue was purified chromatographically (NH-silica gel; EA/hexane, 1:7) to afford the rotaxane 11 (54.6 mg, 98%) and the surrogate stopper 2 (10.2 mg, 90%) as a light-yellow oil and a colorless sticky oil, respectively. ¹H NMR $(400 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta = 7.94 \text{ (s, 1H)}, 7.46 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}), 7.28 \text{ (t, } J = 2.0 \text{ Hz}, 1\text{H}),$ 7.21 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 2.0 Hz, 2H), 7.10–7.07 (m, 3H), 6.90 (s, 8H), 6.85 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 8.0 Hz, 2H), 4.26-4.18 (m, 8H), 3.70 (s, 4H), 3.53–3.41 (m, 16H), 2.80 (s, 2H), 2.52 (t, J = 7.2 Hz, 2H), 2.44 (t, J = 7.2 Hz, 2H), 1.55-1.40 (m, 4H), 1.36 (s, 18H), 1.29 (s, 18H); 13 C NMR (100 MHz, CD₂Cl₂) $\delta =$ 167.3, 150.6, 150.6, 141.5, 140.0, 139.6, 137.8, 137.2, 132.8, 129.9, 128.3, 128.1, 127.5, 127.4, 122.3, 120.8, 115.9, 113.5, 73.0, 72.5, 70.4, 69.5, 69.0, 42.1, 35.3, 35.2, 34.8, 34.6, 31.3, 31.2, 31.2, 29.6 (one signal was missing, possibly because of signal overlap); HR-MS (ESI): calcd for $[11 + H]^+ C_{72}H_{99}N_2O_7^+$, m/z 1103.7447; found 1103.7468.

Rotaxane 11 (directly from 9 through the ISEM): A solution of the amide **9** (15.0 mg, 27.3 µmol), BPX26C6 (11.4 mg, 27.3 µmol), and NaTFPB (24.2 mg, 27.3 µmol)

in CH₂Cl₂ (1 mL) was concentrated. 3,5-Di-*tert*-butylbenzylamine (8.99 mg, 41.0 μ mol, dissolved in a few drops of CH₂Cl₂) was added to the residue and then the organic solvent was evaporated. After sitting at room temperature for 16 h, EtOAc (20 mL) was added to the greasy residue. The mixture was partitioned between EtOAc (3 × 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (NH-silica gel; EA/hexane, 1:7) to afford the rotaxane **11** as a light-yellow oil (4.40 mg, 15%).

Rotaxane 11 (directly from 9 in solution): 3,5-Di-*tert*-butylbenzylamine (8.99 mg, 41.0 μ mol) was added to a solution of the amide **9** (15.0 mg, 27.3 μ mol), BPX26C6 (11.4 mg, 27.3 μ mol), and NaTFPB (24.2 mg, 27.3 μ mol) in CH₂Cl₂ (0.27 mL) and then the mixture was stirred at room temperature for 16 h. EtOAc (20 mL) was added. The mixture was partitioned between EtOAc (3 × 20 mL) and H₂O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (NH-silica gel; EA/hexane, 1:7) to afford the rotaxane **11** as a light-yellow oil (1.60 mg, 5%).

Rotaxane 12: A solution of 3,5-bis(1,1-dimethylethyl)benzoic acid (28.4 mg, 121 µmol) and TBAOH (1 M in MeOH, 121 µL) in MeOH (1.21 mL) was stirred for 3 min. After evaporating the solvent under reduced pressure, the rotaxane 10 TFPB (80.0 mg, 40.0 µmol) and MeCN (0.4 mL) were added and then the mixture was stirred at 60 °C for 8 h. After cooling to room temperature, the solvent was evaporated and the residue purified chromatographically (SiO₂, EA/hexane, 1:7) to afford the rotaxane 12 (42.9 mg, 97%) and the surrogate stopper 2 (8.80 mg, 94%) as a paleyellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CDCl₃) δ = 7.97–7.87 (m, 3H), 7.62 (t, J = 2.0 Hz, 1H), 7.47 (d, J = 1.6 Hz, 2H), 7.36 (d, J = 8.0Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.09 (s, 1H), 6.93 (s, 8H), 6.89 (d, J = 7.6 Hz, 2H), 6.53 (d, J = 7.6 Hz, 2H), 5.34 (s, 2H), 4.33-4.19 (m, 8H), 3.62-3.41 (m, 16H), 2.87 (s, 2H), 2.53 (t, J = 7.2 Hz, 2H), 2.44 (t, J = 7.2 Hz, 2H), 1.54–1.44 (m, 4H), 1.39 (s, 18H), 1.33 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.2, 167.2, 151.0, 150.6, 142.9, 140.0, 139.7, 137.0, 133.5, 132.8, 130.0, 129.6, 128.6, 128.4, 128.0, 127.6, 127.1, 123.9, 115.8, 113.4, 73.2, 70.5, 68.9, 66.4, 42.1, 35.5, 35.3, 35.0, 34.9, 31.7, 31.3, 31.3, 31.0; HR-MS (ESI): calcd for $[12 + H]^+ C_{72}H_{96}NO_9^+$, m/z 1118.7080; found 1118.7029.

Rotaxane 13: A solution of 3,5-bis(1,1-dimethylethyl)benzenemethanethiol (7.16 mg, 30.0 µmol), the rotaxane **10** TFPB (20.0 mg, 10.0 µmol), and TBAOH (1 M in MeOH, 30 µL) in degassed MeCN (0.1 mL) was stirred at 60 °C for 3 h. After evaporating the organic solvent under reduced pressure, the residue was purified chromatographically (SiO₂, EA/hexane, 1:8) to afford the rotaxane **13** (10.4 mg, 93%) and the surrogate stopper **2** (1.94 mg, 83%) as a pale-yellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (s, 1H), 7.48 (s, 2H), 7.30 (s, 1H), 7.22–7.09 (m, 7H), 6.94 (s, 8H), 6.89 (d, *J* = 7.6 Hz, 2H), 6.52 (d, *J* = 7.6 Hz, 2H), 4.33–4.23 (m, 8H), 3.64–3.42 (m, 20H), 2.85 (s, 2H), 2.54 (t, *J* = 6.8 Hz, 2H), 2.46 (t, *J* = 6.8 Hz, 2H), 1.60–1.45 (m, 4H), 1.40 (s, 18H), 1.33 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 150.7, 150.6, 141.4, 140.0, 139.7, 137.1, 137.0, 135.4, 132.8, 130.0, 128.8, 128.5, 128.3, 127.5, 123.2, 120.8, 115.6, 113.3, 73.2, 70.5, 68.9, 42.0, 36.2, 35.4, 35.4,

35.3, 34.9, 34.7, 31.7, 31.4, 31.3, 31.0; HR-MS (ESI): calcd for $[13 + H]^+$ C₇₂H₉₈NO₇S⁺, *m*/*z* 1120.7059; found 1120.7103.

Rotaxane 14: A solution of 3,5-di-tert-butylphenol (12.5 mg, 60.0 µmol) and TBAOH (1 M in MeOH, 60.0 µL) in MeOH (0.6 mL) was stirred for 3 min. After evaporating the solvent under reduced pressure, MeCN (0.4 mL) and the rotaxane 10 TFPB (80.0 mg, 40.0 µmol) were added to the residue and then the mixture was stirred at 60 °C for 6 h. The solvent was evaporated under reduced pressure and the residue was purified chromatographically (SiO₂, EA/hexane, 1:6) to afford the rotaxane 14 (40.5 mg, 93%) and the surrogate stopper 2 (7.20 mg, 78%) as a paleyellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 7.92 (s, 1H), 7.47 (d, J = 1.6 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.10 (s, 1H), 7.02 (s, 1H), 6.93 (s, 8H), 6.91 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 1.6 Hz, 2H), 6.56 (d, J = 8.0 Hz, 2H), 4.96 (s, 2H), 4.32–4.22 (m, 8H), 3.60–3.44 (m, 16H), 2.89 (s, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.46 (t, J = 7.2 Hz, 2H), 1.58–1.48 (m, 4H), 1.39 (s, 18H), 1.31 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.1, 158.5, 152.0, 150.6, 142.5, 140.0, 139.6, 137.0, 134.5, 132.7, 130.0, 128.5, 128.3, 127.9, 127.6, 115.8, 114.9, 113.4, 109.1, 73.2, 70.5, 69.8, 68.9, 42.1, 35.4, 35.3, 34.9, 31.6, 31.4, 31.2, 31.0 (one signal was missing, possibly because of signal overlap); HR-MS (ESI): calcd for $[14 + H]^+ C_{71}H_{96}NO_8^+$, m/z 1090.7130; found 1090.7078.

Rotaxane 15: A mixture of dibenzyl malonate (17.2 mg, 0.06 mmol) and K₂CO₃ (10.8 mg, 7.81 µmol) in DMSO (0.4 mL) was stirred at room temperature for 3 min. After adding the rotaxane 10 TFPB (80 mg, 0.04 mmol), the mixture was stirred at 60 °C for 24 h. The mixture was partitioned between EtOAc (3 \times 100 mL) and H₂O (100 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (Diol-silica gel; CH₂Cl₂/hexane, 1:4) to afford the [2]rotaxane 15 (22.6 mg, 48%) and surrogate stopper 2 (8.90 mg, 95%) as a pale-yellow oil and a colorless sticky oil, respectively. ¹H NMR (400 MHz, CD_2Cl_2) δ = 7.95 (s, 1H), 7.46 (d, J = 2.0 Hz, 2H), 7.34–7.24 (m, 6H), 7.22–7.16 (m, 4H), 7.09 (t, J = 2.0 Hz, 1H), 7.03 (s, 4H), 6.90 (s, 8H), 6.84 (d, J = 8.8 Hz, 2H), 6.47 (d, J = 8.8 Hz)Hz, 2H), 5.13-5.00 (m, 4H), 4.30-4.15 (m, 8H), 3.72 (t, J = 7.6 Hz, 1H), 3.57-3.39(m, 16H), 3.16 (d, J = 7.6 Hz, 2H), 2.78 (s, 2H), 2.48 (t, J = 7.2 Hz, 2H), 2.42 (t, J = 7.2 Hz, 2H), 1.49–1.44 (m, 4H), 1.37 (s, 18H); ¹³C NMR (100 MHz, CD₂Cl₂) $\delta =$ 168.4, 167.1, 150.5, 141.4, 139.9, 139.8, 137.2, 135.4, 134.7, 132.8, 129.9, 128.5, 128.3, 128.2, 128.1, 128.0, 127.3, 115.7, 113.4, 73.0, 70.4, 68.9, 66.9, 42.0, 35.2, 34.8, 34.2, 31.5, 31.3, 31.3, 31.0, 30.4; (one signal was missing, possibly because of signal overlap) HR-MS (ESI): calcd for $[15 + H]^+ C_{74}H_{90}NO_{11}^+$, m/z 1168.6508; found 1168.6485.

Rotaxane 17: A solution of 4,4',4''-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoic acid (16)^[9] (3.4 mg, 7.1 µmol) and TBAOH (1 M in MeOH, 21.4 µL) in MeOH (0.1 mL) was concentrated to afford a solid, which was washed with EtOAc (3×10 mL), dried under vacuum, and dissolved in DMSO (2.5 mL). The rotaxane 10 TFPB (50 mg, 25 µmol) was added and the mixture stirred at 60 °C for 36 h. The mixture was partitioned between CH_2Cl_2 (3 × 20 mL) and H_2O (20 mL). The combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (SiO₂, EA/hexane, 1:1) to afford the rotaxane 17 as a colorless oil (15.8 mg, 71%). ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 8.15$ (d, J = 8.0 Hz, 6H), 7.96 (s, 3H), 7.51 (s, 6H), 7.38 (d, J = 8.0 Hz, 6H), 7.32 (d, J = 8.0 Hz, 6H), 7.23 (d, J = 8.0Hz, 6H), 7.16 (s, 3H), 7.04–6.87 (m, 30H), 6.59 (d, J = 7.6 Hz, 6H), 5.31 (s, 6H), 4.34–4.24 (m, 24H), 3.62–3.47 (m, 48H), 2.91 (s, 6H), 2.59 (t, J = 6.8 Hz, 6H), 2.50 (t, J = 6.8 Hz, 6H), 1.69 (s, 9H), 1.58-1.50 (m, 12H), 1.43 (s, 54H).¹³C NMR (100 MHz, CD_2Cl_2) $\delta = 167.2$, 166.0, 150.6, 146.7, 142.9, 140.0, 139.6, 139.0, 137.1, 133.3, 132.7, 132.4, 129.8, 129.4, 128.7, 128.4, 128.2, 128.1, 127.5, 115.9, 113.5, 72.9, 70.4, 68.9, 66.5, 42.1, 35.3, 35.2, 34.8, 31.3, 31.2, 31.0, 18.9. (one signal was missing, possibly because of signal overlap) HR-MS (ESI): calcd for $[17 + 2H]^{2+}$ $C_{201}H_{245}N_3O_{27}^{2+}$, *m/z* 1566.3940; found 1566.3865.

Reference

1. C.-F. Lin, C.-C. Lai, Y.-H. Liu, S.-M. Peng and S.-H. Chiu, *Chem. Eur. J.* 2007, **13**, 4350–4355.

2. J. Wang, X. Gao, A. Boarino, F. Célerse, C. Corminboeuf and H.-A. Klok, *Macromolecules* 2022, **55**, 10145–10152.

3. P.-N. Cheng, P.-Y.; Huang, W.-S. Li, S.-H. Ueng, W.-C. Hung, Y.-H. Liu, C.-C. Lai, Y. Wang, S.-M. Peng, I. Chao and S.-H. Chiu, *J. Org. Chem.* 2006, **71**, 2373–2383.

4. J. Z. Chan, Y. Chang and M. Wasa, *Org. Lett.* 2019, **21**, 984–988.

5. J. Y. C. Lim, N. Yuntawattana, P. D. Beer and C. K. Williams, *Angew. Chem. Int. Ed.* 2019, **58**, 6007–6011.

6. S. Grunder, D. M. Torres, C. Marquardt, A. Błaszczyk, R. Krupke and M. Mayor, *Eur. J. Org. Chem.* 2011, 478–496.

7. T.-Y. Zhang, Y. Deng, K. Wei and Y.-R. Yang, *Org. Lett.* 2021, 23, 1086–1089.

8. A. Adam and G. Haberhauer, *Chem. Eur. J.* 2017, 23, 12190–12197.

9. A. M. Bumstead, D. B. Cordes, D. M. Dawson, K. K. Chakarova, M. Y. Mihaylov, C. L. Hobday, T. Düren, K. I. Hadjiivanov, A. M. Z. Slawin, S. E. Ashbrook, R. R. R. Prasad and P. A. Wright, *Chem. Eur. J.* 2018, **24**, 6115–6126.

Figure S1 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of 1 · TFPB

Figure S2 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of 1 · TFPB

Analysis Info

analysis Info		Acquisition Date	1/30/2024 10:47:21 AM	
Analysis Name	D:\Data\Fish\1_Data\2024Q1\240130\240130_pyridine-C4-	Br_pw_35_01_34686	b.d	
Method	tune_wide_pos_LCMS_with lock mass_220107-3.m	Operator	BDAL@DE	
Sample Name	240130_pyridine-C4-Br_pw	Instrument / Ser#	micrOTOF-Q	228888.10
Comment				183

Acquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar					
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 ℃					
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min					
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste					

+MS, 0.6-0.7min #37-43

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e ⁻ Conf	N-Rule
582.2707	1	C37H45BrN	582.2730	-2.3	-4.0	55.9	100.00	15.5	even	ok

+MS, 0.6-0.7min #37-43

Figure S4 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of 3 · 2TFPB

Figure S5 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of $3 \cdot 2$ TFPB

Analysis Info Acquisition Date 5/29/2023 9:54:04 AM Analysis Name D:\Data\fish\data\2023q2(datas)\230529\230529_pyridine-rot-C4_pw_1-72_01_53567.d Method D:\Data\fish\data\2023q2(datas)\230529\230529_pyridine-rot-C4_pw_1-72_01_53567.d Sample Name 230529_pyridine-rot-C4_pw Operator Bruker microTOF-Q II Comment 183

Acquisition Para	Acquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min						
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste						

+MS, 1.2-1.3min #70-78

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e [−] Conf	N-Rule
576.3966	1	C77H104N2O6	576.3942	-2.4	-4.2	29.6	100.00	27.0	even	ok

Intens. +MS, 1.2-1.3min #70-78 x10⁴ observed 1.25 1.00 576.3966 0.75 576.8983 0.50 577.4002 0.25 577.9012 578.4091 0.00 575.5 576.0 576.5 577.0 577.5 578.0 578.5 m/z C77H104N2O6, 576.3942 Intens. x10⁴ calculated 1.25 2+ 1.00 576.3942 2+ 576.8958 0.75 2+ 577.3975 0.50 2+ 0.25 2+ 577.8991 578.4007 0.00 576.0 576.5 577.0 577.5 578.0 578.5 m/z 575.5

+MS, 1.2-1.3min #70-78

Figure S7 ¹H NMR Spectrum (400 MHz / CD_3CN / 298 K) of 4 · TFPB

Figure S8¹³C NMR Spectrum (100 MHz / CD₂Cl₂ / 298 K) of Rotaxane **4** · TFPB

Analysis Info

Analysis Info		Acquisition Date	7/21/2023 12:0	3:10 PM
Analysis Name	D:\Data\Fish\Data\2023Q3(datas)\230721\230721_amide-	C4-rot-amineH_pw_1-	61_01_54413.d	
Method	<pre>tune_wide_pos_LCMS_with lock mass_220107-3.m</pre>	Operator	Bruker microTO	DF-Q II
Sample Name Comment	230721_amide-C4-rot-amineH_pw	Instrument / Ser#	micrOTOF-Q	228888.10 183

Acquisition Parameter									
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar				
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C				
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min				
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste				

+MS, 0.2-0.2min #10-12

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e [−] Conf	N-Rule
1137.7687	1	C76H101N2O6	1137.7654	-3.3	-2.9	20.5	100.00	27.5	even	ok

Intens. +MS, 0.2-0.2min #10-12 x10⁴ observed 2.0-1.5-1137,7687 1138.7739 1.0 1139,7754 0.5 1140.7770 0.0 1137 1138 1139 1136 1140 1141 1142 m/z Intens. C76H101N2O6, 1137.7654 x10⁴ calculated 2.0-1+ 1137.7654 1.5 1+ 1138.7688 1.0 1+ 1139.7720 0.5 1+ 1140,7752 1+ 1141.7785 0.0 1142 1136 11'37 11'38 1139 1140 1141 m/z

+MS, 0.2-0.2min #10-12

Figure S10 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of 5 · TFPB

Figure S11 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of 5 · TFPB

Analysis Info

Analysis Info		Acquisition Date	5/29/2023 10:2	8:21 AM
Analysis Name	D:\Data\fish\data\2023q2(datas)\230529\230529_pyridine	e-rot-C4-acid_pw_1-75_	_01_53573.d	
Method	tune_wide_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microT(JF-Q II
Sample Name	230529_pyridine-rot-C4-acid_pw	Instrument / Ser#	micrOTOF-Q	228888.10
Comment				183

Acquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar					
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C					
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min					
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste					

+MS, 0.3-0.3min #17-19

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e [−] Conf	N-Rule
1152.7247	1	C76H98NO8	1152.7287	-4.0	-3.5	56.5	100.00	28.5	even	ok

+MS, 0.3-0.3min #17-19

Figure S13 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of **6** · TFPB

Figure S14 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of 6 · TFPB

Analysis Info

Analysis Info		Acquisition Date	5/29/2023 10:1	6:56 AM
Analysis Name	D:\Data\fish\data\2023q2(datas)\230529\230529_pyridine	-rot-C4-thio_pw_1-74_0	01_53571.d	
Method	tune_wide_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microT	DF-Q II
Sample Name Comment	230529_pyridine-rot-C4-thio_pw	Instrument / Ser#	micrOTOF-Q	228888.10 183

Acquisition Parameter									
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar				
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C				
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min				
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste				

+MS, 0.2-0.2min #10-12

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e [−] Conf	N-Rule
1154.7244	1	C76H100NO6S	1154.7266	2.2	1.9	6.9	100.00	27.5	even	ok

+MS, 0.2-0.2min #10-12

Figure S16 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of 7 · TFPB

Figure S17¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of 7 · TFPB

Analysis Info

Analysis Info		Acquisition Date	5/29/2023 10:0	5:29 AM
Analysis Name	D:\Data\fish\data\2023q2(datas)\230529\230529_pyridine-rot	-C4-phen_pw_1-73	_01_53569.d	
Method	tune_wide_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microTC	DF-Q II
Sample Name Comment	230529_pyridine-rot-C4-phen_pw	Instrument / Ser#	micrOTOF-Q	228888.10 183

Acquisition Parameter									
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar				
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C				
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min				
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste				

+MS, 0.2min #9

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e [−] Conf	N-Rule
1124.7363	1	C75H98NO7	1124.7338	-2.5	-2.2	11.2	100.00	27.5	even	ok

+MS, 0.2min #9

Figure S19 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of 8 · TFPB

Figure S20¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of 8 · TFPB

Analysis Info

		Acquisition Date	0/0/2023 10.00	7.29 AIVI			
Analysis Name	D:\Data\fish\data\2023q2(datas)\230605\230605_pyridinum-malonate-2_pw_1-1_01_53700.d						
Method	tune_wide_pos_LCMS_with lock mass_220107-3.m	Bruker microT	ruker microTOF-Q II				
Sample Name	230605_pyridinum-malonate-2_pw	Instrument / Ser#	micrOTOF-Q	228888.10			
Comment				183			

Acquisition Parameter									
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar				
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C				
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min				
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste				

+MS, 0.2-0.2min #9-11

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e [−] Conf	N-Rule
1202.6711	1	C78H92NO10	1202.6716	0.5	0.4	29.5	100.00	33.5	even	ok

+MS, 0.2-0.2min #9-11
Figure S22 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of S1 · TFPB

Figure S23 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of S1 · TFPB

Analysis Info

Analysis Info		Acquisition Date	4/30/2024 3:39	:26 PM
Analysis Name	D:\Data\Fish\1_Data\2024Q2\240430\240430_pyridine-C	24-3-rot-ma_pw_46_01_	35771.d	
Method	tune_wide_pos_LCMS_with lock mass_220107-3.m	Operator	BDAL@DE	
Sample Name Comment	240430_pyridine-C4-3-rot-ma_pw	Instrument / Ser#	micrOTOF-Q	228888.10 183

Acquisition Param	eter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 ℃
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste

+MS, 0.5-0.6min #29-36

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e ⁻ Conf	N-Rule
1060.6187	1	C139H168N2O16	1060.6191	-0.5	-0.5	33.6	100.00	57.0	even	ok

+MS, 0.5-0.6min #29-36

Figure S25 1 H NMR Spectrum (400 MHz / CDCl₃ / 298 K) of S2

Figure S26 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of S2

Analysis Info

Analysis Info		Acquisition Date	6/12/2023 12:4	0:38 PM
Analysis Name	D:\Data\fish\data\2023q2(datas)\230612\230612_amid	le-Br_pl_1-52_01_53840.c	ł	
Method	tune_low_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microTC	of-q II
Sample Name	230612_amide-Br_pl	Instrument / Ser#	micrOTOF-Q	228888.10
Comment				183

Acquisition Param	eter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min
Scan End	3000 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Valve	Waste

+MS, 0.3-0.3min #15-19

mSigma Meas. m/z # Ion Formula err [mDa] err [ppm] Score rdb e⁻ Conf N-Rule m/z 402.1429 1 C22H29BrNO 402.1427 0.2 0.4 48.7 100.00 8.5 even ok

+MS, 0.3-0.3min #15-19

Figure S28 1 H NMR Spectrum (400 MHz / CD₂Cl₂ / 298 K) of S3

Figure S29 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of S3

Analysis Info

Analysis Info		Acquisition Date	6/12/2023 12:4	6:21 PM
Analysis Name	D:\Data\Fish\Data\2023Q2(datas)\230612\230612_am	ide-yne-OH_pl_1-53_01_5	53841.d	
Method	tune_low_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microTO	DF-Q II
Sample Name Comment	230612_amide-yne-OH_pl	Instrument / Ser#	micrOTOF-Q	228888.10 183

Acquisition Param	eter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min
Scan End	3000 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Valve	Waste

+MS, 0.1-0.2min #8-10

+MS, 0.1-0.2min #8-10

Figure S31 ¹H NMR Spectrum (400 MHz / CDCl₃ / 298 K) of S4

Figure S32 13 C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of S4

Analysis Info

Analysis Info		Acquisition Date	6/12/2023 12:5	2:03 PM
Analysis Name	D:\Data\Fish\Data\2023Q2(datas)\230612\230612_amid	le-yne_pl_1-54_01_5384	2.d	
Method	tune_low_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microTO	DF-Q II
Sample Name	230612_amide-yne_pl	Instrument / Ser#	micrOTOF-Q	228888.10
Comment				183

Acquisition Paran	neter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min
Scan End	3000 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Valve	Waste

+MS, 0.2-0.2min #9-12

Intens. +MS, 0.2-0.2min #9-12 x10⁴ observed 3. 348.2328 2 1 349.2357 350.2400 0 350 347 348 349 351 352 m/z Intens. C24H30NO, 348.2322 x10⁴ calculated 3 1+ 348.2322 2 1+ 349.2355 1 1+ 350.2388 0 347 348 352 349 350 351 m/z

+MS, 0.2-0.2min #9-12

Figure S34 ¹H NMR Spectrum (400 MHz / CD₃SOCD₃ / 298 K) of S5

Analysis Info

Analysis Info		Acquisition Date	6/26/2023 3:03	:22 PM
Analysis Name	D:\Data\fish\data\2023q2(datas)\230626\230626-2_ami	de-diyne-OH_pl_1-79_01	_53986.d	
Method	tune_low_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microT(DF-Q II
Sample Name	230626-2_amide-diyne-OH_pl	Instrument / Ser#	micrOTOF-Q	228888.10
Comment				183

Acquisition Paran	neter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min
Scan End	3000 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Valve	Waste

+MS, 0.5-0.5min #27-31

mSigma Meas. m/z # Ion Formula err [mDa] err [ppm] Score rdb e⁻ Conf N-Rule m/z 478.2729 1 C33H36NO2 478.2741 1.2 2.5 12.4 100.00 16.5 even ok

+MS, 0.5-0.5min #27-31

Figure S37 1 H NMR Spectrum (400 MHz / CD₂Cl₂ / 298 K) of S6

Figure S38 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of S6

Analysis Info

Analysis info	Acquisition Date	6/26/2023 10:48	:35 AM
Analysis Name D:\Data\fish\data\2023q2(datas)\230626\230626_amide-C4-OH	l_pl_1-80_01_539	76.d	
Method tune_low_pos_LCMS_with lock mass_220107-3.m C	Operator	Bruker microTO	F-Q II
Sample Name 230626_amide-C4-OH_pl Ir	nstrument / Ser#	micrOTOF-Q	228888.10
Comment			183

Acquisition Parameter											
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min						
Scan End	3000 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Valve	Waste						

+MS, 0.1-0.2min #8-11

+MS, 0.1-0.2min #8-11

Figure S40 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of **9**

visition Data

6/06/0000 10-E4-10 AM

Analysis Info

		Acquisition Date	0/20/2023 10.3	4. IO AIVI						
Analysis Name	D:\Data\fish\data\2023q2(datas)\230626\230626_amide-C4-Br_pl_1-81_01_53977.d									
Method	tune_low_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microT(TOF-Q II						
Sample Name	230626_amide-C4-Br_pl	Instrument / Ser#	micrOTOF-Q	228888.10						
Comment				183						

Acquisition Parameter											
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min						
Scan End	3000 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Valve	Waste						

+MS, 0.1-0.2min #7-10

+MS, 0.1-0.2min #7-10

Intens. +MS, 0.1-0.2min #7-10 x10⁴ observed 3 548,2515 550.2500 2 1 549.2531 551.2518 552.2561 0 546 554 548 550 552 m/z Intens. C33H43BrNO, 548.2523 x10⁴ calculated 3 1+ 550.2508 1+ 548.2523 2

m/z

Figure S43 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of 10 · TFPB

Figure S44 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of **10** · TFPB

Analysis Info

Analysis Info		Acquisition Date	5/16/2023 3:19	:46 PM
Analysis Name	D:\Data\fish\data\2023q2(datas)\230516\230516_amide-C4	1-rotaxane_pw_1-36_	01_53378.d	
Method	<pre>tune_wide_pos_LCMS_with lock mass_220107-3.m</pre>	Operator	Bruker microTC	DF-Q II
Sample Name Comment	230516_amide-C4-rotaxane_pw	Instrument / Ser#	micrOTOF-Q	228888.10 183

Acquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar					
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C					
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min					
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste					

+MS, 0.2min #13

+MS, 0.2min #13

Figure S46 ¹H NMR Spectrum (400 MHz / CD₂Cl₂ / 298 K) of **11**

Analysis Info

Acquisition Date 7/21/2023 11:57:27 AM Analysis Name D:\Data\Fish\Data\2023Q3(datas)\230721\230721_amide-C4-rot-amine_pw_1-60_01_54412.d Method tune_wide_pos_LCMS_with lock mass_220107-3.m Bruker microTOF-Q II Operator Sample Name 230721_amide-C4-rot-amine_pw Instrument / Ser# micrOTOF-Q 228888.10 183 Comment

Acquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar					
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C					
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min					
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste					

+MS, 0.1min #5

Meas. m/z	#	Ion Formula	m/z	err [mDa]	err [ppm]	mSigma	Score	rdb	e [−] Conf	N-Rule
1103.7468	1	C72H99N2O7	1103.7447	-2.1	-1.9	69.8	100.00	24.5	even	ok

+MS, 0.1min #5

Figure S49 ¹H NMR Spectrum (400 MHz / CDCl₃ / 298 K) of 12

Analysis Info

7/11/2023 1:00:20 PM Acquisition Date Analysis Name D:\Data\MS core facility\microTOF QII\Raw data\230711\230711_amide-C4-rot-acid_pw_1-89_01_54202.d Method tune wide pos LCMS with lock mass 220107-3.m Operator Bruker microTOF-Q II Sample Name 230711_amide-C4-rot-acid_pw Instrument / Ser# micrOTOF-Q 10183 Comment

Acquisition Parameter											
Source Type	ESI	lon Polarity	Positive	Set Nebulizer	2.0 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 ℃						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min						
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste						

+MS, 0.4-0.4min #(23-25)

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule
1118.7029	1	C 72 H 96 N O 9	100.00	1118.7080	5.0	4.5	49.4	25.5	even	ok

Intens. +MS, 0.4-0.4min #(23-25) x104 observed 3-1118.7029 1119.7057 2 1120.7095 1 1121.7106 1122.7142 0 11'17 1118 1119 1123 1116 1120 1121 1122 1124 m/z Intens. C 72 H 96 N O 9 ,1118.71 x10⁴ calculated 3 1118.7080 2 1119.7113 1-1120.7147 1121.7180 1122.7214 0 11'17 1118 1123 ĭ116 1119 1120 1121 1122 1124 m/z

+MS, 0.4-0.4min #(23-25)

Figure S52 ¹H NMR Spectrum (400 MHz / $CDCl_3$ / 298 K) of 13

Figure S53 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of **13**

Analysis Info

Acquisition Date 7/21/2023 11:45:59 AM Analysis Name D:\Data\Fish\Data\2023Q3(datas)\230721\230721_amide-Ca-rot-thiol_pw_1-58_01_54410.d tune_wide_pos_LCMS_with lock mass_220107-3.m Bruker microTOF-Q II Method Operator Instrument / Ser# Sample Name 230721_amide-Ca-rot-thiol_pw micrOTOF-Q 228888.10 183 Comment

Acquisition Parameter											
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min						
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste						

+MS, 0.6-0.7min #35-41

err [mDa] mSigma e⁻ Conf # Ion Formula err [ppm] Score rdb N-Rule Meas. m/z m/z 1120.7103 1 C72H98NO7S 1120.7059 4.5 4.0 29.0 100.00 24.5 even ok

+MS, 0.6-0.7min #35-41

Figure S55 ¹H NMR Spectrum (400 MHz / CDCl₃ / 298 K) of 14

Figure S56 ¹³C NMR Spectrum (100 MHz / CDCl₃ / 298 K) of **14**

Analysis Info

Acquisition Date 7/11/2023 1:06:03 PM Analysis Name D:\Data\MS core facility\microTOF QII\Raw data\230711\230711_amide-C4-rot-phenol_pw_1-90_01_54203.d tune wide pos LCMS with lock mass 220107-3.m Method Operator Bruker microTOF-Q II Sample Name 230711 amide-C4-rot-phenol pw Instrument / Ser# micrOTOF-Q 10183 Comment

Acquisition Parameter											
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 ℃						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min						
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste						

+MS, 0.4-0.4min #(24-25)

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule
1090.7078	1	C 71 H 96 N O 8	100.00	1090.7130	5.3	4.8	29.9	24.5	even	ok

Intens. +MS, 0.4-0.4min #(24-25) x105 observed 1.0 0.8 1090.7078 1091.7108 0.6 0.4 1092.7153 0.2 1093.7161 1094.7186 0.0 1091 1092 1093 1089 1090 1094 1095 m/z Intens. C 71 H 96 N O 8 ,1090.71 x105 calculated 1.0 0.8 1090.7130 1091.7164 0.6 0.4 1092.7197 0.2 1093.7231 0.0 1090 1091 1092 1093 1094 1095 m/z

+MS, 0.4-0.4min #(24-25)
Figure S58 ¹H NMR Spectrum (400 MHz / CD₂Cl₂ / 298 K) of **15**

Figure S59 ¹³C NMR Spectrum (100 MHz / CD_2Cl_2 / 298 K) of Rotaxane 15

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Info		Acquisition Date	7/21/2023 11:5	1:43 AM				
Analysis Name	D:\Data\Fish\Data\2023Q3(datas)\230721\230721_amide-C4-rot-malon_pw_1-59_01_54411.d							
Method	tune_wide_pos_LCMS_with lock mass_220107-3.m	Operator	Bruker microTO	DF-Q II				
Sample Name Comment	230721_amide-C4-rot-malon_pw	Instrument / Ser#	micrOTOF-Q	228888.10 183				

Acquisition Para	meter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.9 l/min	
Scan End	3000 m/z	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste	

+MS, 0.2-0.3min #13-18

mSigma N-Rule # Ion Formula err [mDa] err [ppm] rdb e⁻ Conf Meas. m/z m/z 1168.6485 1 C74H90NO11 1168.6508 2.4 2.0 21.8 30.5 even ok

Intens. +MS, 0.2-0.3min #13-18 x10⁵ 2.5 observed 2.0 1168.6485 1.5 1169.6506 1.0 1170,6506 0.5 1171.6494 1172.6492 0.0 1167 1168 1169 1170 1171 1172 1173 m/z C74H90NO11, 1168.6508 Intens. x10⁵ 2.5 calculated 2.0 1+ 1168.6508 1+ 1169.6542 1.5 1.0 1+ 1170.6574 0.5 1+ 1+ 1172.6635 1171.6605 0.0 1173 1168 1169 1170 1171 1172 m/z 1167

+MS, 0.2-0.3min #13-18

Figure S61 ¹H NMR Spectrum (400 MHz / CD_2Cl_2 / 298 K) of Rotaxane 17

Figure S62 ¹³C NMR Spectrum (100 MHz / CD_2Cl_2 / 298 K) of Rotaxane 17

Mass Spectrum SmartFormula Report

Analysis Info 4/30/2024 3:45:32 PM Acquisition Date D:\Data\Fish\1 Data\2024Q2\240430\240430_4-rotaxane_pw_47_01_35772.d Analysis Name Method tune wide pos LCMS with lock mass 220107-3.m Operator BDAL@DE Instrument / Ser# Sample Name 240430 4-rotaxane pw micrOTOF-Q 228888.10 183 Comment **Acquisition Parameter** Ion Polarity Source Type ESI Positive Set Nebulizer 2.0 Bar 180 °C 4500 V Active Set Capillary Set Dry Heater Focus

err [mDa] mSigma N-Rule # Ion Formula rdb e⁻ Conf Meas. m/z err [ppm] Score m/z 1566.3865 1 C201H245N3O27 1566.3940 -7.5 -4.8 31.5 100.00 81.0 even ok

Intens +MS, 1.5min #91 x10⁴ observed Δ 3-1566.8839 1567,3887 1567.8865 2 1568.3894 1566.3865 1 1568.8913 1569.3932 1569.8817 0 1565 1566 1567 1568 1569 1570 m/z C201H245N3O27, 1566.3940 Intens. x104 calculated 1.5 2+ 1567.3973 2+ 1566.8957 2+ 1567,8989 1.0 2+ 2+ 1568.4006 0.5 1566.3940 2+ 2+ 1569.4037 1569.9053 1568.9022 0.0 1565 1566 1567 1568 1569 1570 m/z

+MS, 1.5min #91

Bruker Compass DataAnalysis 4.1