SUPPLEMENTARY INFORMATION

Modular polyketide synthase ketosynthases collaborate with upstream dehydratases to install double bonds

Katherine A. Ray, Nisha Saif, Adrian T. Keatinge-Clay*

Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
*Email: adriankc@utexas.edu
Content Page
Reagents and equipment 3
Plasmid construction 4
Table S1. Annotated P1-P2-P3-P7 sequences 5
Table S2. Primers 8
Culturing E. coli K207-3 transformed with expression plasmids 9
Polyketide detection and quantification 9
Figure S1. Representative high-resolution LC/MS analysis of 1 10
Figure S2. Representative high-resolution LC/MS analysis of 2 11
Figure S3. Representative high-resolution LC/MS analysis of 3 12
Figure S4. Representative high-resolution LC/MS/MS analysis of 1 13
Figure S5. Representative high-resolution LC/MS/MS analysis of 2 14
Figure S6. Representative high-resolution LC/MS/MS analysis of 3 15
Purification of 1 16
Figure S7. ${ }^{1} \mathrm{H}$ NMR of 1 16
Figure S8. Extracted ion chromatogram calibration curve of 1 17
Figure S9. Calibration curve of lactone UV absorption 17
Figure S10. Representative UV absorbance chromatogram and spectrum for 2 18
Figure S11. Representative UV absorbance chromatogram and spectrum for 3 18
Modeling intermediates in KS substrate tunnels 18
Table S3. Key parameters for modeled acyl-KSs 19
Figure S12. Interactions between gatekeeping motifs and intermediates 20
Figure S13. Possible incompatibility between PikACP3 and AmpKS15 22
References 23

METHODS

Reagents and equipment

All restriction enzymes, HiFi DNA Assembly Master Mix, ligase, and enzyme buffers are from New England Biosciences. Yeast extract, glycerol, sodium chloride, potassium phosphate dibasic, hydrochloric acid, sodium sulfate, ethyl acetate, hexanes, methanol, acetonitrile, and formic acid are from Fisher Scientific. Potassium phosphate monobasic and all primers are from Sigma-Millipore. Sodium propionate is from Alfa Aesar. Isopropyl β-D-1-thiogalactopyranoside (IPTG) is from Carbosynth. Milk filters are from KenAG. Minipreps and gel extractions were performed with Promega Wizard SV kits. Streptomycin and thin layer chromatography (TLC) plates are from Sigma-Aldrich. LuriaBertani broth is from Fisher Bioreagents. Casein is from Thermo Scientific. Deuterated chloroform is from Camrbidge Isotopes. KAPA polymerase master mix is from Roche Biosciences.

All low-resolution LC/MS as well as the EIC calibration curve for 1 was obtained using an Agilent 6120 system containing a ZORBAX Eclipse Plus C_{18} column ($2.1 \times 50 \mathrm{~mm}, 1.8$ $\mu \mathrm{m})$. All high-resolution LC/MS was performed using an Agilent 6230 TOF LC/MS connected to a ZORBAX Eclipse Plus C18 column ($2.1 \times 50 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$). LC/MS/MS data was collected using an Agilent 6530 with a Poroshell 300SB-C3 column (75×2.1 mm, $5 \mu \mathrm{~m}$)

Plasmid construction

The expression plasmid for P1-P2-P3-P7 was constructed using a BioBricks-like approach that has been described (Table S1) ${ }^{1}$. Briefly, DNA encoding the first and last pikromycin synthase modules, P1 and P7, was inserted into a pCDF-1b backbone, followed by DNA encoding the $2^{\text {nd }}$ and $3^{\text {rd }}$ pikromycin modules, P2 and P3. The DNA encoding each module is split by a T7 terminator, a T7 promoter, a lac operator, a ribosomal binding site, and DNA encoding cognate docking domain motifs from the Spinosyn PKS (SpnB/SpnC for P2, SpnC/SpnD for P3) within a pUC19 cloning plasmid.

DNA encoding the VMYH motif was altered through site-directed mutagenesis (Table S2). For each change, 2 fragments were amplified from the $\mathbf{P} 3$ cloning plasmid using 2 pairs of primers (each consisting of a mutagenic primer that binds the VMYH-encoding region and a primer that binds the pUC19 backbone) and SliCE-assembled ${ }^{2}$. PCRs for the VAYH and VMAH mutations used the P3 cloning plasmid as a template. PCRs for the VAAH mutation used the P3(VMAH) cloning plasmid as the template. Several rounds of mutagenesis were needed to generate the P3(TNGQ) cloning plasmid. The original P3 cloning plasmid was used to generate a P3(VNGH) cloning plasmid, which was then used as a template to generate a P3(TNGH) cloning plasmid, which was in turn used as a template for the PCR that yielded the final P3(TNGQ) cloning plasmid. Since PCR can introduce mutations, each KS-encoded fragment was digested with Mfel and Xbal and ligated into a P3 cloning plasmid that had not been PCR-amplified. To make the P3(AmpKS15) cloning plasmid, DNA encoding the KS was amplified from Streptomyces nodosus ATCC 29757 and SLiCE-assembled into MfellXbal-digested P3 cloning plasmid. Mutations and assemblies were checked with overlapping Sanger sequencing reads of the KS-encoding regions.

Each of the P3 cloning plasmids was digested with HindIII and Xbal and ligated into the P1-P7 expression plasmid. DNA encoding P2 was then similarly inserted to generate the expression plasmids encoding the P1-P2-P3-P7 variants.

$\mathbf{P 1}^{-\mathbf{P 2}^{N}}$ on pCDF

MAHHHHHVGTSSAGITRTGARTPVTGRGAAAWDTGEVRVRRGLPPAGPDHAEHSFSRAPTGDVRAELI RGEMSTVSKSESEEFVSVSNDAGSAHGTAEPVAVVGISCRVPGARDPREFWELLAAGGQAVTDVPADRW NAGDFYDPDRSAPGRSNSRWGGFIEDVDRFDAAFFGISPREAAEMDPQQRLALELGWEALERAGIDPSS LTGTRTGVFAGAIWDDYATLKHRQGGAAITPHTVTGLHRGIIANRLSYTLGLRGPSMVVDSGQSSSLVA VHLACESLRRGESELALAGGVSLNLVPDSIIGASKFGGLSPDGRAYTFDARANGYVRGEGGGFVVLKRL SRAVADGDPVLAVIRGSAVNNGGAAQGMTTPDAQAQEAVLREAHERAGTAPADVRYVELHGTGTPVGDP IEAAALGAALGTGRPAGQPLLVGSVKTNIGHLEGAAGIAGLIKAVLAVRGRALPASLNYETPNPAIPFE ELNLRVNTEYLPWEPEHDGQRMVVGVSSFGMGGTNAHVVLEEAPGGCRGASVVESTVGGSAVGGGVVPW VVSAKSAAALDAQIERLAAFASRDRTDGVDAGAVDAGAVDAGAVARVLAGGRAQFEHRAVVVGSGPDDL AAALAAPEGLVRGVASGVGRVAFVFPGQGTQWAGMGAELLDSSAVFAAAMAECEAALSPYVDWSLEAVV RQAPGAPTLERVDVVQPVTFAVMVSLARVWQHHGVTPQAVVGHSQGEIAAAYVAGALSLDDAARVVTLR SKSIAAHLAGKGGMLSLALSEDAVLERLAGFDGLSVAAVNGPTATVVSGDPVQIEELARACEADGVRAR VIPVDYASHSRQVEIIESELAEVLAGLSPQAPRVPFFSTLEGAWITEPVLDGGYWYRNLRHRVGFAPAV ETLATDEGFTHFVEVSAHPVLTMALPGTVTGLATLRRDNGGQDRLVASLAEAWANGLAVDWSPLLPSAT GHHSDLPTYAFQTERHWLGEIEALAPAGEPAVQPAVLRTEAAEPAELDRDEQLRVILDKVRAQTAQVLG YATGGQIEVDRTFREAGCTSLTGVDLRNRINAAFGVRMAPSMIFDFPTPEALAEQLLLVVHGEAAANPA GAEPAPVAAAGAVDEPVAIVGMACRLPGGVASPEDLWRLVAGGGDAISEFPQDRGWDVEGLYHPDPEHP GTSYVRQGGFIENVAGFDAAFFGISPREALAMDPQQRLLLETSWEAVEDAGIDPTSLRGRQVGVFTGAM THEYGPSLRDGGEGLDGYLLTGNTASVMSGRVSYTLGLEGPALTVDTACSSSLVALHLAVQALRKGEVD MALAGGVAVMPTPGMFVEFSRQRGLAGDGRSKAFAASADGTSWSEGVGVLLVERLSDARRNGHQVLAVV RGSAVNQDGASNGLTAPNGPSQQRVIRRALADARLTTSDVDVVEAHGTGTRLGDPIEAQALIATYGQGR DDEQPLRLGSLKSNIGHTQAAAGVSGVIKMVQAMRHGLLPKTLHVDEPSDQIDWSAGAVELLTEAVDWP EKQDGGLRRAAVSSFGISGTNAHVVLEEAPVVVKLAPAPTSEGASVVEPSVGGSAVGGGVTPWVVSAKS AAALDAQIERLAAFASRDRTDDADAGAVDAGAVAHVLADGRAQFEHRAVALGAGADDLVQALADPDGLI RGTASGVGRVAFVFPGQGTQWAGMGAELLDSSAVFAAAMAECEAALSPYVDWSLEAVVRQAPGAPTLER VDVVQPVTFAVMVSLARVWQHHGVTPQAVVGHSQGEIAAAYVAGALPLDDAARVVTLRSKSIAAHLAGK GGMLSLALNEDAVLERLSDFDGLSVAAVNGPTATVVSGDPVQIEELAQACKADGFRARIIPVDYASHSR QVEIIESELAQVLAGLSPQAPRVPFFSTLEGTWITEPVLDGTYWYRNLRHRVGFAPAIETLAVDEGETH FVEVSAHPVLTMTLPETVTGLGTLRREQGGQERLVTSLAEAWVNGLPVAWTSLLPATASRPGLPTYAFQ AERYWLENTPAALATGDDWRYRIDWKRLPAAEGSERTGLSGRWLAVTPEDHSAQAAAVLTALVDAGAKV EVLTAGADDDREALAARLTALTTGDGFTGVVSLLDGLVPQVAWVQALGDAGIKAPLWSVTQGAVSVGRL DTPADPDRAMLWGLGRVVALEHPERWAGLVDLPAQPDAAALAHLVTALSGATGEDQIAIRTTGLHARRL ARAPLHGRRPTRDWQPHGTVLITGGTGALGSHAARWMAHHGAEHLLLVSRSGEQAPGATQLTAELTASG ARVTIAACDVADPHAMRTLIDAIPAETPLTAVVHTAGALDDGIVDTLTAEQVRRAHRAKAVGASVLDEL TRDLDLDAFVLFSSVSSTLGIPGQGNYAPHNAYLDALAARRRATGRSAVSVAWGPWDGGGMAAGDGVAE RLRNHGVPGMDPELALAALESALGRDETAITVADIDWDRFYLAYSSGRPQPLVEELPEVRRIIDARDSA TSGQGGSSAQGANPLAERLAAAAPGERTEILLGLVRAQAAAVLRMRSPEDVAADRAFKDIGFDSLAGVE LRNRLTRATGLQLPATLVFDHPTPLALVSLLRSEFLGDEEASAGTFEELDRWAANLPTLARDEATRAQI TTRLQAILQSIADVSGGTGGGSVPDRLRSATDDELFQLIDNDIELP
P2 ${ }^{\mathrm{C}}-\mathbf{P 3}^{\mathrm{N}}$
MSNEEKLREYLRRALVDLHQARERLHEAESGEREPIAIVAMSCRYPGDIRSPEDLWRMLSEGG EGITPFPTDRGWDLDGLYDADPDALGRAYVREGGFLHDAAEFDAEFFGVSPREALAMDPQQRM LITTSWEAFERAGIEPASLRGSSTGVFIGLSYQDYAARVPNAPRGVEGYLLTGSTPSVASGRI AYTFGLEGPATTVDTACSSSLTALHLAVRALRSGECTMALAGGVAMMATPHMFVEFSRQRALA PDGRSKAFSADADGFGAAEGVGLLLVERLSDARRNGHPVLAVVRGTAVNQDGASNGLTAPNGP SQQRVIRQALADARLAPGDIDAVETHGTGTSLGDPIEAQGLQATYGKERPAERPLAIGSVKSN IGHTQAAAGAAGIIKMVLAMRHGTLPKTLHADEPSPHVDWANSGLALVTEPIDWPAGTGPRRA
AVSSFGISGTNAHVVLEQAPDAASSGEVLGADEVPEVSETVAMAGTAGTSEVAEGSEASEAPA
APGSREASLPGHLPWVLSAKDEQSLRGQAAALHAWLSEPAADLSDADGPARLRDVGYTLATSR
TAFAHRAAVTAADRDGELDGLATLAQGGTSAHVHLDTARDGTTAFLETGQGSQRPGAGRELYD
RHPVFARALDEICAHLDGHLELPLLDVMEAAEGSAEAALLDETRYTQCALFALEVALERLVES
WGMRPAALLGHSVGEIAAAHVAGVFSLADAARLVAARGRLMQELPAGGAMLAVQAAEDEIRVW
LETEERYAGRLDVAAVNGPEAAVLSGDADAAREAEAYWSGLGRRTRALRVSHAFHSAHMDGMI
DGFRAVLETVEFRRPSLTVVSNVTGLAAGPDDLCDPEYWVRHVRGTVRFLDGVRVLRDLGVRI
CLELGPDGVLTAMAADGLADTPADSAAGSPVGSPAGSPADSAAGALRPRPLLVALLRRKRSET
ETVADALGRAHAHGTGPDWHAWFAGSGAHRVDLPTYSERRDRYWIDAPAADTAVNTAGLGLGT
ADHPLLGAVVSLPDRDGLLLTGRLSLRTHPWLADHAVLGSVLLPGAAMVELAAHAAESAGLRD
VRELTLLEPLVLPEHGGVELRVTVGAPAGEPGGESAGDGARPVSLHSRLADAPAGTAWSCHAT
GLLATDRPELPVAPDRAAMWPPQGAEEVPLDGLYERLDGNGLAFGPLFQGLNAVWRYEGEVEA
DIALPATTNATAPATANGGGSAAAAPYGIHPALLDASLHAIAVGGLVDEPELVRVPFHWSGVI
VHAAGAAAARVRLASAGTDAVSLSLTDGEGRPLVSVERLTLRPVTADQAAASRVGGLMHRVAW
RPYALASSGEQDPHATSYGPTAVLGKDELKVAAALESAGVEVGLYPDLAALSQDVAAGAPAPR
TVLAPLPAGPADGGAEGVRGTVARTLELLQAWLADEHLAGTRLLLVTRGAVRDPEGSGADDGG
EDLSHAAAWGLVRTAQTENPGRFGLLDLADDASSYRTLPSVLSDAGLRDEPQLALHDGTIRLA
RLASVRPETGTAAPALAPEGTVLLTGGTGGLGGLVARHVVGEWGVRRLLLVSRRGTDAPGADE
LVHELEALGADVSVAACDVADREALTAVLDAIPAEHPLTAVVHTAGVLSDGTLPSMTTEDVEH
VLRPKVDAAFLIDELTSTPAYDLAAFVMFSSAAAVFGGAGQGAYAAANATLDALAWRRRAAGI
PALSLGWGLWAETSGMTGELGQADLRRMSRAGIGGISDAEGIALIDAALRDDRHPVILPLRLD
AAGLRDAAGNDPAGIPALFRDVVGARTVRARPSAASASTTAGTAGTPGTADGAAETAAVTLAD
RAATVDGPARQRLLLEFVVGEVAEVLGHARGHRIDAERGFLDLGFDSLTAVELRNRLNSAGGI
ALPATLVFDHPSPAALASHLDAELPRGASASTVDSALAELDRIEQQLSMLTGEARARDRIATR

P3 ${ }^{C}$-P7

MANEEKLFGYLKKVTADLHQTRQRLLAAESRSQEPIAIVGMACRLPGGVASPEDLWRLVAGGE DAISEFPQDRGWDVEGLYDPNPEATGKSYAREAGFLYEAGEFDADFFGISPREALAMDPQQRI LIEASWEAFEHAGIPAATARGTSVGVFTGVMYHDYATRLTDVPEGIEGYLGTGNSGSVASGRV AYTLGLEGPAVTVDTACSSSLVALHLAVQALRKGEVDMALAGGVTVMSTPSTFVEFSRQRGLA PDGRSKSFSSTADGTSWSEGVGVLLVERLSDARRKGHRILAVVRGTAVNQDGASSGLTAPNGP SQQRVIRRALADARLTTSDVDVVEAHGTGTRLGDPIEAQAVIATYGQGRDGEQPLRIGSLKSN IGHTQAAAGVSGVIKMVQAMRHGVLPKTLHVEKPTDQVDWSAGAVELLTEAMDWPDKGDGGLR RAAVSSEGVSGTNAHVVLEEAPAAESSPAVEPPAGGGVVPWPVSAKTSAALDAQIGQLAAYAE DRTDVDPAVAARALVDSRTAMEHRAVAVGDSREALRDALRMPEGLVRGTVTDPGRVAFVFPGQ GTQWAGMGAELLDSSPEFAAAMAECETALSPYVDWSLEAVVRQAPSAPTLDRVDVVQPVTFAV MVSLAKVWQHHGITPEAVIGHSQGEIAAAYVAGALTLDDAARVVTLRSKSIAAHLAGKGGMIS LALSEEATRQRIENLHGLSIAAVNGPTATVVSGDPTQIQELAQACEADGIRARIIPVDYASHS AHVETIENELADVLAGLSPQTPQVPFFSTLEGTWITEPALDGGYWYRNLRHRVGFAPAVETLA TDEGFTHFIEVSAHPVLTMTLPDKVTGLATLRREDGGQHRLTTSLAEAWANGLALDWASLLPA TGALSPAVPDLPTYAFQHRSYWISPAGPGEAPAHTASGREAVAETGLAWGPGAEDLDEEGRRS AVLAMVMRQAASVLRCDSPEEVPVDRPLREIGFDSLTAVDFRNRVNRLTGLQLPPTVVFEHPT PVALAERISDELAERNWAVAEPSDHEQAEEEKAAAPAGARS GADTGAGAGMFRALFRQAVEDD RYGEFLDVLAEASAFRPQFASPEACSERLDPVLLAGGPTDRAEGRAVLVGCTGTAANGGPHEF LRLSTSFQEERDFLAVPLPGYGTGTGTGTALLPADLDTALDAQARAILRAAGDAPVVLLGHSG GALLAHELAFRLERAHGAPPAGIVLVDPYPPGHQEPIEVWSRQLGEGLEAGELEPMSDARLLA

```
MGRYARFLAGPRPGRSSAPVLLVRASEPLGDWQEERGDWRAHWDLPHTVADVPGDHFTMMRDH
APAVAEAVLSWLDAIEGIEGAGK
AmpKS15
EPIAVVGMGCRFPGGVDSPQALWEMVAGGTDVISEFPDDRGWDLEALRTSGIDDRDTSVSQRG
GFLDSIADFDPGFFGISPREAVTMDPQQRLLLETAWEAIERARIDATRLRGTRTGTFIGTNGQ
DYAYLLVRSLDDATGDVGTGIAASAVSGRLSYTFGLEGPAITVDTACSSSLVALHLAVQSLRN
GECTLALAGGVNVMSTPGSLVEFSRQGGLAGDGRCKAFSDSADGTGWSEGAAVLALERLSDAQ
RNGHPVLAVIRGSAVNQDGASNGFTAPNGPSQQRVIRQALSNAGLNPADVDVVEAHGTGTPLG
DPIEAQSILATYGQDREQPLLLGSIKSNIGHTQSAASGVAGIMKMIMAMRNEVLPKTLHVDRP
STHVDWTAGKVELLTENRPWPTAPDRPRRSGVSSFGVSGTNAHVIVEQAPQTP
```

Table S1. Annotated P1-P2-P3-P7 sequences. Modules P1, P2, P3, and P7 are respectively shown in red, orange, yellow, and magenta text (colored as in Figures 1 and 2). Gatekeeping motifs, VMYH and TNGQ, are shown in bolded cyan text. Residues that deviate from the published sequence are shown in bold green text. Sequence encoding $\mathrm{a}^{\mathrm{His}} 6$ tag on the first polypeptide is shown in black. Docking motifs from the spinosyn PKS are underlined ${ }^{1}$.

P3 general F	CGCGTTCCTCTTCACCGGCCAGGGCAGTCA
P3 general R	TGGCCGGTGAAGAGGAACGCGGTGGTGCCGT
P3 (VMAH)	
VMAH F	ACCGGCGTGATGgccCACGACTACGCCA
VMAH R	TGGCGTAGTCGTGggcCATCACGCCGGT
P3 (VAYH)	
VAYH F	GCGTCTTCACCGGCGTGgcgTACCACGACTA
VAYH R	TAGTCGTGGTAcgcCACGCCGGTGAAGACGC
P3 (VAAH)	
VAAH F	TTCACCGGCGTGgcggccCACGACTA
VAAH R	TAGTCGTGggccgcCACGCCGGTGAA
P3 (VNYH)	
VNYH F	GTCTTCACCGGCGTGaacTACCACGACTACGCCA
VNYH R	TGGCGTAGTCGTGGTAgttCACGCCGGTGAAGAC
P3 (VNGH)	
VNGH F	CTTCACCGGCGTGaacggtCACGACTACGCCA
VNGH R	TGGCGTAGTCGTGaccgttCACGCCGGTGAAG
P3 (TNGH)	
TNGH F	CACCGGCacgaacggtCACGACTACGCCA
TNGH R	TGGCGTAGTCGTGaccgttcgtGCCGGTG
P3 (TNGQ)	
TNGQ F	CGGCacgaacggtcaaGACTACGCCACCCGT
TNGQ R	ACGGGTGGCGTAGTCttgaccgttcgtGCCG
P3 (AmpKS15)	
AmpKS15 F	GGGAGAGCGGGAACCAATTGCCGTGGTCGGCATGGGCTGCCGCTT
AmpKS15 R	GTACCCGGGGATCCTCTAGAGGGAGTCTGAGGCGCCTGCTCGACGATGA

Table S2. Sequences of primers used to construct P1-P2-P3-P7 variants. Mutagenic regions appear in lowercase, while homologous regions for SLiCE assembly are underlined.

Culturing E. coli K207-3 transformed with expression plasmids

Production of 1, 2, and 3 was assessed from media extracts of E. coli K207-3 cultures ${ }^{3}$. After transforming an expression plasmid into E. coli K207-3, a single colony was used to inoculate 3 mL of LB media containing $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin. This starter culture was incubated at $37{ }^{\circ} \mathrm{C}$ and 240 rpm for 16 h before $400 \mu \mathrm{~L}$ was transferred to 40 mL of expression media [$5 \mathrm{~g} \mathrm{~L}^{-1}$ yeast extract, $10 \mathrm{~g} \mathrm{~L}^{-1}$ casein, $15 \mathrm{~g} \mathrm{~L}^{-1}$ glycerol, $10 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{NaCl}$, and 100 mM potassium phosphate buffer (pH 7.6)] containing $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin in a 250 mL Erlenmeyer flask covered with a milk filter disk. Cells were cultured at $37^{\circ} \mathrm{C}$, 240 rpm until $\mathrm{OD}_{600}=0.4$. The cultures were cooled to $19^{\circ} \mathrm{C}$, and sodium propionate and IPTG were added to final concentrations of 20 mM and 0.1 mM , respectively. Cultures were incubated at $19^{\circ} \mathrm{C}$ and 240 rpm for 7 d .

Polyketide detection and quantification

After $7 \mathrm{~d}, 0.5 \mathrm{~mL}$ samples of culture broth were acidified with $10 \mu \mathrm{~L}$ of aqueous concentrated HCl . The acidified samples were twice extracted with 0.5 mL of ethyl acetate, concentrated in vacuo, and resuspended in $500 \mu \mathrm{~L}$ of $1: 1(\mathrm{v} / \mathrm{v})$ methanol/water. High-resolution LC/MS was used to confirm compounds observed by low-resolution LC/MS (Figure S1). $5 \mu \mathrm{~L}$ of the resuspended samples were injected into an Agilent 6230 TOF LC/MS with a ZORBAX Eclipse Plus C_{18} column ($2.1 \times 50 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$) using a flow rate of $1 \mathrm{~mL} \mathrm{~min}^{-1}$ with a gradient of 5% solvent A [water with $0.1 \% ~(\mathrm{v} / \mathrm{v})$ formic acid], 95% solvent B [acetonitrile with $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid] to 100% solvent B over 12 min followed by 100% solvent B for 3 min . As 1 was only detected at lower gas temperatures, all samples were run with a gas temperature of $200^{\circ} \mathrm{C}$ at 150 V .

The Agilent 6230 TOF LC/MS was equipped with a UV detector that allowed for the determination of inferred molar concentration based on a calibration curve of a tetraketide lactone produced in high titers from P1-P5-P6-P7 that allowed it to be easily purified in a previous study (Figures S9-S11, Data File 1) ${ }^{4}$. Samples for UV detection were prepared the same way as high-resolution LC/MS samples, except that they were only resuspended in $125 \mu \mathrm{~L}$ of 50/50 (v/v) methanol/water. The 4 x concentration allowed for UV peaks in the linear range of the calibration curve and is accounted for when calculating the inferred concentration. Unmutated P1-P2-P3-P7 produced enough product for isolation and a calibration curve depending on the extracted ion chromatogram peak area was used to measure titers of 1 (Figure S8). The samples for quantification of 1 were prepared the same way as for high-resolution LC/MS.

LC/MS/MS samples were prepared identically to high-resolution LC/MS samples. LC/MS/MS data was collected using an Agilent 6530 with a Poroshell 300SB-C3 column
($75 \times 2.1 \mathrm{~mm}, 5 \mu \mathrm{~m}$) using a flow rate of $0.7 \mathrm{~mL} / \mathrm{min}$ with a gradient of 5% solvent A [water with $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid], 95% solvent B [acetonitrile with $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid] to 90% solvent B over 12 min followed by 90% solvent B for 4 min . Fragments were generated via collision induced dissociation (CID) at 10 V for 2 and 3 and 20 V for 1 (Figures S4-S6).

Figure S1. Representative high-resolution LC/MS data of media extract from E. coli K207-3 expressing unmutated P1-P2-P3-P7 with the EIC peak and mass spectrum for 1. Top, total ion chromatogram. Middle, EIC for $171.1380 \mathrm{~m} / \mathrm{z}+/-100 \mathrm{ppm}$. Bottom, mass spectrum from the peak at $t_{\mathrm{R}}=8.6 \mathrm{~min}\left(1,[\mathrm{M}+\mathrm{H}]^{+}\right.$observed: $171.1385 \mathrm{~m} / \mathrm{z}$, expected: $171.1380 \mathrm{~m} / \mathrm{z}, 3.2 \mathrm{ppm}$).

Figure S2. Representative high-resolution LC/MS data of media extract from E. coli K207-3 expressing the TNGQ variant of P1-P2-P3-P7 with the EIC peak and mass spectrum for 2. Top, total ion chromatogram. Middle, EIC for $215.1277 \mathrm{~m} / \mathrm{z}+/-100 \mathrm{ppm}$. Bottom, mass spectrum from the peak at $t_{\mathrm{R}}=6.9 \mathrm{~min}\left(\mathbf{2},[\mathrm{M}+\mathrm{H}]^{+}\right.$observed: $215.1277 \mathrm{~m} / \mathrm{z}$, expected: $215.1278 \mathrm{~m} / \mathrm{z},-0.4 \mathrm{ppm})$.

Figure S3. Representative high-resolution LC/MS data of media extract from E. coli K207-3 expressing the AmpKS15 variant of P1-P2-P3-P7 with the EIC peak and mass spectrum for 3. Top, total ion chromatogram. Middle, EIC for $171.1016 \mathrm{~m} / \mathrm{z}+/-100 \mathrm{ppm}$. Bottom, mass spectrum from the peak at $t_{\mathrm{R}}=7.4 \mathrm{~min}\left(3,[\mathrm{M}+\mathrm{H}]^{+}\right.$observed: $171.1011 \mathrm{~m} / \mathrm{z}$, expected: $171.1016 \mathrm{~m} / \mathrm{z},-2.8 \mathrm{ppm}$).

Figure S4. Representative LC/MS/MS data for 1 from E. coli K207-3 expressing P1-P2-P3-P7. A total ion chromatogram (TIC), an extracted ion chromatogram (EIC) for 50-172 m / z in the MS^{2} data, and an EIC for $171.1380 \mathrm{~m} / \mathrm{z}$ in the MS^{1} data to identify the correct MS 2 EIC peak. The MS ${ }^{2}$ spectrum is annotated based on the hypothesized fragmentation pathway (bottom). The integration window for the MS^{2} data is $6.99-7.21 \mathrm{~min}$ and contains 13 scans. Collision induced dissociation (CID) was performed at 20 V to fragment molecules.

$\stackrel{-\mathrm{CO}}{\longleftarrow}$

Exact Mass: 83.0128 Exact Mass: 101.0233

Figure S5. Representative LC/MS/MS data for 2 from E. coli K207-3 expressing the TNGQ variant of P1-P2-P3-P7. A total ion chromatogram (TIC), an extracted ion chromatogram (EIC) for 50-216 m/z in the MS² data, and an EIC for $215.1278 \mathrm{~m} / \mathrm{z}$ in the MS^{1} data to identify the correct MS ${ }^{2}$ EIC peak. The MS 2 spectrum is annotated based on the hypothesized fragmentation pathway (bottom). The integration window for the MS² data is $5.65-5.67 \mathrm{~min}$ and contains 2 scans. Collision induced dissociation (CID) was performed at 10 V to fragment molecules.

LC/MS/MS of 3

Exact Mass: 125.0961

Exact Mass: 83.0128 Exact Mass: 101.0233

Exact Mass: 97.0648

Figure S6. Representative LC/MS/MS data for 3 from E. coli K207-3 expressing the AmpKS15 variant of P1-P2-P3-P7. A total ion chromatogram (TIC), an extracted ion chromatogram (EIC) for 50-172 m/z in the MS^{2} data, and an EIC for $171.1016 \mathrm{~m} / \mathrm{z}$ in the MS^{1} data to identify the correct MS ${ }^{2}$ EIC peak. The MS^{2} spectrum is annotated based on the hypothesized fragmentation pathway (bottom). The integration window for the MS² data is $5.73-5.93 \mathrm{~min}$ and contains 14 scans. Collision induced dissociation (CID) was performed at 10 V to fragment molecules.

Purification of 1

Product 1 was purified from 1 L of E. coli K207-3 culture expressing P1-P2-P3-P7. After transforming an expression plasmid into E. coli K207-3, a single colony was used to inoculate 3 mL of LB media containing $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin. This starter culture was incubated at $37{ }^{\circ} \mathrm{C}$ and 240 rpm for 16 h before $330 \mu \mathrm{~L}$ was transferred to 330 mL of expression media [$5 \mathrm{~g} \mathrm{~L}^{-1}$ yeast extract, $10 \mathrm{~g} \mathrm{~L}^{-1}$ casein, $15 \mathrm{~g} \mathrm{~L}^{-1}$ glycerol, $10 \mathrm{~g} \mathrm{~L}{ }^{-1} \mathrm{NaCl}$, and 100 mM potassium phosphate buffer (pH 7.6)] containing $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin in a 3 L flask covered with a milk filter disk. Cells were cultured at $37^{\circ} \mathrm{C}, 240 \mathrm{rpm}$ until OD_{600} $=0.6$. The cultures were cooled to $16{ }^{\circ} \mathrm{C}$, and sodium propionate and IPTG were added to final concentrations of 20 mM and 0.1 mM , respectively. Cultures were incubated at 19 ${ }^{\circ} \mathrm{C}$ and 240 rpm for 7 d . After incubation, the cultures were extracted twice with ethyl acetate $(2 \times 1 \mathrm{~L})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The ethyl acetate extract was then filtered and dried in vacuo and purified by silica gel column chromatography using a $0-100 \%$ gradient of ethyl acetate/hexanes. The purest fractions were dried in vacuo and used to characterize 1 by ${ }^{1} \mathrm{H}$ NMR and generate the calibration curve (Figures S7 and S8).

Figure S7. ${ }^{1} \mathrm{H}$ NMR of 1. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{dd}, \mathrm{J}=16.0,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.14(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~h}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{dp}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H). This spectrum is in agreement with previous characterization ${ }^{1}$.

Figure S8. Extracted ion chromatogram calibration curve of 1. The peak area of the extracted ion chromatogram (EIC) was used for several concentrations of purified $\mathbf{1}$ to generate a calibration curve.

Figure S9. Calibration curve of lactone UV absorption. The absorption of UV light at 247 nm by the β-ketolactone of a reference compound (from P1-P5-P6-P7) ${ }^{4}$ was used to generate a calibration curve for the quantification of $\mathbf{2}$ and $\mathbf{3}$.

Figure S10. Representative UV absorbance chromatogram and spectrum for 2. A total ion chromatogram (TIC) for the TNGQ variant of P1-P2-P3-P7 (top), extracted wavelength chromatogram for 247 nm (EWC, middle), and EIC for 2. The UV absorbance of the peak at 6.5 min indicated by an asterisk is shown on the right (the delay between the photodiode array and the mass spectrometer is $\sim 10 \mathrm{~s}$).

Figure S11. Representative UV absorbance chromatogram and spectrum for 3. A total ion chromatogram (TIC) for the TNGQ variant of P1-P2-P3-P7 (top), extracted wavelength chromatogram for 247 nm (EWC, middle), and EIC for 2. The UV absorbance of the peak at 6.6 min indicated by an asterisk is shown on the right (the delay between the photodiode array and the mass spectrometer is $\sim 10 \mathrm{~s}$).

Modeling intermediates in KS substrate tunnels

The dimeric structures of PikKS3 and its variants as well as AmpKS15 were predicted with AlphaFold 2.0^{5}, while coordinate and restraint files for the methyl thioester analogs of D- β-D- δ-dihydroxy-L- γ-methylheptanoyl-PikACP3 and $\mathrm{D}-\delta$-hydroxy-L- γ-methyl- α -heptenoyl-PikACP3 were generated by the program Sketcher ${ }^{6}$ (Figures 4 and S12). The program Coot was used to position the intermediates as in experimentally-determined acyl-KS structures (PDBs: 2BUI, 2GFY, 2IX4, 6ROP, 7UK4) ${ }^{7-13}$ where the hydrogen bond distance between the thioester oxygen and the amide nitrogen of position 32 ranges from 2.7 to $3.1 \AA$, the $\mathrm{N}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{S}$ torsion angle of the reactive cysteine ranges from -59° to -
96°, and the $\mathrm{O}-\mathrm{C}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ torsion angle of the acyl chain ranges from -48°, to -88° (applicable to the β-hydroxyacyl intermediate, 0° was used for the enoyl intermediate) (Table S3).

Hydrated intermediate bound to KS

KS	O (thioester) $-\mathrm{N}(32)$	$\mathrm{N}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{S}$ torsion	$\mathrm{O}-\mathrm{C}_{-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta} \text { torsion }}$
PikKS3(VMYH)	$2.7 \AA$	-72.6°	-70.8°
PikKS3(VAYH)	$2.7 \AA$	-73.2°	-73.9°
PikKS3(VMAH)	$2.7 \AA$	-71.7°	-71.1°
PikKS3(VAAH)	$2.7 \AA$	-73.2°	-70.2°
PikKS3(TNGQ)	$2.7 \AA$	-72.4°	-69.5°
AmpKS15	$2.7 \AA$	-68.0°	-72.8°

Dehydrated intermediate bound to KS

KS	O (thioester) $-\mathrm{N}(32)$	$\mathrm{N}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{S}$ torsion	$\mathrm{O}-\mathrm{C}_{-} \mathrm{C}_{\alpha} \mathrm{C}_{\beta}$ torsion
PikKS3(VMYH)	$3.1 \AA$	-72.6	0°
PikKS3(VAYH)	$3.1 \AA$	-73.2°	0°
PikKS3(VMAH)	$3.1 \AA$	-71.7°	0°
PikKS3(VAAH)	$3.1 \AA$	-73.2°	0°
PikKS3(TNGQ)	$3.1 \AA$	-72.4°	0°
AmpKS15	$3.1 \AA$	-68.0°	0°

Table S3. Key parameters for modeled acyl-KSs.
view from KS dimer interface

VAYH

VMAH

view from KS dimer interface

VAAH

view from other KS monomer

TNGQ

TNGQ

(AmpKS15)

Figure S12. Interactions between gatekeeping residues and intermediates. The hydrated and dehydrated triketide intermediates of P1-P2-P3-P7 were modeled into PikKS3, its

VAYH, VMAH, VAAH, and TNGQ variants, and AmpKS15. The numbers in the center of each panel are from Figure 3. They report the relative production, or lack thereof, of 1 and 2 by synthases containing the indicated motif and provide a metric for how the β hydroxy and α, β-unsaturated triketide intermediates pass through PikKS3 and its variants. The stereodiagrams show how the intermediates (grey carbons) may interact with residues in the KS substrate tunnel, especially those in positions 2 and 3 (bold). AmpKS15 is a family F KS that is naturally acylated by a β-hydroxy intermediate and expected to be acylated by the hydrated triketide. Perhaps AmpKS15 is not acylated by the hydrated triketide in the AmpKS15 variant of P1-P2-P3-P7 variant due to a poor interface with PikACP3 (Figure S13).

Figure S13. Possible incompatibility between PikACP3 and AmpKS15. Stereodiagrams show the Alphafold 2.0 predictions of PikACP3 docking with PikKS3 and AmpACP15 docking with AmpKS15 (ACPs in yellow, KSs in green and cyan). The surface asparagine (\mathbf{N}) of AmpKS15 is present in $>90 \%$ of KSs and makes many contacts with AmpACP15 (hydrogen bonds illustrated with dashed lines). PikKS3 contains a less common serine (\mathbf{S}) at this location that contacts PikACP3 quite differently. Thus, although the dehydrated triketide intermediate shuttled by PikACP3 appears to fit in the AmpKS15 tunnel (Figure S12), it may not enter this tunnel within the AmpKS15 variant of P1-P2-P3-P7 due to incompatibilities between PikACP3 and AmpKS15.

References

1. K. A. L. Ray, J. D.; Bista, R.; Zhang, J.; Desai, R. R.; Hirsch, M.; Miyazawa, T.; Cordova, A.; Keatinge-Clay, A. T. , In review at Nat. Commun., 2024.
2. K. Motohashi, Methods Mol Biol, 2017, 1498, 349-357.
3. S. Murli, J. Kennedy, L. C. Dayem, J. R. Carney and J. T. Kealey, J Ind Microbiol Biotechnol, 2003, 30, 500-509.
4. J. Zhang, R. Bista, T. Miyazawa and A. T. Keatinge-Clay, Metab Eng, 2023, 78, 93-98.
5. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, et al., Nature, 2021, 596, 583-589.
6. J. Agirre, M. Atanasova, H. Bagdonas, C. B. Ballard, A. Basle, et al., Acta Crystallogr D Struct Biol, 2023, 79, 449-461.
7. F. Long, R. A. Nicholls, P. Emsley, S. Graaeulis, A. Merkys, et al., Acta Crystallogr D Struct Biol, 2017, 73, 112-122.
8. P. von Wettstein-Knowles, J. G. Olsen, K. A. McGuire and A. Henriksen, FEBS J, 2006, 273, 695-710.
9. J. Wang, S. M. Soisson, K. Young, W. Shoop, S. Kodali, et al., Nature, 2006, 441, 358361.
10. C. E. Christensen, B. B. Kragelund, P. von Wettstein-Knowles and A. Henriksen, Protein Sci, 2007, 16, 261-272.
11. A. Rittner, K. S. Paithankar, A. Himmler and M. Grininger, Protein Sci, 2020, 29, 589-605.
12. S. K. Kim, M. S. Dickinson, J. Finer-Moore, Z. Guan, R. M. Kaake, et al., Nat Struct Mol Biol, 2023, 30, 296-308.
13. P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, Acta Crystallogr D Biol Crystallogr, 2010, 66, 486-501.
