Electronic Supporting Information

Pd-Catalyzed CO-Free Double Carbonylation for the Synthesis of 1,4-Ketoesters with Mo(CO)₆ as Carbonyl Source

Wenting Guo, Houhong Gong, Wei Yuan, Hualan Zhou, Li Tao and Jing Zhu*

Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China; E-mail: 2016000019@jou.edu.cn

Table of Contents

I. General Information	S2
II. Synthesis and Reaction	S3
III. Characterization Data	S12
IV. References	
V. Copies of NMR Spectra	

I. General Information

Unless otherwise noted, all chemicals were purchased from commercial suppliers and used without further purification. ¹H NMR₁ ¹³C NMR spectra were recorded at ambient temperature on a 500 MHz (125 MHz for ¹³C) NMR spectrometer. NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) as the internal standard. The coupling constants *J* are given in Hz. Column chromatography was performed using EM Silica gel 60 (300-400 mesh). High-resolution mass spectra (HRMS) were obtained using a Bruker micro TOF II focus spectrometer (ESI). All melting points were uncorrected.

II. Synthesis and Reaction

Preparation of the substrates

General procedures for the synthesis of 1

Step I:¹ *p*-TsOH (10 mmol) was added to a stirred solution (50 mL of CH₃CN) containing the corresponding phenol **S1** (10 mmol) at r.t. After 5 min, 1.1 equivalent of NIS (11 mmol) was added and the mixture was stirred overnight. After the completion of the reaction, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 30:1) as the eluent to give the desired product **S2**.

Step II:² To a solution of **S2** (10 mmol, 1.0 equiv), PPh₃ (10 mmol, 1.0 equiv) and *s*-methyl lactate (0.95 equiv) in THF (10 mL) at room temperature was added dropwise a solution of DIAD (1.05 equiv) in THF (4.0 mL) over 30 min. Then the solution was stirred overnight. After the completion of the reaction, the solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 30:1) as the eluent to give the desired product **S3**.

Step III:² To the solution of **S3** (10 mmol, 1.0 equiv) in DCM (10 mL) under nitrogen at -78 $^{\circ}$ C was added dropwise a solution of DIBAL-H (2.3 equiv) in DCM (1.0 M). After the addition, the reaction mixture was stirred for 1 h at -78 $^{\circ}$ C, and

warmed to room temperature and stirred for another 2 h. Then the reaction was quenched by 20 mL of saturated brines slowly and extracted with DCM (10 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 8:1) as the eluent to give the desired product S4.

Step IV² To the solution of **S4** (10 mmol, 1.0 equiv) and pyridine (1.0 equiv) in anhydrous CHCl₃ (15 mL) under nitrogen at 0 °C was added a solution of SOCl₂ (1.5 equiv) in anhydrous CHCl₃ (5 mL). After the addition, the reaction mixture was slowly warmed to reflux and stirred for 6 h. Afterwards, the reaction was quenched with aqueous NaHCO₃ solution in an ice bath and extracted with DCM (10 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 30:1) as the eluent to give the desired product **S5**.

Step V:² To an ice cooled solution of KO'Bu (23 mmol, 2.3 equiv) in anhydrous THF (30 mL) under nitrogen at 0 °C was added the solution of **S5** (10 mmol) in anhydrous THF (10 mL). After 30 min the reaction mixture was allowed to warm to room temperature and stirred for 3 h. After the completion of the reaction, 20 mL of saturated brines was added to the mixture, and extracted with ethyl acetate (15 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether as the eluent to give the desired product **1**.

Optimization of the reaction conditions

Initially, we selected 2-iodophenyl alkenyl ether 1a and methanol 2a as model substrates to react with different metal carbonyl and organic carbonyl sources for identifying the optimal conditions (Table S1, entries 1-7). Delightedly, when the reaction was conducted in the presence of 10 mol % of Pd(OAc)₂, 20 mol% of Ad₂PⁿBu, Na₂CO₃ (2.0 equiv) in toluene (1.0 mL) under 80 °C for 24 h with Mo(CO)₆ (1.0 equiv) as the carbonyl source, the desired 1,4-ketoester product 3a was formed smoothly in 6% isolated yield (Table S1, entry 2). Subsequently, the yield of 3a was further increased to 22% by replacing Pd(OAc)₂ with PdCl₂ (Table S1, entry 10) while other tested catalysts obtained no better results (Table S1, entries 8-9 & 11-12). Unfortunately, various screened phosphine ligands including PPh₃, PCy₃, dppp and XantPhos were all inferior to Ad₂PⁿBu (Table S1, entries 13-16). To further improve the reaction efficiency, a large variety of inorganic bases and organic bases, including KOH, Cs₂CO₃, DABCO and DIPEA were evaluated carefully (Table S1, entries 17-20). Dramatically, the yield of **3a** was increased to 40% by using DABCO as the base (Table S1, entries 19). Afterwards, a higher isolated yield of 45% was obtained by investigating the reaction solvents like PhCl, PhCF₃, xylene and 1,2-DCE (Table S1, entries 21-24). We were pleased to find higher reaction temperatures are favorable to increase the reaction efficiency, and the yield reached 76% under 100 °C (Table S1, entry 25). Further variation of the amount of $Mo(CO)_6$ demonstrated that 0.4 equivalent of $Mo(CO)_6$ was the most suitable, where the product **3a** was formed in 73% yield (Table S1, entry 26). Then control experiments in the absence of palladium or the ligand have been carried out. We found no reaction took place neither in the absence of palladium or the ligand (Table S1, entries 27 & 28). Besides, although the reactions could take place by decreasing the loading amount of palladium to 5%, 3% and 1%, the yields, the yields decreased dramatically to 43%, 26% and 5%, respectively (Table S1, entry 29). Finally, the optimized conditions were established as follows: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 equiv), Mo(CO)₆ (0.4 equiv), PdCl₂ (10

mol%), Ad₂PⁿBu (20 mol%), DABCO (2.0 equiv), in xylene (1.0 mL) at 100 °C for 24 h, where the yield of **3a** reached 73% (Table S1, entry 26).

			CO Source			
	L/		[Pd]/Ligand, Base, Sol	vent		
	1a	2a			3a	
Entry	CO Source	[Pd]	Ligand	Base	Solvent	Yield (%) ^b
1	$Co_2(CO)_8$	Pd(OAc) ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	trace
2	Mo(CO) ₆	$Pd(OAc)_2$	Ad_2P^nBu	Na ₂ CO ₃	Toluene	6
3	$W(CO)_6$	$Pd(OAc)_2$	Ad_2P^nBu	Na ₂ CO ₃	Toluene	3
4	Cr(CO) ₆	$Pd(OAc)_2$	Ad_2P^nBu	Na ₂ CO ₃	Toluene	trace
5	HCOOH	Pd(OAc) ₂	Ad_2P^nBu	Na ₂ CO ₃	Toluene	N.R.
6	DMF	Pd(OAc) ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	N.R.
7	TFBen	Pd(OAc) ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	N.R.
8	Mo(CO) ₆	Pd(dba) ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	5
9	Mo(CO) ₆	Pd(TFA) ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	10
10	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	22
11	Mo(CO) ₆	Pd(MeCN) ₂ Cl ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	trace
12	Mo(CO) ₆	Pd(PPh ₃) ₂ Cl ₂	Ad ₂ P ⁿ Bu	Na ₂ CO ₃	Toluene	8
13	Mo(CO) ₆	PdCl ₂	PPh ₃	Na ₂ CO ₃	Toluene	17
14	Mo(CO) ₆	PdCl ₂	PCy ₃	Na ₂ CO ₃	Toluene	12
15	Mo(CO) ₆	PdCl ₂	dppp	Na ₂ CO ₃	Toluene	trace
16	Mo(CO) ₆	PdCl ₂	XantPhos	Na ₂ CO ₃	Toluene	trace
17	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	KOH	Toluene	N.R.
18	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	Cs_2CO_3	Toluene	19
19	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DABCO	Toluene	40
20	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DIPEA	Toluene	13
21	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DABCO	PhCl	30
22	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DABCO	PhCF ₃	32
23	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DABCO	Xylene	45
24	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DABCO	1,2-DCE	5
25	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DABCO	Xylene	59°, 76 ^d
260	$M_{\tau}(CO)$	DICI	A 1 D#D	DADCO	Valaria	73 ^e , 75 ^f ,
20 ^a	$MO(CO)_6$	PaCI ₂	Ad ₂ P"Bu	DABCO	Ayiene	$72^g, 18^h$
$27^{d,e}$	Mo(CO) ₆	١	Ad ₂ P ⁿ Bu	DABCO	Xylene	N.R.
$28^{d,e}$	Mo(CO) ₆	PdCl ₂	λ	DABCO	Xylene	N.R.
29 ^{<i>d</i>,<i>e</i>}	Mo(CO) ₆	PdCl ₂	Ad ₂ P ⁿ Bu	DABCO	Xylene	$43,^{i}26,^{j}5^{k}$

 Table S1. Optimization of the reaction conditions.^a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), methanol **2a** (0.4 mmol, 2.0 equiv), CO source (0.2 mmol, 1.0 equiv), palladium catalyst (10 mol%), ligand (20 mol%), base (2.0 equiv), solvent (1.0 mL), 80 °C, 24 h. ^{*b*} Isolated yield. ^{*c*} Under 90 °C. ^{*d*} Under 100 °C. ^{*e*} 0.4 Equiv of Mo(CO)₆ was used. ^{*f*} 0.5 Equiv of Mo(CO)₆ was used. ^{*g*} 2.0 Equiv of Mo(CO)₆ was used. ^{*h*} 1 Atm. of CO gas was used instead of Mo(CO)₆, ^{*i*} 5 mol% of PdCl₂. ^{*j*} 3 mol% of PdCl₂. ^{*k*} 1 mol% of PdCl₂. N.R. is no reaction.

General procedure for the synthesis of 3

A 20 mL of Schlenk tube equipped with a stir bar was charged with **1** (0.20 mmol, 1.0 equiv), alcohol **2** (0.4 mmol, 2.0 equiv), Mo(CO)₆ (0.4 equiv), PdCl₂ (10 mol%), Ad₂PⁿBu (20 mol%), DABCO (2.0 equiv) and xylene (1.0 mL). The tube was sealed with a Teflon lined cap. The reaction mixture was stirred at 100 °C for 24 h in oil bath. After the completion of the reaction, 6.0 mL of saturated brines was added to the mixture, and extracted with ethyl acetate (5 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 8:1) as the eluent to give the desired product **3**.

General procedure for the synthesis of 5

A 20 mL of Schlenk tube equipped with a stir bar was charged with **1a** (0.20 mmol, 1.0 equiv), phenol **4** (0.4 mmol, 2.0 equiv), Mo(CO)₆ (0.4 equiv), PdCl₂ (10 mol%), Ad₂PⁿBu (20 mol%), DABCO (2.0 equiv) and xylene (1.0 mL). The tube was sealed with a Teflon lined cap. The reaction mixture was stirred at 100 °C for 24 h in oil bath. After the completion of the reaction, 6.0 mL of EtOAc was added to the mixture, and the mixture was washed with saturated aqueous sodium carbonate (5 mL × 3). Then 20 mL of saturated brines was added to the organic phase, and extracted with ethyl acetate (10 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel

with petroleum ether-EtOAc (PE/EA, v/v, 8:1) as the eluent to give the desired product 5.

Gram-scale synthesis of 5a

A 150 mL of Schlenk tube equipped with a stir bar was charged with **1a** (5 mmol, 1.0 equiv), phenol **4a** (10 mmol, 2.0 equiv), Mo(CO)₆ (0.4 equiv), PdCl₂ (10 mol%), Ad₂PⁿBu (20 mol%), DABCO (2.0 equiv) and xylene (50 mL). The tube was sealed with a Teflon lined cap. The reaction mixture was stirred at 100 °C for 72 h in oil bath. After the completion of the reaction, 50 mL of EtOAc was added to the mixture, and the mixture was washed with saturated aqueous sodium carbonate (20 mL × 3). Then 50 mL of saturated brines was added to the organic phase, and extracted with ethyl acetate (30 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 8:1) as the eluent to give the desired product **5a** in 73% yield (1.03 g).

General procedure for the preparation of hydrazone 6³

To a solution of tosylhydrazide (37.2 mg, 0.2 mmol, 1.0 equiv.) in MeOH (0.5 M) was added **3a** (44.0 mg, 0.2 mmol, 1.0 equiv). The reaction mixture was stirred at 36 °C for 24 hours, and then stirred at 100 °C until complete conversion was observed by TLC. Then the solvent was removed in vacuo, the residue was purified by flash column chromatography on silica gel (PE/EA=4:1) to afford the desired product **6** as a

yellowish solid (68.6 mg, 88%).

General procedure of Buchwald–Hartwig cross-coupling⁴

An oven-dried Schlenk tube (25 mL) charged with a magnetic stirring bar, Pd(dba)₂ (5.8 mg, 5 mol%), 'BuXPhos (8.6 mg, 10 mol%), NaO'Bu (28 mg, 1.4 equiv), **6d** (62 mg, 0.2 mmol) and aniline (38 μ L, 2.0 equiv) was vacuumed and refilled with argon for 3 times. The solvent-free reaction mixture was stirred at 110 °C for 24 h. Subsequently, the reaction mixture was transferred to a column directly for chromatography purification (PE/EA = 4:1) with minimum amount of CH₂Cl₂ to obtain product 7 in 58% yield as a yellow oil.

General procedure for the hydrolysis 3a⁵

A solution of **3a** (44.0 mg, 0.2 mmol) and LiOH (24.0 mg, 1 mmol, 5.0 equiv) in MeOH/H₂O/THF (2.0 mL, 5/1/1) was stirred at room temperature for 15 h. The resulting mixture was neutralized with 1M hydrochloric acid solution and then extracted with DCM (5.0 mL \times 3). The organic layer was dried over Na₂SO₄, concentrated to afford the desired carboxylic acid **8** in 95% yield (39.1 mg).

General procedure for Curtius rearrangement of acid 8⁵

To a solution of **8** (41.2 mg, 0.2 mmol) and Et₃N (14 µL, 0.22 mmol), anhydrous 'BuOH (2.0 mL) was added diphenylphosphoryl azide (21 µL, 0.22 mmol) dropwise. The reaction was heated at 80 °C and stirred for 48 h before cooling down to room temperature and concentrating in vacuo. Et₂O (5.0 mL) and H₂O (10.0 mL) were added. The layers were separated and the aqueous portion was extracted with Et₂O (2 × 5.0 mL). The organic extracts were combined, washed with saturated NaHCO₃ solution, brine, dried over anhydrous Na₂SO₄, filtered, concentrated and purified by column chromatography on silica gel (PE/EA = 4/1) to afford the desired product **9** in 55% yield (30.5 mg).

Studies of the asymmetric reaction

A 20 mL of Schlenk tube equipped with a stir bar was charged with 1a (0.20 mmol, 1.0 equiv), methanol 2a (0.4 mmol, 2.0 equiv), Mo(CO)₆ (0.4 equiv), PdCl₂ (10

mol%), L4 (20 mol%), DABCO (2.0 equiv) and xylene (1.0 mL). The tube was sealed with a Teflon lined cap. The reaction mixture was stirred at 100 °C for 24 h in oil bath. After the completion of the reaction, 6.0 mL of saturated brines was added to the mixture, and extracted with ethyl acetate (5 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 8:1) as the eluent to give the chiral product **3a** in 49% yield with 37% ee value. The ee (37%) of compound **3a** was determined by HPLC using an OD-H column (0.46 cm x 25 cm), *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t(minor) = 17.831min, t(major) = 23.067 min.

III. Characterization Data

1-iodo-2-(prop-1-en-2-yloxy)benzene (1a)

Flash column chromatography on a silica gel (PE) gives **1a** (75% yield) as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.6$ Hz, 1H), 7.33 (dt, $J_1 = 7.7$ Hz, $J_2 = 1.5$ Hz, 1H), 7.08 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.6$ Hz, 1H), 6.90-6.87 (m, 1H), 4.16 (d, J = 2.1 Hz, 1H), 3.77 (d, J = 2.0 Hz, 1H), 2.05 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.8 (C=C), 154.9 (O-C(Ar)), 139.7 (Ar), 129.5 (Ar), 126.0 (Ar), 122.0 (Ar), 90.5 (=CH₂), 89.0 (Ar), 20.1 (CH₃). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₉H₁₀IO⁺ 260.9771, found 260.9770.

1-iodo-2-((1-phenylvinyl)oxy)benzene (1r)

Flash column chromatography on a silica gel (PE) gives **1r** (76% yield) as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.6$ Hz, 1H), 7.82-7.79 (m, 2H), 7.46-7.40 (m, 3H), 7.36-7.32 (m, 1H), 7.13 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.5$ Hz, 1H), 6.92 (dt, $J_1 = 7.8$ Hz, $J_2 = 1.6$ Hz, 1H), 5.09 (d, J = 2.8 Hz, 1H), 4.36 (d, J = 2.8 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.5 (C=C), 155.2 (O-C(Ar)), 139.7 (Ar), 134.6 (Ar), 129.5 (Ar), 128.9 (Ar), 128.3 (Ar), 125.7 (Ar), 120.7 (2C, Ar), 91.5 (=CH₂), 89.4 (Ar). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₂IO⁺ 322.9927, found 322.9934.

Me

1s

2-iodo-4-methyl-1-(prop-1-en-2-yloxy)benzene (1s)

Flash column chromatography on a silica gel (PE) gives 1s (73% yield) as a as a

colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.12 (d, *J* = 8.3 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 4.10 (d, *J* = 2.2 Hz, 1H), 3.72 (d, *J* = 1.9 Hz, 1H), 2.30 (s, 3H), 2.04 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 159.0 (C=C), 152.6 (O-C(Ar)), 139.8 (Ar), 136.0 (Ar), 130.1 (Ar), 121.8 (Ar), 90.3 (=CH₂), 88.1 (Ar), 20.3 (CH₃), 20.2 (Ar-CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₀H₁₁INaO⁺ 296.9747, found 296.9749.

3-iodo-4-(prop-1-en-2-yloxy)-1,1'-biphenyl (1t)

Flash column chromatography on a silica gel (PE) gives **1t** (82% yield) as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 2.2 Hz, 1H), 7.56-7.54 (m, 3H), 7.46-7.43 (m, 2H), 7.39-7.35 (m, 1H), 7.14 (d, J = 8.4 Hz, 1H), 4.22 (d, J = 2.2 Hz, 1H), 3.89 (d, J = 2.0 Hz, 1H), 2.09 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.8 (C=C), 154.3 (O-C(Ar)), 139.2 (Ar), 139.0 (Ar), 138.1 (Ar), 128.8 (Ar), 128.2 (Ar), 127.6 (Ar), 126.9 (Ar), 121.9 (Ar), 90.8 (=CH₂), 89.2 (Ar), 20.1 (CH₃). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₅H₁₄IO⁺ 337.0084, found 337.0096.

1u

4-fluoro-2-iodo-1-(prop-1-en-2-yloxy)benzene (1u)

Flash column chromatography on a silica gel (PE) gives **1u** (52% yield) as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (dd, $J_1 = 7.7$ Hz, $J_2 = 2.8$ Hz, 1H), 7.05-7.00 (m, 2H), 4.12 (d, J = 2.2 Hz, 1H), 3.69 (d, J = 2.2 Hz, 1H), 2.04 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 158.8 (d, J = 246.3 Hz, C=C), 157.8 (O-C(Ar)), 151.2 (d, J = 2.5 Hz, Ar), 126.1 (d, J = 25.0 Hz, Ar), 122.6 (d, J = 8.8 Hz, Ar), 116.2 (d, J = 22.5 Hz, Ar), 90.2 (d, J = 8.8 Hz, =CH₂), 88.3 (Ar), 20.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ -117.0. HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₉H₈FINaO⁺ 300.9496, found

300.9491.

4-chloro-2-iodo-1-(prop-1-en-2-yloxy)benzene (1v)

Flash column chromatography on a silica gel (PE) gives **1v** (63% yield) as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 2.5 Hz, 1H), 7.30 (dd, $J_1 = 8.6$ Hz, $J_2 = 2.5$ Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 4.17 (d, J = 2.1 Hz, 1H), 3.78 (d, J = 2.1 Hz, 1H), 2.03 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.6 (C=C), 153.8 (O-C(Ar)), 138.8 (Ar), 130.2 (Ar), 129.5 (Ar), 122.4 (Ar), 90.7 (=CH₂), 89.4 (Ar), 20.0 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₉H₈ClINaO⁺ 316.9201, found 316.9207.

methyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3a)⁶

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3a** (32.1 mg, 73% yield) as a yellow solid: m.p. 80-81 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.40 Hz, 1H), 7.62-7.59 (m, 1H), 7.10-7.07 (m, 2H), 3.54 (s, 3H), 3.03 (d, *J* = 16.5 Hz, 1H), 2.94 (d, *J* = 16.4 Hz, 1H), 1.47 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.6 (Ar-C=O), 170.9 (O-C(Ar)), 169.1 (COOR), 137.8 (Ar), 124.6 (Ar), 121.9 (Ar), 120.4 (Ar), 113.3 (Ar), 86.2 (O-C(4°)), 51.8 (O-CH₃), 41.2 (CH₂C=O), 22.3 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₂NaO₄⁺ 243.0628, found 243.0635.

ethyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3b)

Flash column chromatography on a silica gel (PE:EA=8:1) gives **3b** (35.5 mg, 76% yield) as a yellow solid: m.p. 80-81 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 1H), 7.61-7.58 (m, 1H), 7.09-7.05 (m, 2H), 4.01-3.89 (m, 2H), 3.04 (d, J = 16.4 Hz, 1H), 2.91 (d, J = 16.4 Hz, 1H), 1.45 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.6 (Ar-C=O), 170.9 (O-C(Ar)), 168.4 (COOR), 137.7 (Ar), 124.5 (Ar), 121.8 (Ar), 120.6 (Ar), 113.2 (Ar), 86.3 (O-C(4°)), 60.8 (O-CH₂), 41.6 (CH₂C=O), 22.5 (CH₃), 13.6 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₃H₁₄NaO₄⁺ 257.0784, found 257.0792.

propyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3c)

Flash column chromatography on a silica gel (PE:EA=8:1) gives **3c** (37.2 mg, 75% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 7.7 Hz, 1H), 7.60-7.57 (m, 1H), 7.09-7.05 (m, 2H), 3.90-3.82 (m, 2H), 3.05 (d, J = 16.3 Hz, 1H), 2.92 (d, J = 16.3 Hz, 1H), 1.45 (s, 3H), 1.41-1.31 (m, 2H), 0.77 (t, J = 7.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 170.9 (O-C(Ar)), 168.5 (COOR), 137.7 (Ar), 124.5 (Ar), 121.8 (Ar), 120.5 (Ar), 113.2 (Ar), 86.3 (O-C(4°)), 66.4 (O-CH₂), 41.6 (CH₂C=O), 22.5 (CH₃), 21.5 (CH₂), 10.2 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₆NaO₄⁺ 271.0941, found 271.0950.

butyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3d)

Flash column chromatography on a silica gel (PE:EA=8:1) gives **3d** (36.7 mg, 70% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 7.7 Hz, 1H), 7.61-7.57 (m, 1H), 7.09-7.05 (m, 2H), 3.94-3.85 (m, 2H), 3.04 (d, J = 16.4 Hz, 1H), 2.92 (d,

J = 16.4 Hz, 1H), 1.45 (s, 3H), 1.34-1.28 (m, 2H), 1.21-1.14 (m, 2H), 0.80 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 170.9 (O-C(Ar)), 168.5 (COOR), 137.7 (Ar), 124.5 (Ar), 121.8 (Ar), 120.5 (Ar), 113.3 (Ar), 86.3 (O-C(4°)), 64.7 (O-CH₂), 41.6 (CH₂C=O), 30.2 (CH₂), 22.5 (CH₃), 18.9 (CH₂), 13.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₈NaO₄⁺ 285.1097, found 285.1106.

pentyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3e)

Flash column chromatography on a silica gel (PE:EA=8:1) gives **3e** (39.2 mg, 71% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 8.1 Hz, 1H), 7.61-7.57 (m, 1H), 7.09-7.05 (m, 2H), 3.93-3.85 (m, 2H), 3.05 (d, J = 16.3 Hz, 1H), 2.92 (d, J = 16.4 Hz, 1H), 1.45 (s, 3H), 1.36-1.30 (m, 2H), 1.23-1.11 (m, 4H), 0.83 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 170.9 (O-C(Ar)), 168.5 (COOR), 137.7 (Ar), 124.5 (Ar), 121.8 (Ar), 120.5 (Ar), 113.3 (Ar), 86.3 (O-C(4°)), 65.0 (O-CH₂), 41.6 (CH₂C=O), 27.9 (CH₂), 27.8 (CH₂), 22.5 (CH₃), 22.2 (CH₂), 13.8 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₂₀NaO₄⁺ 299.1254, found 299.1263.

hexyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3f)

Flash column chromatography on a silica gel (PE:EA=30:1) gives **3f** (39.2 mg, 68% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 7.6 Hz, 1H), 7.60-7.57 (m, 1H), 7.09-7.05 (m, 2H), 3.93-3.85 (m, 2H), 3.04 (d, J = 16.3 Hz, 1H), 2.92 (d, J = 16.3 Hz, 1H), 1.45 (s, 3H), 1.35-1.13 (m, 8H), 0.85 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 170.9 (O-C(Ar)), 168.5 (COOR), 137.7

(Ar), 124.5 (Ar), 121.8 (Ar), 120.5 (Ar), 113.2 (Ar), 86.3 (O-C(4°)), 65.0 (O-CH₂),
41.6 (CH₂C=O), 31.3 (CH₂), 28.1 (CH₂), 25.3 (CH₂), 22.5 (CH₃), 22.4 (CH₂), 13.9 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₂₂NaO₄⁺ 313.1410, found 313.1419.

octyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3g)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **3g** (44.6 mg, 70% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 7.8 Hz, 1H), 7.60–7.57 (m, 1H), 7.09–7.05 (m, 2H), 3.93–3.84 (m, 2H), 3.04 (d, *J* = 16.4 Hz, 1H), 2.92 (d, *J* = 16.4 Hz, 1H), 1.45 (s, 3H), 1.34–1.14 (m, 12H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 170.9 (O-C(Ar)), 168.5 (COOR), 137.7 (Ar), 124.5 (Ar), 121.8 (Ar), 120.5 (Ar), 113.3 (Ar), 86.3 (O-C(4°)), 65.1 (O-CH₂), 41.6 (CH₂C=O), 31.7 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 28.2 (CH₂), 25.7 (CH₂), 22.6 (CH₂), 22.5 (CH₃), 14.0 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₆NaO₄⁺ 341.1723, found 341.1731.

isopropyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3h)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3h** (33.2 mg, 67% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 7.7 Hz, 1H), 7.61–7.57 (m, 1H), 7.09–7.05 (m, 2H), 4.83–4.78 (m, 1H), 3.04 (d, *J* = 16.2 Hz, 1H), 2.88 (d, *J* = 16.2 Hz, 1H), 1.44 (s, 3H), 1.02 (d, *J* = 6.3 Hz, 3H), 0.86 (d, *J* = 6.2 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.6 (Ar-C=O), 171.0 (O-C(Ar)), 167.8 (COOR), 137.7 (Ar), 124.5 (Ar), 121.8 (Ar), 120.7 (Ar), 113.3 (Ar), 86.4 (O-C(4°)), 68.5 (O-CH), 42.1 (CH₂C=O), 22.6 (CH₃), 21.4 (CH₃), 21.1 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₆NaO₄⁺ 271.0941, found 271.0950.

pentan-2-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3i)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3i** (35.9 mg, 65% yield, 1.5:1 dr) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 7.6 Hz, 1H), 7.59–7.57 (m, 1H), 7.09–7.04 (m, 2H), 4.78–4.69 (m, 1H), 3.04 (t, *J* = 16.3 Hz, 1H), 2.91 (d, *J* = 5.6 Hz, 0.6H), 2.87 (d, *J* = 5.4 Hz, 0.4H), 1.44 (d, *J* = 2.0 Hz, 3H), 1.32–1.01 (m, 6H), 0.83–0.75 (m, 4H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (2C, Ar-C=O), 171.0 (O-C(Ar)), 170.9 (O-C(Ar)), 168.0 (COOR), 167.9 (COOR), 137.6 (2C, Ar), 124.53 (Ar), 124.50 (Ar), 121.79 (Ar), 121.76 (Ar), 120.7 (Ar), 120.6 (Ar), 113.29 (Ar), 113.25 (Ar), 86.4(2C, O-C(4°)), 71.7 (O-CH), 71.6 (O-CH), 42.1 (CH₂C=O), 42.0 (CH₂C=O), 37.64 (CH₂), 37.56 (CH₂), 22.7 (CH₃), 22.6 (CH₃), 19.6 (CH₃), 19.3 (CH₃), 18.37 (CH₂), 18.35 (CH₂), 13.8 (2C, CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₂₀NaO₄⁺ 299.1254, found 299.1263.

tert-butyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3j) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives 3j (21.5 mg, 41% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 1H), 7.62– 7.58 (m, 1H), 7.09–7.06 (m, 2H), 3.03 (d, J = 15.7 Hz, 1H), 2.80 (d, J = 15.8 Hz, 1H), 1.43 (s, 3H), 1.13 (s, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.6 (Ar-C=O), 171.0 (O-C(Ar)), 167.4 (COOR), 137.7 (Ar), 124.6 (Ar), 121.8 (Ar), 120.8 (Ar), 113.3 (Ar), 86.7 (O-C(4°)), 81.5 (O-C), 43.3 (CH₂C=O), 27.5 (CH₃), 22.8 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₈NaO₄⁺ 285.1097, found 285.1106.

3k

benzyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3k)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **3k** (46.2 mg, 78% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 7.7 Hz, 1H), 7.59–7.56 (m, 1H), 7.30–7.27 (m, 3H), 7.17–7.15 (m, 2H), 7.07–7.02 (m, 2H), 4.96 (d, J = 3.1 Hz, 2H), 3.10 (d, J = 16.4 Hz, 1H), 2.99 (d, J = 16.4 Hz, 1H), 1.47 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.4 (Ar-C=O), 170.8 (O-C(Ar)), 168.3 (COOR), 137.7 (Ar), 135.1 (Ar), 128.4 (Ar), 128.19 (Ar), 128.16 (Ar), 124.6 (Ar), 121.9 (Ar), 120.4 (Ar), 113.2 (Ar), 86.2 ((O-C(4°))), 66.7 (O-CH₂), 41.4 (CH₂C=O), 22.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₆NaO₄⁺ 319.0941, found 319.0950.

tetrahydro-2*H*-pyran-4-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3l)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **31** (41.2 mg, 71% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.70–7.68 (m, 1H), 7.62–7.58 (m, 1H), 7.10–7.05 (m, 2H), 4.80–4.74 (m, 1H), 3.75–3.71 (m, 1H), 3.67–3.62 (m, 1H), 3.41–3.31 (m, 2H), 3.08 (d, *J* = 16.2 Hz, 1H), 2.93 (d, *J* = 16.3 Hz, 1H), 1.75–1.70 (m, 1H), 1.62–1.57 (m, 1H), 1.48–1.43 (m, 4H), 1.22–1.16 (m, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.4 (Ar-C=O), 170.9 (O-C(Ar)), 167.7 (COOR), 137.8 (Ar), 124.6 (Ar), 122.0 (Ar), 120.6 (Ar), 113.3 (Ar), 86.3 (O-C(4°)), 69.9 (O-CH), 65.1 (O-CH₂), 41.9 (CH₂C=O), 31.3 (CH₂), 22.7 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₈NaO₅⁺ 313.1046, found 313.1056.

but-3-yn-1-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3m) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3m** (36.1 mg, 70% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 1H), 7.62– 7.59 (m, 1H), 7.11–7.06 (m, 2H), 4.08–3.99 (m, 2H), 3.06 (d, J = 16.4 Hz, 1H), 2.96 (d, J = 16.5 Hz, 1H), 2.27 (td, $J_1 = 7.0$ Hz, $J_2 = 2.8$ Hz, 2H), 1.94 (t, J = 2.7 Hz, 1H), 1.47 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ ¹³C NMR (126 MHz, CDCl₃) δ 202.4 (Ar-C=O), 170.9 (O-C(Ar)), 168.2 (COOR), 137.8 (Ar), 124.6 (Ar), 121.9 (Ar), 120.4 (Ar), 113.3 (Ar), 86.2 (O-C(4°)), 79.6 (C=CH), 70.0 (=CH), 62.5 (O-CH₂), 41.3 (CH₂C=O), 22.4 (CH₃), 18.5 (CH₂). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₄NaO₄⁺ 281.0784, found 281.0794.

but-3-en-1-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3n) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3n** (37.4 mg, 72% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 1H), 7.62– 7.58 (m, 1H), 7.10–7.06 (m, 2H), 5.65–5.57 (m, 1H), 5.03–4.99 (m, 2H), 3.97 (td, J_1 = 6.8 Hz, $J_2 = 2.1$ Hz, 2H), 3.04 (d, J = 16.3 Hz, 1H), 2.93 (d, J = 16.3 Hz, 1H), 2.13 (q, J = 6.9 Hz, 2H), 1.46 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 170.9 (O-C(Ar)), 168.5 (COOR), 137.8 (CH=CH₂), 133.6 (Ar), 124.6 (Ar), 121.9 (Ar), 120.5 (Ar), 117.2 (=CH₂), 113.3 (Ar), 86.3 (O-C(4°)), 64.0 (O-CH₂), 41.5 (CH₂C=O), 32.6 (CH₂), 22.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₆NaO₄⁺ 283.0941, found 283.0950.

(1,3-dioxoisoindolin-2-yl)methyl2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-
yl)acetate (30)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **30** (32.9 mg, 45% yield) as a white solid: m.p. 116-117 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.89–7.85 (m, 2H), 7.79–7.76 (m, 2H), 7.56 (d, J = 7.7 Hz, 1H), 7.43–7.40 (m, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.87 (t, J = 7.7 Hz, 1H), 5.63 (d, J = 10.5 Hz, 1H), 5.50 (d, J = 10.5 Hz, 1H), 3.05 (d, J = 16.6 Hz, 1H), 2.93 (d, J = 16.7 Hz, 1H), 1.43 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.1 (Ar-C=O), 170.8 (O-C(Ar)), 167.2 (COOR), 166.2 (N-C=O), 137.6 (Ar), 134.6 (Ar), 131.6 (Ar), 124.4 (Ar), 123.9 (Ar), 121.8 (Ar), 120.2 (Ar), 113.3 (Ar), 85.9 (O-C(4°)), 60.9 (O-CH₂), 41.0 (CH₂C=O), 22.4 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₁₅NNaO₆⁺ 388.0792, found 388.0799.

methyl 2-(2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetoxy)propanoate (3p) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3p** (43.8 mg, 75% yield, 1:1 dr) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 1H), 7.61–7.57 (m, 1H), 7.08–7.05 (m, 2H), 4.97–4.91 (m, 1H), 3.65 (d, J = 4.6 Hz, 3H), 3.12–2.98 (m, 2H), 1.47 (d, J = 5.0 Hz, 3H), 1.29 (d, J = 7.1 Hz, 1.58H), 1.20 (d, J =7.2 Hz, 1.57H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.3 (2C, Ar-C=O), 171.1 (O-C(Ar)), 171.0 (O-C(Ar)), 170.6 (COOR), 170.5 (COOR), 167.9 (COOCH₃), 167.8 (COOCH₃), 137.9 (Ar), 137.8 (Ar), 124.62 (Ar), 124.60 (Ar), 121.93 (Ar), 121.90 (Ar), 120.4 (Ar), 113.4 (Ar), 86.2 (O-C(4°)), 86.1 (O-C(4°)), 69.0 (O-CH), 68.8 (O-CH), 52.3 (2C, O-CH₃), 41.13 (CH₂C=O), 41.08 (CH₂C=O), 22.44 (CH₃), 22.39 (CH₃), 16.7 (CH₃), 16.5 (CH₃). HRMS(ESI) m/z: $[M+Na]^+$ Calcd. for $C_{15}H_{16}NaO_6^+$ 315.0839, found 315.0848.

3-chloropropyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3q) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3q** (40.0 mg, 71% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 1H), 7.62– 7.59 (m, 1H), 7.10–7.06 (m, 2H), 4.05 (t, J = 6.0 Hz, 2H), 3.38 (td, J_1 = 6.5 Hz, J_2 = 2.7 Hz, 2H), 3.06 (d, J = 16.3 Hz, 1H), 2.93 (d, J = 16.3 Hz, 1H), 1.84–1.74 (m, 2H), 1.46 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.4 (Ar-C=O), 170.8 (O-C(Ar)), 168.2 (COOR), 137.9 (Ar), 124.5 (Ar), 122.0 (Ar), 120.4 (Ar), 113.3 (Ar), 86.2 (O-C(4°)), 61.6 (O-CH₂), 41.5 (CH₂C=O), 40.8 (CH₂Cl), 31.2 (CH₂), 22.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₅ClNaO₄⁺ 305.0551, found 305.0561.

methyl 2-(3-oxo-2-phenyl-2,3-dihydrobenzofuran-2-yl)acetate (3r)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **3r** (37.8 mg, 67% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.69–7.59 (m, 4H), 7.37–7.28 (m, 3H), 7.24 (d, J = 8.4 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 3.54 (s, 3H), 3.49 (d, J = 16.8 Hz, 1H), 3.25 (d, J = 16.8 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 199.8 (Ar-C=O), 171.2 (O-C(Ar)), 168.8 (COOR), 137.8 (Ar), 136.4 (Ar), 128.7 (Ar), 128.4 (Ar), 124.9 (Ar), 124.6 (Ar), 122.3 (Ar), 120.6 (Ar), 112.9 (Ar), 88.1 (O-C(4°)), 51.8 (O-CH₃), 43.0 (CH₂C=O). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄NaO₄⁺ 305.0784, found 305.0791.

methyl 2-(2,5-dimethyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3s) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives 3s (37.5 mg, 80% yield) as a white solid: m.p. 69-70 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.47 (s, 1H), 7.41 (d, *J* = 8.5 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 3.53 (s, 3H), 3.00 (d, *J* = 17.0 Hz, 1H), 2.91 (d, *J* = 16.7 Hz, 1H), 2.34 (s, 3H), 1.44 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.6 (Ar-C=O), 169.3 (O-C(Ar)), 169.1 (COOR), 139.0 (Ar), 131.5 (Ar), 123.9 (Ar), 120.2 (Ar), 112.8 (Ar), 86.4 (O-C(4°)), 51.7 (O-CH₃), 41.2 (CH₂C=O), 22.3 (CH₃), 20.6 (Ar-CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₃H₁₄NaO₄⁺ 257.0784, found 257.0792.

methyl 2-(2-methyl-3-oxo-5-phenyl-2,3-dihydrobenzofuran-2-yl)acetate (3t) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives 3t (48.6 mg, 82% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 2.0 Hz, 1H), 7.86 (dd, $J_1 = 8.6$ Hz, $J_2 = 2.1$ Hz, 1H), 7.57–7.55 (m, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.36– 7.33 (m, 1H), 7.16 (d, J = 8.6 Hz, 1H), 3.57 (s, 3H), 3.08 (d, J = 16.6 Hz, 1H), 2.98 (d, J = 16.6 Hz, 1H), 1.51 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 170.3 (O-C(Ar)), 169.0 (COOR), 139.7 (Ar), 137.0 (Ar), 135.5 (Ar), 128.9 (Ar), 127.3 (Ar), 126.8 (Ar), 122.5 (Ar), 120.8 (Ar), 113.5 (Ar), 86.9 (O-C(4°)), 51.8 (O-CH₃), 41.2 (CH₂C=O), 22.4 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₆NaO₄⁺ 319.0941, found 319.0950.

methyl 2-(5-fluoro-2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3u) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives 3u (29.9 mg, 63% yield) as a white solid: m.p. 95-96 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.31 (m, 2H), 7.05–7.01 (m, 1H), 3.54 (s, 3H), 3.05 (d, J = 16.6 Hz, 1H), 2.94 (d, J = 16.7 Hz, 1H), 1.45 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.2 (Ar-C=O), 169.0 (O-C(Ar)), 167.0 (COOR), 157.7 (d, J = 241.3 Hz, Ar), 125.3 (d, J = 26.3 Hz, Ar), 121.0 (d, J = 8.8 Hz, Ar), 114.3 (d, J = 7.5 Hz, Ar), 109.6 (d, J = 23.8 Hz, Ar), 87.4 (O-C(4°)), 51.9 (O-CH₃), 41.3 (CH₂C=O), 22.4 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ -121.1. HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₁FNaO₄⁺ 261.0534, found 261.0544.

methyl 2-(5-chloro-2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3v) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives 3v (33.1 mg, 65% yield) as a white solid: m.p. 94-95 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 2.2Hz, 1H), 7.53 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.3$ Hz, 1H), 7.02 (d, J = 8.8 Hz, 1H), 3.54 (s, 3H), 3.06 (d, J = 16.8 Hz, 1H), 2.95 (d, J = 16.8 Hz, 1H), 1.45 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 201.3 (Ar-C=O), 169.2 (O-C(Ar)), 168.9 (COOR), 137.5 (Ar), 127.3 (Ar), 123.9 (Ar), 121.7 (Ar), 114.5 (Ar), 87.3 (O-C(4°)), 51.9 (O-CH₃), 41.3 (CH₂C=O), 22.4 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₁ClNaO₄⁺ 277.0238, found 277.0245.

phenyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5a)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5a** (44.0 mg, 78% yield) as a white solid: m.p. 117-118 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.63–7.60 (m, 1H), 7.29–7.26 (m, 2H), 7.17–7.07 (m, 3H), 6.87–6.84 (m, 2H), 3.32 (d, *J* = 16.3 Hz, 1H), 3.18 (d, *J* = 16.2 Hz, 1H), 1.56 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.2 (Ar-C=O), 170.9 (O-C(Ar)), 166.9 (COOR), 150.1 (O-C(Ar)), 137.9 (Ar), 129.3 (Ar), 125.9 (Ar), 124.7 (Ar), 122.0 (Ar), 121.2 (Ar), 120.3 (Ar), 113.3 (Ar), 86.1 (O-C(4°)), 41.6 (CH₂C=O), 22.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄NaO₄⁺ 305.0784, found 305.0791.

p-tolyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5b)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5b** (48.0 mg, 81% yield) as a white solid: m.p. 80-81 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 7.7 Hz, 1H), 7.62–7.58 (m, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 7.09–7.05 (m, 3H), 6.73 (d, *J* = 8.5 Hz, 2H), 3.29 (d, *J* = 16.2 Hz, 1H), 3.16 (d, *J* = 16.2 Hz, 1H), 2.27 (s, 3H), 1.55 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.2 (Ar-C=O), 170.9 (O-C(Ar)), 167.1 (COOR), 147.8 (O-C(Ar)), 137.8 (Ar), 135.5 (Ar), 129.7 (Ar), 124.6 (Ar), 121.9 (Ar), 120.8 (Ar), 120.3 (Ar), 113.3 (Ar), 86.1 (O-C(4°)), 41.5 (CH₂C=O), 22.5 (CH₃), 20.7 (Ar-CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₆NaO₄⁺ 319.0941, found 319.0950.

4-methoxyphenyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5c) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5c** (57.8 mg, 83% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 1H), 7.60 (t, J = 8.6 Hz, 1H), 7.11–7.06 (m, 2H), 6.78–6.74 (m, 4H), 3.72 (s, 3H), 3.28 (d, J = 16.3 Hz, 1H), 3.14 (d, J = 16.2 Hz, 1H), 1.54 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.2 (Ar-C=O), 170.9 (O-C(Ar)), 167.3 (COOR), 157.2 (O-C(Ar)), 143.5 (Ar), 137.9 (Ar), 124.7 (Ar), 122.0 (Ar), 121.9 (Ar), 120.3 (Ar), 114.3 (Ar), 113.3 (Ar), 86.2 (O-C(4°)), 55.4 (Ar-OCH₃), 41.5 (CH₂C=O), 22.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₆NaO₅⁺ 335.0890, found 335.0899.

[1,1'-biphenyl]-4-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5d) Flash column chromatography on a silica gel (PE:EA=8:1) gives 5d (50.1 mg, 70% yield) as a white oil; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 7.7 Hz, 1H), 7.64-7.61 (m, 1H), 7.50-7.46 (m, 4H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.34-7.31 (m, 1H), 7.14-7.08 (m, 2H), 6.93-6.90 (m, 2H), 3.33 (d, *J* = 16.3 Hz, 1H), 3.20 (d, *J* = 16.3 Hz, 1H), 1.57 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.2 (Ar-C=O), 171.0 (O-C(Ar)), 167.1 (COOR), 149.5 (O-C(Ar)), 140.3 (Ar), 139.2 (Ar), 138.0 (Ar), 128.7 (Ar), 128.1 (Ar), 127.3 (Ar), 127.1 (Ar), 124.8 (Ar), 122.1 (Ar), 121.5 (Ar), 120.4 (Ar), 113.4 (Ar), 86.2 (O-C(4°)), 41.7 (CH₂C=O), 22.6 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₁₈NaO₄⁺ 381.1097, found 381.1102.

m-tolyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5e)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5e** (40.9 mg, 69% yield) as a white solid: m.p. 95-96 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 7.8 Hz, 1H), 7.63–7.60 (m, 1H), 7.16–7.07 (m, 3H), 6.96 (d, *J* = 7.0 Hz, 1H), 6.64 (d, *J* = 11.1 Hz, 2H), 3.29 (d, *J* = 16.3 Hz, 1H), 3.16 (d, *J* = 16.2 Hz, 1H), 2.27 (s, 3H), 1.55 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.3 (Ar-C=O), 171.0 (O-C(Ar)), 167.1 (COOR), 150.0 (O-C(Ar)), 139.5 (Ar), 137.9 (Ar), 127.0 (Ar), 126.7 (Ar), 124.8 (Ar), 122.0 (Ar), 121.8 (Ar), 120.4 (Ar), 118.2 (Ar), 113.4 (Ar), 86.2 (O-C(4°)), 41.6 (CH₂C=O), 22.5 (CH₃), 21.2 (Ar-CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₆NaO₄⁺ 319.0941, found 319.0950.

4-chlorophenyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5f) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5f** (42.3 mg, 67% yield) as a white solid: m.p. 79-80 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 8.6 Hz, 1H), 7.24–7.20 (m, 2H), 7.11–7.07 (m, 2H), 6.80–6.76 (m, 2H), 3.29 (d, *J* = 16.2 Hz, 1H), 3.15 (d, *J* = 16.3 Hz, 1H), 1.55 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.1 (Ar-C=O), 170.9 (O-C(Ar)), 166.8 (COOR), 148.5 (O-C(Ar)), 138.0 (Ar), 131.3 (Ar), 129.3 (Ar), 124.7 (Ar), 122.6 (Ar), 122.1 (Ar), 120.3 (Ar), 113.3 (Ar), 86.1 (O-C(4°)), 41.5 (CH₂C=O), 22.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₃ClNaO₄⁺ 339.0395, found 339.0404.

2-chlorophenyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5g) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5g** (39.8 mg, 63% yield) as a white solid: m.p. 103-104 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 1H), 7.60 (t, J = 7.9 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 7.13–7.05 (m, 3H), 6.92 (d, J = 8.0 Hz, 1H), 3.34 (d, J = 16.6 Hz, 1H), 3.25 (d, J = 16.5 Hz, 1H), 1.57 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.1 (Ar-C=O), 171.0 (O-C(Ar)), 166.2 (COOR), 146.5 (O-C(Ar)), 137.9 (Ar), 130.2 (Ar), 127.6 (Ar), 127.1 (Ar), 126.7 (Ar), 124.7 (Ar), 123.4 (Ar), 122.0 (Ar), 120.2 (Ar), 113.4 (Ar), 86.0 (O-C(4°)), 40.9 (CH₂C=O), 22.4 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₃ClNaO₄⁺ 339.0395, found 339.0404.

naphthalen-2-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5h)

Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5h** (47.2 mg, 71% yield) as a yellowish solid: m.p. 100-102 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.83–7.80 (m, 2H), 7.70–7.68 (m, 2H), 7.61–7.57 (m, 1H), 7.52–7.46 (m, 2H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.07–7.03 (m, 2H), 3.49 (d, *J* = 16.3 Hz, 1H), 3.37 (d, *J* = 16.2 Hz, 1H), 1.63 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.2 (Ar-C=O), 170.9 (O-C(Ar)), 167.2 (COOR), 146.1 (O-C(Ar)), 137.9(2C, Ar), 134.5 (Ar), 127.9 (Ar), 126.43 (Ar), 126.37 (Ar), 126.1 (Ar), 125.2 (Ar), 124.7 (Ar), 122.1 (Ar), 121.1 (Ar), 120.3 (Ar), 117.8 (Ar), 113.3 (Ar), 86.2 (O-C(4°)), 41.4 (CH₂C=O), 22.5 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C21H16NaO4⁺ 355.0941, found 355.0950.

3,5-dimethylphenyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5i) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5i** (46.5 mg, 75% yield) as a white solid: m.p. 117-118 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 7.7 Hz, 1H), 7.63–7.60 (m, 1H), 7.13–7.07 (m, 2H), 6.78 (s, 1H), 6.45 (s, 2H), 3.29 (d, J = 16.3 Hz, 1H), 3.15 (d, J = 16.2 Hz, 1H), 2.22 (s, 6H), 1.55 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.3 (Ar-C=O), 171.0 (O-C(Ar)), 167.2 (COOR), 150.0 (Ar), 139.1 (Ar), 137.8 (Ar), 127.6 (Ar), 124.7 (Ar), 121.9 (Ar), 120.4 (Ar), 118.8 (Ar), 113.4 (Ar), 86.2 (O-C(4°)), 41.6 (CH₂C=O), 22.5 (CH₃), 21.1 (Ar-CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₈NaO₄⁺ 333.1097, found 333.1106.

2,4-dimethylphenyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5j) Flash column chromatography on a silica gel (PE/EA, v/v, 8:1) gives **5j** (44.7 mg, 72% yield) as a white solid: m.p. 90-91 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 7.7 Hz, 1H), 7.61–7.58 (m, 1H), 7.11–7.05 (m, 2H), 6.95 (s, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 6.65 (d, *J* = 8.2 Hz, 1H), 3.31 (d, *J* = 16.4 Hz, 1H), 3.20 (d, *J* = 16.3 Hz, 1H), 2.24 (s, 3H), 2.04 (s, 3H), 1.56 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.3 (Ar-C=O), 170.9 (O-C(Ar)), 167.1 (COOR), 146.6 (Ar), 137.8 (Ar), 135.7 (Ar), 131.6 (Ar), 129.5 (Ar), 127.3 (Ar), 124.7 (Ar), 122.0 (Ar), 121.1 (Ar), 120.4 (Ar), 113.3 (Ar), 86.2 (O-C(4°)), 41.2 (CH₂C=O), 22.5 (CH₃), 20.7 (Ar-CH₃), 15.9 (Ar-CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₈NaO₄⁺ 333.1097, found 333.1106.

methyl (*E*)-2-(2-methyl-3-(2-tosylhydrazineylidene)-2,3-dihydrobenzofuran-2-yl)acetate (6)

Flash column chromatography on a silica gel (PE:EA=4:1) gives **6** (68.3 mg, 88% yield) as a yellow solid: m.p. 136-137 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96-7.79 (m, 4H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.27 (s, 1H), 6.99-6.91 (m, 2H), 3.37 (s, 3H), 2.82 (d, *J* = 16.1 Hz, 1H), 2.75 (d, *J* = 16.2 Hz, 1H), 2.39 (s, 3H), 1.45 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.1 (O-C(Ar)), 164.3 (COOR), 160.0 (C=N), 144.0 (S-C(Ar)), 134.7 (Ar), 134.4 (Ar), 129.2 (Ar), 128.3 (Ar), 126.3 (Ar), 121.3 (Ar), 117.6 (Ar), 112.1 (Ar), 86.0 (O-C(4°)), 51.4 (O-CH₃), 43.5 (CH₂C=O), 25.4 (CH₃), 21.5 (CH₃). HRMS(ESI) m/z: [M+K]⁺ Calcd. for C₁₉H₂₀KN₂O₅S⁺ 427.0725, found 427.0736.

propyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (7)

Flash column chromatography on a silica gel (PE:EA=8:1) gives 7 (43.3 mg, 58% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 7.5 Hz, 1H), 7.66-7.62 (m, 1H), 7.27-7.24 (m, 2H), 7.15-7.09 (m, 2H), 7.03-6.92 (m, 5H), 6.77-6.74 (m, 2H), 3.31 (d, J = 16.2 Hz, 1H), 3.18 (d, J = 16.3 Hz, 1H), 1.58 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.3 (Ar-C=O), 171.0 (O-C(Ar)), 167.4 (COOR), 144.0 (Ar), 143.1 (Ar), 141.0 (Ar), 137.9 (Ar), 129.4 (Ar), 124.8 (Ar), 122.04 (Ar), 121.99 (Ar), 121.1 (Ar), 120.4 (Ar), 118.6 (Ar), 117.7 (Ar), 113.4 (Ar), 86.2 (O-C(4°)), 41.6 (CH₂C=O), 22.6 (CH₃). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₂₃H₂₀NO₄⁺ 374.1387, found 374.1396.

2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetic acid (8)

Flash column chromatography on a silica gel (EA:MeOH=10:1) gives **8** (39.1 mg, 95% yield) as a white solid: m.p. 165-166 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 1H), 7.62-7.58 (m, 1H), 7.09-7.05 (m, 2H), 2.99 (d, J = 16.6 Hz, 1H), 2.91 (d, J = 16.6 Hz, 1H), 1.46 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.5 (Ar-C=O), 173.8 (O-C(Ar)), 170.9 (COOH), 138.0 (Ar), 124.7 (Ar), 122.0 (Ar), 120.1 (Ar), 113.4 (Ar), 86.0 (O-C(4°)), 40.8 (CH₂C=O), 22.2 (CH₃). HRMS(ESI) m/z: [M-H]⁻ Calcd. for C₁₁H₉O₄⁻ 205.0506, found 205.0506.

tert-butyl ((2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)methyl)carbamate (9) Flash column chromatography on a silica gel (PE:EA=8:1) gives 9 (28.3 mg, 55% yield) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.60 (m, 2H), 7.11-7.06 (m, 2H), 4.76 (s, 1H), 3.54-3.45 (m, 2H), 1.44 (s, 3H), 1.37 (s, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 201.3 (Ar-C=O), 171.5 (O-C(Ar)), 156.7 (N-C=O), 138.3 (Ar), 124.7 (Ar), 122.0 (Ar), 120.3 (Ar), 113.5 (Ar), 89.1 (O-C(4°)), 79.7 (O-C), 45.3 (CH₂NH), 28.2 (CH₃), 19.1 (CH₃). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₉NNaO₄⁺ 300.1206, found 300.1215.

IV. References

- Bovonsombat, P.; Leykajarakul, J.; Khan, C.; Pla-on, K.; Krause, M. M.; Khanthapura, P.; Ali, R.; Doowa, N. Regioselective iodination of phenol and analogues using *N*-iodosuccinimide and *p*-toluenesulfonic acid. *Tetrahedron Lett.* 2009, *50*, 2664-2667.
- García-Lacuna, J.; Alonso, M.; Domíngueza, G.; Pérez Castells, J. Study of the Pauson–Khand reaction in flow over alkynylphenyl vinyl ethers: towards the synthesis of tricyclic multisubstituted benzofurans. *RSC Adv.* 2022, *12*, 7313-7317.
- Allwood, D. M.; Blakemore, D. C.; Ley, S. V. Preparation of Unsymmetrical Ketones from Tosylhydrazones and Aromatic Aldehydes via Formyl C–H Bond Insertion. Org. Lett. 2014, 16, 3064–3067.
- Hu, W.; Teng, F.; Hu, H.; Luo, S.; Zhu, Q. Pd-Catalyzed C(sp²)–H Imidoylative Annulation: A General Approach to Construct Dibenzoox(di)azepines. J. Org. Chem. 2019, 84, 6524–6535.
- Li, Q.; Zhang, Y.; Zeng, Y.; Fan, Y.; Lin, A.; Yao, H. Palladium-Catalyzed Asymmetric Dearomative Carbonylation of Indoles. *Org. Lett.* 2022, 24, 3033–3037.
- Rafiński, Z. NHC-Catalyzed Organocatalytic Asymmetric Approach to 2,2-Disubstituted Benzofuran-3(2*H*)-ones Containing Fully Substituted Quaternary Stereogenic Center. *Catalysts* 2019, *9*, 192-213.

V. Copies NMR Spectra

1-iodo-2-(prop-1-en-2-yloxy)benzene (1a)

1-iodo-2-(prop-1-en-2-yloxy)benzene (1r)

¹H NMR (500 MHz, CDCl₃)

ethyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3b)

butyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3d)

¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 mHz, CDCl₃) ¹H NMR (500 mHz, CDCl₃)

octyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3g)

pentan-2-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3i)

¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃)

tetrahydro-*2H*-pyran-4-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3l)

but-3-yn-1-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3m)

but-3-en-1-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3n)

(1,3-dioxoisoindolin-2-yl)methyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (30)

methyl 2-(2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetoxy)propanoate (3p)

3-chloropropyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3q)

methyl 2-(3-oxo-2-phenyl-2,3-dihydrobenzofuran-2-yl)acetate (3r)

¹H NMR (500 MHz, CDCl₃)

methyl 2-(2-methyl-3-oxo-5-phenyl-2,3-dihydrobenzofuran-2-yl)acetate (3t)

methyl 2-(5-fluoro-2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (3u)

¹⁹F NMR (471 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 ſ1 (ppm)

[1,1'-biphenyl]-4-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5d)

naphthalen-2-yl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5h)

¹H NMR (500 MHz, CDCl₃)

3,5-dimethylphenyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (5i)

methyl (*E*)-2-(2-methyl-3-(2-tosylhydrazineylidene)-2,3-dihydrobenzofuran-2-yl)acetate (6)

propyl 2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate (7)

¹H NMR (500 MHz, CDCl₃)

2-(2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetic acid (8)

tert-butyl ((2-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)methyl)carbamate (9)

210

190

200

180

170 160 150 140 130 120

110 100 90 80 70 f1 (ppm)

60 50

40 30 20 10

0