Electronic Supplementary Information (ESI)

Surface Ligand Manipulation enables ~15% Efficient MAPbl₃ Perovskite

Quantum Dot Solar Cell

Chenyu Zhao, Xinyu Zhao, Hehe Huang, Xuliang Zhang, and Jianyu Yuan*

^aInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China

*To whom correspondence should be addressed. E-mail: jyyuan@suda.edu.cn

Materials

Methylamine acetate (MAAc, 99.99%, Greatcell solar), lead iodide (PbI₂, 99.9%, Adamas), oleic acid (OA, 90%, Aldrich), oleylamine (OAm, 90%, Aladdin), 1-octandecene (ODE, 90%, J&k), Acetic acid (99.5%, TCI), methyl acetate (MeOAc, anhydrous 99%, J&k), n-hexane (anhydrous 97.5%, J&K), n-octane (>98%, Alfa Aesar), toluene (98%, Chinasun Specialty Products Co.,Ltd.), isopropyl alcohol (IPA, >99.9%, J&K), methylamine thiocyanate (MASCN, 97.0%, TCI), methylamine iodide (MAI, Greatcell, 99%), titanium tetrachloride (TiCl4, \geq 98% purity, Sinopharm Chemical Reagent Co.,Ltd.), tris(pentafluorophenyl)borane (95%, Acros Organics), poly(bis(4-phenyl)(2,4,6 trimethylphenyl) amine) (PTAA, Xi'an Polymer Light Technology Crop.). All these materials were used without further purification. Fluorine-doped tin oxide (FTO) covered glass substrates were purchased from Advanced Election Technology Co., Ltd.

Experimental Section

Synthesis of MA-OA precursor

0.455 g of MAAc and 10 mL of OA were loaded into a 50 mL three-neck flask and degassed under vacuum for 2 hours at 70 °C with continuously stirred. The flask was then filled with N_2 and kept at 70 °C for injection.

Synthesis of MAPbl₃ PeQDs

1 g Pbl₂ was added into a 250 mL three-neck flask along with 50 mL ODE and dried under vacuum for 1 hour at 90 °C with continuously stirred. Then, 4 mL OAm and 8 mL OA were injected under N₂ and degassed for about 1 hour. Then, 0.5 mL acetic acid was injected under N₂ atmosphere and kept for 5 min. After that, this solution was cooled to 70 °C and swiftly injected with 10 mL MA-OA solution, 5s later, the reaction was quenched quickly by the ice-water bath. The crude solution was then added with 4 mL toluene and 20 mL MeOAc and centrifuged at 8000 rpm for 10 min to remove the excess precursors and unreacted ligands. The precipitation was collected and re-dispersed into 30 mL Toluene and then added with 10 mL MeOAc and centrifuged at 8000 rpm for 10 min. The precipitants were then collected and re-dispersed in 10 mL n-hexane. Before use, this solution needed to be concentrated to 100 mg mL⁻¹ MAPbl₃ PeQD n-octane solution.

PeQD solar cell device fabrication

The glass/FTO substrate was ultrasonic cleaned with deionized water, acetone isopropyl

alcohol and acetone for 15 minutes each, respectively. After that, the substrate was dried with N₂ stream and treated with ultraviolet ozone for 30 min before use. Then, the TiO₂ electron transport layer was deposited on the FTO substrate by chemical bath deposition. Before depositing the active layer, the substrate was annealed on a hot plate at 200 °C for 30 minutes and treated with ultraviolet ozone for 15 minutes. Then, for preparing active layer, 15 μ L of PeQD solution was dropped on the substrate and coated at 1000 rpm 15 s and 2000 rpm 20 s to prepare the MAPbl₃ PeQD film. Subsequently, 150 μ L IPA solution was dropped onto the as-cast MAPbl₃ PeQD film for 5 s and spin-coated at 2000 rpm for 20 s to remove the excess long chain insulted ligands. For MA-salts treated sample, desired MA-salts are dissolved in IPA as ligands. This process was repeated 2 times to obtain a 200-300 nm thickness MAPbl₃ PeQD film. After that, for preparing hole transport layer, 30 μ L solution of PTAA in Tol (15 mg mL⁻¹) doped with 4 tris(pentafluorophenyl)borane was spin-coated on the active layer at 3000 rpm for 30 s. Finally, 100 nm of Au electrode were thermally evaporated through a shadow mask with an active area of 0.075 cm².

Characterization

The UV-vis absorption spectroscopy was performed on a Perkin Elmer model Lambda 750 spectrophotometer. The PL spectra were recorded by a FluoroMax-4 spectrofluorometer (HORIBA Scientific) with excitation wavelength at 410 nm. The TRPL spectra were obtained using a Hamamatsu streak camera. The PL data were analyzed on a Nikon 50x objective (N.A. 0.55) in a Nikon ME600 optical microscope. The FTIR spectra were collected using a Bruker HYPERION FTIR spectrometer and cumulated 32 scans at a resolution of 4 cm⁻¹. The TEM images were recorded by a Tecnai G2 F20 S-Twin system operated at 200 kV. The XRD patterns were performed on a desktop diffractometer (D2 PHASER, Bruker) with a Cu K α source (λ = 1.54056 Å). The XPS measurements were carried out at a Kratos AXIS Ultra DLD ultrahigh vacuum photoemission spectroscopy system equipped with an Al-K α (1486.6 eV) radiation source and a hemispherical electron energy analyzer (Scienta R3000). The top view and cross-section SEM images were obtained from SEM (a Zeiss G500 with the extra high tension of 10 kV). The AFM images were obtained by a Veeco AFM. J-V curves of the devices carried out at a Keithley 2400 Digital Source Meter under N₂ glovebox and simulated AM 1.5G spectrum at 100 mW cm⁻² with a solar simulator (Class AAA, 94023A-U, Newport). The external quantum efficiency (EQE) measurement of the solar cells was measured by a Solar Cell Scan 100 system (Zolix Instruments Co. Ltd.).

Fig. S1 TEM image and the corresponding size distribution of $MAPbI_3 PeQD$.

Fig. S2 Absorption spectra of pristine $MAPbI_3 PeQD$ film.

Fig. S3 PL spectra of pristine MAPbI₃ PeQD film.

Fig. S4 Tauc plot of pristine MAPbI₃ PeQD film.

Fig. S5 J-V curve of MAAc-treated MAPbI₃ PeQD solar cell

Fig. S6 (a) TPV and (b) TPC spectra of the IPA- and MAI-treated PeQD devices.

Fig. S7 Absorption spectra of IPA-, MASCN- and MAI-treated MAPbI₃ PeQD films.

Fig. S8 (a) TRPL of IPA- and MAI-treated PeQD film on FTO and Quartz substrate; (b) Calculated carrier diffusion length of IPA- and MAI-treated PeQD films using the

equation: $\frac{L_D}{L} = \frac{2}{\pi} \sqrt{\frac{1}{\tau_Q/\tau_0} - 1}$, where *L* is the thickness of PeQD film, τ_Q is the

quenching lifetime, τ_0 is the intrinsic lifetime.

Fig. S9 XPS of C 1s and N 1s core-level spectra of IPA-, MASCN- and MAI-treated MAPbI₃ PeQD films.

Fig. S10 SCLC curve of the IPA- and MAI-treated devices using the equation:

$$n_e = \frac{2\varepsilon_0 \varepsilon V_{TFL}}{\alpha I^2}$$

 eL^2 , where *e* is the elementary charge, ε , ε_0 and *L* are the dielectric constant of bulk film, the vacuum permittivity and the thickness of the MAPbI₃ PeQD films, respectively.

Fig. S11 PL mapping images of IPA-, MASCN- and MAI-treated MAPbI₃ PeQD films on quartz substrate

MA-salts.						
Condition	V _{oc} (V)	J _{SC} (mA cm ⁻²)	FF	PCE (%)		
IPA	1.16	16.04	0.70	13.07		
MAAc	1.18	16.75	0.70	13.91		
MASCN	1.19	16.80	0.72	14.39		
MAI	1.20	17.10	0.73	14.98		

Table S1 The detailed *J-V* parameters of MAPbI₃ PeQD solar cells treated by IPA and MA-salts.

Table S2 Device efficiency progress of PeQD solar cell.

Composition	Method	V _{oc}	J _{SC}	FF	PCE	Ref
MAPbI ₃	Synthesis engineering	1.02	16.42	0.56	9.30	1
MAPbI ₃	Synthesis engineering	1.20	15.46	0.72	13.34	2
MAPbl ₃	A-site salts (MAI) post-	1.20	17.10	0.73	14.98	This work
	treatment					
FAPbl₃	Solvent engineering	1.10	11.83	0.64	8.38	3
FAPbI ₃	A-site salts (FASCN) post-	1.15	18.45	0.68	14.47	4
	treatment					
FAPbl ₃	Solution phase ligand	1.16	20.95	0.67	16.29	5
	engineering					
MA ₁₋	A-site salts (MAI) solution	1.14	17.30	0.76	15.10	6
_x FA _x PbI ₃	phase treatment and					

	post-treatment					
MA ₁₋	A-site salts (FAI) post-	1.19	16.42	0.77	15.05	7
_x FA _x PbI ₃	treatment					
MA ₁₋	A-site salts (MASCN)	1.17	19.30	0.72	16.23	8
_x FA _x PbI ₃	post-treatment					
MA ₁₋	A-site salts (MAI) post-	1.16	20.08	0.79	18.94	9
_x FA _x PbI ₃	treatment					

Table S3 The detailed fitting parameters of decay lifetime in TRPL measurement.

Condition	A ₁	τ_1	A ₂	τ_2	A ₃	τ3	τ_{ave}
		(ns)		(ns)		(ns)	(ns)
IPA	0.49	1.04	0.48	3.64	0.12	11.17	6.07
MASCN	0.65	0.99	0.45	4.17	0.12	14.50	7.91
MAI	0.75	1.01	0.46	4.13	0.11	16.75	8.77

a. The TRPL data was fitted by the equation: $y=A_1e^{-t/\tau_1}+A_2e^{-t/\tau_2}+A_3e^{-t/\tau_3}$.

b. The average lifetime
$$\tau_{ave}$$
 was calculated by the equation:
$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$

Reference

1 A. Rubino, L. Caliò, M. E. Calvo and H. Míguez, Solar RRL, 2021, 5, 2100204.

- 2 H. Huang, C. Zhao, X. Zhang, K. Wang, J. Fu, J. Guo, S. Wang, Q. Zhao, W. Ma and J. Yuan, *Nano Lett.*, 2023, **23**, 9143–9150.
- 3 J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva, M. E. Liao, S.-Y. Chang, L. Meng, D. Meng, P. Sun,
 O. Lin, M. S. Goorsky and Y. Yang, *Joule*, 2018, 2, 1866–1878.
- 4 X. Zhang, H. Huang, L. Jin, C. Wen, Q. Zhao, C. Zhao, J. Guo, C. Cheng, H. Wang, L. Zhang, Y. Li, Y. Maung Maung, J. Yuan and W. Ma, *Angew. Chem. Int. Ed.*, 2023, **62**, e202214241.
- 5 M. Zhang, Q. Gao, X. Mei, J. Qiu, R. Zhuang, Y. Hua, Z. Sun and X. Zhang, *Energy Environ. Sci.*, 2024, **17**, 2145–2156.
- 6 F. Li, X. Zhang, J. Shi, L. Jin, J. Qiao, J. Guo, H. Yin, Y. Li, J. Yuan and W. Ma, *Adv. Funct. Mater.*, 2023, **33**, 2302542.
- 7 C. Zhao, C. Cazorla, X. Zhang, H. Huang, X. Zhao, D. Li, J. Shi, Q. Zhao, W. Ma and J. Yuan, *J. Am. Chem. Soc.*, 2024, **146**, 4913–4921.
- 8 M. Li, Y. Bao, W. Hui, K. Sun, L. Gu, X. Kang, D. Wang, B. Wang, H. Deng, R. Guo, Z. Li, X. Jiang, P. Müller-Buschbaum, L. Song and W. Huang, *Adv. Mater.*, 2024, **36**, 2309890.
- 9 H. Aqoma, S.-H. Lee, I. F. Imran, J.-H. Hwang, S.-H. Lee and S.-Y. Jang, Nat. Energy., 2024, 1–9.