Supporting Information

Geometric Constraints Regulated Regioselectivity: Pd-catalyzed a-deuteration of

Pyridines with Secondary Phosphine Oxide

Chenxu Zheng,^[a,b] Jiben Xue,^[a] Zhi-Jiang Jiang,^{*[a]} Jiawei Han,^[a,b] Jiaxin Wang,^[a] Jian-Fei Bai,^[a] Jia Chen,^[a,c] Zhanghua Gao^{*[a,c]} (zj.jiang@nbt.edu.cn; z.gao@nbt.edu.cn)

- a. NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China
- b. School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. of China
- c. Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. of China

Contents

1.	General Information	S2
2.	Experimental procedures	S3
3.	Condition Optimization	S3
4.	Kinetic profile for deuteration process	S6
5.	Preliminary Mechanistic Investigation	S7
6.	References	S9
7.	Results of Substrate Deuteration	S11

1. General Information

1) **Experiments and Reagents**

Unless noted otherwise, all experiments were carried out under the protection of nitrogen atmosphere, with oven-dried glassware and magnetic stirring bar. Temperature is reported as the temperature of the metal heating module, with the height of stirring reaction mixture lower than heating module.

Commercially available reagents were purchased from Aladdin, Bidepharm, and Leyan Chemicals, which was used directly without further purification unless stated otherwise. The deuterated solvents were supplied by Ningbo Cuiying Chemicals. The D₂O for reaction was fetched and transferred to the reaction in glovebox with nitrogen atmosphere.

2) <u>TLC and Chromatography</u>

Analytic thin-layer chromatography (Leyan chemicals) was used for checking the formation of unexpected side reactions. Visualization was achieved by ultraviolet light (254 nm and 365 nm) and iodine staining. Flash chromatography was performed on silica gel (200-300 mesh) with the indicated solvent systems.

3) Spectroscopy Analysis

The gas chromatography-mass spectroscopy (GC-MS) are recorded on an Agilent 6890N GC-system with an Agilent 5973Network Mass Selective Detector (electron ionization), and a HP-5MS column (30 m, 0.25 mm \times 0.25 μ m).

¹H NMR (400 MHz) are recorded on a Bruker Ascend 400 spectrometer and chemical shifts are reported in ppm down field from TMS and are referenced to residual proton in $CDCI_3$ or $DMSO-d_6$. The spectra for deuterated substrates are reported as observed, while the integration difference less than 5% are ignored. The NMR data are reported as: s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet with *J* = coupling constant in Hz, and the deuterated position are marked as "Labelled".

4) <u>Calculation of Deuterium Incorporation</u>

The degree of deuterium-incorporation was calculated based on both GC-MS and ¹H-NMR methods, which had been described in our previous work¹.

The theoretical deuterium degree for this reaction was calculated as follow, with pyridine as model:

 $D_{theo} = \frac{2 \times n(D_2 O)}{2 \times n(D_2 O) + n(HFIP) + n(exchangeable hydrogen in pyridines) + n(Ligand)}$ $= \frac{2 \times 110 \text{ mmol}}{2 \times 110 \text{ mmol} + 9.5 \text{ mmol} + 2.0 \text{ mmol} + 0.05 \text{ mmol}}$ = 0.95

2. Experimental procedures

1) General procedure for standard condition

An oven dried 15 mL pressure vessel was charged with a substrate (1.0 mmol), Pd(TFA)₂ (16.6 mg, 5 mol%), L6 (13.1 mg, 5 mol%), Na₂CO₃ (106.0 mg, 1.0 equiv.), HFIP (1.0 mL), and D₂O (2 mL). The vessel was purged with nitrogen stream, and sealed by Teflon bushing with Viton O-ring then placed into the inside circle of a preheated aluminium block on a magnetic stirrer and stirred at 100 °C for 6 hours. After the reaction finished, the vessel was allowed to cool to room temperature in water. The mixture was diluted with saturated NH₄Cl solution (2 mL), extracted with ethyl acetate (10 mL). The mixture was filtered over a pad of celite, and the residue was washed with ethyl acetate (2 x 10 mL). The combined organic phase was dried over anhydrous Na₂SO₄, sampled for GC-MS analysis, and then concentrated under reduced pressure. The crude product was then purified by chromatography to afford purified product.

3. Condition Optimization

The optimization was conducted with the ligand screening (Table S1), where the L4 and L6 was defined as the most potent ligand for this transformation. Meanwhile, electron-withdrawing ligand

Table S1 Optimization of Ligand ^{*a,b*}

^o Reaction condition unless noted otherwise: Substrate (1.0 mmol), Pd(TFA)₂ (5.0 mol%), Ligand (10 mol%), Na₂CO₃ (1.0 equiv.), HFIP (1.0 mL) and D₂O (2 mL), N₂, 100 °C for 4 hrs. ^b D_{MS} and %Recov. were determined by GC-MS and HPLC analysis.

Table S2 Optimization of Catalytic system ^{*a,b*}

entry	Catalyst	Base.	D _{MS}	%Recov.
1	Pd(TFA) ₂	Na ₂ CO ₃	1.78	93
2	Pd(OAc) ₂	Na ₂ CO ₃	1.19	90
3	Pd(OPiv) ₂	Na ₂ CO ₃	1.64	94
4	PdCl ₂	Na ₂ CO ₃	1.67	91
5	Pd(dba)₂	Na ₂ CO ₃	trace	95
6	Pd/C	Na ₂ CO ₃	trace	92
7	Ru/C	Na ₂ CO ₃	trace	93
8	Cu(OAc) ₂	Na ₂ CO ₃	trace	94
9	Ni(CF ₃ SO ₃) ₂	Na ₂ CO ₃	trace	95
10	Fe(CF ₃ SO ₃) ₃	Na ₂ CO ₃	trace	91
11	AI(CF ₃ SO ₃) ₃	Na ₂ CO ₃	trace	93
12	Pd(TFA) ₂	Na ₂ CO ₃	1.78	93
13	Pd(TFA) ₂	K ₂ CO ₃	1.70	94
14	Pd(TFA) ₂	Cs ₂ CO ₃	1.76	91
15	Pd(TFA) ₂	NaOAc	0.76	95
16	Pd(TFA) ₂	NaOPiv	1.34	93
17	Pd(TFA) ₂	$Na_2C_2O_4$	0.48	92
18	Pd(TFA) ₂	NaOH	1.28	90
19	Pd(TFA) ₂	Et ₃ N	1.45	88

^o Reaction condition unless noted otherwise: Substrate (1.0 mmol), **Catalyst** (5.0 mol%), L6 (10 mmol%), **Base.** (1.0 equiv.), HFIP (1 mL) and D₂O (2 mL), N₂, 100 °C for 4 hrs. ^b D_{MS} and %Recov. were determined by GC-MS and HPLC analysis.

L7 with chloride substitution rendered considerably lower performance. We also tested the potential of triphenylphosphine and corresponding oxide (**L11** and **L12**), both ligands failed to offer any trace of deuteration.

Subsequently, a detailed optimization was conducted to improve the protocol's performance as listed in Table S2. The initial test with Pd²⁺ rendered considerable labelling efficient. However, the Pd⁰ catalyst of Pd(dba)₂ and Pd/C failed the transformation. A same failure was obtained with Ru/C. Further examination of metal catalysis didn't render any positive results. And the following examination of base showed the Na₂CO₃ remained the optimal choice.

Then, we shifted our attention toward the component of solvent system (Table S3). Again, HFIP showed the optimal result, where other solvent failed to render acceptable results. Therefore, the HFIP should not be an innocent bystander for the transformation, but also act as a key player in the reaction, including the protium/deuteron shuffler between organic and aqueous phase, and the recent discussed roles in accelerating the C-H activation.²

Table S3 Optimization of solvent system and control experiment a, b

Entry	Condition Deviation	D _{MS}	%Recov.
1	HFIP	1.78	93
2	DCE	0.09	96
3	PhMe	trace	90
4	CH₃CN	0.12	87
5	1,4- Dioxane	trace	92
6	DMF	trace	89
7	Pd(TFA)₂ absence	trace	94
8	L6 absence	trace	97
9	Na ₂ CO ₃ absence	0.16	96
10	Without N ₂ protection	trace	95
11	Add 10 mol% AgTFA	trace	91
12	PdCl ₂ /KOH instead of Pd(TFA) ₂ /Na ₂ CO ₃	1.62	90
13	Ph ₂ P(O)OH instead of L6	trace	92

^o Reaction condition unless noted otherwise: Substrate (1.0 mmol), Pd source (5.0 mol%), Ligand (10 mol%), Base. (1.0 equiv.), **Solvent** (1.0 mL) and D₂O (2 mL), N₂, 100 °C for 4 hrs. ^b D_{MS} and %Recov. were determined by GC-MS and HPLC analysis.

Finally, after a detailed adjustment of components loading (Table S4), the optimal condition comes to $Pd(TFA)_2$ (5 mol%), L6 (5 mol%), Na₂CO₃ (1.0 equiv.), HFIP (1.0 mL), with D₂O (2 mL), heating in a sealed vessel with N₂ protection for 6 hours.

Table S4 Optimization of using of catalytic system ^{a, b}

entry	L6 (mol%)	Pd(TFA)₂ (mol%)	Na ₂ CO ₃ (mol%)	D _{MS}	%Recov.
1	2.5	5.0	1.0	1.51	96
2	5.0	5.0	1.0	1.85	95
3	10	5.0	1.0	1.78	93
4	15	5.0	1.0	0.06	90
5	20	5.0	1.0	trace	86
6	5.0	5.0	1.0	1.85	95
7	5.0	10	1.0	1.88	92
8	5.0	5.0	0.5	1.71	96
9	5.0	5.0	1.0	1.85	95
10	5.0	5.0	2.0	1.86	91

^o Reaction condition unless noted otherwise: Substrate (1.0 mmol), Pd(TFA)₂ (x mol%), L6 (y mol%), Na₂CO₃ (z equiv.), HFIP (1.0 mL) and D₂O (2 mL), N₂,

100 °C for 4 hrs. ^b D_{MS} and %Recov. were determined by GC-MS and HPLC analysis.

4. Kinetic profile for deuteration process

	Pd(TFA) ₂ (5.0 mol%) L6 (5.0 mol%) Na ₂ CO ₃ (1.0 equiv.) HFIP (1.0 mL), D ₂ O (2 mL) N ₂ , 100 °C, x hrs		OMe 6
entry	Reaction Time (h)	D _{MS}	%Recov.
1	0.5 h	0.10	/
2	1.0 h	0.25	/
3	1.5 h	0.52	/
4	2.0 h	1.07	/
5	3.0 h	1.59	/
6	4.0 h	1.85	/
7	5.0 h	1.89	/
8	6.0 h	1.90	94

Table S5 Reaction kinetics experiment and control experiment ^{a, b}

^{*o*} Reaction condition unless noted otherwise: Pd(TFA)₂ (5.0 mol%), L6 (5.0 mmol%), Na₂CO₃ (1.0 equiv.), HFIP (1 mL) and D₂O (2 mL), N₂, 100 °C for **x** hrs. ^{*b*} D_{MS} and %Recov. were determined by GC-MS and HPLC analysis.

Figure S1 Kinetic profile of the a-selective deuteration of 4-phenyl pyridine

5. Preliminary Mechanistic Investigation

1) Radical Trapping Experiment

Since the recent advance in a-selective functionalization of N-heterocycles, the possibility of radical process was examined for the protocol. As expected, no significant influence was observed after TEMPO (1.0 equiv.) addition.

Figure S2 Radical Trapping Experiment.

2) Theoretical Calculation

Calculation Method: Density Functional theory (DFT) study was performed with Gaussian 16.³ Geometry optimization of ground state and transition state were conducted in the gas phases with hybrid-GGA functional PBEO⁴ and split valence def2-SVP⁵ basis set. Grimme's GFN-xTB program package⁶ was used for transition state search, with the assistance of a Gaussain-GFN-xTB interface developed by Lu.⁷ Grimme's dispersion correction D3 method was applied for optimization.⁸ Both local minima and transition structures are confirmed by vibrational frequencies with 0 and 1 imaginary frequency, respectively. All transition structures are checked by intrinsic reaction coordinate (IRC) calculation. The 3D structures were visualized with CYLview⁹.

Figure S3 Results of Preliminary DFT calculation (PBE0D3/def2-SVP)

species	EE	ZPE	Energy Corr.	Entropy Corr.	Gibbs Corr.	ΔG
Α	-1713.163681	0.413802	0.442918	0.443862	0.349662	0.0
TS	-1713.105362	0.408004	0.436875	0.437819	0.342036	31.8
в	-1713 162248	0 413718	0 442868	0 443812	0 349063	0 52

Table S6 Energy summary

ΔH 0.0 32.8 0.87

Table S7 Coordination for calculated structures

Δ							
~				С	1.778194	-3.32036	1.070817
01				Н	3.100179	-3.101519	2.765958
С	3.115835	2.432932	-1.205443	Н	0.587363	-3.279975	-0.732548
С	3.521008	0.312278	-0.358621	Н	1.301884	-4.2246	1.456717
С	4.899854	0.553808	-0.36541	С	0.417345	0.024247	3.775913
С	5.377881	1.781024	-0.807576	Н	1.043318	-0.881289	3.800023
С	4.469676	2.743169	-1.243336	Н	1.030777	0.859793	4.138684
Н	2.360652	3.154922	-1.528064	Н	-0.456672	-0.125682	4.420779
Н	5.581183	-0.234413	-0.041558				
Н	6.451725	1.98208	-0.822239	TS			
Н	4.797997	3.718892	-1.604575	01		Nimag =1	(-1702.3392)
Pd	0.522789	0.896006	-0.38762	С	-1.400448	-1.720929	0.988386
Р	-1.513259	0.333773	-0.689812	С	-3.632798	-1.09065	0.574697
0	-0.970156	0.782163	-2.086112	С	-4.076161	-2.270467	1.195845
С	-1.933441	-1.426618	-0.764349	С	-3.148318	-3.166083	1.7133
С	-1.74095	-2.066539	-1.995188	С	-1.779894	-2.90306	1.61724
С	-2.364133	-2.155431	0.350664	Н	-0.024675	-1.652428	1.003035
С	-1.984927	-3.433506	-2.111977	Н	-5.140726	-2.490769	1.268167
Н	-1.393105	-1.474899	-2.845672	Н	-3.49603	-4.083452	2.195402
С	-2.602455	-3.521895	0.223787	Н	-1.027291	-3.586695	2.012948
Н	-2.47026	-1.64967	1.311621	Pd	-0.393615	-0.016704	0.045945
С	-2.413687	-4.162023	-1.002226	Р	1.757364	-0.485021	0.310174
Н	-1.838446	-3.932016	-3.073327	0	1.343667	-1.785584	1.109095
Н	-2.933038	-4.094875	1.093595	С	2.778522	-1.032548	-1.087553
Н	-2.601261	-5.234969	-1.092656	С	2.756647	-2.406493	-1.359285
С	-2.956431	1.255311	-0.1229	С	3.570541	-0.177664	-1.866053
С	-4.239025	0.87014	-0.52631	С	3.521618	-2.923744	-2.402458
С	-2.783191	2.384572	0.682587	Н	2.145973	-3.054652	-0.726709
С	-5.34378	1.621762	-0.131492	С	4.335736	-0.7046	-2.902458
Н	-4.373935	-0.020658	-1.14531	Н	3.565347	0.893212	-1.661758
С	-3.889882	3.132447	1.073068	С	4.31152	-2.073612	-3.174325
Н	-1.777546	2.660387	1.00889	Н	3.503884	-3.996535	-2.609382
С	-5.169113	2.751931	0.666087	Н	4.955655	-0.038461	-3.507485
Н	-6.345984	1.32164	-0.446398	Н	4.912943	-2.478621	-3.992146
Н	-3.755564	4.012716	1.705968	С	2.796477	0.574394	1.351684
Н	-6.037251	3.337884	0.977878	С	4.151255	0.273971	1.520923
0	-1.154266	-0.037304	1.984219	С	2.223524	1.630853	2.06469
С	-0.012744	0.258188	2.343303	С	4.926576	1.030909	2.39769
0	0.914981	0.743016	1.600697	Н	4.602486	-0.551083	0.964073
Ν	2.655816	1.258261	-0.768569	С	3.000188	2.384295	2.939379
С	2.962243	-0.976982	0.10365	Н	1.16552	1.866456	1.920377
С	3.377121	-1.527883	1.320376	С	4.352887	2.085322	3.105982
С	1.965436	-1.627485	-0.638474	Н	5.985818	0.795608	2.52619
С	2.785364	-2.692328	1.803013	Н	2.549983	3.213356	3.490411
н	4.132563	-1.010617	1.916553	Н	4.963376	2.679634	3.790255
С	1.376121	-2.793009	-0.155107	0	1.798735	1.952927	-1.013486
Н	1.656949	-1.223335	-1.606236	С	0.661968	2.33235	-1.254983

0	-0.422513	1.710259	-0.92443	С	4.338331	2.033749	2.245036
Ν	-2.316466	-0.876185	0.501865	Н	4.01812	0.058844	1.424896
С	-4.530633	-0.070217	-0.008317	С	3.882964	3.350588	2.301545
С	-5.924785	-0.171128	0.110704	Н	2.410908	4.764924	1.592293
С	-3.993441	1.030284	-0.695838	Н	5.203256	1.727441	2.838154
С	-6.759056	0.794799	-0.442319	Н	4.391751	4.078806	2.937994
Н	-6.375373	-1.007671	0.647133	С	2.869394	-0.88944	-1.081151
С	-4.831153	1.993676	-1.248107	С	4.11387	-0.464698	-1.557853
Н	-2.91237	1.136644	-0.799745	С	2.493837	-2.229333	-1.209922
С	-6.215344	1.881507	-1.125626	С	4.987918	-1.384341	-2.133665
н	-7.841983	0.698313	-0.336435	Н	4.396961	0.587787	-1.478823
Н	-4.393092	2.841244	-1.780018	С	3.36607	-3.14238	-1.796684
н	-6.870411	2.640192	-1.560316	Н	1.516523	-2.552917	-0.841619
С	0.399824	3.62119	-2.000766	С	4.615444	-2.722709	-2.253525
н	-0.084277	3.391569	-2.961503	Н	5.963992	-1.051955	-2.495188
Н	-0.295086	4.251682	-1.428303	Н	3.069281	-4.189255	-1.894986
н	1.340776	4.154491	-2.177347	Н	5.300984	-3.441762	-2.708594
				0	2.076815	-1.182074	1.567447
В				С	1.159236	-1.988788	1.76887
01				0	0.019978	-1.946974	1.196574
С	-1.391603	1.081345	-0.879278	Ν	-2.460465	0.454343	-0.435783
С	-3.710512	0.874743	-0.662289	С	-4.826828	0.083875	-0.106074
С	-3.872254	2.053026	-1.409377	С	-6.1598	0.335445	-0.461475
С	-2.750634	2.731252	-1.883458	С	-4.556424	-0.951739	0.800768
С	-1.463761	2.254076	-1.62726	С	-7.193467	-0.422935	0.078948
н	1.043276	1.037377	-2.384644	Н	-6.400407	1.121855	-1.179019
н	-4.868109	2.450019	-1.604698	С	-5.591091	-1.707369	1.341448
н	-2.885887	3.652992	-2.456026	Н	-3.520431	-1.154257	1.076909
Н	-0.566729	2.768179	-1.974097	С	-6.913461	-1.445909	0.984087
Pd	-0.382149	-0.280261	0.01679	Н	-8.225704	-0.215762	-0.2125
Р	1.70464	0.34531	-0.425736	Н	-5.3618	-2.507782	2.048625
0	1.657588	1.395006	-1.731257	Н	-7.725908	-2.040564	1.408318
С	2.586172	1.486389	0.677976	С	1.388512	-3.151083	2.705684
С	2.129937	2.808442	0.73411	Н	0.448138	-3.481391	3.164458
С	3.689494	1.097555	1.444111	Н	1.796281	-3.989351	2.11862
С	2.774888	3.735745	1.548591	Н	2.126626	-2.883445	3.471875
Н	1.268927	3.111507	0.135112				

6. References

- J. Kong, Z. J. Jiang, J. Xu, Y. Li, H. Cao, Y. Ding, B. Tang, J. Chen and Z. Gao, Ortho-Deuteration of Aromatic Aldehydes via a Transient Directing Group-Enabled Pd-Catalyzed Hydrogen Isotope Exchange, *Journal of Organic Chemistry*, 2021, **86**, 13350-13359.
- 2) (a) Motiwala, H. F.; Armaly, A. M.; Cacioppo, J. G.; Coombs, T. C.; Koehn, K. R. K.; Norwood, V. M. t.; Aube, J. HFIP in Organic Synthesis. *Chem Rev* 2022, 122 (15), 12544-12747; (b) Sinha, S. K.; Bhattacharya, T.; Maiti, D. Role of hexafluoroisopropanol in C–H activation. *Reaction Chemistry & Engineering* 2019, 4 (2), 244-253.
- 3) Gaussian 16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;

Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

- 4) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics 1999, 110 (13), 6158-6170.
- 5) (a) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics 2005, 7 (18), 3297-3305; (b) Andrae, D., Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta, 1990, 77, 123-141.
- 6) (a) Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci., 2020, 11, e01493; (b) Grimme, S.; Bannwarth, C.; Shushkov, P.; A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86)Click to copy article link. J. Chem. Theory Comput., 2017, 13, 1989-2009; (c) Bannwarth C.; Ehlert, S.; Grimme. S. J. Chem. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion ContributionsClick to copy article link. Theory Comput., 2019, 15, 1652-1671; (d) Pracht P.; Caldeweyher, E.; Ehlert, S.; Grimme, S. A Robust Non-Self-Consistent Tight-Binding Quantum Chemistry Method for large Molecules. ChemRxiv, 2019, preprint. DOI: 10.26434/chemrxiv.8326202.v1.
- 7) Lu, T. gau_xtb: A Gaussian interface for xtb code, http://sobereva.com/soft/gau_xtb (Aug-12, 2024)
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 2010, 132 (15), 154104.
- 9) CYLview20. Legault, C. Y. Université de Sherbrooke, 2020 (http://www.cylview.org).

7. Results of Substrate Deuteration

Deuteration of 4-Phenylpyridine (1)

General procedure to afford **1**-*d* as white solid (145.3 mg, 94%) with D-incorporation 94% for 2, 6-position by ¹H NMR; 1.90 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.71 – 8.60 (m, 2H), 7.67 – 7.61 (m, 2H), 7.53 – 7.42 (m, 5H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.68 – 8.64 (m, 0.12H, Labelled)</u>, 7.68 – 7.61 (m, 2H), 7.54 – 7.41 (m, 5H).

149.5 150.0 150.5 151.0 151.5 152.0 152.5 153.0 153.5 154.0 154.5 155.0 155.5 156.0 156.5 157.0 157.5 158.0 158.5 159.0 159.5 160.0 160.5 161.0 161.5 162.0 162. m/z (Da)

Figure S4 ¹H NMR of 1 in Chloroform-d

General procedure to afford **2-***d* as white solid (141.8 mg, 91%) with D-incorporation 73% for 2-position and 90% for 6-position by ¹H NMR; 1.65 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 6/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.86 (dd, *J* = 2.5, 0.9 Hz, 1H), 8.60 (dd, *J* = 4.9, 1.6 Hz, 1H), 7.88 (dt, *J* = 7.9, 2.0 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.52 – 7.45 (m, 2H), 7.44 – 7.39 (m, 1H), 7.37 (dd, *J* = 7.9, 4.8 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **<u>8.86 (dd, J = 2.4, 0.9 Hz,</u> <u>0.27H, Labelled</u>), <u>8.59 (dd, J = 4.8, 1.7 Hz, 0.10H, Labelled)</u>, 7.88 (dd, J = 7.9, 1.7 Hz, 4H), 7.61 – 7.56 (m, 8H), 7.51 – 7.46 (m, 8H), 7.44 – 7.39 (m, 4H), 7.37 (d, J = 7.8 Hz, 4H).**

Figure S6¹H NMR spectrum comparison

Figure S8 ¹H NMR of 2 in Chloroform-d

Figure S9¹H NMR of 2-d in Chloroform-d

General procedure to afford **3-***d* as slight yellow liquid (142.5 mg, 91%) with D-incorporation 94% for 6-position by ¹H NMR; 0.97 D by GC-MS; $R_f = 0.35$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.73 – 8.67 (m, 1H), 8.02 – 7.97 (m, 2H), 7.79 – 7.71 (m, 2H), 7.51 – 7.45 (m, 2H), 7.45 – 7.39 (m, 1H), 7.23 (ddd, *J* = 6.7, 4.9, 2.2 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **8.72 – 8.69 (m, 0.06H, Labelled)**, 8.04 – 7.95 (m, 2H), 7.79 – 7.72 (m, 2H), 7.52 – 7.45 (m, 2H), 7.45 – 7.39 (m, 1H), 7.24 (dd, *J* = 6.6, 2.1 Hz, 1H).

Figure S10 ¹H NMR spectrum comparison

Figure S12 ¹H NMR of 3 in Chloroform-d

General procedure to afford **4-***d* as slight yellow liquid (87% by GC) with D-incorporation 75% for a-position; 1.58 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 – 8.55 (m, 2H), 7.67 (tt, *J* = 7.6, 1.8 Hz, 1H), 7.27 (ddd, *J* = 7.7, 4.3, 1.6 Hz, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **8.56 – 8.51 (m, 0.50H, Labelled)**, 7.79 (td, *J* = 7.7, 1.6 Hz, 1H), 7.38 (dd, *J* = 7.7, 2.0 Hz, 2H).

Figure S14 ¹H NMR spectrum comparison

Figure S16 ¹H NMR of 4 in Chloroform-*d*

Deuteration of 2,3-dimethylpyridine (5)

General procedure to afford **5-***d* as slight yellow liquid (47.3 mg, 44%) with D-incorporation 93% for 6-position and 50% for 2-methyl by ¹H NMR; 2.54 D by GC-MS; $R_f = 0.4$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (dd, *J* = 5.0, 1.7 Hz, 1H), 7.39 (d, *J* = 7.4 Hz, 1H), 7.02 (dd, *J* = 7.6, 4.9 Hz, 1H), 2.49 (s, 3H), 2.27 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **8.28 (dd,** *J* **= 4.9, 1.8 Hz, 0.07H, Labelled)**, 7.35 (d, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), **2.47 – 2.44 (m, 1.5H, Labelled)**, 2.24 (s, 3H).

Figure S18 ¹H NMR spectrum comparison

Figure S19 GC-MS spectrum comparison

Figure S20¹H NMR of **5** in Chloroform-*d*

4.5 4.0

6.5 6.0 5.5 5.0 f1 (ppm)

7.0

7.5

1.0 10.5 10.0 9.5 9.0 8.5 8.0

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1

General procedure to afford **6-***d* as white solid (87.9 mg, 81%) with D-incorporation 13% for 3-position, 40% for 5-position, and 20% for 6-position by ¹H NMR; 0.67 D by GC-MS; $R_f = 0.40$ (DCM/MeOH = 15/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.32 (s, 1H), 7.23 (d, *J* = 6.7 Hz, 1H), 6.13 – 6.08 (m, 1H), 6.00 (dd, *J* = 6.7, 1.7 Hz, 1H), 2.10 (s, 3H). **NMR data for deuterated product:** ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.29 (s, 1H), **7.25-7.19 (m**, **0.80H, Labelled)**, **6.10 (s, 0.87H, Labelled)**, **6.02 – 5.97 (m, 0.60H, Labelled)**, 2.10 (s, 3H).

Figure S22 ¹H NMR spectrum comparison

Figure S24 ¹H NMR of **6** in DMSO- d_6

General procedure to afford **7**-*d* as brown solid (87.3 mg, 82%) with D-incorporation 66% for 2-position, 59% for 6-position, and 10% for 4-methyl by ¹H NMR; 1.53 D by GC-MS; $R_f = 0.20$ (Petroleum ether/EtOAc = 1/1, 1% Et₃N).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.93 (d, *J* = 4.8 Hz, 1H), 6.94 (d, *J* = 4.8 Hz, 1H), 3.59 (s, 2H), 2.15 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **8.02 (s, 0.34H, Labelled)**, **7.93 (d, J = 4.8 Hz, 0.41H, Labelled)**, 6.95 (s, 1H), 3.61 (s, 2H), **2.18 – 2.14 (m, 2.72H, Labelled)**.

Figure S26 ¹H NMR spectrum comparison

Figure S28 ¹H NMR of 7 in Chloroform-d

Deuteration of N-(pyridin-3-yl)pivalamide (8)

General procedure to afford **8-***d* as yellow solid (153.1 mg, 86%) with D-incorporation 94% for 2position, 24% for 5-position, and 91% for 6-position by ¹H NMR; 2.12 D by GC-MS; $R_f = 0.40$ (DCM/MeOH = 15/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 9.40 (s, 1H), 8.80 (d, J = 2.6 Hz, 1H), 8.24 (dd, J = 4.7, 1.5 Hz, 1H), 8.05 (dd, J = 8.4, 1.1 Hz, 0H), 7.32 (dd, J = 8.3, 4.7 Hz, 1H), 1.23 (s, 9H). **NMR data for deuterated product:** ¹H NMR (400 MHz, DMSO- d_6) δ 9.40 (s, 1H), **8.80 (d, J = 2.5 Hz, 0.06H, Labelled)**, **8.24 (m, 0.09H, Labelled)**, 8.07 – 8.02 (m, 1H), **7.32 (d, J = 8.3 Hz, 0.76H, Labelled)**, 1.23 (s, 9H).

Figure S30 ¹H NMR spectrum comparison

Figure S32 ¹H NMR of 8 in DMSO- d_6

Deuteration of 4-phenoxypyridine (9)

General procedure to afford **9-***d* as white solid (154.4 mg, 90%) with D-incorporation 94% for 2, 6-position, and 15% for 3, 5-position by ¹H NMR; 2.10 D by GC-MS; $R_f = 0.35$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 8.46 (dd, J = 4.7, 1.6 Hz, 2H), 7.54 – 7.45 (m, 2H), 7.33 – 7.27 (m, 2H), 7.22 – 7.14 (m, 2H), 6.90 (dd, J = 4.7, 1.6 Hz, 2H). **NMR data for deuterated product:** ¹H NMR (400 MHz, DMSO- d_6) δ **8.48 – 8.44 (m, 0.12H, Labelled)**, 7.54 – 7.46 (m, 2H), 7.34 – 7.28 (m, 1H), 7.22 – 7.16 (m, 2H), <u>6.91 (s, 1.70H, Labelled)</u>.

Figure S34 ¹H NMR spectrum comparison

Figure S36 ¹H NMR of **9** in DMSO- d_6

General procedure to afford **10-***d* as white solid (81.5 mg, 67%) with D-incorporation 56% for 2, 6-position by ¹H NMR; 0.97 D by GC-MS; $R_f = 0.20$ (Petroleum ether/EtOAc = 1/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 – 8.18 (m, 2H), 6.50 – 6.44 (m, 2H), 2.98 (s, 6H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **8.24 – 8.17 (m, 0.82H, Labelled)**, 6.48 (t, *J* = 2.3 Hz, 2H), 2.99 (s, 6H).

Figure S38 ¹H NMR spectrum comparison

Figure S40 ¹H NMR of **10** in Chloroform-*d*

Figure S41 ¹H NMR of **10-***d* in Chloroform-*d*

Deuteration of 3-Acetylpyridine (11)

General procedure to afford **11-***d* as slight yellow liquid (104.7 mg, 87%) with D-incorporation 75% for 2-position, 14% for 5-position, 92% for 6-position, and 80% for 3-acetyl group by ¹H NMR; 4.18 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 2/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 9.16 (dd, *J* = 2.3, 0.9 Hz, 1H), 8.77 (dd, *J* = 4.9, 1.7 Hz, 1H), 8.23 (ddd, *J* = 8.0, 2.2, 1.7 Hz, 1H), 7.42 (ddd, *J* = 8.0, 4.8, 0.9 Hz, 1H), 2.63 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>9.16 (dd, *J* = 2.3, 1.0 Hz, 0.25H,</u> <u>Labelled</u>), 8.78 (dd, *J* = 4.8, 1.8 Hz, 0.08H, Labelled), 8.27 – 8.21 (m, 1H), 7.43 (d, *J* = 8.0 Hz, 0.86H, Labelled), 2.64 – 2.54 (m, 0.60H, Labelled).

Figure S42 ¹H NMR spectrum comparison

General procedure to afford **12**-*d* as slight yellow liquid (125.1 mg, 83%) with D-incorporation 94% for 2-position, 62% for 5-position and 94% for 6-position by ¹H NMR; 2.42 D by GC-MS; $R_f = 0.40$ (DCM/MeOH = 15/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 9.24 (dd, *J* = 2.2, 0.9 Hz, 1H), 8.78 (dd, *J* = 4.9, 1.8 Hz, 1H), 8.32 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.40 (ddd, *J* = 7.9, 4.9, 0.9 Hz, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.2 Hz, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>9.23 (d, J = 2.1 Hz, 0.06H, Labelled)</u>, <u>8.79 – 8.74 (m, 0.06H, Labelled)</u>, 8.35 – 8.28 (m, 1H), <u>7.40 (d, J = 7.9 Hz, 0.38H, Labelled)</u>, 4.42 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H).

Figure S46 ¹H NMR spectrum comparison

Figure S48 ¹H NMR of **12** in Chloroform-d

Deuteration of 3-Trifluoromethylpyridine (13)

General procedure to afford **13-***d* as colourless liquid (72.4 mg, 49%) with D-incorporation 68% for 2-position and 89% for 6-position by ¹H NMR; 1.62 D by GC-MS; $R_f = 0.25$ (Petroleum ether/EtOAc = 8/1).

NMR data for starting material: 1H NMR (400 MHz, Chloroform-d) δ 8.90 (d, J = 2.4 Hz, 1H), 8.81 (dd, J = 4.9, 1.6 Hz, 1H), 7.94 (dt, J = 8.0, 2.1 Hz, 1H), 7.45 (dd, J = 8.0, 4.9 Hz, 1H). NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.89 – 8.84 (m, 0.32H,</u> Labelled), 8.78 (d, J = 4.3 Hz, 0.11H, Labelled), 8.01 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H).

Figure S50 ¹H NMR spectrum comparison

Figure S52 ¹H NMR of 13 in Chloroform-d

General procedure to afford **14**-*d* as white solid (75.1 mg, 72%) with D-incorporation 47% for 2-position and 87% for 6-position by ¹H NMR; 1.34 D by GC-MS; $R_f = 0.20$ (Petroleum ether/EtOAc = 1/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 (d, *J* = 2.1 Hz, 1H), 8.82 (dd, *J* = 5.0, 1.7 Hz, 1H), 7.97 (dt, *J* = 7.9, 1.9 Hz, 1H), 7.45 (ddd, *J* = 8.0, 4.9, 0.9 Hz, 1H). **NMR data for deuterated product:** ¹H NMR (400 MHz, Chloroform-*d*) δ **8.90 (dd,** *J* **= 2.2, 0.9 Hz, 1H)**, **0.53H, Labelled)**, **8.82 (dd,** *J* **= 5.0, 1.7 Hz, 0.13H, Labelled)**, 7.98 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.45 (dd, *J* = 7.9, 1.5 Hz, 1H).

Figure S54 ¹H NMR spectrum comparison

Figure S56 ¹H NMR of **14** in Chloroform-*d*

Deuteration of 4-methyl-3-nitropyridine (16)

General procedure to afford **16-***d* s yellow liquid (121.1 mg, 88%) with D-incorporation 90% for 3methyl by ¹H NMR; 2.86 D by GC-MS; $R_f = 0.35$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 9.17 (s, 1H), 8.66 (d, *J* = 5.0 Hz, 1H), 7.32 (d, *J* = 5.0 Hz, 1H), 2.66 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 9.18 (s, 1H), 8.66 (d, *J* = 5.0 Hz, 1H), 7.32 (d, *J* = 5.0 Hz, 1H), 2.67-2.60 (m, 0.30H, Labelled).

Figure S58 ¹H NMR spectrum comparison

136.0 136.5 139.5 141.0 141.5 142.0 143.0 143.5 144.5 135.5 137.0 137.5 138.0 138.5 139.0 140.0 140.5 142.5 144.0 m/z (Da)

Figure S60 ¹H NMR of 16 in Chloroform-d

Deuteration of 3-Amino-5-fluoropyridine (17)

General procedure to afford **17**-*d* as brown solid (94.5 mg, 84%) with D-incorporation 35% for 2-position and 42% for 6-position by ¹H NMR; 0.83 D by GC-MS; $R_f = 0.25$ (Petroleum ether/EtOAc = 1/1, 1% Et₃N).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (t, *J* = 1.8 Hz, 1H), 7.86 (d, *J* = 2.4 Hz, 1H), 6.69 (dt, *J* = 10.4, 2.4 Hz, 1H), 3.76 (s, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **<u>7.92 – 7.88 (m, 0.58H,</u> Labelled)**, **<u>7.86 (d, J = 2.3 Hz, 0.65H, Labelled)</u>**, 6.69 (dq, J = 10.4, 0.9 Hz, 1H), 3.81 (s, 3H).

Figure S62 ¹H NMR spectrum comparison

Figure S63 GC-MS spectrum comparison

55.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 1 m/z (Da)

General procedure to afford **20-***d* as white solid (145.7 mg, 93%) with D-incorporation 40% for 6-position by ¹H NMR; 0.83 D by GC-MS; $R_f = 0.25$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.68 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 8.40 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.82 (td, *J* = 7.7, 1.8 Hz, 1H), 7.31 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) <u>δ 8.68 (ddd, *J* = 4.8, 1.8, 0.9</u> <u>Hz, 1.2H, Labelled</u>), 8.40 (dt, *J* = 8.0, 1.2 Hz, 2H), 7.82 (td, *J* = 7.7, 1.6 Hz, 2H), 7.31 (ddt, *J* = 7.5, 3.4, 1.3 Hz, 2H).

Figure S66 ¹H NMR spectrum comparison

Figure S68 ¹H NMR of **20** in Chloroform-*d*

General procedure to afford **21-***d* as slight yellow liquid (118.5 mg, 92%) with D-incorporation 92% for 2-position and 65% 8-position by ¹H NMR; 1.61 D by GC-MS; $R_f = 0.30$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.95 – 8.88 (m, 1H), 8.18 – 8.12 (m, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.71 (ddt, *J* = 8.6, 6.7, 1.6 Hz, 1H), 7.53 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.38 (dtd, *J* = 8.1, 2.9, 1.4 Hz, 1H).

NMR data for deuterated product:.¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.92 (dd, J = 4.2, 1.8 Hz,</u> <u>0.08H, Labelled</u>), 8.17 (d, J = 8.3 Hz, 1H), <u>8.12 (dq, J = 8.5, 0.9 Hz, 0.35H, Labelled</u>), 7.82 (dd, J = 8.2, 1.5 Hz, 1H), 7.72 (dtt, J = 6.8, 2.7, 1.5 Hz, 1H), 7.55 (dd, J = 8.2, 6.9 Hz, 1H), 7.40 (d, J = 8.3 Hz, 1H).

Figure S70 ¹H NMR spectrum comparison

123.5 124.0 124.5 125.0 125.5 126.0 126.5 127.0 127.5 128.0 128.5 129.0 129.5 130.0 130.5 131.0 131.5 132.0 132.5 133.0 133.5 134.0 134.5 135.0 135.5 136.0 136.5 13 m/z (Da)

Figure S73 ¹H NMR of 21-d in Chloroform-d

General procedure to afford **22**-*d* as white solid (187.2 mg, 91%) with D-incorporation 59% for 8-position by ¹H NMR; 0.57 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 8/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (t, *J* = 9.2 Hz, 2H), 8.18 (d, *J* = 7.1 Hz, 2H), 7.88 (d, *J* = 8.6 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.74 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 1H), 7.62 - 7.50 (m, 3H), 7.51 - 7.41 (m, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 – 8.19 (m, 2H), <u>8.19 –</u> <u>8.15 (m, 1.41H, Labelled)</u>, 7.88 (d, *J* = 8.6 Hz, 1H), 7.84 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.74 (ddd, *J* = 8.4, 6.9, 1.5 Hz, 1H), 7.60 – 7.51 (m, 3H), 7.51 – 7.45 (m, 1H).

Figure S74 ¹H NMR spectrum comparison

Figure S76 ¹H NMR of 22 in Chloroform-d

General procedure to afford **23**-*d* as white solid (180.7 mg, 88%) with D-incorporation 24% for 3-position by ¹H NMR; 0.40 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 8/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 (d, *J* = 5.7 Hz, 1H), 8.11 (dd, *J* = 8.6, 1.2 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.75 – 7.62 (m, 4H), 7.58 – 7.46 (m, 4H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **8.62 (d,** *J* **= 5.7 Hz, 0.76H, Labelled)**, 8.11 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.77 – 7.61 (m, 4H), 7.59 – 7.46 (m, 4H).

S51

Deuteration of 4,7-phenanthroline (24)

General procedure to afford **24-***d* as white solid (156.3 mg, 87%) with D-incorporation 83% for 2,7position and 26% for 9,10-position by ¹H NMR; 2.13 D by GC-MS; $R_f = 0.4$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 9.01 (dd, *J* = 4.4, 1.6 Hz, 2H), 8.87 (dd, *J* = 8.4, 1.7 Hz, 2H), 8.23 (s, 2H), 7.60 (dd, *J* = 8.3, 4.4 Hz, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>9.01 (dd, *J* = 4.4, 1.6 Hz, 0.34H,</u> <u>Labelled</u>), 8.89 (d, *J* = 8.4 Hz, 2H), <u>8.24 (s, 1.48H, Labelled</u>), 7.64 – 7.56 (m, 2H).

Figure S82 ¹H NMR spectrum comparison

Figure S83 GC-MS spectrum comparison

Figure S84 ¹H NMR of **24** in Chloroform-*d*

General procedure to afford **25**-*d* as white solid (164.5 mg, 92%) with D-incorporation 60% for 2-position by ¹H NMR; 0.58 D by GC-MS; $R_f = 0.4$ (Petroleum ether/EtOAc = 8/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 9.32 (dd, *J* = 8.1, 1.5 Hz, 1H), 9.02 (dd, *J* = 4.4, 1.8 Hz, 1H), 8.18 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.92 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.79 – 7.73 (m, 1H), 7.73 – 7.65 (m, 2H), 7.53 (dd, *J* = 8.0, 4.4 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>**9.31 (d**, *J* = **7.5 Hz, 0.40H**, **Labelled)**, 9.02 (dd, *J* = 4.4, 1.8 Hz, 1H), 8.18 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.92 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.82 (d, *J* = 8.9 Hz, 1H), 7.78 – 7.73 (m, 1H), 7.70 (dd, *J* = 13.3, 8.1 Hz, 2H), 7.53 (dd, *J* = 8.0, 4.4 Hz, 1H).</u>

Figure S86 ¹H NMR spectrum comparison

Figure S88 ¹H NMR of 25 in Chloroform-d

General procedure to afford **26**-*d* as colourless liquid (73.5 mg, 62%) with D-incorporation 41% for 2-position and 7% 3-position by ¹H NMR; 0.45 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 7.98 (d, J = 2.2 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.59 (dd, J = 8.1, 1.0 Hz, 1H), 7.31 (td, J = 8.2, 7.8, 1.5 Hz, 1H), 7.25 (td, J = 7.4, 1.2 Hz, 1H), 6.96 (dd, J = 2.2, 1.0 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ **7.98 (d,** *J* **= 2.2 Hz, 0.59H, Labelled)**, 7.69 – 7.63 (m, 1H), 7.62 – 7.56 (m, 1H), 7.31 (td, *J* = 8.3, 7.8, 1.5 Hz, 1H), 7.25 (td, *J* = 7.4, 1.1 Hz, 1H), **6.99 – 6.92 (m, 0.93H, Labelled)**.

Figure S90 ¹H NMR spectrum comparison

Figure S92 ¹H NMR of 26 in DMSO- d_6

Deuteration of benzo[b]thiophene (27)

General procedure to afford **27-***d* as white solid (115.3 mg, 86%) with D-incorporation 25% for 2-position by ¹H NMR; 0.25 D by GC-MS; $R_f = 0.40$ (Petroleum ether/EtOAc = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.88 (m, 1H), 7.88 – 7.81 (m, 1H), 7.45 (d, *J* = 5.5 Hz, 1H), 7.42 – 7.31 (m, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.87 (m, 1H), 7.87 – 7.81 (m, 1H), **7.45 (d, J = 5.4 Hz, 0.75H, Labelled)**, 7.41 – 7.32 (m, 3H).

Figure S94 ¹H NMR spectrum comparison

Figure S95 GC-MS spectrum comparison

Figure S96 ¹H NMR of 27 in *Chloroform-d*

General procedure to afford **28-***d* as colourless liquid (140.3mg, 79%) with D-incorporation 85% for 2-position, 17% for 5-position and 86% for 6-position by ¹H NMR; 1.85 D by GC-MS; $R_f = 0.40$ (DCM/MeOH = 15/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 – 8.60 (m, 2H), 7.35 (ddd, *J* = 7.8, 4.9, 0.9 Hz, 1H), 3.65 – 3.45 (m, 2H), 3.37 – 3.15 (m, 2H), 1.25 (t, *J* = 6.6 Hz, 3H), 1.13 (t, *J* = 7.5 Hz, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **<u>8.67 – 8.61 (m, 0.27H,</u> <u>Labelled</u>**, 7.76 – 7.70 (m, 1H), <u>7.35 (d, J = 7.8 Hz, 0.83H, Labelled</u>, 3.65 – 3.45 (m, 2H), 3.37 – 3.15 (m, 2H), 1.25 (t, J = 6.7 Hz, 3H), 1.13 (t, J = 7.6 Hz, 3H).

Figure S98 ¹H NMR spectrum comparison

173.0 173.5 174.0 174.5 175.0 175.5 176.0 176.5 177.0 177.5 178.0 178.5 179.0 179.5 180.0 180.5 181.0 181.5 182.0 182.5 183.0 183.5 184.0 184.5 m/z (Da)

Deuteration of Pranoprofen (29)

General procedure to afford **29**-*d* as white solid (221.6 mg, 87%) with D-incorporation 50% for 6-position by ¹H NMR; $R_f = 0.40$ (DCM/MeOH = 10/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.13 (dd, *J* = 4.9, 1.9 Hz, 1H), 7.73 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.20 – 7.12 (m, 3H), 7.08 (d, *J* = 8.1 Hz, 1H), 4.12 (s, 2H), 3.66 (q, *J* = 7.1 Hz, 1H), 1.36 (d, *J* = 7.1 Hz, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO- d_6) δ **8.13 (dd, J = 4.9, 1.9 Hz, 0.50H, Labelled)**, 7.73 (dt, J = 7.4, 1.1 Hz, 1H), 7.20 – 7.13 (m, 3H), 7.08 (d, J = 8.1 Hz, 1H), 4.12 (s, 2H), 3.66 (q, J = 7.1 Hz, 1H), 1.36 (d, J = 7.2 Hz, 3H).

Figure S102 ¹H NMR spectrum comparison

Figure S103 ¹H NMR of **29** in DMSO- d_6

Deuteration of Abiraterone acetate (30)

General procedure to afford **30-***d* as white solid (310.2 mg, 89%) with D-incorporation 8% for 2-position and 63% for 6-position by ¹H NMR; $R_f = 0.3$ (Petroleum ether/EtOAc = 4/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 (dd, *J* = 2.3, 0.9 Hz, 1H), 8.46 (dd, *J* = 4.9, 1.6 Hz, 1H), 7.66 (dt, *J* = 7.9, 1.9 Hz, 1H), 7.23 (ddd, *J* = 8.0, 4.8, 0.9 Hz, 1H), 6.00 (dd, *J* = 3.3, 1.8 Hz, 1H), 5.45 – 5.37 (m, 1H), 4.68 – 4.54 (m, 1H), 2.41 – 2.31 (m, 2H), 2.27 (ddd, *J* = 15.8, 6.6, 3.3 Hz, 1H), 2.11 – 2.00 (m, 6H), 1.91 – 1.82 (m, 2H), 1.82 – 1.54 (m, 6H), 1.48 (td, *J* = 12.0, 5.0 Hz, 1H), 1.08 (s, 3H), 1.04 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.62 (dd, J = 2.4, 0.9 Hz,</u> <u>0.92H, Labelled</u>), <u>8.46 (dd, J = 4.8, 1.6 Hz, 0.37H, Labelled</u>)</u>, 7.67 (dt, J = 7.9, 1.9 Hz, 1H), 7.26 – 7.21 (m, 1H), 6.00 (dd, J = 3.3, 1.8 Hz, 1H), 5.41 (dt, J = 5.2, 1.8 Hz, 1H), 4.68 – 4.55 (m, 1H), 2.39 – 2.31 (m, 2H), 2.27 (ddd, J = 15.8, 6.5, 3.3 Hz, 1H), 2.11 – 2.00 (m, 6H), 1.91 – 1.83 (m, 2H), 1.82 – 1.54 (m, 6H), 1.49 (td, J = 12.0, 5.0 Hz, 1H), 1.08 (s, 3H), 1.04 (s, 3H).

Figure S105 ¹H NMR spectrum comparison

Figure S106 ¹H NMR of **30** in Chloroform-*d*

Deuteration of Tropicamide (31)

General procedure to afford **30-***d* as white solid (210.4 mg, 74%) with D-incorporation 9% for 2, 6-position and 82% for 4-methylene by ¹H NMR; $R_f = 0.40$ (DCM/MeOH = 10/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 – 8.47 (m, 2H), 7.40 – 7.15 (m, 5H), 7.01 (dd, *J* = 53.4, 6.2 Hz, 2H), 4.74 (d, *J* = 15.9 Hz, 1H), 4.46 (d, *J* = 16.7, 1H), 4.16 – 4.00 (m, 2H), 3.83 – 3.61 (m, 2H), 3.23 – 3.05 (m, 2H), 1.10 (t, *J* = 7.1 Hz, 1H), 0.94 (t, *J* = 7.1 Hz, 2H). **NMR data for deuterated product:** ¹H **NMR** (400 MHz, Chloroform-*d*) δ **8.51 – 8.46 (m, 1.82H, Labelled)**, 7.41 – 7.15 (m, 5H), 7.03 (dd, *J* = 65.7, 4.5 Hz, 2H), **4.74 (m,** *J* **= 15.9 Hz, 0.15H, Labelled)**, **4.17** – 4.01 (m, 2H), 3.82 – 3.60 (m, 2H), 3.25 – 3.06 (m, 2H), 1.11 (t, *J* = 7.1 Hz, 1H), 0.95 (t, *J* = 7.1 Hz, 2H).

Figure S108 ¹H NMR spectrum comparison

Figure S109 ¹H NMR of **31** in *Chloroform-d*

General procedure to afford **32**-*d* as white solid (293.9 mg, 82%) with D-incorporation 10% for 6-position and 25% for 2-mrthyl on 2-methyl-pyridyl motif, 8% for 2-position on 3-chloro-pyridyl motif, 14% for methylsulfonyl by ¹H NMR; $R_f = 0.30$ (Petroleum ether/EtOAc = 1/2).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.82 (d, *J* = 2.3 Hz, 1H), 8.32 (dd, *J* = 2.4, 0.8 Hz, 1H), 8.11 (d, *J* = 2.4 Hz, 1H), 7.95 – 7.87 (m, 2H), 7.60 – 7.51 (m, 3H), 7.20 (d, *J* = 8.1 Hz, 1H), 3.26 (s, 3H), 2.44 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ **8.82 (d,** *J* **= 2.3 Hz, 0.92H, Labelled)**, **8.34 – 8.29 (m, 0.90H, Labelled)**, 8.10 (d, *J* = 2.4 Hz, 1H), 7.94 – 7.87 (m, 2H), 7.60 – 7.51 (m, 3H), 7.20 (d, *J* = 8.0 Hz, 1H), **3.27 – 3.21 (m, 2.58H, Labelled)**, **2.46 – 2.40 (m, 2.26H, Labelled)**.

Figure S111 ¹H NMR spectrum comparison

Figure S112 ¹H NMR of 32 in DMSO- d_6

General procedure to afford **33**-*d* as white solid (264.9 mg, 76%) with D-incorporation 9% for 8-position and 94% for 3-methylene by ¹H NMR; $R_f = 0.40$ (DCM/MeOH = 15/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 8.68 (s, 1H), 8.17 (d, J = 8.5 Hz, 1H), 8.12 (dd, J = 8.3, 1.4 Hz, 1H), 7.86 (d, J = 1.6 Hz, 0H), 7.71 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.35 (s, 1H), 6.53 (s, 1H), 5.43 (s, 2H), 5.28 (s, 2H), 1.97 – 1.78 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO- d_6) δ 8.70 (s, 1H), **8.18 (d, J = 8.5 Hz, 0.91H, Labelled)**, 8.14 (d, J = 8.2 Hz, 1H), 7.88 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.36 (s, 1H), 6.53 (s, 1H), 5.43 (s, 2H), **5.29 (s, 0.12H, Labelled)**, 1.94 – 1.81 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

Figure S115 ¹H NMR of **33** in DMSO- d_6

Deuteration of Quinine (34)

General procedure to afford **34-***d* as white solid (197.3 mg, 61%) with D-incorporation 26% for 2-position, 5% for 8-position and 41% for 4-methyne on quinoline group, 36% for 1-position and 45% for 2-position on vinyl by ¹H NMR; $R_f = 0.40$ (DCM/MeOH = 10/1, 1% Et₃N).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 (d, *J* = 4.5 Hz, 1H), 7.94 (d, *J* = 9.2 Hz, 1H), 7.48 (d, *J* = 4.5 Hz, 1H), 7.30 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.22 (d, *J* = 2.7 Hz, 1H), 5.72 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.53 (d, *J* = 4.3 Hz, 1H), 4.98 – 4.87 (m, 2H), 4.00 (s, 1H), 3.88 (s, 3H), 3.44 (dddd, *J* = 12.8, 9.9, 5.2, 2.4 Hz, 1H), 3.17 – 3.02 (m, 2H), 2.70 – 2.59 (m, 2H), 2.32 – 2.21 (m, 1H), 1.85 – 1.78 (m, 1H), 1.78 – 1.67 (m, 2H), 1.59 – 1.45 (m, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ **8.61 (d, J = 4.5 Hz, 0.74H, Labelled),** 7.98 – 7.91 (m, 0.95H, Labelled), 7.52 – 7.47 (m, 1H), 7.30 (dt, J = 9.2, 2.5 Hz, 1H), 7.22 (d, J = 2.8 Hz, 1H), **5.79 – 5.67 (m, 0.64H, Labelled)**, **5.54 (d, J = 4.2 Hz, 0.59H, Labelled)**, **4.99 – 4.88** (m, 1.10H, Labelled), 4.27 – 3.91 (m, 1H), 3.87 (s, 3H), 3.53 – 3.40 (m, 1H), 3.23 – 2.98 (m, 2H), 2.71 – 2.61 (m, 2H), 2.38 – 2.22 (m, 1H), 1.84 – 1.78 (m, 1H), 1.78 – 1.66 (m, 2H), 1.61 – 1.45 (m, 2H).

Figure S118 ¹H NMR of 34 in Chloroform-d

Figure S119 ¹H NMR of 34-*d* in Chloroform-*d*

Deuteration of Cinchophen (35)

General procedure to afford **35**-*d* as white solid (223.8 mg, 90%) with D-incorporation 11% for 8-position by ¹H NMR; $R_f = 0.25$ (Petroleum ether/EtOAc = 1/1, 1% HOAc).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 8.65 (d, J = 8.5 Hz, 1H), 8.45 (s, 1H), 8.29 (d, J = 7.4 Hz, 2H), 8.16 (d, J = 8.5 Hz, 1H), 7.85 (t, J = 7.6 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.64 – 7.48 (m, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.66 (dd, *J* = 8.6, 1.3 Hz, 1H), 8.47 (s, 1H), 8.33 – 8.26 (m, 2H), **8.17 (d,** *J* **= 7.8 Hz, 0.89H, Labelled)**, 7.85 (ddd, *J* = 8.4, 6.7, 1.4 Hz, 1H), 7.71 (ddd, *J* = 8.3, 6.8, 1.2 Hz, 1H), 7.62 – 7.49 (m, 3H).

Figure S121 ¹H NMR of 35 in DMSO- d_6

Deuteration of Piribendyl (36)

General procedure to afford **36-***d* as white solid (264.7 mg, 89%) with D-incorporation 10% for 4, 6-position by ¹H NMR; $R_f = 0.40$ (Petroleum ether/EtOAc = 1/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, *J* = 4.7 Hz, 2H), 6.89 (s, 1H), 6.76 (s, 2H), 6.46 (t, *J* = 4.7 Hz, 1H), 5.95 (s, 2H), 3.82 (t, *J* = 5.1 Hz, 4H), 3.46 (s, 2H), 2.49 (t, *J* = 5.1 Hz, 4H).

NMR data for deuterated product : ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.29 (d, J = 4.8 Hz, 1.80H,</u> <u>Labelled</u>), 6.90 (s, 1H), 6.76 (s, 2H), 6.50 – 6.43 (m, 1H), 5.95 (s, 2H), 3.83 (t, J = 5.1 Hz, 4H), 3.47 (s, 2H), 2.50 (t, J = 5.1 Hz, 4H).

Figure S123 ¹H NMR spectrum comparison

