Supporting Information

Secondary structure changes as the potential H₂ sensing mechanism of Group D [FeFe]-hydrogenases

Ivan Voloshyn^a, Conrad Schumann^b, Princess R. Cabotaje^b, Afridi Zamader^{b,†}, Henrik Land^b and Moritz Senger^{a,b*}

a) Department of Chemistry – BMC, Biochemistry, Uppsala University, 75120 Uppsala, Sweden

b) Department of Chemistry – Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden

⁺⁾ Current address: Laboratoire d'Electrochimie Moléculaire (LEM), Université Paris Cité, CNRS, F-75006, Paris, France.

*To whom correspondence should be addressed

moritz.senger@kemi.uu.se

Contents

Materials and Methods2
In silico genomic analysis of region2
Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) spectroscopy2
Enzyme purification2
Synthetic chemistry3
Table S1-3: Promoters, terminators and ribosome binding sites.
Table S4 Infrared band patterns of different redox states in <i>Tam</i> HydS (Group D) and <i>Cr</i> HydA1 (Group A) [FeFe]-hydrogenase5
Figure S1: Redox state specific band population over the time course of the photo-reduction experiment6
Figure S2: ATR-FTIR Hred-Hox difference spectra of <i>Tam</i> HydS (Group D) and CrHydA1 (Group A) [FeFe]-hydrogenases
Figure S3: H/D effect on the ATR-FTIR Hred-Hox difference spectra of TamHydS10
Fit parameters Fig.S111
Annotated Thermoanaerobacter mathranii genome12
Supporting References

Materials and Methods

In silico genomic analysis of region

The genomic region containing *Tam*HydS and a gene encoding Group A [FeFe]-hydrogenase was analysed for operon structure, promoters, terminators, as well as ribosome binding sites (RBS). To determine bacterial operons, an **Operon-Mapper** prediction tool was used.¹ For the prediction of putative promoters and terminators, tools **BPROM** and **FindTerm** were used.² For ribosome binding site prediction, the **RBS Calculator** from DeNovoDNA was used (https://salislab.net/software/predict_rbs_calculator).

The results of each prediction were manually aligned with the genome sequence to choose the best suitable options among predicted.

Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) spectroscopy

A solution of 2 μ L enzyme (0.375–1 mM *Tam*HydS) in 10 mM Tris buffer (pH 8.0), 3 μ l Eosin Y (6mM) and 0.5 μ l 100 mM Ethylenediaminetetraacetic acid (EDTA) was deposited on the ATR crystal in the anaerobic atmosphere of a Braun Glove box. The ATR unit (BioRadII from Harrick) was sealed with a custom-built PEEK cell that allowed for gas exchange and illumination (similar to Stripp 2021³ and Senger et al., 2016⁴) mounted in a FTIR spectrometer (Vertex V70v, Bruker). Illumination for photo-reduction experiments was facilitated via a Schott KL2500 lamp optically coupled to the ATR crystal surface with fibre optics. The sample was dried under 100% nitrogen gas and rehydrated with a humidified aerosol (100 mM Tris-HCl, pH 8) as described before.⁵ For H₂ exposure experiments, a mixed buffer (pH 8, 50mM Tris-HCl, 50 mM Citric acid) was used. Spectra were recorded with 2 cm⁻¹ resolution, a scanner velocity of 80 Hz and averaged of varying number of scans (mostly 1000 Scans). All measurements were performed at ambient conditions (room temperature and pressure, hydrated enzyme films). Gases (N₂, H₂) were applied at a flow rate of 0.5-1.5 L/min. The data was analysed and plotted to our protocols described previously.^{6, 7}

Enzyme purification

Preparation of TamHydS^{ADT}

The preparation of TamHydS^{ADT} was performed as previously reported with minor changes to the procedure.8 For the expression of the apo-form, sequence-confirmed plasmids were transformed in chemically competent *E. coli* BL21(DE3) cells. The protein expression was induced at O.D.₆₀₀ ≈ 0.5 with 1 mM IPTG with concomitant supplementation of the culture with 100 μ M FeSO₄ in 1% HCl solution. The harvested cell pellets were lysed by 3 cycles of freezing/thawing in liquid N_2 in 100 mM Tris-HCl, 150 mM NaCl pH 8.0 supplemented with 1 g/L lysozyme, 0.05 g/L DNase, 0.05 g/L RNase, 2 g/L MgCl₂ * 6 H₂O and cOmplete[™] Protease Inhibitor Cocktail (Roche). The cell lysis, protein purification, the reconstitution of the [4Fe-4S] clusters, as well as the activation of the enzyme were carried out in an MBRAUN glovebox under argon atmosphere (app. 1 ppm O₂). The protein was purified using StrepTrap affinity chromatography (StrepTrap XT (GE Healthcare)) following the manufacturer's instructions and applying an additional washing step with 1 M urea in 100 mM Tris-HCl, 150 mM NaCl pH 8.0. After purification, the protein yield was $2.8 \text{ mg } \text{L}^{-1}$ of cell culture with an iron/protein content of 11.8Fe/protein. By incubating the enzyme (50 μ M) in a reaction with 500 μ M dithiothreitol, 500 nM cysteine desulferase (*E. coli* IscS), 525 μ M L-cysteine and 525 μ M (NH₄)₂Fe(SO₄)₂(H₂O)₆ in 100 mM Tris-HCl, 150 mM NaCl pH 8.0 all [4Fe-4S] clusters were fully reconstituted (17.0 ± 1.4 Fe/protein). Subsequently, the yielded apo-form of TamHydS (200 µM) was semi-artificially activated by incubating it for 30 min with 4 mM sodium dithionite and 2.4 mM of of [2Fe]^{ADT} in 100 mM Tris-HCl, 150 mM NaCl pH 8.0. Eventually the activation reaction was desalted using 10 mM Tris-HCl pH 8.0 containing 5 mM NaDT. The generated holo-form of [2Fe]^{ADT}-activated *Tam*HydS aliquots were concentrated to 2.0 mM.

Aliquots were prepared in air-tight vials, flash-frozen in liquid N_2 and stored at -80 °C. The successful activation and the correct cofactor integration were verified by ATR-FTIR analyses.

The expression and purification procedures were further optimized for improved yields and protein purity. For the cell lysis, the above described lysis buffer was supplemented with 5 g/L sodium deoxycholate and 50 g/L Succrose. Additionally, the freeze-thaw-cycles were replaced by sonication. During the purification an additional washing step with 5 mM ATP and 10 mM MgCl₂ in 100 mM Tris-HCl, 150 mM NaCl pH 8.0 was applied to remove contaminant Hsp70 molecular chaperones which replaced the 1M urea washing step.^{9, 10} The generated holo-form of [2Fe]^{ADT}-activated *Tam*HydS was concentrated to 375 μ M. As before, aliquots were prepared in air-tight vials, flash-frozen in liquid N₂ and stored at -80 °C. The successful activation and the correct cofactor integration were verified by ATR-FTIR spectroscopic analysis.

Synthetic chemistry

The synthesis of $(Et_4N)_2[Fe_2(\mu-ADT)(CO)_4(CN)_2]^{11}$ was performed using previously reported protocols, and purity verified using a combination of FTIR, NMR and UV/Vis spectroscopy.

Table S1-3: Promoters, terminators and ribosome binding sites.

The output from prediction tools was manually aligned with the genomic sequence to annotate the region surrounding *Tam*HydS. The promoter and terminator results with the highest scores are provided in the Table S1 and S2, respectively. Ribosome binding sites are listed in Table S3.

Table S1 Promoters:

Name	Position	-35 sequence	-10 sequence	LDF score ¹
Promoter 1	900768 - 900789	TTTAAA	TAGTATAAT	7.34
Promoter 2	904809 - 904840	TTGTTA	TGATATAAT	10.46

¹Linear discriminant function (LDF) score provides a measurement of promoter strength.

Table S2 Terminators:

Name	Chain	Length	Sequence	Score
		(nt)		
Terminator	+	35	uccuugcccaaccccuucacccuucaaaGUAACCUCA	-14.5
1			саисааасисисиииииааааи	
Terminator	+	50	Uucuauucgaacaaagucuaccgcuucaggauuaucccuaucu	-21.9
2			gcaauaguuucuccaaucucaauaucgcuuAUGCCAGAAac	
			ugcuacaauaucuccuaaacuugcuucuucuacuug	

Table S3 Ribosome binding site:

Ribosome binding site number	Position	Sequence
859	900797	UAAAGG
860	901604	GUUAGG
862	902382	AGUAGG
863	903695	AGGAGU
865	904903	AGGAGG
868	906326	AGGAGG
869	908141	AGGAGU

Table S4 Infrared band patterns of different redox states in *Tam*HydS (Group D) and *Cr*HydA1 (Group A) [FeFe]-hydrogenase

	TamHydS (Group D) bands in cm ⁻¹	CrHydA1 (Group A) bands in cm ⁻¹
Нох	2082, 2074, 1970, 1948, 1787 ⁸	2088, 2072, 1964, 1940, 1800 ¹²
Hred (H ₂)	2062, 2030, 1961, 1922, 1895 ⁸	2072, 2033, 1961, 1915, 1891 ¹³
	2063, 2032, 1922, 1996, 1801 (this study)	At 90 K, n.d, n.d., 1919, 1891, 1817 ¹⁴
Hred (photo-reduction)	2063, 2032, 1922, 1895, 1803 (this study)	2072, 2033, 1961, 1915, 1891 ¹⁵
Hred (photo-reduction)	2063, 2032, 1922, 1895, 1803 (this study)	2072, 2033, 1961, 1915, 1891 ¹⁵

Bands are indicated in the order CN, CN, tCO, tCO, μ /tCO

Figure S1: Redox state specific band population over the time course of the photoreduction experiment

Figure S1: (top) Visualization of the baseline subtraction process. Data in black, Baseline in red. (middle) Baseline subtracted difference spectra with redox state specific bands highlighted (bottom) Plotting the band area of redox specific peaks over time highlights the co-population of bands associated with one redox state. Note that band areas are normalized to allow for better visual comparison.

Figure S2: ATR-FTIR Hred-Hox difference spectra of *Tam*HydS (Group D) and CrHydA1 (Group A) [FeFe]-hydrogenases

Figure S2: (top) Upon exposure of *Tam*HydS to either H₂ (red spectrum) or illumination of *Tam*HydS in the presence of Eosin Y and EDTA as sacrificial electron donor (black spectrum, photo-reduction) we observe the population of the reduced state Hred (Positive peaks: 2063, 2032, 1922, 1896, 1802 cm-1) and a de-population of Hox (negative peaks: 2082, 2074, 1970, 1948, 1787 cm-1). The same transition from Hox to Hred was observed in *Cr*HydA1 (blue spectrum) induced by the photoreduction protocol (peak positions are shifted due to the different [FeFe]-hydrogenase). The respective vibrational regions are indicated above the graph. Band positions are indicated by coloured bars.

(bottom) Zoom in on the C=O region. We observe a large difference feature in the Amide I C=O region with a positive peak at 1649 cm-1 and a negative peak at 1672 cm-1 in the Hred-Hox difference spectrum of TamHydS induced via photo-reduction (black) or induced by H_2 exposure (red) which we assign to a change in secondary structure. In the Group A [FeFe]-hydrogenase *Cr*HydA1 (blue spectrum) no changes in the Amide I region are detected in the difference spectrum of the Hox to Hred transition. Instead we detected a difference feature in the carboxylic acid C=O region (1715 and 1700 cm-1) which indicates a rearrangement of the hydrogen bonding network of the PTP absent in TamHydS. The respective vibrational regions are indicated above the graph.

The H₂ uptake spectrum of *Tam*HydS is scaled by 0.3 and the photoreduction spectrum of *Cr*HydA1 by a factor of 0.12 for better comparability. *Cr*HydA1 data modified from ref¹⁵.

Figure S3: H/D effect on the ATR-FTIR Hred-Hox difference spectra of TamHydS

The D_2O/D_2 spectrum is scaled by a factor of two to allow for better visual comparison.

Fit parameters Fig.S1

Fit parameters used to analyse and plot the data as described before.^{6, 7} In short band position and band width (Full Width Half Max (FWHM)) for each redox state are fitted to sets of spectra. In some cases, the relative amplitudes of the peaks related to one redox state are derived from the fit.

<u>TamHydS^{ADT} Fig.S1</u>

Band position	FWHM	Redox state	
2081,73277048695	-	7,81297001312315	Нох
2073,57909496923	-	6,51261389374464	Нох
1970,30216362434	-	5,72919867410981	Нох
1947,68473038479	-	5,64983595248925	Нох
1787,96633434964	-	9,57488904726338	Нох
2063,28761581669	-	5,76870662850313	Hred
2031,19703921083	-	10,4127838002636	Hred
1921,48715276992	-	5,52050765083911	Hred
1896,23423787334	-	7,53581753427441	Hred
1801,6632547387	-	18	Hred
1672,42617114634	-	9,60741974551811	Нох
1649,09320466939	-	6,82534955653803	Hred
1686,55425474694	-	13,1130249689038	Нох

Annotated Thermoanaerobacter mathranii genome *Thermoanaerobacter mathranii* genome at position 897,980 – 910,900

NCBI database: Thermoanaerobacter mathranii subsp. mathranii str. A3, complete genome (<u>https://www.ncbi.nlm.nih.gov/nuccore/CP002032.1?report=graph&from=902393&to=904300</u>)

Gene sequences marked-up with the starting codon underlined

ACCTT <u>ATG</u> AAATTTGTAAGAGAAGATGTAAGAAATATAGCCATTATTGCTCATGTTGATCATGGAAA	857.
AACTACTTTGGTTGATGCTATGCTTAAACAAAGCGGTATTTTTAGGTCAAATGAAAAAGTTGAGGAA	TypA GTP-
AGGATTTTGGACTTTAACGATTTAGAAAGAGAGAGAGAGA	hinding brotein
TACGATATAAAGATGTGAAAATAAATATAGTGGATACCCCAGGACATGCGGATTTTAGCGGTGAAGT	Sinding Stotem
AGAGCGAGTATTAAAAATGGTAGATGGGGTACTTTTGCTGGTGGATTCTTTCGAAGGACCTATGCCA	
CAGACCCGTTTTGTGTTAAGCAAAGCTTTGGAACTAGATTTAAAACCTATAGTTGTTATAAATAA	
TGATAGACCTGATGCAAGGCCAGAGGAGGTTATTGACGAAGTCTTAGATTTATTT	
GCAAATGATGACCAAATCGATTTTCCTGTGGTTTACACTTCTGCAAAAGAAGGTATAGCAAAATTAA	
GCTTAGATGAAGAATCTCATGACTTGAGACCTCTTTTTGATACGATTTTAGAGTATATTCCTGCTCCCT	
CAGGAAACATTGAAGCCCCCCTGCAACTTATAGTGACTACTTTAGATTATGATGATTACATTGGGAGA	
ATTGCCATTGGAAAAATAGTTAGAGGGAAGATAATTTCAGGAGAAGAAGCGGCCATATGTAAAAGA	
GACGGGTCGATACAAAAAGTTCACATAAATAATTTATATCAGTTTGAAGGACTAAAAAGAGTGCAAG	
TAGAAGAAGCAAGTTTAGGAGATATTGTAGCAGTTTCTGGCATAAGCGATATTGAGATTGGAGAAA	
CTATTGCAGATAGGGATAATCCTGAAGCGGTAGACTTTGTTCGAATAGAAGAGCCTACAGTTACTAT	
GACTTTTAGTGTAAATACCAGTCCTTTTGCAGGAACCGAAGGTAAATACGTTACTTCAAGGCATTTAA	
GAGAAAGGCTTTTTAAGGAGTTAGAGACAAACGTAGCGTTGCGTGTTGAAGAAACTGATTCTCCTGA	
TTCTTTTAAAGTATCTGGAAGAGGAGAGAGTTACATCTTTCTATTTTAATTGAGACTATGAGGCGGGAAG	
GGTATGAATTGCAGGTTTCTAAGCCTACAGTAATTTTTAAAGAGGAAAATGGAGTAAAGATGGAACC	
TATTGAACTTTTGACAATAGATATCCCAGAAGAATATATGGGAGTTGTAATTGAAAAATTAGGGCCG	
AGAAAAGCTGAGTTGATGGATATGCACACATTGAAACCGGGGACTGTAAGGCTTAAGTTTAAAATA	
CCTACAAGAGGCTTGATAGGGTATCGTTCTGAATTTTTAACAGATACCAAAGGAAATGGGATAATGA	
CTTCGGTATTTTATGATTATGAACCTTATAAAGGAGACATTCCTTCTCGGGGAAGAGGCGCTCTTGTA	
GCTTTTGAGACAGGCGTTGCGACAACGTATGGGCTTTACAACGCGCAAGAAAGA	
TAGAGCCAGGTACAAAGGTATATGAAGGGATGGTTGTGGGGGATTAATGCAAGAAGTGGAGATATT	
GATGTAAATGTATGTAAGAAAAAAAAATGTGACAAATTTAAGGTCTGCGACGGCAGATGAGGCTTTG	
AGGCTATCACCTATAAAAAAGATGTCGTTAGAAGAAGCATTAGAATTTATAGACAATGATGAATTAG	
TTGAAGTTACTCCTCAAAGCATTAGAATACGAAAAAAGATTTTGGATTCTCAACAGAGGTATAAAAG	
TGCAAAATATAACAAATAAAAGGAGCTTTATGCATCCTTCAGCTTGTTGACAAAGTAAAAATTTTTTAAA	
ATAGGATATTTTGCATCGTCACTCTGATGTTCCACAGCGCAAAACTAAGCTCCACCTTCGGGTTCCGGCA	
GGGGCACACTCGACCCCCCGCCCCCCCCCC	
CGCCCTCGGTCTCGCTAAGTTTTGTTAACGCTTTGTCACAAGTTGTGCCTTATGCAAAATATCCTATTTCC	
GAAAGTTTGTATACAGTCTAAAGGAGCTTGATGGCTCCTT CTATTTATAAATTCATTTAAAAATTTTGCT	858:
TATATAATTTATAGTTTCTTGGTAAGGGGGAATACCTTGATATTTTTCTACTGATTGAGGACCAGCATT	Lytic trans-
ATATGCAGCTAATGCTAATCTTATGTCATGGTAAGTGTCTAGCAAATTTTTTAGGTATCTTACTCCTCC	glyocosylase
ATCTATATTTTGAGAAGGGTCAAAAGGATTGGATACATTCAATTCCTTTGCAGTCGAAGGCATAAGCT	0,,
GCATAAGTCCCATTGCTCCTGCAGGAGAAACTGCGAAAGGATTAAAATTAGACTCTGCTTTGATAACT	(here reverse
GCTCTAATAAGGTTTGCATCTATATTATATTTTGACTGGCCCGTTGTATTAAATCTTCAATTTGTTGTA	complement of
AATTTGTATTTGTTGATGATGCATTGTTACTTACATTTCCTGAATTGTATTGTTGATTTTCTATAGCATT	CDS with starting
CTTTAAAACTTCGGCAAAAGGTTTATCTGTATTAAATATTTTTACATTAGCAGGGAGTCTACTTTGAAT	codon TTG)
TTCTCTAAATTTATTTTCAATTATTTGATTTACAATATTTATCAA	L

GACAAAATTCCTCTAAAAACCTCTTTTAAAAGTGTAAATTAGTAAAAAGTCCTATTAAAATTTTTAAAGG	
ATTTTTTAAAGGAGTATAGTATAATATAAGTAAAGGTTTATGGTAAGGGTTGATGA	
CGAAAGAATACTGGAAGTGTTAATTGTTGTATTAATAATTCCTCTGGTGTCTCTTTTAGCAGGTTATTTT	
GTTTCAAAAGATATTATAGTGCCTAACATTTCAAAAACAAATGACAGCAATAATTTTAAAGAGATGGTT	
GTTAAAGGCGTAGACTTGTTTGAAATTATTTTAGGCAGCTATTCAGATTTTGAGACTGCAAAATATCAA	
GAAGATTTAATGAGGATGAAAAGAGTTTACTCTTTCGTTAGTAAATATTCTGATAAGTATTTGTTGATAG	
GTGGTATATTTTTAGATAAAGAACAGGCTGCTTTATTTTCTTCCTCTTTAAAGTCTCAAGGAATTTCCAGT	
GAAGTATATTTAAAAAGGGGACCTTCTCTCAGAATTAAATATGATAAGAAATTAACATCAGATATGGAT	
GATTTTACAAGTAAATTACAAGATTTTAAACAAATTCTTGATTATATAGCTACTCTTTCTT	
TGATGACAAGTTAGAACGACAAGAATTGGAGGAATTAAAAAGGAAAGTAGATAGTTTTAAAAATGGA	
AATGGGGATTTTGGAAAAAAAGAAATGACTGCACTAGTACAAAAGACGACAGATATTGTCGATAAAAT	
AACAACTGATATTGAAAAAATTGAAATATCAGCTGCTTTAGAAGATGGAAATACATTTAGTTTGTTGCA	
AGAAAGTTTATGGCAATCTTGTGAAGAATACAACGCTTTTTTGAAAACAATTGCTGTGCAGAATCAATG	
ATGGGGTGTTAGGGTATGAGATTAAAAGAGGTAAAAGAAATTTTAAATGCAGAAGTTATGATAGGAG	
AAGAAAAATTGGAAGAAGAAGTGTTTACTGCTTGTGGAGCGGACTTGATGAGTGATGTTTTGGCATCA	
CGTGACGAAAAAGGCTGTGCTTTTTGACAGGGCTTACTAATGTGCAGGTTATAAGGACTGCAGAAGTAGT	
TGGAGATATTAAATGTATAGTATTTGTAAGAGGTAAGAATCCGGGAGAGGACATATTGGAACTTGCTA	
GAGATTTTGATTCTGCGGGAGAGGTTTCCAGCAATTTAAGGTCAGTATTAAAACAGCTTTCCTTAAAT	
CCAGATGTTGTAAGGAGAGATGCATAGCTTGCTATGAAGCAGAGATGAATATAATAATTCATTC	861:
	Ser/Thr
CTGGAATAGAAGACATTGAACTTGCCATGAAAGAAGGATATTCTACTGCTCCTGAAGAGACACAGGGG	protein kinase
	862:
AGAGGCAATAAGGGTAAGAGATGGGAAAGCAAGGATTATAAATGAAAGGTGTATAGATTGTGGTG	TamHydS
	,
AGAAAAATCCAAAATTGATGGGGGTTTTTTCTATGAAAGAAA	
GAGAAGCTTTTGGTACTTTTACAGAAAATAGTATTTATGTAGACGGGATACACAATGTTGTGGATGTT	
GGTGTATTGGTGGACCGTTGACTGTTGAAAATAATTTTGTGGCCAAAAATAGAATAAGAAAACTGAC	
AGAAAAACTTCCTAAAAAAGAAGAGGCTTTGTTTGATGAGGAAGAGATTGATT	
ATGGAAAAAGAAAATAGAAAAAAGTGAAGTTATGAAGTTGGACAAAGACATTTCAAAAGCGCTTGA	
AATGATGAAACAAATAGACACTCAATACAAAGCCTTACCAGGACTTGACTGTGGTTCTTGTGGTTCTC	
CTACTTGCAGGGCATTGGCGGAAGATATAGTGAAAGGGTATGCTACGGAATATGATTGCATTTTTAT	
ATTAAAAGACAAAATAAAAAATTTGTCTCAAGAATTAAATGACCTTGCGGGTAAAATTCCTCCAGTTT	
TAAGTGACGAAAAGGAGTGAAATTT <u>ATG</u> AGGATAAAAGTAGAAGATCTTGTCAATAGCGGATTTAA	863:
ATTAATTGCAGGGGACAACGGAATCAGCAAAGAAATTGAGGGGGGTGTATATATGCGACCTTTTAAG	DRTGG protein
TTGGGTTATGGCTCATGCAAAAAGCAAAAAGCGCTTGGATAACAATTCAAACTCATATAAATATTGTA	- F
GCAGTGGCTTTGCTGGCAGAAATAAGTTGCATAATAATTCCCGAAAATGCGAAATTAGATGAGGAA	

GCCAAGAGGAAAGCCGATGAGGAGGGCATCCCTATATTAAGTTTTTCAGGAACTTCTTATGAAGCAG	Overlapping
CAATAACTTTGTACGAGATGATGAAGTGATGCCTTACTATGATTGCACATICATACAGCGCTATCTCC	ORF: Stopp-
TTGTGCTTCTGATGATATGACTCCTAACAATATTGTCAATATGGCTTCTATAAAAGGACTTGATGTAAT	codon A = start
AGCTATAACAGATCATAACAGTGCAAAAAATGTAAAAGCTGTGTATAATCTTGGATTAAAAAAAGGC	codon A
TTAATAGTAGTTCCTGGTATAGAGGTACAGACAAGAGAAGAGGTTCACATACTTTGTTATTTTATTC	
ΑGTAGATGAATGTATAAAATTTAGTGAAATTATTAACAAAAATTTGATAAAAAATTAAAAAACAAAAAA	
ACAATCTTTGGGAATCAATTTGTAATGAATGAAGAAGATAACATAGCAGAGGAAATAGATTACTCAT	
IGTTAGTTTCTTAATTTAAGTGTTAATGAAATTTTCGACTACATGGAGGGCAGGGGGGGAGGGGTAGCGGTC	864:
CCTGCCCATGTGGATCGATATTCCTATAGTATTATATCAAATCTTGGTTTTATTCCGAATATTAAAAAT	PHP protein
TTAATTACAATCGAGGTATCGAAAGCCATCAGAAAAGAAAATTTTTTACACTCATATCCCGAATATAA	domain
AAAATATAAAATTATAAGGTCTTCAGATGCTCATTATTTAGGAGATATTTCTGAAAGAGAAGAATTCT	
TACTGTGCGGGTCTGAATTAAAAAGTATTGTAGACTGGCTAAGAGGTTATTGATTTTCCTATAATCCT	
ACTAAATTAGTTGGACTTATTAGAAAAATAAAAATTTTTTATAAAAAATTGTTAAAGTTTTAATAA	
TGATATAATATTGACAAAGAATGCACAAAAAATTTATATGAGATAAGCTATATGAAATTTTAATTCACAA	
GGAGGGAAATAAAAGGGATGCTTTGTGCCAAAAATTCGGTGAAGAGAAAGTAGAGAGGGTTTAAAAAG	
GCTTTGGAGGAATTAAAAAATATCCCTGGTTCGTTGATAGCAATTATGAATGA	865:
TGGATATCTTCCTATTGAAGTTCAACTTTATATTTCAAAAGAAATGAATG	NADH-quinone
TGGAATAGCTACTTTTTATTCAAGGTTTACTTTAAAGCCTTCGGGTAAATACAAGATCAATTTGTGTAT	oxidoreductase
GGGAACAGCTTGTTATGTAAGAGGAGCTGCAATGGTACTGGAAAAAATAAAAGAAAATTGGGAAT	
AGAAGTAGGTGAAGCAACTGAAGACGGGAAATTTTCTTTAGAACCTACTAGGTGTCTTGGAGCTTGC	
GGATTGGCTCCTGTTATGATGATAAATGGTGAAGTTTTTGGAAGACTAACTCCTGATGATGTGGATG	
AAATATTAAGTAAATTTGAGTAAGAGTTTGATTGTTATGAAAGAATTAGCACTTTATATATA	
GTCACAAAATAGCATAAGAGCGGGGAGCTAAAAATATTTGTATTGAAATAAAT	866:
GATATGCTTAAAGTGTCTATAGAAGATGATGGATGTGGAATGAAGGAGGAATTATTA	Histidine kinase
ACAGACCCTTTTGTAACTACAAGGAAGGAAAGAAAAGTAGGGCTTGGGATTCCGCTCTTTAAGGAGC	
TTGTCCAGCAGTGTGAAGGGAATTTTGAGATTTTTTCTGAAGAAGGAAAAGGAACAAAAATAATGG	
GTACTTTTAAACTTTCCAGTGTAGACCTTGTTCCACTAGGAGATATAGCGTCAACAATTGTTTCGGTGA	
TATTATCTGCTCCAGAAGTGGATATTGTATACAAATACAACAAAGATAACCATGAATTTTTGTTTG	
ACTAAAGAACTTAAAAAAATACTAAAGGGTGTCAATATAAATGACATCAAGGTGTTGAACTGGATA	
AAAGAATATATAAATGAGAATATGAAAGGTGATATGGAGGTGGAATAAT	
TGGAAAAAATCAGAAAAGAAACATTAGAAAGAATCAATTTGAGAAAGGATAGGTCAGGTGTAAGAAT	
TGCTGTTGGTATGGCTACTTGCGGTATTGCAGCAGGAGCGAGACCTGTCATGATGGCGATATTGGATG	
AACTTAGCAAGAGAAATGTCACGGATGTAATTGTTACAGAGACAGGGTGTATAGGTATGTGTAAATTA	
GAACCAATTGTAGATGTTTATGTTCCCGGCCAAGAGAAAGTGACTTACGTAAAGGTTGATGAGAAAAA	
GGCAAGGCAAATAGTTGCTGAACATGTTATAAATGGCCATCCAATCAGAGAATGGACTATTGAAAATT	
ACGAATAGAGGAGGGGAAATAGTATGCTTTATAGGTCACACGTAATGGTATGTGGTGGTACCGGATG	
TACATCTTCAGATTCTGATAAAGTAGCAGAGCGTTTTACAGAGGAAATAAAAAAGGCTGGTCTAGAT	
AAAGAAGTATTAGTTGTAAGAACTGGATGCTTTGGCCTTTGCGAATTGGGACCAGTTGTTGTAGTGT	000
ATCCTGAAGGAGTTTTTTATAGCAGAGTTAAACCTGACTATGTTCCGGAAATTGTGGAAGAGCACCT	868:
GCTAAAAGGAAGACCTGTTAAGAAATATCTCTATGGAGAAAGCGTGACAGAAAGAGAGAG	NADH
ATTGGAAGAGACTCCTTTCTTTAGAAAGCAAAAGAGAATTGCTCTTAGAAATTGTGGTATTATCAACC	denydrogenase
CTGAAGATATAAGAGAAGCAATTGCTTTTGATGGATATAGGGCTTTAGCAAAGGTTCTTACTCAAAT	
GACACCAAAAGAGGTTATCGAAGAAGTCAAAAAATCTGGCTTAAGGGGTAGAGGCGGCGGTGGAT	
TCCCGACAGGTGTGAAATGGGAATTTGCTTATAACCAAAAAGAAACTCCAAAGTATGTAGTTTGCAA	
CGCTGATGAAGGGGACCCTGGTGCTTTTATGGATAGAAGCATATTAGAAGGAGACCCCCACAGTGTT	
ATAGAGGCTATGGCAATAGCAGGATACGCAATTGGAGCAAACTATGGCTACATCTACGTAAGGGCA	
GAGTATCCTTTGGCAGTAAAAAGGCTTAAGATTGCTATTGAACAGGCTAGAGAATATGGCCTTTTAG	
GAAAAGACATATTTGGTACAGGTTTTGATTTTGACATTGAAATAAGGTTAGGAGCAGGCGCTTTTGT	

CTGTGGAGAAGAGACTGCGCTTTTAAATTCAGTAATGGGAAGAAGAGGCGAACCAAGGCCAAGACC	
ACCATTTCCTGCTGTAAAGGGTGTATGGAGCAAACCTACAATTATTAATAACGTAGAGACATTCGCTA	
ATATTCCGCCAATTATACTAAATGGTGCGGAGTGGTTTTCAAGCATAGGTACTGAAAAATCGAAAGG	
AACAAAGGTTTTTGCCCTGACCGGTAAGGTAAACAATACAGGTCTTATTGAAGTTCCAATGGGGACC	
ACTTTAAGAGAAATTATATACGAAATAGGTGGAGGAATACCTAACGGAAAGAAA	
AAACTGGAGGACCTTCAGGTGGCTGCATTCCTGCAGAGCATTTAGATACACCAATAGATTACGATTCC	
TTAATAAATGTAGGTTCTATGATGGGTTCAGGTGGACTTGTTGTAATGGATGAAGACACTTGTATGG	
TCAATGTTGCAAAATTCTTCCTTGAGTTTACAGTTGATGAGTCCTGCGGTAAATGTGCGCCTTGTAGG	
ATTGGCACAAAAAGAATGCTGGAGCTTTTAGAAAAGATAACTTCTGGTAAAGGTGAAGAAGGAGAC	
ATTGAAAAGTTGGAGGAACTTGCGAAAACCATTAAAGCGACAGCTTTGTGCGGCCTTGGACAAACA	
GCCCCAAATCCGGTTTTATCTACAATTAGATATTTCAGAGATGAATATGAGGCGCATATAAAAGAGA	
AAAAATGCCCAGCTGGCGTATGCCAAGCCCTCTTAAGATTTTATATTGACCCCGATAAGTGTAAAGGC	
TGTGGAATTTGTGCTAAAAATTGTCCTGTCAATGCTATTTCTGGAAAACCAAGGCAGCCTTATGTGAT	
TGACCAAGACAAATGTATAAAGTGCGGCACATGCATTGAAAAATGTCCATTTGGCGCAATCTACAAA	
AAATAATTAATTGAAGGAAGGAGTGTAAAAGATGGACAAAGTTCGTGTTACGATAGATGGCATCACTGTG	000
GAAGTTCCCTCCCATTATACCGTATTGGAAGCAGCAAAAGAAGCAGGAATAGATATCCCCACACTGT	869:
GTTACCTCAAGGAAATCAACCAAATTGGCGCTTGCCGTATATGTGTAGTTGAAATAGAGGGAGTTAG	Group A [FeFe]-
AAATTTACAAACCTCCTGCACTTATCCGGTATTTGATGGCATGAAAGTGTATACAAATACAGCTAAAA	nydrogenase
TAAGAGAAGCGCGGAAATTAAATCTTGAGCTTATACTTTCAAATCATGATAGAAGTTGTTTGACTTGT	
ATTAGAAATACTAACTGTGAGCTTCAATCATTGTCTAAAAAATTAGGAGTAAATGAAATAAGGTTTG	
AAGGGGAAAATATAAAGTATTCTATAGATAATGCTTCTCCTGCTATAGTTCGAGATCCAAATAAGTGT	
GTACTTTGTAGAAGATGTGTAGCAGTATGTTCAGAAGTGCAAAACGTATTTGCCATTGGAATGGTAA	
ATAGAGGATTTAAAACAATGGTAGCACCTTCTTTTGGGAGAAGTTTAAAAGATTCCCCTTGTATAAGT	
TGTGGACAGTGTATTGAGGTATGTCCTGTTGGAGCTATATATGAAAAAGACCATACAAAAAGAGTTT	
ATGAAGCTTTAGCTGATGAGAAAAAATATGTAGTAGCTCAAACAGCTCCAGCAGTAAGAGTAGCATT	
AGGTGAAGAGTTTGGTATGCCTATAGGAAGTATCGTTACTGGAAAAATGGTAGCAGCTTTGAAGAG	
GATGGGTTTTGACGCGGTATTTGATACGGATTTTGCGGCGGACTTGACTATAATGGAAGAAGGCTCG	
GAACTTCTTGAAAGGCTTAAAAATGGTGGAAAACTTCCTATGATAACTTCCTGTAGTCCTGGTTGGAT	
AGCITICIGIGAAAAAIATATATCCAGAATTTATAGATAATCITICAACTIGTAAGTCTCCTCACATGAT	
GAIGGGGGCAIIAGIAAAGAGIIAIIAIGCAGAAAAGGAAGG	
GGTATCAATTATGCCATGTACTGCTAAAAAACTAGAGATTGAAAGACCAGAAATGCAGCATAATGGA	
GACITIGIAAAICIICCIGAIGAAGAAIAIGAIGAACCICIIGGAAIGICCACIGGCGCIGGAGIGAI	
ATTCGGAGCTACAGGTGGAGTTATGGAGGCAGCTTTAAGGACAGTTGCAGATATTGTAGAAGGAAG	
Δ	
ΤΓΩ	
ΑGAATTAGCTTATTATCAAATAATAGGCATGGACAATCCACTTACTT	
ΤΓΤΤΤΓΛΑΓΤΑΤΓΤΓΤΤΔΑΔΑΤΔΑΔΤΔΑΔΤΔΑGGΔΔCΔGTTGTΔGGΔTTΔGTTCTTGCΔΔTTTΔCGCTTΔTTΔ	
CAAAATGTAGGTGATAAG <mark>ATGAAAAATTGTCCTTGCTTCTAAATCGCCAAGGAGAGAGA</mark>	971, mof
ΑΑΑΤΤΤΑGGACTTGACTTTGAAGTGGTAGAAAGTAATGTAAAAGAGTTTTCAAGAGAAAAAGCAGCCCT	
	protein

Supporting References

- 1. B. Taboada, K. Estrada, R. Ciria and E. Merino, *Bioinformatics*, 2018, **34**, 4118-4120.
- 2. V. V. Solovyev, A. A. Salamov, I. A. Seledtsov, D. Vorobyev and A. G. Bachinsky, 2011.
- 3. S. T. Stripp, *Acs Catal*, 2021, **11**, 7845-7862.
- 4. M. Senger, S. Mebs, J. Duan, F. Wittkamp, U. P. Apfel, J. Heberle, M. Haumann and S. T. Stripp, *Proc Natl Acad Sci U S A*, 2016, **113**, 8454-8459.
- 5. M. Senger, T. Kernmayr, M. Lorenzi, H. J. Redman and G. Berggren, *Chem Commun (Camb)*, 2022, **58**, 7184-7187.
- 6. M. Senger, S. Mebs, J. Duan, O. Shulenina, K. Laun, L. Kertess, F. Wittkamp, U. P. Apfel, T. Happe, M. Winkler, M. Haumann and S. T. Stripp, *Phys Chem Chem Phys*, 2018, **20**, 3128-3140.
- 7. M. Senger, K. Laun, F. Wittkamp, J. Duan, M. Haumann, T. Happe, M. Winkler, U. P. Apfel and S. T. Stripp, *Angew Chem Int Ed Engl*, 2017, **56**, 16503-16506.
- 8. H. Land, A. Sekretareva, P. Huang, H. J. Redman, B. Nemeth, N. Polidori, L. S. Meszaros, M. Senger, S. T. Stripp and G. Berggren, *Chem Sci*, 2020, **11**, 12789-12801.
- 9. D. V. Rial and E. A. Ceccarelli, *Protein Expr Purif*, 2002, **25**, 503-507.
- 10. E. S. Morales, I. L. Parcerisa and E. A. Ceccarelli, *Protein Sci*, 2019, **28**, 800-807.
- 11. H. Li and T. B. Rauchfuss, *J Am Chem Soc*, 2002, **124**, 726-727.
- 12. A. Silakov, C. Kamp, E. Reijerse, T. Happe and W. Lubitz, *Biochemistry-Us*, 2009, **48**, 7780-7786.
- 13. S. Mebs, M. Senger, J. Duan, F. Wittkamp, U. P. Apfel, T. Happe, M. Winkler, S. T. Stripp and M. Haumann, *J Am Chem Soc*, 2017, **139**, 12157-12160.
- 14. C. Lorent, S. Katz, J. Duan, C. J. Kulka, G. Caserta, C. Teutloff, S. Yadav, U. P. Apfel, M. Winkler, T. Happe, M. Horch and I. Zebger, *J Am Chem Soc*, 2020, **142**, 5493-5497.
- 15. M. Senger, V. Eichmann, K. Laun, J. Duan, F. Wittkamp, G. Knor, U. P. Apfel, T. Happe, M. Winkler, J. Heberle and S. T. Stripp, *J Am Chem Soc*, 2019, **141**, 17394-17403.