Supporting Information

Palladium-Catalyzed 1,1-Aminoxylation of 3-Butenoic Acid with 2-Alkynylanilines

Jinhui Zhang, Lihua Mao, Chao Liu, Xiangwen Tan, Jiahao Wu, Xuefeng Wei, Wanqing Wu, Huanfeng Jiang*

Key Laboratory of Functional Molecular Engineering of Guangdong

Province, School of Chemistry and Chemical Engineering, South China

University of Technology, Guangzhou 510640, China.

*Email: jianghf@scut.edu.cn.

Contents

1. General information	S1
2. Experimental section	S2
3. General procedure for the synthesis of products	S26
4. Unsuccessful substrates	S27
5. Larger-scale reaction	S28
6. Mechanistic investigation	S29
7. Crystal structure data of 3j	S32
8. Analytic data of products	\$34
9. NMR spectra	S56
10. Reference	S96

1. General information

NMR spectra were recorded on a Bruker Avance III 400 spectrometer or Bruker Ascend 400 spectrometer. The chemical shifts are referenced to TMS ($\delta 0.00$ ppm) for ¹H NMR, and to CDCl₃ (δ 77.0 ppm) for ¹³C NMR. Chemical shifts (δ) are reported in ppm and quoted to the nearest 0.01 ppm. Data are reported as follows: Chemical shift (multiplicity, coupling constants, number of protons). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplet. br s = broad singlet. GC-MS analyses were performed on aThermo Scientific ISQ gas chromatograph-mass spectrometer at an ionization voltage of 70 eV and equipped with a DB-WAX capillary column (internal diameter: 0.25 mm, length: 30 m). IR spectra were recorded on a Bruker Tensor 27 spectrometer and are reported in wavenumbers (cm⁻¹). High Resolution Mass Spectra (HRMS) were obtained from the high-resolution mass spectrometer (LCMS-ESI-TOF or LCMS-APCI-FTMS). Melting points were determined with a Büchi Melting Point B-545 instrument. All reagents were commercially purchased and used without further purification unless mentioned.

2. Experimental section

2.1 Synthesis of *N*-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)aniline¹

To a solution of but-3-yn-1-ol (376 µL, 5.0 mmol, 1.0 equiv) and imidazole (1.02 g, 15 mmol, 3.0 equiv) in CH₂Cl₂ (15 mL) was added TBDPSCl (1.43 mL, 11 mmol, 1.1 equiv) at room temperature. The reaction was stirred at room temperature for 4 h. After that, the reaction mixture was quenched with water and extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo to give a crude product, which was purified by silica gel column chromatography (100% hexane) to afford the product in 87% yield (1.34 g) as a colorless oil. NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.² ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.66 (m, 4H), 7.43-7.36 (m, 6H), 3.78 (t, *J* = 6.8 Hz, 2H), 2.45 (td, *J* = 7.2, 2.8 Hz, 2H), 1.94 (t, *J* = 2.8 Hz, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 133.5, 129.7, 127.7, 81.5, 69.3, 62.3, 26.8, 22.6, 19.2.

2.2 General procedure for synthesis of 2-alkynylanilines 1

Following a reported procedure,³ a solution of the corresponding 2-iodoaniline (3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and terminal alkyne (3.3 mmol, 1.1 equiv) in NEt₃ (12 mL) was stirred under nitrogen atmosphere at room temperature for 4 h. The mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel with EtOAc and petroleum ether to give 2-alkynylanilines.

2-(phenylethynyl)aniline (1a)

2-(phenylethynyl)aniline (**1a**) was prepared following the general procedure using 2iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (337.0 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (550.7 mg, 95% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁴ ¹**H** NMR (400 MHz, CDCl₃) δ 7.56-7.49 (m, 2H), 7.39-7.31 (m, 4H), 7.14 (td, *J* = 7.6, 1.6 Hz, 1H), 6.72 (t, *J* = 7.6 Hz, 2H), 4.13 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 132.1, 131.5, 129.7, 128.4, 128.2, 123.3, 118.0, 114.4, 108.0, 94.7, 85.8.

2-(*p*-tolylethynyl)aniline (1b)

2-(*p*-tolylethynyl)aniline (**1b**) was prepared following the general procedure using 2iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-4-methylbenzene (383.3 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (590.7 mg, 95% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.35 (d, J = 7.6 Hz, 1H), 7.13 (dd, J = 13.6, 7.6 Hz, 3H), 6.71 (t, J = 7.6 Hz, 2H), 4.21 (s, 2H), 2.36 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 147.2, 138.3, 132.1, 131.3, 129.5, 129.1, 120.2, 118.0, 114.4, 108.3, 94.9, 85.1, 21.5.

2-((4-pentylphenyl)ethynyl)aniline (1c)

2-((4-pentylphenyl)ethynyl)aniline (1c) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-4-pentylbenzene (568.5 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (734.8 mg, 93% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.35 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.17-7.09 (m, 3H), 6.75-6.68 (m, 2H), 4.23 (s, 2H), 2.60 (t, *J* = 7.7 Hz, 2H), 1.61 (p, *J* = 7.4 Hz, 2H), 1.35-1.28 (m, 4H), 0.89 (t, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 143.4, 132.1, 131.34, 129.5, 128.5, 120.4, 118.0, 114.3, 108.2, 94.9, 85.1, 35.8, 31.4, 30.9, 22.5, 14.0.

2-((4-isopropylphenyl)ethynyl)aniline (1d)

2-((4-isopropylphenyl)ethynyl)aniline (1d) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-4-isopropylbenzene (475.9 mg, 3.3

mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (642.5 mg, 91% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.42 (m, 2H), 7.35 (dd, J = 8.4, 2.0 Hz, 1H), 7.23-7.18 (m, 2H), 7.12 (td, J = 8.0, 1.6 Hz, 1H), 6.74-6.68 (m, 2H), 4.25 (s, 2H), 2.96-2.86 (m, 1H), 1.25 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 147.7, 132.1, 131.5, 129.5, 126.5, 120.6, 117.9, 114.3, 108.2, 94.9, 85.1, 34.1, 23.8.

2-((4-(tert-butyl)phenyl)ethynyl)aniline (1e)

2-((4-(*tert*-butyl)phenyl)ethynyl)aniline (1e) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-(*tert*-butyl)-4-ethynylbenzene (522.2 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (673.3 mg, 90% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 3H), 7.10 (td, *J* = 7.6, 1.6 Hz, 1H), 6.69 (t, *J* = 7.2 Hz, 2H), 4.16 (s, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 147.8, 132.2, 131.3, 129.6, 125.5, 120.4, 118.0, 114.4, 108.2, 94.9, 85.3, 34.9, 31.3.

2-((4-(trimethylsilyl)phenyl)ethynyl)aniline (1f)

2-((4-(trimethylsilyl)phenyl)ethynyl)aniline (**1f**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and (4-ethynylphenyl)trimethylsilane (575.2 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (700.7 mg, 88% yield). **m.p.** = 67.1-67.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 4H), 7.37 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.14 (td, *J* = 7.6, 1.6 Hz, 1H), 6.72 (t, *J* = 7.6 Hz, 2H), 4.27 (s, 2H), 0.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 141.0, 133.2, 132.1, 130.5, 129.7, 123.5, 118.0, 114.3, 108.0, 94.9, 86.2, -1.3. IR *v*_{max}(KBr)/cm⁻¹ 2934, 2855, 1624, 1454, 1318, 1106, 749. HRMS-APCI (m/z): calcd for C₁₇H₂₀NSi, [M+H]⁺ : 266.1361, found 266.1360.

2-([1,1'-biphenyl]-4-ylethynyl)aniline (1g)

2-([1,1'-biphenyl]-4-ylethynyl)aniline (**1g**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 4-ethynyl-1,1'-biphenyl (588.2 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:40 v/v) as an eluent provided the titled compound as a yellow solid (686.8 mg, 85% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁸ ¹H NMR (400 MHz,

CDCl₃) *δ*7.63-7.57 (m, 6H), 7.48-7.43 (m, 2H), 7.40-7.34 (m, 2H), 7.15 (ddd, *J* = 8.8, 7.2, 1.6 Hz, 1H), 6.78-6.72 (m, 2H). ¹³**C NMR (100 MHz, CDCl₃)** *δ* 147.4, 140.9, 140.3, 132.2, 131.9, 129.7, 128.9, 127.6, 127.0, 126.9, 122.2, 118.2, 114.5, 108.2, 94.7, 86.5.

2-((4-methoxyphenyl)ethynyl)aniline (1h)

2-((4-methoxyphenyl)ethynyl)aniline (1h) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-4-methoxybenzene (436.1 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:20 v/v) as an eluent provided the titled compound as a yellow solid (609.6 mg, 91% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.8 Hz, 2H), 7.34 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.10 (td, *J* = 8.0, 1.6 Hz, 1H), 6.88-6.83 (m, 2H), 6.72-6.67 (m, 2H), 4.02 (s, 2H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 147.6, 132.8, 131.9, 129.3, 117.9, 115.3, 114.2, 114.0, 108.2, 94.6, 84.4, 55.2.

2-((4-(pentyloxy)phenyl)ethynyl)aniline (1i)

2-((4-(pentyloxy)phenyl)ethynyl)aniline (1i) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg,

2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-4-(pentyloxy)benzene (621.3 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:20 v/v) as an eluent provided the titled compound as a yellow solid (771.1 mg, 92% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.38-7.30 (m, 1H), 7.16-7.06 (m, 1H), 6.85 (d, *J* = 8.4 Hz, 2H), 6.72-6.68 (m, 2H), 4.25 (s, 2H), 3.95 (t, *J* = 6.4 Hz, 2H), 1.83-1.73 (m, 2H), 1.46-1.35 (m, 4H), 0.93 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 147.6, 132.8, 131.9, 129.3, 117.9, 115.1, 114.5, 114.2, 108.3, 94.7, 84.3, 68.0, 28.8, 28.1, 22.4, 14.0.

2-((4-fluorophenyl)ethynyl)aniline (1j)

2-((4-fluorophenyl)ethynyl)aniline (**1j**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-4-fluorobenzene (396.4 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:40 v/v) as an eluent provided the titled compound as a yellow solid (608.3 mg, 96% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.47 (m, 2H), 7.37-7.33 (m, 1H), 7.14 (td, *J* = 7.6, 1.6 Hz, 1H), 7.07-7.00 (m, 2H), 6.75-6.70 (m, 2H), 3.95 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 249.0 Hz), 147.6, 133.3 (d, *J* = 8.0 Hz), 132.1, 129.8, 119.4 (d, *J* = 4.0 Hz), 118.1, 115.7 (d, *J* = 21.0 Hz), 114.4, 107.8, 93.6, 85.5.

2-((4-chlorophenyl)ethynyl)aniline (1k)

2-((4-chlorophenyl)ethynyl)aniline (**1k**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-chloro-4-ethynylbenzene (450.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:40 v/v) as an eluent provided the titled compound as a yellow solid (560.1 mg, 82% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹¹¹**H NMR (400 MHz, CDCl₃)** δ 7.47-7.41 (m, 2H), 7.37-7.28 (m, 3H), 7.14 (td, *J* = 8.0, 1.6 Hz, 1H), 6.75-6.68 (m, 2H), 4.25 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 134.1, 132.6, 132.1, 129.9, 128.7, 121.8, 118.0, 114.4, 107.5, 93.5, 86.9.

2-((4-bromophenyl)ethynyl)aniline (11)

2-((4-bromophenyl)ethynyl)aniline (**11**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-bromo-4-ethynylbenzene (597.4 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:30 v/v) as an eluent provided the titled compound as a yellow solid (694.0 mg, 85% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁷ **H NMR (400 MHz, CDCl₃)** δ 7.50-7.45 (m, 2H), 7.40-7.33 (m, 3H), 7.15 (td, J = 7.6, 1.6 Hz, 1H), 6.75-6.69 (m, 2H), 4.25 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 132.8, 132.2, 131.6, 130.0, 122.4, 122.3, 118.1, 114.4, 107.5, 93.6, 87.1.

2-((4-(trifluoromethyl)phenyl)ethynyl)aniline (1m)

2-((4-(trifluoromethyl)phenyl)ethynyl)aniline (**1m**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-4-(trifluoromethyl)benzene (561.4 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:8 v/v) as an eluent provided the titled compound as a yellow solid (587.8 mg, 75% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹² **¹H NMR (400 MHz, CDCl₃)** δ 7.59 (s, 4H), 7.37 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.16 (td, *J* = 8.0, 1.6 Hz, 1H), 6.72 (t, *J* = 7.6 Hz, 2H), 4.27 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 132.3, 131.6, 130.3, 129.7 (q, *J* = 32.7 Hz), 127.1 (q, *J* = 1.6 Hz), 125.3 (q, *J* = 3.8 Hz), 118.0, 114.4, 107.1, 93.3, 88.4.

1-(4-((2-aminophenyl)ethynyl)phenyl)ethan-1-one (1n)

1-(4-((2-aminophenyl)ethynyl)phenyl)ethan-1-one (1n) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh_3)_2Cl_2

(42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-(4-ethynylphenyl)ethan-1-one (475.8 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:5 v/v) as an eluent provided the titled compound as a yellow solid (564.7 mg, 80% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹³ **¹H NMR (400 MHz, CDCl₃)** δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.74 (t, *J* = 8.0 Hz, 2H), 4.02 (s, 2H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 147.9, 136.1, 132.3, 131.4, 130.3, 128.3, 128.2, 118.1, 114.5, 107.2, 94.0, 89.4, 26.6.

methyl 4-((2-aminophenyl)ethynyl)benzoate (10)

methyl 4-((2-aminophenyl)ethynyl)benzoate (**10**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and methyl 4-ethynylbenzoate (528.6 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:5 v/v) as an eluent provided the titled compound as a yellow solid (655.7 mg, 87% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹¹ **H NMR (400 MHz, CDCl₃)** δ 8.05-7.99 (m, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.37 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.17 (td, *J* = 7.7, 1.6 Hz, 1H), 6.76-6.70 (m, 2H), 4.40-4.23 (m, 2H), 3.93 (s, 3H). ¹³C **NMR (100 MHz, CDCl₃)** δ 166.5, 147.9, 132.3, 131.3, 130.3, 129.5, 129.3, 128.0, 118.0, 114.4, 107.2, 94.0, 89.0, 52.2.

2-(*m*-tolylethynyl)aniline (1p)

2-(*m*-tolylethynyl)aniline (**1p**) was prepared following the general procedure using 2iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-3-methylbenzene (383.3 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (590.7 mg, 95% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁷ **¹H NMR (400 MHz, CDCl₃)** δ 7.41-7.30 (m, 3H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.17-7.10 (m, 2H), 6.72 (d, *J* = 7.6 Hz, 2H), 4.26 (s, 2H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 138.0, 132.1, 132.0, 129.6, 129.1, 128.5, 128.3, 123.1, 117.9, 114.3, 108.0, 94.9, 85.5, 21.2.

2-(*m*-tolylethynyl)aniline (1q)

2-(*m*-tolylethynyl)aniline (**1q**) was prepared following the general procedure using 2iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-3-methoxybenzene (436.1 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:10 v/v) as an eluent provided the titled compound as a yellow solid (596.2 mg, 89% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹⁴ **¹H NMR (400 MHz, CDCl₃)** δ 7.36 (dd, J = 8.0, 1.6 Hz, 1H), 7.27-7.23 (m, 1H), 7.19-7.09 (m, 2H), 7.05 (dd, J = 2.4, 1.2 Hz, 1H), 6.89 (ddd, J = 8.4, 2.6, 1.0 Hz, 1H), 6.79-6.66 (m, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 147.8, 132.2, 129.8, 129.4, 124.3, 124.0, 118.0, 116.2, 114.8, 114.3, 107.8, 94.6, 85.7, 55.3.

2-((3-fluorophenyl)ethynyl)aniline (1r)

2-((3-fluorophenyl)ethynyl)aniline (**1r**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 1-ethynyl-3-fluorobenzene (396.4 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:40 v/v) as an eluent provided the titled compound as a yellow solid (602.0 mg, 95% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁷ **1H NMR (400 MHz, CDCl₃)** δ 7.36 (dd, J = 7.6, 1.2 Hz, 1H), 7.32-7.29 (m, 2H), 7.25-7.19 (m, 1H), 7.16 (td, J = 7.6, 1.6 Hz, 1H), 7.08-7.00 (m, 1H), 6.73 (t, J = 7.6 Hz, 2H), 4.32 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 246.4 Hz), 147.9, 132.2, 130.1, 129.9 (d, J = 8.7 Hz), 127.3 (d, J = 3.0 Hz), 125.1 (d, J = 9.5 Hz), 118.3, 118.2 (d, J = 22.8 Hz), 115.5 (d, J = 21.2 Hz), 114.4, 107.3, 93.4 (d, J = 3.4 Hz), 86.9.

2-(naphthalen-2-ylethynyl)aniline (1s)

2-(naphthalen-2-ylethynyl)aniline (**1s**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 2-ethynylnaphthalene (502.2 mg, 3.3 mmol, 1.1 equiv) in

NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:40 v/v) as an eluent provided the titled compound as a yellow solid (605.8 mg, 83% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹⁵ ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 3H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.52-7.46 (m, 2H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.76-6.72 (m, 2H), 4.32 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 133.0, 132.7, 132.2, 131.1, 129.8, 128.3, 128.0, 127.8, 127.7, 126.6, 126.6, 120.6, 118.0, 114.4, 108.0, 95.1, 86.3.

2-(thiophen-3-ylethynyl)aniline (1t)

2-(thiophen-3-ylethynyl)aniline (**1t**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 3-ethynylthiophene (356.9 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:30 v/v) as an eluent provided the titled compound as a yellow solid (567.9 mg, 95% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹⁶ ¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.8 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.32-7.27 (m, 1H), 7.19 (d, J = 5.2 Hz, 1H), 7.13 (t, J = 8.0 Hz, 1H), 6.71 (d, J = 7.6 Hz, 2H), 4.25 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 132.1, 129.8, 129.7, 128.3, 125.4, 122.3, 118.0, 114.3, 107.9, 89.6, 85.3.

2-(hex-1-yn-1-yl)aniline (1u)

2-(hex-1-yn-1-yl)aniline (1u) was prepared following the general procedure using 2iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and hex-1-yne (271.1 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:60 v/v) as an eluent provided the titled compound as a yellow liquid (395.0 mg, 76% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.06 (ddd, *J* = 8.0, 7.2, 1.6 Hz, 1H), 6.69-6.63 (m, 2H), 4.15 (s, 2H), 2.46 (t, *J* = 6.8 Hz, 2H), 1.64-1.55 (m, 2H), 1.53-1.43 (m, 2H), 0.95 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 132.0, 128.7, 117.8, 114.1, 108.9, 95.7, 76.9, 31.0, 22.0, 19.3, 13.6.

2-(4-methylpent-1-yn-1-yl)aniline (1v)

2-(4-methylpent-1-yn-1-yl)aniline (**1v**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 4-methylpent-1-yne (271.1 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:60 v/v) as an eluent provided the titled compound as a yellow liquid (337.9 mg, 65% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹⁸ ¹**H** NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 8.4, 1.6 Hz, 1H), 7.06 (td, J = 7.6, 1.6 Hz, 1H), 6.67-6.62 (m, 2H), 4.14 (s, 2H), 2.35 (d, J = 6.4 Hz, 2H), 1.96-1.86 (m, 1H), 1.04 (d, J = 6.8 Hz, 6H). ¹³C NMR (100

2-(5-chloropent-1-yn-1-yl)aniline (1w)

2-(5-chloropent-1-yn-1-yl)aniline (**1w**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and 5-chloropent-1-yne (338.5 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:40 v/v) as an eluent provided the titled compound as a yellow liquid (435.8 mg, 75% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.¹⁹ **1H NMR (400 MHz, CDCl₃)** δ 7.24 (dd, J = 8.0, 1.6 Hz, 1H), 7.08 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 6.69-6.64 (m, 2H), 4.13 (s, 2H), 3.72 (t, J = 6.4 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 2.06 (p, J = 6.4 Hz, 2H). ¹³C **NMR (100 MHz, CDCl₃)** δ 147.7, 132.1, 129.1, 117.9, 114.2, 108.4, 93.3, 78.1, 43.7, 31.4, 17.0.

2-(4-((*tert*-butyldiphenylsilyl)oxy)but-1-yn-1-yl)aniline (1x)

2-(4-((*tert*-butyldiphenylsilyl)oxy)but-1-yn-1-yl)aniline (**1x**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and (but-3-yn-1-yloxy)(*tert*butyl)diphenylsilane (1.02 g, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:20 v/v) as an eluent provided the titled compound as a yellow liquid (851.2 mg, 71% yield). ¹**H NMR (400** **MHz, CDCl₃)** δ 7.76-7.72 (m, 4H), 7.49-7.39 (m, 6H), 7.26 (dd, J = 7.6, 1.6 Hz, 1H), 7.11 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 6.74-6.67 (m, 2H), 3.91 (t, J = 6.8 Hz, 2H), 2.77 (t, J = 6.4 Hz, 2H), 1.11 (s, 9H). ¹³C **NMR (100 MHz, CDCl₃)** δ 147.5, 135.6, 133.5, 132.0, 129.7, 129.0, 127.7, 117.9, 114.2, 108.7, 92.7, 78.0, 62.6, 26.8, 23.8, 19.2. **IR** v_{max} (**KBr**)/**cm**⁻¹ 2936, 2861, 1626, 1431, 1360, 1108, 745. **HRMS-APCI (m/z):** calcd for C₂₆H₃₀NOSi, [M+H]⁺ : 400.2091, found 400.2093.

2-(cyclopentylethynyl)aniline (1y)

2-(cyclopentylethynyl)aniline (**1y**) was prepared following the general procedure using 2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylcyclopentane (310.7 mg, 3.3 mmol, 1.1 equiv) in NEts (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow liquid (333.5 mg, 60% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁰ ¹**H** NMR (400 MHz, CDCl₃) δ 7.23 (dd, J = 7.6, 1.6 Hz, 1H), 7.07 (td, J = 7.6, 1.6 Hz, 1H), 6.71-6.63 (m, 2H), 3.42 (s, 2H), 2.92-2.85 (m, 1H), 2.06-1.97 (m, 2H), 1.81-1.67 (m, 4H), 1.66-1.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.43 131.9, 128.7, 117.9, 114.1, 109.0, 100.1, 76.4, 34.2, 31.0, 25.0.

2-(cyclohexylethynyl)aniline (1z)

2-(cyclohexylethynyl)aniline (1z) was prepared following the general procedure using

2-iodoaniline (657.1 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylcyclopentane (310.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow liquid (328.8 mg, 55% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²¹ ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.23 (m, 1H), 7.10-7.04 (m, 1H), 6.70-6.63 (m, 2H), 4.12 (s, 2H), 2.67-2.63 (m, 1H), 1.93-1.87 (m, 2H), 1.79-1.72 (m, 2H), 1.60-1.51 (m, 3H), 1.42-1.33 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 131.9, 128.7, 117.8, 114.1, 109.0, 99.9, 32.9, 29.9, 25.9, 24.9.

4-methyl-2-(phenylethynyl)aniline (1aa)

4-methyl-2-(phenylethynyl)aniline (**1aa**) was prepared following the general procedure using 2-iodo-4-methylaniline (699.2 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (597.0 mg, 97% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.⁷ **H NMR (400 MHz, CDCl₃)** δ 7.55-7.48 (m, 2H), 7.38-7.30 (m, 3H), 7.19 (d, *J* = 2.0 Hz, 1H), 6.98-6.93 (m, 1H), 6.65 (d, *J* = 8.4 Hz, 1H), 4.04 (s, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 132.2, 131.4, 130.6, 128.3, 128.1, 127.3, 123.4, 114.6, 108.0, 94.4, 86.1, 20.3.

4-(*tert*-butyl)-2-(phenylethynyl)aniline (1ab)

4-(*tert*-butyl)-2-(phenylethynyl)aniline (**1ab**) was prepared following the general procedure using 4-(*tert*-butyl)-2-iodoaniline (825.4 mg, 3 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:40 v/v) as an eluent provided the titled compound as a yellow solid (710.7 mg, 95% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²² **¹H NMR (400 MHz, CDCl₃)** δ 7.64 (d, *J* = 7.2 Hz, 1H), 7.53-7.40 (m, 5H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.26-7.18 (m, 2H), 6.69-6.47 (m, 2H), 2.92-2.82 (m, 1H), 2.80-2.63 (m, 2H), 2.58-2.46 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 141.0, 131.5, 128.7, 128.3, 128.1, 127.1, 123.4, 114.4, 107.6, 94.2, 86.4, 33.9, 31.4.

4-methoxy-2-(phenylethynyl)aniline (1ac)

4-methoxy-2-(phenylethynyl)aniline (1ac) was prepared following the general procedure using 2-iodo-4-methoxyaniline (747.2 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:10 v/v) as an eluent provided the titled compound as a yellow solid (602.9 mg, 90% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²³ ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.49 (m, 2H), 7.36-7.30 (m, 3H), 6.92

(d, J = 2.8 Hz, 1H), 6.77 (dd, J = 8.8, 3.2 Hz, 1H), 6.66 (d, J = 8.8 Hz, 1H), 4.01 (s, 2H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 142.0, 131.4, 128.3, 128.2, 123.1, 117.4, 115.9, 115.7, 108.5, 94.6, 85.9, 55.7.

4-fluoro-2-(phenylethynyl)aniline (1ad)

4-fluoro-2-(phenylethynyl)aniline (**1ad**) was prepared following the general procedure using 4-fluoro-2-iodoaniline (711.0 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (614.7 mg, 97% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁴ ¹**H NMR (400 MHz, CDCl₃)** δ 7.57-7.46 (m, 2H), 7.40-7.32 (m, 1H), 7.14 (td, *J* = 7.6, 1.2 Hz, 1H), 7.04 (t, *J* = 8.4 Hz, 2H), 6.74-6.70 (m, 2H), 4.20 (s, 2H). ¹³**C NMR (100 MHz, CDCl₃)** δ 162.5 (d, *J* = 248.0 Hz), 147.7, 133.3 (d, *J* = 9.0 Hz), 132.1, 129.8, 119.4 (d, *J* = 3.0 Hz), 118.1, 115.7 (d, *J* = 22.0 Hz) 114.4, 107.8, 93.6, 85.5.

4-chloro-2-(phenylethynyl)aniline (1ae)

4-chloro-2-(phenylethynyl)aniline (**1ae**) was prepared following the general procedure using 4-chloro-2-iodoaniline (760.4 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:30 v/v) as an eluent provided the titled compound as a yellow solid (580.6 mg, 85% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.2, 3.6 Hz, 2H), 7.40-7.29 (m, 4H), 7.08 (dd, J = 8.8, 2.8 Hz, 1H), 6.67 (d, J = 8.8 Hz, 1H), 4.49 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 131.5, 131.4, 129.6, 128.6, 128.4, 122.8, 122.6, 115.7, 109.6, 95.7, 84.5.

4-bromo-2-(phenylethynyl)aniline (1af)

4-bromo-2-(phenylethynyl)aniline (**1af**) was prepared following the general procedure using 4-bromo-2-iodoaniline (297.9 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:20 v/v) as an eluent provided the titled compound as a yellow solid (620.5 mg, 76% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁴¹H NMR (400 MHz, CDCl₃) δ 7.46-7.38 (m, 3H), 7.27 (dd, *J* = 4.0, 1.2 Hz, 3H), 7.13 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.51 (d, *J* = 8.8 Hz, 1H), 4.20 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 134.1, 132.4, 131.5, 128.5, 128.4, 122.7, 115.7, 109.8, 109.0, 95.7, 84.5.

2-(phenylethynyl)-4-(trifluoromethyl)aniline (1ag)

2-(phenylethynyl)-4-(trifluoromethyl)aniline (1ag) was prepared following the general

procedure using 2-iodo-4-(trifluoromethyl)aniline (861.1 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:20 v/v) as an eluent provided the titled compound as a yellow solid (666.2 mg, 85% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁶¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.51 (dd, *J*=7.6, 3.6 Hz, 2H), 7.38-7.29 (m, 4H), 6.68 (d, *J*= 8.8 Hz, 1H), 4.54 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 131.5, 129.4 (q, *J* = 3.9 Hz), 128.6, 128.4, 126.5 (q, *J* = 3.7 Hz), 119.7 (q, *J* = 33.0 Hz), 119.2, 113.7, 107.4, 95.6, 84.3.

methyl 4-amino-3-(phenylethynyl)benzoate (1ah)

methyl 4-amino-3-(phenylethynyl)benzoate (**1ah**) was prepared following the general procedure using methyl 4-amino-3-iodobenzoate (681.2 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:5 v/v) as an eluent provided the titled compound as a yellow solid (640.8 mg, 85% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁴ ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 2.0 Hz, 1H), 7.81 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.52 (dd, *J* = 7.2, 3.6 Hz, 2H), 7.34 (dd, *J* = 4.8, 1.6 Hz, 3H), 6.69 (d, *J* = 8.4 Hz, 1H), 4.70 (s, 2H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 151.4, 134.3, 131.4, 131.3, 128.4, 122.8, 119.3, 113.2, 107.1, 95.0, 84.7, 51.7.

2-methoxy-6-(phenylethynyl)aniline (1ai)

2-methoxy-6-(phenylethynyl)aniline (1ai) was prepared following the general procedure using methyl 2-iodo-6-methoxyaniline (747.2 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:10 v/v) as an eluent provided the titled compound as a yellow solid (502.4 mg, 75% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.50 (m, 2H), 7.37-7.30 (m, 3H), 7.00 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.76 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.66 (t, *J* = 8.0 Hz, 1H), 4.42 (s, 2H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 138.4, 131.4, 128.3, 128.1, 123.9, 123.3, 117.1, 110.4, 107.5, 94.6, 85.8, 55.6.

2-chloro-6-(phenylethynyl)aniline (1aj)

2-chloro-6-(phenylethynyl)aniline (**1aj**) was prepared following the general procedure using methyl 2-chloro-6-iodoaniline (760.4 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:20 v/v) as an eluent provided the titled compound as a yellow solid (505.5 mg, 74% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.51 (m, 2H), 7.37 (dd, J = 4.8, 1.6 Hz, 2H), 7.28 (d, 2.4 Hz, 2H), 6.77-6.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 135.3, 133.1, 131.5, 128.4, 123.0, 118.2, 114.1, 106.5, 95.4, 84.9.

4,5-dimethyl-2-(phenylethynyl)aniline (1ak)

4,5-dimethyl-2-(phenylethynyl)aniline (**1ak**) was prepared following the general procedure using methyl 2-iodo-4,5-dimethylaniline (741.2 mg, 3.0 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (42.1 mg, 2 mol %), CuI (11.4 mg, 2 mol %) and ethynylbenzene (330.7 mg, 3.3 mmol, 1.1 equiv) in NEt₃ (12 mL). The resulting mixture was stirred under nitrogen atmosphere at room temperature for 4 h. Purification by column chromatography on silica gel using EtOAc: PE (1:50 v/v) as an eluent provided the titled compound as a yellow solid (524.5 mg, 97% yield). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.²⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.47 (m, 2H), 7.35-7.30 (m, 3H), 7.13 (s, 1H), 6.55 (s, 1H), 4.08 (s, 2H), 2.19 (s, 3H), 2.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 138.8, 132.6, 131.4, 128.3, 127.9, 126.3, 123.6, 116.0, 105.4, 93.9, 86.2, 20.0, 18.6.

2.3 Synthesis of but-3-enoic-4,4- d_2 acid²

To a 100 mL dried two-neck flask equipped with a magnetic stir bar was added (2carboxyethyl)triphenylphosphonium bromide (2.08 g, 5 mmol, 1.0 equiv), anhydrous THF (30 mL) under nitrogen. Dropwise addition of NaHMDS solution (2 M in THF, 5.5 mL, 11 mmol, 2.0 equiv) at 0 °C afforded a brilliant orange mixture. After being stirred for 1 h at this temperature and 2 h at room temperature, the resulting brown mixture was cooled to -78 °C, and paraformaldehyde- d_2 (0.30 g, 10 mmol, 2.0 equiv) dispersed in anhydrous THF (4 mL) was added to the orange solution. The reaction was then stirred at room temperature for 48 h. After this time, the solvent was removed in vacuo. The residue was dissolved by water (40 mL) and washed with Et₂O (20 mL × 3). The aqueous phase was acidified to pH = 2 with aqueous HCl (6 N) and extracted with Et₂O (3 × 20 mL). The combined organic layer was dried over MgSO4, concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc: PE = 1:5 v/v) to afford γ - d_2 -2a as an orange oil (96.9 mg, 22% yield, > 98% D). NMR spectra data of the isolated material matched with the spectra data reported in the literature for this compound.² 1H NMR (400 MHz, CDCl₃) δ 10.93 (s, 1H), 5.87-5.82 (s, 1H), 3.08 (d, J = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 129.3, 119.0-118.0 (m, the deuterium containing carbon, relatively low), 38.7.

3. General procedure for the synthesis of products

To a 25 mL dried round bottom flask equipped with a magnetic stir bar was added Pd(TFA)₂ (6.6 mg, 10 mol%), L2 (6.2 mg, 15 mol%), LiOAc (3.3 mg, 0.25 equiv), substituted 2-alkynyl aniline 1 (0.2 mmol, 1.0 equiv), 2,6-DMBQ (34 mg, 1.25 equiv) and PhF (1.5 mL), followed by the addition of substituted 3-butenoic acid 2 (0.4 mmol, 2.0 equiv). The mixture was stirred at 70 °C for 12 h under air. After the reaction was completed, the mixture was cooled to room temperature, diluted with aqueous saturated NaHCO₃ (15 mL) and extracted with EtOAc (10 mL × 3). The organic layer was collected and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by flash chromatography on silica gel to afford the product **3**.

4. Unsuccessful substrates

Reaction conditions: **1** (0.2 mmol), **2** (2.0 equiv), $Pd(TFA)_2$ (10 mol%), **L2** (15 mol%), 2,6-DMBQ (1.25 equiv), LiOAc (0.25 equiv) in PhF (1.5 mL) at 70 °C under air for 12 h. n.d. = not detected.

When 2-(*o*-tolylethynyl)aniline or 2-((2-fluorophenyl)ethynyl)aniline was subjected, respectively, the corresponding products could not be detected by GC-MS, with a large amount of starting material remained. This may be attributed to the steric hindrance effects that prevent the coordination of alkyne with palladium. When 4-pentenoic acid or 5-hexenoic acid was subjected to the standard reaction conditions, respectively, the corresponding product could not be detected by GC-MS. We assume that increasing the carbon chain may weaken the coordination between carboxyl group and palladium, and thus the alkene could not be activated.

5. Larger-scale reaction

To a 100 mL dried round bottom flask equipped with a magnetic stir bar was added $Pd(TFA)_2$ (166.2 mg, 10 mol%), L2 (156.2 mg, 15 mol%), LiOAc (82.5 mg, 0.25 equiv), 2-(phenylethynyl)aniline 1a (996.3 mg, 5.0 mmol, 1.0 equiv), 2,6-DMBQ (8850.9 mg, 6.25 mmol, 1.25 equiv) and PhF (37.5 mL), followed by the addition of 3-butenoic acid 2a (880.0 µL, 10.0 mmol, 2.0 equiv). The mixture was stirred at 70 °C for 12 h under air. After the reaction was completed, the mixture was cooled to room temperature, diluted with aqueous saturated NaHCO₃ (40 mL) and extracted with EtOAc (40 mL × 3). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography on silica gel using Ether : Hexane (1:1 v/v) as an eluent to provide 3a as a yellow solid (832.0 mg, 60% yield).

6. Mechanistic investigation

(not detected by GC-MS)

To a 25 mL dried round bottom flask equipped with a magnetic stir bar was added Pd(TFA)₂ (6.6 mg, 10 mol%), 2,9-dimethyl-1,10-phenanthroline (6.2 mg, 15 mol%), 2-phenyl-1*H*-indole **4** (38.6 mg, 0.2 mmol, 1.0 equiv), 3-butenoic acid **2a** (36 μ L, 0.4 mmol, 2.0 equiv) and PhF (1.5 mL), followed by the addition of 2,6-DMBQ (34 mg, 1.25 equiv). The mixture was stirred at 70 °C for 12 h under air. After the reaction was completed, the mixture was detected by GC-MS, but the product **3a** was not detected.

The experimental result shows that the reaction is more likely to be initiated by the intermolecular aminopalladation of 2-phenylethynyl aniline with 3-butenoic acid than the intramolecular aminopalladation of 2-phenylethynyl aniline.

To a 25 mL dried round bottom flask equipped with a magnetic stir bar was added Pd(TFA)₂ (6.6 mg, 10 mol%), 2-phenylethynyl aniline **1a** (38.6 mg, 0.2 mmol, 1.0 equiv), 3-butenoic acid **2a** (36 μ L, 0.4 mmol, 2.0 equiv) and PhF (1.5 mL), followed by the addition of 2,6-DMBQ (34 mg, 1.25 equiv). The mixture was stirred at 70 °C for 12 h under air. After the reaction was completed, the mixture was cooled to room temperature, diluted with EtOAc (10 mL) and washed with aqueous saturated NaHCO₃ (15 mL). The aqueous layer was further extracted with EtOAc (10 mL × 3) and dried over anhydrous MgSO₄. After removal of EtOAc in vacuum, the residue was purified by flash chromatography on silica gel using EtOAc: PE (1:10 v/v) as an eluent to afford the 2-phenyl-1*H*-indole **4** as a yellow solid (32.9 mg, 85%). ¹**H NMR (400 MHz, CDCl₃)** δ 8.37 (s, 1H), 7.72-7.65 (m, 3H), 7.51-7.41 (m, 3H), 7.39-7.33 (m, 1H), 7.24 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 1H), 7.17 (ddd, *J* = 8.0, 7.2, 1.2 Hz, 1H), 6.87 (dd, *J* = 2.0,

0.8 Hz, 1H).

The experimental result shows that ligand L2 may be play a critical role in effectively inhibiting the intramolecular aminopalladation of 2-phenylethynyl aniline 1a.

6.2 Deuterium-labeling experiments

To a 25 mL dried round bottom flask equipped with a magnetic stir bar was added Pd(TFA)₂ (6.6 mg, 10 mol%), 2,9-dimethyl-1,10-phenanthroline (6.2 mg, 15 mol%), 2-phenylethynyl aniline **1a** (38.6 mg, 0.2 mmol, 1.0 equiv), but-3-enoic-4,4- d_2 acid γ - d_2 -**2a** (36 µL, 0.4 mmol, 2.0 equiv) and PhF (1.5 mL), followed by the addition of 2,6-DMBQ (34 mg, 1.25 equiv). The mixture was stirred at 70 °C for 12 h under air. After the reaction was completed, the mixture was cooled to room temperature, diluted with EtOAc (10 mL) and washed with aqueous saturated NaHCO₃ (15 mL). The aqueous layer was further extracted with EtOAc (10 mL × 3) and dried over anhydrous MgSO₄. After removal of EtOAc in vacuum, the residue was purified by flash chromatography on silica gel using Ether : Hexane (1:1 v/v) as an eluent to afford the product d_1 ~ d_2 -**3a** as a yellow solid (15.6 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 6.8, 1.6 Hz, 1H), 7.50-7.40 (m, 5H), 7.29 (d, J = 8.0 Hz, 1H), 7.24-7.17 (m, 2H), 6.55 (s, 1H), 2.90-2.78 (m, 1H), 2.78-2.62 (m, 2H), 2.54-2.45 (m, **0.78H**).

The presence of 1.0 D at the γ position is in line with the proposed sequence of aminopalladation followed by β -H elimination, whereas the 0.22 D at the β position may be partially due to Pd-D participation in tautomerization from enamine to imine.

7. Crystal structure data of 3j

Compound **3j** was dissolved in DCM/Hexane (2 mL, 1:1) and the solvent was allowed to slowly evaporated at room temperature to give a crystal suitable for X-ray diffraction analysis. The intensity data was collected on a D8 VENTURE instrument. The data were outlined below.

(The thermal ellipsoids was drawn at the 50% probability level.)

Table S1 Crysa	l data and	l structure refinements	for 3 j
----------------	------------	-------------------------	----------------

Compound	3j
Crystal Number	CCDC 2336722
Empirical formula	$C_{18}H_{14}FNO_2$
Formula weight	295.30
Temperature/K	170.0
Crystal system,	triclinic
Space group	P-1
a/Å	9.2770(6)
b/Å	9.5602(6)
c/Å	9.7665(6)
α/ ^o	104.289(2)
β/°	110.312(2)
$\gamma/^{o}$	107.388(2)

Volume/Å ³	713.26(8)
Z	2
$\rho_{calc}g/cm^3$	1.375
$\mu/ \text{ mm}^{-1}$	0.099
F (000)	308.0
Crystal size/mm ³	0.12 imes 0.08 imes 0.05
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.168 to 55.018
Index ranges	$-12 \le h \le 11, -12 \le k \le 11, -12 \le l \le 12$
Reflections collected	8815
Independent reflections	$3229 [R_{int} = 0.0626, R_{sigma} = 0.0806]$
Data/restraints/parameters	3229/0/199
Goodness-of-fit on F ²	1.050
Final R indices [I>= 2σ (I)]	$R_1 = 0.0529, wR_2 = 0.1009$
Final R indexes [all data]	$R_1 = 0.1178, wR_2 = 0.1309$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.24

8. Analytic data of products

5-(2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3a)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3a** as a yellow solid (42.2 mg, 76% yield).

m.p. = 101.7-102.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.64 (d, *J* = 7.2 Hz, 1H), 7.53-7.40 (m, 5H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.26-7.18 (m, 2H), 6.69-6.47 (m, 2H), 2.92-2.82 (m, 1H), 2.80-2.63 (m, 2H), 2.58-2.46 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) *δ* 174.5, 141.0, 135.3, 131.9, 129.6, 129.4, 128.8, 128.6, 122.7, 121.4, 111.4, 105.0, 85.9, 28.9, 26.2.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2923, 2817, 1771, 1626, 1516, 1352, 1162, 940, 689.

HRMS-APCI (m/z): calcd for C₁₈H₁₆NO₂, [M+H]⁺ : 278.1176, found 278.1171.

5-(2-(p-tolyl)-1H-indol-1-yl)dihydrofuran-2(3H)-one (3b)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3b** as a yellow solid (38.5 mg, 66% yield). **m.p.** = 139.8-140.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.63 (d, *J* = 7.2 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.31-7.26 (m, 3H), 7.24-7.16 (m, 2H), 6.58 (t, *J* = 7.2 Hz, 1H), 6.53 (s, 1H), 2.91-2.81 (m, 1H), 2.79-2.64 (m, 2H), 2.55- 2.46 (m, 1H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 141.2, 138.7, 135.2, 129.5, 129.5, 129.0, 122.5,
121.3, 121.3, 111.3, 104.6, 85.9, 29.0, 26.2, 21.3.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2937, 2877, 1770, 1660, 1514, 1294, 1163, 938, 690.

HRMS-APCI (m/z): calcd for C₁₉H₁₈NO₂, [M+H]⁺: 292.1332, found 292.1327.

5-(2-(4-pentylphenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3c)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3c** as a yellow solid (42.0 mg, 63% yield). **m.p.** = 64.5-64.9 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.63 (dd, *J* = 6.8, 1.6 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 2H), 7.32-7.26 (m, 3H), 7.26-7.17 (m, 2H), 6.60 (t, *J* = 7.6 Hz, 1H), 6.53 (s, 1H), 2.92-2.82 (m, 1H), 2.80-2.63 (m, 4H), 2.57-2.47 (m, 1H), 1.70-1.63 (m, 2H), 1.41-1.33 (m, 4H), 0.95-0.89 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 143.7, 141.2, 135.3, 129.5, 129.5, 129.2, 128.9, 122.5, 121.3, 121.3, 111.3, 104.6, 85.9, 35.7, 31.5, 31.1, 29.0, 26.1, 22.5, 14.0.
IR ν_{max}(KBr)/cm⁻¹ 2947, 2816, 1770, 1622, 1516, 1326, 1153, 940, 620.
HRMS-APCI (m/z): calcd for C₂₃H₂₆NO₂, [M+H]⁺ : 348.1958, found 348.1953.

5-(2-(4-isopropylphenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3d)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3d** as a white solid (37.1 mg, 58% yield).

m.p. = 164.3-164.8 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.61 (dd, *J* = 7.2, 2.0 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.33-7.26 (m, 3H), 7.22-7.15 (m, 2H), 6.57 (t, *J* = 7.6 Hz, 1H), 6.51 (s, 1H), 3.00-2.92 (m, 1H), 2.88-2.79 (m, 1H), 2.77-2.70 (m, 1H), 2.69-2.59 (m, 1H), 2.52-2.44 (m, 1H), 1.29 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 149.6, 141.2, 135.2, 129.6, 129.5, 129.3, 126.9, 122.5, 121.3, 121.3, 111.4, 104.6, 85.9, 33.9, 29.0, 26.1, 23.9, 23.9.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2930, 2816, 1772, 1628, 1441, 1353, 1159, 938, 754.

HRMS-APCI (m/z): calcd for C₂₁H₂₂NO₂, [M+H]⁺ : 320.1645, found 320.1639.

5-(2-(4-(*tert*-butyl)phenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3e)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3e** as a yellow solid (46.7 mg, 70% yield). **m.p.** = 204.9-205.5 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.63 (d, *J* = 6.8 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.24-7.15 (m, 2H), 6.60 (t, *J* = 7.6 Hz, 1H), 6.54 (s, 1H), 2.95-2.85 (m, 1H), 2.83-2.66 (m, 2H), 2.58-2.49 (m, 1H), 1.38 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 151.8, 141.2, 135.2, 129.6, 129.3, 129.0, 125.8, 122.5, 121.3, 121.3, 111.4, 104.6, 86.0, 34.7, 31.3, 29.0, 26.1.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2946, 2800, 1771, 1628, 1514, 1346, 1162, 931, 683.

HRMS-APCI (m/z): calcd for C₂₂H₂₂NO₂, [M-H]⁻: 332.1656, found 332.1658.

5-(2-(4-(trimethylsilyl)phenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3f)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3f** as a yellow solid (44.7 mg, 64% yield). **m.p.** = 198.7-199.4 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.65-7.63 (m, 3H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.31-7.18 (m, 3H), 6.60 (t, *J* = 7.6 Hz, 1H), 6.56 (s, 1H), 2.97-2.87 (m, 1H), 2.86-2.66 (m, 2H), 2.58-2.49 (m, 1H), 0.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 141.3, 141.2, 135.3, 133.8, 132.2, 129.6, 128.7, 122.7, 121.4, 111.5, 104.9, 86.0, 29.0, 26.1, -1.2.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2930, 2855, 1784, 1629, 1456, 1342, 1252, 1111, 746.

HRMS-APCI (m/z): calcd for C₂₁H₂₄NO₂Si, [M+H]⁺: 350.1571, found 350.1564.

5-(2-([1,1'-biphenyl]-4-yl)-1H-indol-1-yl)dihydrofuran-2(3H)-one (3g)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3g** as a white solid (44.5 mg, 63% yield). **m.p.** = 190.4-191.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.71 (d, *J* = 8.0 Hz, 2H), 7.68-7.62 (m, 3H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.42-7.37 (m, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.28-7.19 (m, 2H), 6.65 (t, *J* = 7.6 Hz, 1H), 6.61 (s, 1H), 2.97-2.87 (m, 1H), 2.86-2.67 (m, 2H), 2.61-2.50 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 141.5, 140.8, 140.2, 135.4, 130.8, 129.9, 129.5, 128.9, 127.8, 127.5, 127.1, 122.7, 121.4, 121.4, 111.5, 105.0, 86.0, 29.0, 26.2.

IR *v*_{max}(KBr)/cm⁻¹ 2903, 2855, 1773, 1615, 1496, 1352, 1163, 938, 638. HRMS-APCI (m/z): calcd for C₂₄H₂₀NO₂, [M+H]⁺ : 354.1489, found 354.1482.

5-(2-(4-methoxyphenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3h)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3h** as a yellow solid (30.7 mg, 50% yield). **m.p.** = 201.7-202.2 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.62 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.29-7.16 (m, 3H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.56 (t, *J* = 7.6 Hz, 1H), 6.49 (s, 1H), 3.85 (s, 3H), 2.90-2.81 (m, 1H), 2.79-2.61 (m, 2H), 2.54-2.45 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 159.9, 140.9, 135.1, 130.9, 129.4, 124.1, 122.4, 121.2, 121.1, 114.2, 111.2, 104.4, 85.9, 55.4, 28.9, 26.1.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2944, 2814, 1773, 1610, 1563, 1307, 1162, 939, 697.

HRMS-APCI (m/z): calcd for C₁₉H₁₈NO₃, [M+H]⁺: 308.1281, found 308.1275.

5-(2-(4-(pentyloxy)phenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3i)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3i** as a yellow solid (30.1 mg, 43% yield). **m.p.** = 105.8-106.3 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 6.8, 1.6 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H),

7.28 (d, J = 8.0 Hz, 1H), 7.24-7.17 (m, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.57 (t, J = 7.6 Hz, 1H), 6.49 (s, 1H), 4.00 (t, J = 6.4 Hz, 2H), 2.93-2.81 (m, 1H), 2.80-2.64 (m, 2H), 2.56-2.45 (m, 1H), 1.86-1.79 (m, 2H), 1.49-1.38 (m, 4H), 0.95 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 159.5, 141.0, 135.1, 130.9, 129.5, 123.9, 122.4, 121.2, 121.1, 114.8, 111.2, 104.4, 85.9, 68.1, 29.0, 28.9, 28.2, 26.1, 22.4, 14.0. IR ν_{max} (KBr)/cm⁻¹2957, 2816, 1774, 1617, 1476, 1353, 1162, 940, 681. HRMS-APCI (m/z): calcd for C₂₃H₂₆NO₃, [M+H]⁺ : 364.1907, found 364.1900.

5-(2-(4-fluorophenyl)-1H-indol-1-yl)dihydrofuran-2(3H)-one (3j)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3j** as a yellow solid (44.3 mg, 75% yield). **m.p.** = 132.3-133.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.67-7.62 (m, 1H), 7.48 (dd, *J* = 8.8, 5.6 Hz, 2H), 7.31-7.15 (m, 5H), 6.55-6.51 (m, 2H), 2.92-2.84 (m, 1H), 2.82-2.67 (m, 2H), 2.58-2.49 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 162.9 (d, J = 247.7 Hz), 139.9, 135.4, 131.4 (d, J = 8.2 Hz), 129.3, 128.0 (d, J = 3.3 Hz), 122.8, 121.5, 121.4, 116.0 (d, J = 21.6 Hz), 111.3, 105.2, 85.8, 28.9, 26.1.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2960, 2842, 1777, 1624, 1502, 1362, 1102, 936, 639.

HRMS-APCI (m/z): calcd for C₁₈H₁₅FNO₂, [M+H]⁺ : 296.1081, found 296.1078.

5-(2-(4-chlorophenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3k)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3k** as a yellow solid (41.2 mg, 66% yield). **m.p.** = 136.8-137.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.63 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.45-7.40 (m, 4H), 7.31-7.23 (m, 2H), 7.22-7.18 (m, 1H), 6.56-6.48 (m, 2H), 2.89-2.82 (m, 1H), 2.81-2.65 (m, 2H), 2.56-2.45 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 139.7, 135.4, 134.8, 130.7, 130.3, 129.3, 129.1, 122.9, 121.5, 121.4, 111.4, 105.3, 85.7, 28.9, 26.1.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2951, 2846, 1774, 1619, 1502, 1363, 1165, 942, 632.

HRMS-APCI (m/z): calcd for C₁₈H₁₅ClNO₂, [M+H]⁺ : 312.0786, found 312.0780.

5-(2-(4-bromophenyl)-1H-indol-1-yl)dihydrofuran-2(3H)-one (3l)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **31** as a yellow solid (43.5 mg, 61% yield). **m.p.** = 156.8-157.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.64 (d, *J* = 7.2 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.32-7.18 (m, 3H), 6.56 (s, 1H), 6.52 (t, *J* = 7.6 Hz, 1H), 2.92-2.67 (m, 3H), 2.58-2.46 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 139.7, 135.4, 132.0, 131.0, 130.8, 129.3, 123.0, 122.9, 121.5, 121.5, 111.4, 105.3, 85.7, 28.9, 26.1.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2929, 2816, 1770, 1626, 1501, 1359, 1162, 940, 687.

HRMS-APCI (m/z): calcd for C₁₈H₁₅BrNO₂, [M+H]⁺ : 356.0115, found 356.0117.

5-(2-(4-(trifluoromethyl)phenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3m)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3m** as a yellow solid (41.4 mg, 60% yield). **m.p.** = 158.7-159.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.74 (d, *J* = 8.0 Hz, 2H), 7.68-7.62 (m, 3H), 7.33-7.26 (m, 2H), 7.25-7.20 (m, 1H), 6.63 (s, 1H), 6.53 (t, *J* = 8.0 Hz, 1H), 2.93-2.87 (m, 1H), 2.87-2.70 (m, 2H), 2.59-2.50 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 139.4, 135.6, 135.5, 130.6 (q, *J* = 30.0 Hz), 129.8, 129.3, 125.9 (q, *J* = 3.7 Hz), 123.9 (q, *J* = 270.6 Hz), 123.3, 121.7, 111.6, 106.1, 85.8, 28.9, 26.2.

IR *v*_{max}(KBr)/cm⁻¹ 2936, 2829, 1772, 1605, 1495, 1354, 1165, 927, 669.

HRMS-APCI (m/z): calcd for C₁₉H₁₅F₃NO₂, [M+H]⁺: 346.1049, found 346.1042.

5-(2-(4-acetylphenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3n)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3n** as a yellow solid (46.0mg, 72% yield). **m.p.** = 154.2-154.7 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 8.05 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.35-7.26 (m, 2H), 7.22 (td, *J* = 8.0, 6.8, 1.6 Hz, 1H), 6.64 (s, 1H), 6.58 (t, *J* = 7.6 Hz, 1H), 2.92-2.86 (m, 1H), 2.85-2.69 (m, 2H), 2.64 (s, 3H), 2.61-2.51 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 197.3, 174.2, 139.8, 136.7, 136.5, 135.8, 129.5, 129.4,

128.8, 123.3, 121.7, 111.5, 106.2, 85.8, 28.9, 26.6, 26.2.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2935, 2825, 1771, 1607, 1494, 1362, 1162, 923, 666.

HRMS-APCI (m/z): calcd for C₂₀H₁₈NO₃, [M+H]⁺: 320.1281, found 320.1275.

methyl 4-(1-(5-oxotetrahydrofuran-2-yl)-1H-indol-2-yl)benzoate (30)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **30** as a yellow solid (40.2 mg, 60% yield). **m.p.** = 171.2-172.1 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 8.14 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.32-7.19 (m, 3H), 6.63 (s, 1H), 6.57 (t, *J* = 7.6 Hz, 1H), 3.95 (s, 3H), 2.91-2.70 (m, 3H), 2.60-2.49 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 166.5, 139.9, 136.3, 135.7, 130.0, 130.0, 129.3, 129.3, 123.2, 121.6, 121.6, 111.5, 106.0, 85.8, 52.3, 28.9, 26.2.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2927, 2852, 1774, 1626, 1477, 1323, 1158, 915, 637.

HRMS-APCI (m/z): calcd for C₂₀H₁₈NO₄, [M+H]⁺ : 336.1230, found 336.1223.

5-(2-(*m*-tolyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3p)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3p** as a yellow liquid (36.1 mg, 62% yield). **¹H NMR (400 MHz, CDCl₃)** δ 7.65-7.60 (m, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.32-7.26 (m, 3H), 7.26-7.17 (m, 3H), 6.59 (t, *J* = 7.6 Hz, 1H), 6.53 (s, 1H), 2.88-2.78 (m, 1H), 2.76-2.61 (m, 2H), 2.54-2.45 (m, 1H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 141.2, 138.6, 135.3, 131.9, 130.3, 129.4, 129.4, 128.7, 126.6, 122.5, 121.3, 111.3, 104.8, 85.9, 28.9, 26.2, 21.4.
IR ν_{max}(KBr)/cm⁻¹ 2947, 2881, 1664, 1610, 1527, 1330, 1146, 947, 610.
HRMS-APCI (m/z): calcd for C₁₉H₁₈NO₂, [M+H]⁺ : 292.1332, found 292.1325.

5-(2-(3-methoxyphenyl)-1H-indol-1-yl)dihydrofuran-2(3H)-one (3q)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3q** as a yellow liquid (34.2 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.26-7.18 (m, 2H), 7.10-7.02 (m, 2H), 6.98 (dd, J = 8.4, 2.8 Hz, 1H), 6.61 (t, J = 7.6 Hz, 1H), 6.56 (s, 1H), 3.85 (s, 3H), 2.92-2.81 (m, 1H), 2.81-2.64 (m, 2H), 2.58-2.48 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 159.8, 140.9, 135.4, 133.2, 129.9, 129.4, 122.7, 121.9, 121.4, 115.0, 114.3, 111.3, 105.0, 85.9, 55.3, 28.9, 26.2.
IR ν_{max}(KBr)/cm⁻¹ 2947, 2890, 1750, 1640, 1525, 1330, 1114, 927, 675.

HRMS-APCI (m/z): calcd for C₁₉H₁₈NO₃, [M+H]⁺: 308.1281, found 308.1274.

5-(2-(3-fluorophenyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3r)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3r** as a yellow liquid (38.4 mg, 65% yield). ¹**H NMR (400 MHz, CDCl₃)** *δ* 7.65-7.63 (m, 1H), 7.47-7.41 (m, 1H), 7.32-7.24 (m, 3H), 7.24-7.19 (m, 2H), 7.13 (td, *J* = 8.4, 2.6, 1.0 Hz, 1H), 6.60-6.54 (m, 2H), 2.91-2.85 (m, 1H), 2.85-2.67 (m, 2H), 2.59-2.50 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 162.7 (d, J = 246.4 Hz), 139.6, 139.6, 135.4, 133.9 (d, J = 8.2 Hz), 130.4 (d, J = 8.4 Hz), 129.3, 125.2 (d, J = 3.0 Hz), 123.0, 121.5, 116.4 (d, J = 22.0 Hz), 115.6 (d, J = 20.9 Hz), 111.5, 105.5, 85.8, 28.9, 26.1.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2929, 2856, 1785, 1613, 1583, 1335, 1151, 939, 695.

HRMS-APCI (m/z): calcd for C₁₈H₁₅FNO₂, [M+H]⁺ : 296.1081, found 296.1076.

5-(2-(naphthalen-2-yl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3s)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3s** as a yellow solid (47.1 mg, 72% yield). **m.p.** = 101.7-102.3 °C

¹**H NMR (400 MHz, CDCl₃)** *δ*7.98-7.95 (m, 1H), 7.94-7.87 (m, 3H), 7.66 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.59 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.56-7.52 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.27-7.19 (m, 2H), 6.67-6.60 (m, 2H), 2.92-2.82 (m, 1H), 2.78-2.59 (m, 2H), 2.51-2.42 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 141.1, 135.5, 133.2, 133.0, 129.6, 129.3, 128.8, 128.6, 128.2, 127.8, 126.9, 126.9, 126.9, 122.8, 121.5, 121.4, 111.4, 105.4, 86.0, 29.0, 26.2.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2925, 2836, 1772, 1608, 1502, 1361, 1162, 942, 635.

HRMS-APCI (m/z): calcd for C₂₂H₁₈NO₂, [M+H]⁺ : 328.1332, found 328.1327.

5-(2-(thiophen-3-yl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3t)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3t** as a yellow liquid (36.3 mg, 64% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 7.63-7.61 (m, 1H), 7.46 (dd, *J* = 4.8, 3.2 Hz, 1H), 7.43 (dd, *J* = 3.2, 1.6 Hz, 1H), 7.30-7.27 (m, 1H), 7.26-7.17 (m, 3H), 6.65 (t, *J* = 7.6 Hz, 1H), 6.57 (s, 1H), 2.93-2.83 (m, 1H), 2.82-2.65 (m, 2H), 2.60-2.51 (m, 1H). ¹³**C NMR (100 MHz, CDCl₃)** δ 174.5, 135.7, 135.2, 132.4, 129.3, 128.5, 126.7, 125.0, 122.7, 121.3, 121.3, 111.1, 105.1, 85.7, 8.9, 26.2. **IR** ν_{max} (**KBr**)/**cm**⁻¹ 2926, 2853, 1782, 1457, 1334, 1176, 1019, 939, 745. **HRMS-APCI (m/z):** calcd for C₁₆H₁₄NO₂S, [M+H]⁺ : 284.0740, found 284.0734.

5-(2-butyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3u)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3u** as a yellow liquid (27.8 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 1H), 7.19-7.09 (m, 3H), 6.58 (t, *J* = 7.6 Hz, 1H), 6.30 (s, 1H), 3.03-2.85 (m, 3H), 2.77-2.73 (m, 2H), 2.71-2.64 (m, 1H), 1.75-1.67 (m, 2H), 1.45 (q, *J* = 7.2 Hz, 2H), 0.97 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 140.5, 134.6, 129.5, 121.7, 120.7, 120.6, 110.7, 102.1, 85.1, 30.8, 29.1, 26.8, 26.6, 22.5, 13.8.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2929, 2861, 1782, 1682, 1455, 1349, 1115, 938, 746.

HRMS-APCI (m/z): calcd for C₁₆H₁₈NO₂, [M-H]⁻ : 256.1343, found 256.1342.

5-(2-isobutyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3v)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound 3v as a black solid (25.2 mg, 49% yield). **m.p.** = 103.1-103.8 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.57-7.51 (m, 1H), 7.18-7.10 (m, 3H), 6.53 (t, *J* = 7.2 Hz, 1H), 6.28 (s, 1H), 3.01-2.94 (m, 1H), 2.93-2.80 (m, 2H), 2.70-2.57 (m, 3H), 1.98-1.88 (m, 1H), 0.98 (t, *J* = 6.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 139.4, 134.4, 129.5, 121.6, 120.7, 120.6, 110.8, 103.3, 85.2, 36.3, 29.1, 28.4, 26.4, 22.6, 22.5.

IR v_{max}(KBr)/cm⁻¹ 2958, 2869, 1783, 1629, 1459, 1336, 1268, 1035, 784.

HRMS-APCI (m/z): calcd for C₁₆H₁₈NO₂, [M-H]⁻: 256.1343, found 256.1343.

5-(2-(3-chloropropyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3w)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3w** as a black solid (30.0 mg, 54% yield). **m.p.** = 121.8-122.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.56-7.51 (m, 1H), 7.19-7.11 (m, 3H), 6.57 (t, *J* = 7.6 Hz, 1H), 6.32 (s, 1H), 3.63-3.57 (m, 2H), 2.98-2.80 (m, 5H), 2.72-2.62 (m, 1H), 2.19-2.12 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 138.4, 134.6, 129.2, 122.0, 120.9, 120.7, 110.7,

102.7, 85.0, 44.0, 31.3, 29.0, 26.5, 24.0.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2926, 2850, 1676, 1628, 1437, 1355, 1114, 866, 747.

HRMS-APCI (m/z): calcd for C₁₅H₁₇ClNO₂, [M+H]⁺ : 278.0942, found 278.0937.

5-(2-(2-((*tert*-butyldiphenylsilyl)oxy)ethyl)-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3x)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3x** as a gray solid (49.3 mg, 51% yield).

m.p. = 157.7-158.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.67-7.63 (m, 2H), 7.62-7.58 (m, 2H), 7.52-7.48 (m, 1H), 7.44-7.40 (m, 2H), 7.37 (d, J = 7.6 Hz, 2H), 7.34-7.29 (m, 2H), 7.13-7.06 (m, 3H), 6.27 (s, 1H), 6.15 (t, J = 7.6 Hz, 1H), 4.00-3.86 (m, 2H), 3.01 (t, J = 7.2 Hz, 2H), 2.86-2.77 (m, 1H), 2.74-2.58 (m, 2H), 2.29-2.19 (m, 1H), 1.07 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 136.9, 135.5, 134.3, 133.5, 133.3, 129.8, 129.7, 129.4, 127.8, 127.7, 121.8, 120.8, 120.7, 110.8, 103.4, 85.0, 63.6, 30.6, 28.9, 26.9, 26.2, 19.2.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2934, 2858, 1784, 1628, 1431, 1355, 1110, 824, 700.

HRMS-APCI (m/z): calcd for C₃₀H₃₂NO₃Si, [M-H]⁻: 482.2157, found 482.2159.

5-(2-cyclopentyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3y)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3y** as a gray solid (25.9 mg, 48% yield). **m.p.** = 124.3-124.9 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.56-7.50 (m, 1H), 7.16-7.11 (m, 3H), 6.65 (t, *J* = 6.8 Hz, 1H), 6.31 (s, 1H), 3.19-3.12 (m, 1H), 3.03-2.85 (m, 3H), 2.72-2.62 (m, 1H), 2.17-2.05 (m, 2H), 1.85-1.68 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 144.9, 134.6, 129.5, 121.7, 120.7, 120.7, 110.9, 99.7, 85.3, 37.2, 32.9, 32.6, 29.2, 26.5, 25.1, 25.1.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2930, 2864, 1783, 1628, 1508, 1336, 1148, 991, 747.

HRMS-APCI (m/z): calcd for C₁₇H₁₈NO₂, [M-H]⁻ : 268.1343, found 268,1345.

5-(2-cyclohexyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3z)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3z** as a gray solid (26.1 mg, 46% yield). **m.p.** = 128.6.7-129.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.56-7.51 (m, 1H), 7.16-7.08 (m, 3H), 6.56 (t, *J* = 7.6 Hz, 1H), 6.27 (s, 1H), 2.98-2.79 (m, 3H), 2.66-2.58 (m, 2H), 2.07 (d, *J* = 12.0 Hz, 1H), 1.97-1.75 (m, 4H), 1.51-1.26 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 174.5, 145.9, 134.2, 129.6, 121.5, 120.7, 120.6, 110.9, 99.7, 84.9, 35.9, 33.5, 33.2, 29.1, 26.5, 26.4, 26.3, 26.0.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2928, 2854, 1782, 1627, 1456, 1336, 1038, 939, 741.

HRMS-APCI (m/z): calcd for C₁₈H₂₀NO₂, [M-H]⁻ : 282.1500, found 282.1501.

5-(5-methyl-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3aa)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3aa** as a yellow solid (40.8 mg, 70% yield). **m.p.** = 135.7-136.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.52-7.38 (m, 6H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.56 (t, *J* = 7.6 Hz, 1H), 6.48 (s, 1H), 2.91-2.81 (m, 1H), 2.80-2.63 (m, 2H), 2.56-2.48 (m, 1H), 2.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 141.2, 133.6, 132.1, 130.8, 129.8, 129.5, 128.8, 128.5, 124.2, 121.1, 111.0, 104.6, 86.0, 29.0, 26.1, 21.3.

IR *v*_{max}(**KBr**)/cm⁻¹ 2950, 2859, 1781, 1465, 1331, 1178, 984, 875, 765.

HRMS-APCI (m/z): calcd for C₁₉H₁₈NO₂, [M+H]⁺: 292.1332, found 292.1325.

5-(5-(*tert*-butyl)-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3ab)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3ab** as a yellow solid (51.4 mg, 77% yield). **m.p.** = 138.6-139.1 °C

¹**H NMR (400 MHz, CDCl₃)** δ 7.64 (d, J = 1.2 Hz, 1H), 7.49-7.42 (m, 5H), 7.33 (dd, J = 8.8, 2.0 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 6.59-6.51 (m, 2H), 2.91-2.81 (m, 1H), 2.79-2.63 (m, 2H), 2.56-2.47 (m, 1H), 1.39 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) *δ* 174.5, 144.4, 141.1, 133.4, 132.1, 129.6, 129.3, 128.8, 128.5, 120.9, 117.3, 110.9, 105.0, 85.9, 34.6, 31.8, 28.9, 26.2.

IR *v*_{max}(KBr)/cm⁻¹ 2917, 2865, 1785, 1605, 1470, 1332, 1179, 930, 759. HRMS-APCI (m/z): calcd for C₂₂H₂₂NO₂, [M-H]⁻ : 332.1656, found 332.1660.

5-(5-methoxy-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3ac)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3ac** as a yellow liquid (24.0 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.41 (m, 5H), 7.19 (d, *J* = 8.8 Hz, 1H), 7.10 (d, *J* = 2.4 Hz, 1H), 6.89 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.54 (t, *J* = 7.6 Hz, 1H), 6.49 (s, 1H), 3.86 (s, 3H), 2.88-2.82 (m, 1H), 2.81-2.65 (m, 2H), 2.57-2.47 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 155.2, 141.8, 132.0, 130.3, 130.2, 129.5, 128.8, 128.6, 112.4, 112.1, 104.8, 103.3, 86.0, 55.8, 29.0, 26.3. IR ν_{max} (KBr)/cm⁻¹ 2960, 2856, 1765, 1621, 1583, 1472, 1217, 1178, 936, 766. HRMS-APCI (m/z): calcd for C₁₉H₁₆NO₃, [M-H]⁻ : 306.1136, found 306.1138.

5-(5-fluoro-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3ad)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3ad** as a yellow solid (39.0 mg, 66% yield). **m.p.** = 148.7-149.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.43 (m, 5H), 7.28 (dd, J = 9.2, 2.4 Hz, 1H), 7.21 (dd, J = 8.8, 4.4 Hz, 1H), 6.98 (td, J = 9.2, 2.8 Hz, 1H), 6.55 (t, J = 8.0 Hz, 1H), 6.52

(s, 1H), 2.88-2.80 (m, 1H), 2.79-2.65 (m, 2H), 2.59-2.49 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 158.6 (d, J = 235.8 Hz), 142.7, 131.8, 131.6, 130.1 (d, J = 10.0 Hz), 129.5, 128.9, 128.9, 112.0 (d, J = 9.4 Hz), 110.8 (d, J = 25.8 Hz), 106.4 (d, J = 23.2 Hz), 104.8 (d, J = 4.3 Hz), 85.8, 28.9, 26.3. IR ν_{max} (KBr)/cm⁻¹ 2927, 2854, 1785, 1688, 1460, 1347, 1264, 1027, 769. HRMS-APCI (m/z): calcd for C₁₈H₁₃FNO₂, [M-H]⁻ : 294.0936, found 294.0939.

5-(5-chloro-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3ae)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3ae** as a yellow solid (38.0 mg, 61% yield). **m.p.** = 146.7-147.3 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.61 (dd, *J* = 2.0, 0.8 Hz, 1H), 7.53-7.43 (m, 5H), 7.24-7.17 (m, 2H), 6.55 (t, *J* = 7.6 Hz, 1H), 6.50 (s, 1H), 2.85-2.79 (m, 1H), 2.79-2.66 (m, 2H), 2.60-2.50 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 142.4, 133.6, 131.4, 130.6, 129.6, 129.0, 128.9, 127.1, 122.8, 120.8, 112.3, 104.4, 85.7, 28.9, 26.4.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2924, 2856, 1784, 1629, 1438, 1355, 1113, 869, 757.

HRMS-APCI (m/z): calcd for C₁₈H₁₃ClNO₂, [M-H]⁻ : 310.0640, found 310.0642.

5-(5-bromo-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3af)

The reaction was conducted on a 0.20 mmol scale with the general procedure.

Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3af** as a yellow solid (45.6 mg, 64% yield). **m.p.** = 153.7-154.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ*7.74 (d, *J* = 1.2 Hz, 1H), 7.48-7.44 (m, 5H), 7.30 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.15 (d, *J* = 8.8 Hz, 1H), 6.54 (t, *J* = 7.2 Hz, 1H), 6.48 (s, 1H), 2.82-2.76 (m, 1H), 2.75-2.63 (m, 2H), 2.57-2.48 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 142.2, 133.9, 131.3, 131.1, 129.5, 128.9, 128.9, 125.3, 123.8, 114.5, 112.7, 104.2, 85.6, 28.8, 26.3.

IR v_{max}(KBr)/cm⁻¹ 2927, 2853, 1785, 1687, 1452, 1355, 1266, 1166, 771.

HRMS-APCI (m/z): calcd for C₁₈H₁₃BrNO₂, [M-H]⁻: 354.0135, found 354.0135.

5-(2-phenyl-5-(trifluoromethyl)-1H-indol-1-yl)dihydrofuran-2(3H)-one (3ag)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (3 : 1 v/v) as an eluent provided the titled compound **3ag** as a yellow solid (20.7 mg, 30% yield). **m.p.** = 121.1-121.8 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.97-7.90 (m, 1H), 7.51-7.49 (m, 5H), 7.47 (d, *J* = 1.6 Hz, 1H), 7.38 (d, *J* = 8.8 Hz, 1H), 6.64 (s, 1H), 6.60 (t, *J* = 7.6 Hz, 1H), 2.88-2.80 (m, 1H), 2.80-2.69 (m, 2H), 2.65-2.55 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.1, 142.7, 136.6, 131.2, 129.6, 129.1, 129.0, 128.9, 124.9 (q, J = 270.1 Hz), 123.8 (q, J = 319.0 Hz), 119.3 (q, J = 3.5 Hz), 118.9 (q, J = 4.1 Hz), 111.5, 105.4, 85.5, 28.8, 26.5.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2926, 2859, 1789, 1628, 1445, 1337, 1270, 1116, 759.

HRMS-APCI (m/z): calcd for C₁₉H₁₅F₃NO₂, [M+H]⁺ : 346.1049, found 346.1044.

methyl 1-(5-oxotetrahydrofuran-2-yl)-2-phenyl-1*H*-indole-5-carboxylate (3ah)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (3 : 1 v/v) as an eluent provided the titled compound **3ah** as a yellow solid (16.8 mg, 25% yield). **m.p.** = 164.3-165.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 1.6 Hz, 1H), 7.95 (dd, J = 8.8, 2.0 Hz, 1H), 7.53-7.43 (m, 5H), 7.32 (d, J = 8.8 Hz, 1H), 6.64 (s, 1H), 6.60 (t, J = 7.6 Hz, 1H), 3.94 (s, 3H), 2.90-2.82 (m, 1H), 2.80-2.67 (m, 2H), 2.65-2.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 167.6, 142.3, 137.9, 131.4, 129.6, 129.1, 129.0, 128.9, 123.9, 123.9, 123.4, 110.9, 105.8, 85.5, 52.0, 28.8, 26.5. IR ν_{max} (KBr)/cm⁻¹ 2926, 2851, 1786, 1628, 1437, 1350, 1111, 932, 763.

HRMS-APCI (m/z): calcd for C₂₀H₁₈NO₄, [M+H]⁺: 336.1230, found 336.1223

5-(7-methoxy-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3ai)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3ai** as a yellow liquid (19.7 mg, 32% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.42 (m, 5H), 7.26-7.23 (m, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.58 (t, *J* = 7.6 Hz, 1H), 6.52 (s, 1H), 3.95 (s, 3H), 2.80-2.68 (m, 2H), 2.66-2.55 (m, 1H), 2.50-2.40 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 175.9, 146.6, 142.1, 132.1, 129.5, 128.8, 128.5, 125.5, 122.2, 113.9, 104.7, 104.6, 85.8, 55.8, 29.7, 28.7.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2929, 2845, 1782, 1581, 1420, 1326, 1151, 937, 733.

HRMS-APCI (m/z): calcd for C₁₉H₁₈NO₃, [M+H]⁺: 308.1281, found 308.1278.

5-(7-chloro-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3aj)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (2 : 1 v/v) as an eluent provided the titled compound **3aj** as a yellow solid (28.1 mg, 45% yield). **m.p.** = 166.3-166.8 °C.

¹**H NMR (400 MHz, CD₃Cl)** δ 7.54 (d, *J* = 8.4 Hz, 1H), 7.50-7.43 (m, 5H), 7.29-7.28 (m, 1H), 7.17 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.56-6.50 (m, 2H), 2.86-2.80 (m, 1H), 2.79-2.65 (m, 2H), 2.58-2.49 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 174.1, 141.7, 135.7, 131.5, 129.6, 128.9, 128.9, 128.4, 127.9, 122.1, 122.0, 111.4, 104.9, 85.6, 28.8, 26.3.

IR v_{max}(KBr)/cm⁻¹ 2926, 2859, 1785, 1629, 1453, 1339, 1269, 1143, 760.

HRMS-APCI (m/z): calcd for C₁₈H₁₅ClNO₂, [M+H]⁺ : 312.0786, found 312.0780.

5-(5,6-dimethyl-2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3ak)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3ak** as a yellow solid (42.8 mg, 70% yield).

Yield: 70% (42.8 mg) as a yellow solid;

m.p. = 144.7-145.2 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.50-7.37 (m, 6H), 7.06 (s, 1H), 6.54 (t, J = 7.6 Hz, 1H),

6.44 (s, 1H), 2.89-2.81 (m, 1H), 2.80-2.62 (m, 2H), 2.51-2.42 (m, 1H), 2.36 (d, *J* = 13.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 140.3, 134.4, 132.2, 131.7, 130.1, 129.5, 128.7, 128.3, 127.8, 121.4, 111.9, 104.5, 86.1, 29.0, 26.1, 20.8, 19.9.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2927, 2859, 1784, 1603, 1465, 1335, 1157, 929, 765.

HRMS-APCI (m/z): calcd for C₂₀H₁₈NO₂, [M-H]⁻: 304.1343, found 304.1346.

3,3-dimethyl-5-(2-phenyl-1*H*-indol-1-yl)dihydrofuran-2(3*H*)-one (3an)

The reaction was conducted on a 0.20 mmol scale with the general procedure. Purification by column chromatography on silica gel using Ether : Hexane (1 : 1 v/v) as an eluent provided the titled compound **3ap** as a yellow solid (55.0 mg, 90% yield). **m.p.** = 140.8.7-141.2 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.64 (d, J = 7.6 Hz, 1H), 7.54-7.42 (m, 5H), 7.32 (d, J = 8.0 Hz, 1H), 7.25-7.18 (m, 2H), 6.62-6.51 (m, 2H), 2.83 (dd, J = 13.6, 9.6 Hz, 1H), 2.25 (dd, J = 13.6, 6.8 Hz, 1H), 1.32 (d, J = 6.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 179.6, 141.0, 135.7, 132.2, 129.5, 129.4, 128.9, 128.6, 122.6, 121.3, 121.3, 111.6, 105.2, 83.1, 41.3, 41.2, 25.5, 24.0.

IR *v*_{max}(**KBr**)/**cm**⁻¹ 2968, 2865, 1779, 1629, 1451, 1350, 1116, 1020, 749.

HRMS-APCI (m/z): calcd for C₂₀H₂₀NO₂, [M+H]⁺ : 306.1489, found 306.1482.

9. NMR spectra

¹H NMR (400 MHz, CDCl₃) spectrum of 1f

¹³C NMR (100 MHz, CDCl₃) spectrum of 1f

¹H NMR (400 MHz, CDCl₃) spectrum of 1x

¹³C NMR (100 MHz, CDCl₃) spectrum of 1x

¹H NMR (400 MHz, CDCl₃) spectrum of 3a

¹³C NMR (100 MHz, CDCl₃) spectrum of 3a

¹H NMR (400 MHz, CDCl₃) spectrum of 3b

¹³C NMR (100 MHz, CDCl₃) spectrum of 3b

¹H NMR (400 MHz, CDCl₃) spectrum of 3c

¹³C NMR (100 MHz, CDCl₃) spectrum of 3c

¹H NMR (400 MHz, CDCl₃) spectrum of 3d

¹³C NMR (100 MHz, CDCl₃) spectrum of 3d

¹H NMR (400 MHz, CDCl₃) spectrum of 3e

¹³C NMR (100 MHz, CDCl₃) spectrum of 3e

¹H NMR (400 MHz, CDCl₃) spectrum of 3f

¹³C NMR (100 MHz, CDCl₃) spectrum of 3f

¹H NMR (400 MHz, CDCl₃) spectrum of 3g

¹³C NMR (100 MHz, CDCl₃) spectrum of 3g

¹H NMR (400 MHz, CDCl₃) spectrum of 3h

¹³C NMR (100 MHz, CDCl₃) spectrum of 3h

¹H NMR (400 MHz, CDCl₃) spectrum of 3i

¹³C NMR (100 MHz, CDCl₃) spectrum of 3i

¹H NMR (400 MHz, CDCl₃) spectrum of 3j

¹³C NMR (100 MHz, CDCl₃) spectrum of 3j

¹H NMR (400 MHz, CDCl₃) spectrum of 3k

¹³C NMR (100 MHz, CDCl₃) spectrum of 3k

¹H NMR (400 MHz, CDCl₃) spectrum of 31

¹³C NMR (100 MHz, CDCl₃) spectrum of 31

¹H NMR (400 MHz, CDCl₃) spectrum of 3m

¹³C NMR (100 MHz, CDCl₃) spectrum of 3m

n (ppin)
¹H NMR (400 MHz, CDCl₃) spectrum of 3n

¹³C NMR (100 MHz, CDCl₃) spectrum of 3n

¹H NMR (400 MHz, CDCl₃) spectrum of 30

¹³C NMR (100 MHz, CDCl₃) spectrum of 30

¹H NMR (400 MHz, CDCl₃) spectrum of 3p

¹³C NMR (100 MHz, CDCl₃) spectrum of 3p

¹H NMR (400 MHz, CDCl₃) spectrum of 3q

¹³C NMR (100 MHz, CDCl₃) spectrum of 3q

¹H NMR (400 MHz, CDCl₃) spectrum of 3r

¹³C NMR (100 MHz, CDCl₃) spectrum of 3r

¹H NMR (400 MHz, CDCl₃) spectrum of 3s

¹³C NMR (100 MHz, CDCl₃) spectrum of 3s

¹H NMR (400 MHz, CDCl₃) spectrum of 3t

¹³C NMR (100 MHz, CDCl₃) spectrum of 3t

¹H NMR (400 MHz, CDCl₃) spectrum of 3u

¹³C NMR (100 MHz, CDCl₃) spectrum of 3u

S78

¹H NMR (400 MHz, CDCl₃) spectrum of 3v

¹³C NMR (100 MHz, CDCl₃) spectrum of 3v

S79

¹H NMR (400 MHz, CDCl₃) spectrum of 3w

¹³C NMR (100 MHz, CDCl₃) spectrum of 3w

¹H NMR (400 MHz, CDCl₃) spectrum of 3x

¹³C NMR (100 MHz, CDCl₃) spectrum of 3x

.....

¹H NMR (400 MHz, CDCl₃) spectrum of 3y

¹³C NMR (100 MHz, CDCl₃) spectrum of 3y

¹H NMR (400 MHz, CDCl₃) spectrum of 3z

¹³C NMR (100 MHz, CDCl₃) spectrum of 3z

¹H NMR (400 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (100 MHz, CDCl₃) spectrum of 3aa

$\begin{array}{c} -174.58\\ 121.15\\ 123.63\\ 123.63\\ 123.06\\ 123.06\\ 122.06\\ 122.54\\ 122.10\\ 122.11\\ 124.17$	∑ 86.00 77.32 ₹77.00 76.68	~ 28.98 ~ 26.13 ~ 21.27
--	-------------------------------------	-------------------------------

S84

¹H NMR (400 MHz, CDCl₃) spectrum of 3ab

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ab

S85

¹H NMR (400 MHz, CDCl₃) spectrum of 3ac

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ac

¹H NMR (400 MHz, CDCl₃) spectrum of 3ad

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ad

¹H NMR (400 MHz, CDCl₃) spectrum of 3ae

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ae

¹H NMR (400 MHz, CDCl₃) spectrum of 3af

¹³C NMR (100 MHz, CDCl₃) spectrum of 3af

¹H NMR (400 MHz, CDCl₃) spectrum of 3ag

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ag

¹H NMR (400 MHz, CDCl₃) spectrum of 3ah

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ah

¹H NMR (400 MHz, CDCl₃) spectrum of 3ai

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ai

¹H NMR (400 MHz, CDCl₃) spectrum of 3aj

¹³C NMR (100 MHz, CDCl₃) spectrum of 3aj

¹H NMR (400 MHz, CDCl₃) spectrum of 3ak

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ak

¹H NMR (400 MHz, CDCl₃) spectrum of 3an

¹³C NMR (100 MHz, CDCl₃) spectrum of 3an

10. Reference

[1] H. Zhao and D. Leonori, Angew. Chem. Int. Ed., 2021, 60, 7669-7674.

[2] C. Liu, X. Tan, L. Zhan, Y. Jing, W. Wu, Z. Ke and H. Jiang, *Angew. Chem. Int. Ed.*, 2022, **61**, e202215020.

[3] R. Wu, J. Lu, T. Cao, J. Ma, K. Chen and S. Zhu, J. Am. Chem. Soc., 2021, 143, 14916-14925.

[4] G. W. Kabalka, L. Wang and R. M. Pagni, Tetrahedron, 2001, 57, 8017-8028.

[5] H. Z. Tejeneki, A. Nikbakht, S. Balalaie and F. Rominger, J. Org. Chem., 2020, 85, 8544-8552.

[6] F. Gao, J.-T. Wang, L.-L. Liu, N. Ma, C. Yang, Y. Gao and J. Wu, *Chem. Commun.*, 2017, **53**, 8533-8536.

[7] Q. Wang, L. Yao, J.-S. Wang, J. Ying and X.-F. Wu, *J. Org. Chem.*, **2022**, *87*, 3874-3882.

[8] V. Reddy and R. V. Anand, Org. Lett., 2015, 17, 3390-3393.

[9] S. Tang, Q.-F. Yu, P. Peng, J.-H. Li, P. Zhong and R.-Y. Tang, *Org. Lett.*, 2007, **9**, 3413-3416.

[10] X. Chen and X.-Y. Zhou, Synthesis, 2023, 55, 1213-1220.

[11] S. Yuan, D.-Q. Zhang, J.-Y. Zhang, B. Yu and H.-M. Liu, *Org. Lett.*, 2020, 22, 814-817.

[12] R. Cano, M. Yus and D. J. Ramon, *Tetrahedron*, 2012, 68, 1393-1400.

[13] E. Tyrrell, L. Whiteman and N. Williams, Synthesis, 2009, 5, 829-835.

[14] X. Chen and X.-Y. Zhou, Synthesis, 2009, 55, 1213-1220.

[15] M. Alfonsi, A. Arcadi, M. Aschi, G. Bianchi and F. Marinelli, *J. Org. Chem.*, 2005, 70, 2265-2273.

- [16] L. Yang, Y. Ma, F. Song and J. You, Chem. Commun., 2014, 50, 3024-3026.
- [17] Z. Shen and X. Lu, Adv. Synth. Catal. 2009, 351, 3107-3112.
- [18] B. Miao, Y. Zheng, P. Wu, S. Li and S. Ma, *Adv. Synth. Catal.*, 2017, **359**, 1691-1707.

[19] Y.-P. He, J. Cao, H. Wu, Q. Wang and J. Zhu, *Angew. Chem. Int. Ed.*, 2021, **60**, 7093-7097.

- [20] V. Reddy and R. Vijaya Anand, Org. Lett. 2015, 17, 3390-3393.
- [21] R. Kuwano and M. Kashiwabara, Org. Lett. 2006, 8, 2653-2655.
- [22] J. H. Park, E. Kim and Y. K. Chung, Org. Lett., 2008, 10, 4719-4721.

[23] N. K. Swamy, A. Yazici and S. G. Pyne, J. Org. Chem., 2010, 75, 3412-3419.

[24] B. Liu, H. Gao, Y. Yu, W. Wu and H. Jiang, J. Org. Chem., 2013, 78, 10319-10328.

[25] J. E. Perea-Buceta, T. Wirtanen, O. V. Laukkanen, M. K. Mäkelä, M. Nieger, M. Melchionna and J. Helaja, *Angew. Chem. Int. Ed.*, 2013, **52**, 11835-11839.

[26] K. Sun, R. Sachwani, K. J. Richert and T. G. Driver, *Org. Lett.*, 2009, **11**, 3598-3601.

[27] D. Barik, C. Maitra, C. T. Hsieh, M.-J. Cheng and R.-S. Liu, *ACS Catal.*, 2024, **14**, 1525-1531.

[28] X. Luo, M.-M. Xu, X.-P. Xu and S.-J. Ji, Chem. Commun., 2023, 59, 6576-6579.

[29] N. Sakai, K. Annaka, A. Fujita, A. Sato and T. Konakahara, J. Org. Chem., 2008, 73, 4160-4165.