Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

for

Hybrid silylene-Pd catalyst: efficient C-N cross-coupling of sterically bulky amines and chiral amines

Sandeep H. Kaulage,^{[a]‡} Nasrina Parvin,^{[a]‡} Kishor V. Khopade,^[b] and Shabana Khan*^[a]

^[a]Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune - 411008, India

^[b]Polymer Science and Engineering division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune – 411008, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India.

*Email: shabana@iiserpune.ac.in.

Table of Contents

S1. Experimental section	S03
S2. Optimization of reaction condition	S08
S3. Calculations of % V_{bur} and bite angle comparison	S13
S4. Analytical data of C-N coupled products	S14
S5. Refinement data of single crystal X-ray diffraction	S30
S6. Kinetic experiments	S39
S7. NMR spectra	S46
S8. HPLC data	S86
S9. References	S108

S1. Experimental Procedures

All experiments were carried out under an inert gas atmosphere of dinitrogen (N₂) using standard Schlenk techniques and in a dinitrogen-filled MBRAUN MB 150-G1 glove box. The solvents used were purified by an MBRAUN solvent purification system (MB SPS-800). 2,6bis[bis(phenyl)methyl]-4-methylaniline¹ and 2,6-bis[bis(4-tert-butylphenyl) methyl]-4methylaniline^{2a} were prepared by literature methods. PNGe^{2b}, PNSn^{2b}, PNP^{2c} and IPr^{2d} ligands were prepared as per reported procedure. DPEPhos was purchased from Sigma Aldrich and used as it is. All chemicals purchased from Aldrich were used without further purification. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded in CDCl₃ using a Bruker 400 MHz; all NMR spectra were reported in ppm units with external standard trimethyl silane ($\delta 0$ ppm) or CDCl₃ ($\delta 7.26$ ppm). Multiplicities are given as: brs (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), dd (doublets of doublet), dt (doublets of triplet), td (triplets of doublet) or m (multiplet). Mass spectra were recorded using AB Sciex, 4800 plus MALDI TOF/TOF. HRMS (ESI, APCI) were performed on a Fourier Transform ion cyclotron resonance mass spectrometer. Analytical thin-layer chromatography (TLC) was conducted with TLC plates (Silica gel 60 F_{254}) and visualization on TLC was achieved by UV light. Column chromatography was performed on silica gel 200-300 mesh with freshly distilled solvents. Analytical chiral HPLC was performed on an Agilent Technologies 1260 Infinity instrument with Chiralpak AD-H column (250mm X 4.6mm X 5 µm). Gradient: Isocratic; Flow rate: 1ml/min; Injection volume: 10 µL; UV detection: 254 nm; Column temp.: ambient; Retention times: RT's may vary by ±1.0 min. Toluene and THF were refluxed over Na/benzophenone and distilled under an argon atmosphere. Solvents used for column chromatography were of technical grade and used after distillation.

The purity of chiral amines:

All reagents were obtained commercially and used without further purification. The optical purity of all starting amino compounds is shown below.

I) Synthesis of ligand L2 and complex 1-3

a) Synthesis of L2:

A 100 mL Schlenk flask was charged with chlorosilylene³ (0.295 g, 1 mmol) and $\text{LiN}(P^{i}Pr_{2})(2,6^{-i}Pr_{2}C_{6}H_{3})$ (0.373 g, 1 mmol) followed by the addition of toluene (30 mL) at room temperature, and stirred for 12 h. The resulting solution was filtered off, and the solvent was removed to yield a white

crystalline solid. Single crystals suitable for X-ray analysis were grown in toluene at room temperature. M. P.: 130°C. Yield: 90 % (0.496 g). ¹H NMR (400 MHz, C₆D₆): δ 7.33 (d, J = 7.5 Hz, 2H), 7.25 (d, J = 7.4 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 7.04 – 6.93 (m, 2H), 6.93 – 6.85 (m, 2H), 4.43 – 3.68 (m, 2H), 2.92 – 2.58 (m, 2H), 1.48 (d, J = 6.9 Hz, 12H), 1.42 (s, 12H), 1.15 (s, 18H). ¹³C NMR (101 MHz, C₆D₆): δ 175.93 (s), 147.47 (s), 139.72 (d, J = 1.3 Hz), 130.80 (d, J = 28.2 Hz), 128.86 (s), 127.72 (s), 122.80 (s), 116.18 (s), 54.51 (s), 31.36 (d, J = 2.4 Hz), 27.74 (s), 24.99 (s), 23.18 (s), 21.62 (d, J = 15.8 Hz). ³¹P NMR (162 MHz, C₆D₆): δ -39.17 (s). ²⁹Si NMR (80 MHz, C₆D₆): δ -67.47 (d, J = 14.0 Hz). HRMS (ESI): calculated for C₃₃H₅₄N₃PSi [M]⁺ *m/z* 551.3825, found 551.3269. MALDI *m/z* (C₃₃H₅₄N₃PSi): 551.85 [M]⁺.

A 100 mL Schlenk flask was charged with $L1^4$ (0.310 g, 0.5 mmol) and PdCl₂(ACN)₂ (0.130 g, 0.5 mmol) followed by the addition of THF (30 mL) at room temperature and stirred for 3 h. The resulting solution was filtered off, and the solvent was reduced to 3 mL and kept for crystallization at

0° C. M. P.: 210-212°C. Yield: 62 % (0.493 g). ¹H NMR (400 MHz, CDCl₃): NMR integration is not done due to broadening in the ¹H spectra. ¹³C NMR (101 MHz, CDCl₃): δ 179.7, 146.0, 143.4, 135.1, 135.0, 132.0, 131.6, 130.7, 130.5, 130.1, 128.8, 128.6, 128.5, 128.2, 128.0, 127.7, 126.5, 125.2, 125.1, 122.5, 77.2, 67.8, 56.6, 31.9, 31.2, 30.7, 28.8, 28.2, 28.0, 25.4, 23.4, 21.6, 0.8. ³¹P NMR (162 MHz, CDCl₃): δ 58.04 (s). ²⁹Si NMR (80 MHz, CDCl₃): δ -28.82 (d, J = 21.5 Hz). HRMS (ESI): calculated for C₃₉H₅₀Cl₂N₃PPdSi [M]⁺ *m/z* 795.1924, found 795.5019. MALDI *m/z* (C₃₉H₅₀Cl₂N₃PPdSi): 797.18 [M]⁺.

c) Synthesis of 2:

A 100 mL Schlenk flask was charged with L2 (0.275 g, 0.5 mmol) and $PdCl_2(ACN)_2$ (0.130 g, 0.5 mmol) followed by the addition of THF (30 mL) at room temperature and stirred for 3 h. The resulting solution was filtered off, and the solvent was reduced to 3 mL and kept for crystallization at

0° C. M. P.: 227-230°C. Yield: 58 % (0.420 g). ¹H NMR (400 MHz, CDCl₃): NMR integration is not done due to broadening in the ¹H spectra. ¹³C NMR (101 MHz, CDCl₃): δ 180.1, 146.0, 134.5, 131.9, 131.5, 131.1, 130.2, 129.5, 128.7, 128.4, 128.2, 128.0, 127.2, 125.7, 125.5, 122.8, 68.1, 57.0, 32.2, 31.5, 31.1, 28.8, 28.3, 27.9, 25.7, 23.6, 22.6, 21.7, 17.0, 1.1. ²⁹Si NMR (80 MHz, CDCl₃): δ -30.17 (d, J = 17.1 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 95.70 (s). HRMS (ESI): calculated for C₃₃H₅₄Cl₂N₃PPdSi [M]⁺ *m/z* 727.2237, found 727.5298. MALDI *m/z* (C₃₃H₅₄Cl₂N₃PPdSi): 729.15[M]⁺.

d) Synthesis of 3:

A 100 mL Schlenk flask was charged with $L3^5$ (0.304 g, 0.5 mmol) and PdCl₂(ACN)₂ (0.130 g, 0.5 mmol) followed by the addition of toluene (30 mL) at room temperature and stirred for 12 h. The resulting solution was filtered off, and the solvent was removed to yield a pale yellow solid. Single crystals suitable for X-ray analysis were grown in DCM-

Pentane (2:1) at 0° C. M. P.: 278-281°C. Yield: 48 % (0.375 g). ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 7.4 Hz, 1H), 7.57 – 7.31 (m, 15H), 7.05 – 6.95 (m, 2H), 6.65 – 6.54 (m, 2H), 1.14 (s, 9H), 1.07 (s, 9H), 0.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 177.18 (s), 150.38 (s), 134.55(s), 133.09 (s), 131.87 (s), 131.38 (s), 129.53 (s), 129.22 (d, J = 11.9 Hz), 128.35 (s), 128.13 (s), 127.81 (s), 126.69 (s), 125.34(s), 124.11 (s), 31.08 (d, J = 7.6 Hz), 4.17 (s). ³¹P NMR (162 MHz, CDCl₃): δ 18.55 (s). ²⁹Si NMR (80 MHz, CDCl₃): δ 16.66 (d, J = 19.6 Hz), 11.47 (s). HRMS (ESI): calculated for C₃₆H₄₆Cl₂N₃PPdSi₂ [M-TMSCl]⁺ m/z 783.1380, found 674.1420. MALDI m/z (C₃₆H₄₆Cl₂N₃PPdSi₂): 784.14[M]⁺.

II) General procedure C-N coupling

A general methodology for C-N cross-coupling reactions with microwave method (A):

In a glovebox, a microwave tube equipped with a magnetic stir bar was charged with 2.8 eq. NaO'Bu, 2 mol% of Pd(dba)₂ and 2 mol% L1/L2 ligand. 2 mL toluene, 1.2 equiv. amine, and 1 equiv. aromatic halide were added using the Schlenk line. The reaction mixture was stirred for 60 min at 150 °C in a microwave. The crude product was purified by column chromatography to afford the corresponding product. Enantiomeric excess (% ee) was determined by HPLC analysis using chiral stationary phases as indicated for each substrate.

A general methodology for C-N cross-coupling reactions using conventional method (B):

2 mL toluene was added into the mixture of ligand L1 (0.012 mmol) and Pd(dba)₂ (0.012 mmol) in a 100 mL Schlenk flask and stirred at room temperature for 1 h. 0.625 mmol of aryl halide was added, and 1.75 mmol of NaO/Bu and 0.625 mmol of bulky primary aniline were added into this and stirred for 24 h at 100 °C. All the additions were done in an inert atmosphere. The reaction mixture was cooled to room temperature and extracted in ethyl acetate. Sodium sulfate was added as a drying agent. The resulting solution was dried *in vacuo* and purified by column chromatography (n-hexane: ethyl acetate) to afford the expected product. Products obtained as solids were dried under a high vacuum. Analytical thin-layer chromatography was performed on pre-coated silica plates. All the compounds were characterized by NMR spectroscopy and mass spectrometry.

S2. Optimization of reaction condition

I) Conventional method

Table S1: Optimization of catalyst, base and solvent for the C-N cross-coupling of a sterically bulky aniline^a

Entry	Ligand	Solvent	Base	Isolated Yield %
1	L1	Toluene	Cs ₂ CO ₃	10
2	L1	Toluene	NaOH	NR
3	L1	Toluene	K ₂ CO ₃	NR
4	L1	Toluene	LiO'Bu	70
5	L1	Toluene	KO'Bu	93
6	L1	Toluene	NaO'Bu	99
7	L1	THF	NaO'Bu	56
8	L1	Benzene	NaO ^t Bu	94
9	L1	1,4-dioxane	NaO'Bu	95

^aReaction conditions: aryl amine (0.5 mmol, 1equiv.), aryl bromide (0.5 mmol, 1 equiv.), base (1.4 mmol, 2.8 equiv.), ligand (0.01 mmol, 2 mol%), [Pd] (0.01 mmol, 2 mol%), solvent (2 mL), and 24 h. All are isolated yields.

Table S2: Ligand and catalyst 1, 2, and 3 effect on the C-N cross-coupling of a sterically bulky aniline^a

a Solvent	Base	Isolated Yield %
Toluene	NaO'Bu	>99
Toluene	NaO'Bu	>99
Toluene	NaO'Bu	90
Toluene	NaO'Bu	70
Toluene	NaO'Bu	63
Toluene	NaO'Bu	60
Toluene	NaO'Bu	91
Toluene	NaO'Bu	94
Toluene	NaO'Bu	75
Toluene	NaO'Bu	69
Toluene	NaO'Bu	73
Toluene	NaO'Bu	58
	ISolventToluene	ISolventBaseTolueneNaO'Bu

^aReaction conditions: aryl amine (0.5 mmol, 1equiv.), aryl bromide (0.5 mmol, 1 equiv.), NaO'Bu (1.4 mmol, 2.8 equiv.), ligand (0.01 mmol, 2 mol%), [Pd] (0.01 mmol, 2 mol%), toluene (2 mL), 100 °C and 24 h. All are isolated yields (average of two runs).

Table S3: Effect of the catalyst loading on the C-N cross-coupling of a sterically bulky aniline^a

^aRecation Condition: Aryl amine (0.5 mmol, 1equiv.), aryl bromide (0.5 mmol, 1 equiv.), NaO'Bu (1.4 mmol, 2.8 equiv.), ligand (0.01 mmol, 2 mol%), [Pd] (0.01 mmol, 2 mol%), toluene (2 mL), 100°C and 24 h. All are isolated yields (average of two runs). [¥]Blank reaction without Pd source. ^ΦBlank reaction with only Pd source.

II) Microwave method

Table S4: Optimization table for microwave-assisted C-N cross-coupling reactions^{\$}

Screening of microwave-assisted reaction⁶ conditions for the coupling of (S)-1-phenylpropan-1-amine and 1-bromo-4-(tert-butyl)benzene using $L2/Pd(dba)_2$.

Entry	Mol% Pd	Mol% Ligand	Temp (°C)	Time (Min)	Isolated Yield [#] %
1	1	1	150	180	55
2	1	1	150	60	55
3	2	2	150	60	69
4	-	5	150	60	NR
5	5	-	150	60	19

^{\$}Reaction conditions: aryl amine= (*S*)-1-phenylpropan-1-amine (1 equiv.), aryl bromide= 1bromo-4-(tert-butyl)benzene (1 equiv.), **L2**/Pd(dba)₂ (2 mol%), NaO'Bu (2.8 equiv.), toluene, μ w. [#]Isolated yields (average of two runs). NR : No reaction.

III) List of Racemic compounds prepared for HPLC

S3. Calculations of percentage buried volume and bite angle comparison

To gain insight into steric and electronic factors of 1, 2, and 3, we have performed bite angle⁷ measurements from X-ray analysis, and Steric maps measurement from SambVca 2.1.⁸ Percentage buried volume are mentioned below in the table.⁹

Catalyst	% V _{bur}	Bite angle	SW	NW	NE	SE
1	51.9	69.36(4)	52.1	48.8	49.0	56.6
2	53.4	69.16(2)	51.2	55.8	45.9	60.7
3	56.0	87.73(2)	53.0	52.5	63.9	54.7

Figure S1: Topographical steric maps of Pd(II) complexes 1 to 3 [SiNP(Pd)Cl₂] showing $%V_{bur}$ per quadrant.

S4. Analytical data of products

I) NMR spectra of bulky amine substrates

(4a) N-(2,6-diisopropylphenyl)-2,4,6-trimethylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (0-2% EtOAc in hexane) to provide the aminated product as a white solid in 90% yield (160 mg). ¹**H NMR (400 MHz, CDCl₃):** δ 1.15 (*d*, 12H, *J*= 6.9 Hz, CH*Me*₂), 2.00 (*s*, 6H, C*H*₃), 2.27 (*s*, 3H, C*H*₃), 3.13-3.30 (*m*, 2H, C*H*Me₂), 4.74 (*s*, 1H, N*H*), 6.80 (*s*, 2H, Ph), 7.14 (*s*, 3H, Ph) ¹³C{¹H} **NMR (100.613 MHz, CDCl₃):** δ 19.38, 20.54, 23.56, 28.08, 123.34, 124.27, 126.43, 129.18, 130.15, 139.28, 140.55, 143.47 ppm. **HRMS (ESI):** calculated for C₂₁H₂₉N [M+H]⁺ *m/z* 296.2378, found 296.2379.

(4b) N-(2,6-diisopropylphenyl)-2,6-dimethylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (0-2% EtOAc in hexane) to provide the aminated product as an off-white solid in 86% yield (210 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.16 (*d*, 12H, *J*= 6.9 Hz, CH*Me*₂), 2.02 (*s*, 6H, C*H*₃), 3.14-3.24 (*m*, 2H, C*H*Me₂), 4.83 (*s*, 1H, N*H*), 6.76 (*t*, 1H, *J*= 7.4 Hz, Ph), 6.97 (*d*, 2H, *J*= 7.4 Hz, Ph), 7.12-7.21 (*m*, 3H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 19.48, 23.59, 28.18, 29.85, 119.72, 123.37, 124.95, 125.75, 129.64, 138.92, 143.26, 144.28. HRMS (ESI): calculated for C₂₀H₂₇N [M+H]⁺ *m/z* 282.2215, found 282.2219.

(4c) N-(2-fluorophenyl)-2,6-diisopropylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (5% EtOAc in hexane) to provide the aminated product as a yellow syrup in 96% yield (156 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.18 (*d*, 12H, *J*= 6.9 Hz, CH*Me*₂), 3.16-3.26 (*m*, 2H, C*H*Me₂), 5.34 (*s*, 1H, N*H*), 6.20-6.24 (*m*, 1H, Ph), 6.63-6.69 (*m*, 1H, Ph), 6.85-6.89 (*m*, 1H, Ph), 7.05-7.10 (*m*, 1H, Ph), 7.26-7.29 (*m*, 2H, Ph), 7.33-7.37 (*m*, 1H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 14.22, 23.94, 28.29, 29.80, 113.20, 114.58, 114.76, 117.06, 117.13, 124.00, 124.49, 127.69, 128.21, 134.22, 136.46, 136.57, 147.83, 149.94, 152.31 ppm. ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃): δ -137.41 ppm. MALDI *m/z* (C₁₈H₂₂FN): 271.81 [M]⁺.

(4d) N-(3,5-bis(trifluoromethyl)phenyl)-2,6-diisopropylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (10% EtOAc in hexane) to provide the aminated product as a yellow syrup in 97% yield (228 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.17 (*d*, 12H, *J*= 6.9 Hz, CH*Me*₂), 3.06-3.16 (*m*, 2H, C*H*Me₂), 5.53 (*s*, 1H, N*H*), 6.85 (*s*, 2H, Ph), 7.19 (*s*, 1H, Ph), 7.28-7.29 (*m*, 2H, Ph), 7.37-7.41 (*m*, 1H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 23.79, 28.35,

29.71, 124.40, 128.50, 132.35, 132.70, 147.40, 148.93 ppm. ¹⁹F{¹H} NMR (**376.66 MHz**, **CDCl3**): δ -63.21 ppm.**MALDI** *m/z* (C₂₀H₂₁NF₆): 392.27 (M+3H]⁺.

(4e) 2,6-dibenzhydryl-N-mesityl-4-methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (2% EtOAc in hexane) to provide the aminated product as a white crystalline solid in 85% yield (284 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.44 (*s*, 6H, C*H*₃), 2.12 (*s*, 3H, C*H*₃), 2.24 (*s*, 3H, C*H*₃), 4.11 (*s*, 1H, N*H*), 5.51 (*s*, 2H, CH*Ph*₂), 6.47 (*s*, 2H, Ph), 6.70 (*m*, 2H, Ph), 6.90 (*d*, 8H, *J*= 6.7 Hz, Ph), 7.16-7.26 (*m*, 12H, Ph) ppm. ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 18.45, 20.46, 21.41, 52.23, 125.88, 126.18, 128.18, 128.95, 129.10, 129.48, 129.55, 131.71, 137.52, 138.47, 138.73, 143.58 ppm. MALDI *m*/*z* (C₄₂H₃₉N): 557.54 [M]⁺.

(4f) 2,6-dibenzhydryl-N-(2,6-dimethylphenyl)-4-methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (5% EtOAc in hexane) to provide the aminated product as a white powder in 99% yield (322 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.46 (*s*, 6H, CH₃), 2.14 (*s*,

3H, CH₃), 4.19 (s, 1H, N*H*), 5.52 (s, 2H, CH*Ph*₂), 6.50 (s, 2H, Ph), 6.68-6.77 (*m*, 1H, Ph), 6.91 (*d*, 8H, *J*=7.1 Hz, Ph), 7.15-7.30 (*m*, 12H, Ph) ppm. ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 18.49, 21.43, 29.71, 52.30, 119.57, 125.46, 126.23, 128.22, 128.98, 129.04, 129.46, 132.27, 137.20, 138.97, 141.29, 143.54 ppm. MALDI *m/z* (C₄₁H₃₇N): 543.41 [M]⁺.

(4g) 2,6-dibenzhydryl-N-(2-fluorophenyl)-4-methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (10% EtOAc in hexane) to provide the aminated product as a white solid in 98% yield (313 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.19 (*s*, 3H, *CH*₃), 4.73 (*s*, 1H, N*H*), 5.60 (*s*, 2H, CH*Ph*₂), 6.28-6.41 (*m*, 1H, Ph), 6.59-6.68 (*m*, 1H, Ph), 6.72 (*s*, 2H, Ph), 6.79-6.87 (*m*, 1H, Ph), 6.92-7.04 (*m*, 8H, Ph), 7.14-7.23 (*m*, 13H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 21.75, 51.82, 112.92, 114.75, 114.93, 117.32, 117.38, 124.60, 126.21, 128.33, 129.38, 129.89, 134.12, 136.64, 143.34, 144.22 ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃): δ - 136.75 (s) MALDI *m*/z (C₃₉H₃₂FN): 533.45[M]⁺.

(4h) 2,6-dibenzhydryl-N-(3,5-bis(trifluoromethyl)phenyl)-4-methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (15% EtOAc in hexane) to provide the aminated product as an offwhite solid in 95% yield (371 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.20 (*s*, 3H, C*H*₃), 4.82 (*s*, 1H, N*H*), 5.45 (*s*, 2H, CH*Ph*₂), 6.64 (*s*, 2H, Ph), 6.70 (*s*, 2H, Ph), 6.90-6.92 (*m*, 8H, Ph), 7.09-7.24 (*m*, 13H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 21.72, 52.12, 126.48, 128.42, 129.16, 130.09, 132.92, 137.65, 142.70, 143,94, 147.98 ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃): δ -63.08 (s) MALDI *m/z* (C₄₁H₃₁NF₆): 651.35 [M]⁺.

(4i) N-(2,6-bis(di-p-tolylmethyl)-4-methylphenyl)-2,4,6-trimethylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (5% EtOAc in hexane) to provide the aminated product as white needles in a 99% yield (364 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.52 (*s*, 6H, C*H*₃), 2.16 (*s*, 3H, C*H*₃), 2.26 (*s*, 3H, C*H*₃), 2.35 (*s*, 12H, C*H*₃), 4.20 (*s*, 1H, N*H*), 5.48 (*s*, 2H, CH*Ph*₂), 6.54 (*s*, 2H, Ph), 6.73 (*s*, 2H, Ph), 6.81 (*d*, 8H, *J*= 8.0 Hz, Ph), 7.06 (*d*, 8H, *J*= 7.8 MHz, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 18.62, 20.53, 21.12, 21.50, 51.43, 126.08, 128.89, 128.99, 129.36, 129.58, 131.63, 135.52, 137.67, 138.79, 139.07, 140.94 MALDI *m/z* (C₄₆H₄₇N): 613.46 [M]⁺.

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (5% EtOAc in hexane) to provide the aminated product as an offwhite solid in 96% yield (345 mg) ¹**H NMR (400 MHz, CDCl₃):** δ 1.49 (*s*, 6H, C*H*₃), 2.15 (*s*, 3H, C*H*₃), 2.33 (*s*, 12H, C*H*₃), 4.24 (*s*, 1H, N*H*), 5.45 (*s*, 2H, CH*Ph*₂), 6.52 (*s*, 2H, Ph), 6.66-6.73 (*m*, 1H, Ph), 6.78 (*d*, 8H, *J* = 7.7 Hz, Ph), 6.90 (*d*, 2H, *J* = 7.2 Hz, Ph), 7.04 (*d*, 8H, *J*= 7.5 Hz, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 18.67, 21.13, 21.47, 29.80, 51.50, 119.49, 125.61, 128.93, 129.02, 129.34, 132.20, 135.58, 137.31, 139.30, 140.88, 141.61 MALDI *m*/z (C₄₅H₄₅N): 599.47 [M]⁺.

(4k) 2,6-bis(di-p-tolylmethyl)-N-(2-fluorophenyl)-4-methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (12% EtOAc in hexane) to provide the aminated product as a white microcrystalline solid in 96% yield (339 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.20 (*s*, 3H, CH₃), 2.31 (*s*, 12H, CH₃), 4.80 (*s*, 1H, NH), 5.53 (*s*, 2H, CHPh₂), 6.75 (*s*, 2H, Ph), 6.85-6.87 (*m*, 9H, Ph), 7.02-7.04 (*m*, 11H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 21.03, 21.69,

50.92, 113.01, 114.61, 114.78, 124.48, 128.30, 128.91, 129.15, 129.60, 130.13, 133.99, 135.58, 140.58, 144.28. ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃): *δ* -136.78 (s) MALDI *m/z* (C₄₃H₄₀FN): 590.57 [M+H]⁺.

(4l) N-(3,5-bis(trifluoromethyl)phenyl)-2,6-bis(di-p-tolylmethyl)-4-methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (20% EtOAc in hexane) to provide the aminated product as a brownish solid in 95% yield (402 mg). ¹**H NMR (400 MHz, CDCl₃):** δ 2.24 (*s*, 3H, *CH*₃), 2.32 (*s*, 12H, *CH*₃), 4.90 (*s*, 1H, *NH*), 5.40 (*s*, 2H, *CHPh*₂), 6.66 (*s*, 2H, Ph), 6.75 (*s*, 2H, Ph), 6.82 (*d*, 8H, *J*= 8.0 Hz, Ph), 7.04 (*d*, 8H, *J*= 7.9 Hz, Ph), 7.15 (*s*, 1H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 20.97, 21.73, 51.32, 128.99, 129.07, 129.91, 132.87, 135.89, 137.44, 139.93, 144.08, 148.12. ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃): δ -63.16 (*s*) MALDI *m*/*z* (C₄₅H₃₉NF₆): 707.44 [M]⁺.

(4m) 2,6-bis(bis(4-(tert-butyl)phenyl)methyl)-N-mesityl-4-methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (5% EtOAc in hexane) to provide the aminated product as a white powder in 99% yield (464 mg). ¹**H NMR (400 MHz, CDCl₃):** δ 1.22 (*s*, 36H, *CH₃*), 1.31 (*s*, 6H, *CH₃*), 2.11 (*s*, 3H, *CH₃*), 2.19 (*s*, 3H, *CH₃*), 4.03 (*s*, 1H, N*H*), 5.34 (*s*, 2H, *CHPh₂*), 6.45 (*s*, 2H, Ph), 6.62 (*s*, 2H, Ph), 6.79 (*dd*, 8H, *J*= 8.3, 1.9 Hz, Ph), 7.20 (*dd*, 8H, *J*= 8.3, 1.9 Hz, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 18.26, 20.56, 21.47, 31.49, 34.50, 51.54, 125.01, 125.85, 128.67, 128.83, 129.16, 129.40, 131.28, 137.42, 138.58, 138.80, 140.69, 148.79 MALDI *m*/*z* (C₅₈H₇₁N): 782.71 [M]⁺.

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (5% EtOAc in hexane) to provide the aminated product as a yellow solid in 98% yield (450 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.30 (*s*, 36H, *CH*₃), 1.58 (*s*, 6H, *CH*₃), 2.24 (*s*, 3H, *CH*₃), 4.94 (*s*, 1H, N*H*), 5.59 (*s*, 2H, CH*Ph*₂), 6.55-6.62 (*m*, 1H, Ph), 6.72-6.76 (*m*, 1H, Ph) 6.82 (*s*, 2H, Ph), 6.92 (*d*, 8H, *J*= 7.7, Ph), 6.97-7.03 (*m*, 1H, Ph), 7.23 (*d*, 8H, *J*= 7.9 Hz, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 21.70, 31.38, 34.33, 50.68, 124.99, 128.89, 129.57, 134.02, 136.31, 140.37, 144.41, 148.70 MALDI *m/z* (C₅₇H₆₉N): 767.83 [M]⁺.

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (10 % EtOAc in hexane) to provide the aminated product as a pale yellowish solid in 80 % yield (363 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.27 (*s*, 36H, C*H*₃), 2.23 (*s*, 3H, C*H*₃), 4.92 (*s*, 1H, N*H*), 5.57 (*s*, 2H, CH*Ph*₂), 6.19 (*s*, 1H, ArF), 6.71 (*s*, 1H, ArF), 6.80 (*s*, 2H, Ph), 6.89 (*d*, 2H, *J*= 7.4 Hz, Ph), 6.79 (*dd*, 8H, *J*= 8.3, 1.9 Hz, Ph), 7.23 (*d*, 8H, *J*= 7.4 Hz, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 21.78, 31.47, 34.41, 50.75, 125.08, 128.98, 129.65, 134.09, 136.40, 140.45, 144.50, 148.78. ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃): δ -137.14 (s) MALDI: *m/z* (C₅₅H₆₇NF): 758.68 [M]⁺.

(4p) 2,6-bis(bis(4-(*tert*-butyl)phenyl)methyl)-*N*-(3,5-bis(trifluoromethyl)phenyl)-4methylaniline

Titled compound prepared according to **General procedure B**. The crude product was purified by column chromatography (0-2 % EtOAc in hexane) to provide the aminated product as an off-white colored solid in 95 % yield (510 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.24 (*s*, 3H, *CH*₃), 2.32 (*s*, 12H, *CH*₃), 4.90 (*s*, 1H, *NH*), 5.40 (*s*, 2H, *CHPh*₂), 6.66 (*s*, 2H, Ph), 6.75 (*s*, 2H, Ph), 6.82 (*d*, 8H, *J*= 8.0 Hz, Ph), 7.04 (*d*, 8H, *J*= 7.9 Hz, Ph), 7.15 (*s*, 1H, Ph) ¹³C{¹H} NMR (100.613 MHz, CDCl₃): δ 21.83, 31.41, 34.43, 51.16, 125.25, 128.81, 130.12, 132.98, 137.50, 139.96, 144.14, 148.40, 149.12 ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃): δ -63.03 (s) MALDI *m/z* (C₅₇H₆₃NF₆): 876.86 [M]⁺.

II) NMR spectra of Chiral substrates

(5a) (S)-2,4,6-trimethyl-N-(1-(naphthalen-2-yl)ethyl)aniline

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a yellow solid in L1: 56 %, L2: 62% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (dd, J = 6.3, 3.5 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.77 (dd, J = 15.5, 7.6 Hz, 2H), 7.56 – 7.46 (m, 3H), 6.82 (s, 2H), 5.11 (q, J = 6.7 Hz, 1H), 3.37 (brs, 1H), 2.25 (s, 3H), 2.22 (s, 6H), 1.60 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.49 (s), 142.79 (s), 134.31 (s), 131.24 (s), 131.09 (s), 130.02 (s), 129.48 (s), 129.28 (s), 127.78 (s), 126.33 (s), 126.08 (s), 125.87 (s), 123.59 (s), 123.00 (s), 53.70 (s), 24.40 (s), 20.97 (s), 19.48 (s). HRMS (ESI): calculated for C₂₁H₂₃N [M+H]⁺ *m/z* 289.1830, found 289.1828. HPLC analysis: (AD-H, 0.5 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 91 % & with L2 >99 %.

(5b) (S)-2,6-dimethyl-N-(1-(naphthalen-2-yl)ethyl)aniline

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a paleyellow solid in L1: 53 %, L2: 55% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.07 – 7.98 (m, 1H), 7.91 – 7.83 (m, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 7.1 Hz, 1H), 7.55 – 7.40 (m, 3H), 6.98 (d, J = 7.4 Hz, 2H), 6.80 (t, J = 7.5 Hz, 1H), 5.19 (q, J = 6.7 Hz, 1H), 3.53 (s, 1H), 2.24 (s, 6H), 1.61 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 145.42 (s), 141.98 (s), 133.67 (s), 130.57 (s), 128.78 (s), 128.65 (s), 128.43 (s), 127.98 (s), 127.21 (s), 125.72 (s), 125.44 (s), 125.26 (s), 122.88 (s), 122.29 (s), 121.02 (s), 52.72 (s), 29.53 (s), 23.87 (s), 18.99 (s). HRMS (ESI): calculated for C₂₀H₂₁N [M+H]⁺ *m/z* 276.1752, found 276.1742. HPLC analysis: (AD-H, 0.5 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 88 % & with L2 >99 %.

(5c) (S)-N-(1-(naphthalen-2-yl)ethyl)pyren-1-amine

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a yellow solid in L1: 60 %, L2: 54% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 5.1 Hz, 1H), 8.16 (d, *J* = 9.1 Hz, 1H), 8.11 – 7.98 (m, 2H), 7.95 (d, *J* = 7.8 Hz, 2H), 7.80 – 7.69 (m, 5H), 7.63 – 7.52 (m, 2H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.00 (s, 1H), 5.65 (s, 1H), 1.91 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 134.31 (s), 130.97 (s), 129.38 (s), 127.89 (s), 126.79 – 125.08 (m), 122.64 (s), 23.87 (s), 14.28 (s). HRMS (ESI): calculated for C₂₈H₂₁N [M+H]⁺ *m/z* 371.1674, found 371.1669. HPLC analysis: (AD-H, 0.5 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 81 % & with L2 99 %.

(5d) (R)-4-((1-phenylethyl)amino)benzonitrile

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (20 % EtOAc in hexane) to provide the aminated product as an off-white solid in L1: 49 %, L2: 58% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.20 (m, 6H), 7.16 – 7.10 (m, 1H), 6.37 (d, *J* = 8.7 Hz, 2H), 4.70 (s, 1H), 4.46 – 4.32 (m, 1H), 1.43 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.33 (s), 143.63 (s), 133.37 (s), 128.74 (s), 127.18 (s), 125.52 (s), 120.46 (s), 112.78 (s), 98.32 (s), 52.94 (s), 24.52 (s). HRMS (ESI): calculated for C₁₅H₁₄N₂ [M+H]⁺ *m/z* 223.1235, found 223.1225. HPLC analysis: (AD-H, 3 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 90 % & with L2 95 %.

(5e) (S)-4-(tert-butyl)-N-(1-phenylethyl)aniline

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a yellow syrup in L1: 57 %, L2: 53% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.28 (m, 2H), 7.23 (t, *J* = 7.6 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.38 (d, *J* = 8.6 Hz, 2H), 4.36 (q, *J* = 6.7 Hz, 1H), 3.84 (s, 1H), 1.41 (d, *J* = 6.7 Hz, 3H), 1.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 145.7, 145.2, 140.0, 128.7, 126.9, 126.0, 113.0, 53.9, 33.9, 31.6, 25.2. HRMS (ESI): calculated for C₁₈H₂₃N [M+H]⁺ *m/z* 254.1908, found 254.1901. HPLC analysis: (AD-H, 3 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 85 % & with L2 98 %.

(5f) (R)-N-(1-phenylethyl)pyren-4-amine

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (5 % EtOAc in hexane) to provide the aminated product as an offwhite solid in L1: 42 %, L2: 60% yield. ¹**H NMR (400 MHz, CDCl₃):** δ 8.04 – 7.84 (m, 4H), 7.71 (m, 5H), 7.33 (d, *J* = 7.5 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 2H), 7.13 (d, *J* = 8.9 Hz, 1H), 7.01 (m, 1H), 4.74 (s, 1H), 1.65 (d, *J* = 6.4 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃):** δ 147.62 (s), 145.37 (s), 136.86 (s), 132.28 (s), 131.91 – 131.16 (m), 128.83 (s), 127.27 (s), 126.08 (s), 124.56 – 123.30 (m), 119.47 (s), 111.05 (s), 54.17 (s), 28.08 (s), 26.46 (d, *J* = 20.7 Hz), 25.02 (s). **HRMS (ESI):** calculated for C₂₄H₁₉N [M+H]⁺ *m/z* 321.1517, found 321.1519. **HPLC analysis:** (AD-H, 100 % Hexane, 1 mL/min, 230 nm) indicated ee with **L1** 95 % & with **L2** >99 %.

(5g) (S)-2,4,6-trimethyl-N-(1-phenylpropyl)aniline

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a yellow solid in L1: 52 %, L2: 56% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.26 (m, 2H), 7.24 – 7.18 (m, 3H), 6.75 (s, 2H), 3.96 (dd, J = 8.7, 5.6 Hz, 1H), 3.17 (s, 1H), 2.20 (s, 3H), 2.12 (s, 6H), 1.33 – 1.20 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.74 (s), 142.12 (s), 132.69 (s), 130.46 (s), 129.17 (s), 128.40 – 127.42 (m), 126.68 (d, J = 9.7 Hz), 63.52 (s), 31.61 (s), 29.35 (s), 20.35 (s), 18.69 (s), 11.04 (s). HRMS (ESI): calculated for C₁₈H₂₃N [M+H]⁺ *m*/*z* 253.1830, found 253.1832. HPLC analysis: (AD-H, 1.5 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 70 % & with L2 75 %.

(5h) (R)-4-(tert-butyl)-N-(1-phenylpropyl)aniline

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a yellow syrup in L1: 62 %, L2: 69% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (m, 2H), 7.53 (m, 2H), 7.45 (m, 1H), 7.40 – 7.33 (m, 2H), 6.81 – 6.52 (m, 1H), 4.43 (t, *J* = 6.0 Hz, 1H), 4.20 (s, 1H), 2.03 (td, *J* = 7.0, 4.2 Hz, 2H), 1.49 (s, 9H), 1.17 (m, 4.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 145.31 (s), 144.35 (s), 139.76 (s), 128.53 (s), 126.89 (s), 126.56 (s), 125.90 (s), 112.97 (s), 60.08 (s), 33.81 (s), 31.82 (s), 31.62 (s), 10.94 (s). HRMS (ESI): calculated for C₁₉H₂₅N [M+H]⁺ *m/z* 268.2065, found 268.2064. HPLC analysis: (AD-H, 3 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 64% & with L2 86 %.

(5i) (S)-4-((1-phenylpropyl)amino)benzonitrile

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (20 % EtOAc in hexane) to provide the aminated product as a white solid in L1: 66 %, L2: 68% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.06 (m, 7H), 6.41 (d, *J* = 8.7 Hz, 2H), 4.82 (s, 1H), 4.17 (t, *J* = 6.7 Hz, 1H), 1.77 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.74 (s), 142.44 (s), 133.46 (s), 128.69 (s), 127.30 (s), 126.30 (s), 120.70 (s), 112.84 (s), 98.15 (s), 59.22 (s), 31.33 (s), 10.79 (s). HRMS (ESI): calculated for C₁₆H₁₆N₂ [M+H]⁺ *m/z* 237.1391, found 237.1382. HPLC analysis: (AD-H, 3 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 80 % & with L2 92 %.

(5j) (S)-4-((1-cyclohexylethyl)amino)benzonitrile

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (20 % EtOAc in hexane) to provide the aminated product as a yellow semi-solid in L1: 73 %, L2: 69 % yield. ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 8.7 Hz, 2H), 6.51 (d, J = 8.7 Hz, 2H), 4.32 (m, 1H), 3.32 (m, 1H), 1.81 – 1.60 (m, 5H), 1.40 (m, 1H), 1.25 – 1.14 (m, 3H), 1.11 (d, J = 6.6 Hz, 3H), 0.99 (dd, J = 19.6, 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 151.45 (s), 133.91 (s), 121.14 (s), 112.42 (s), 97.35 (s), 52.89 (s), 43.12 (s), 29.82 (s), 28.76 (s), 26.82 – 26.29 (m), 17.48 (s). HRMS (ESI): calculated for C₁₅H₂₀N [M+H]⁺ *m/z* 229.1704, found 229.1710. HPLC analysis: (AD-H, 3 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 61 % & with L2 79 %.

(5k) (S)-4-(*tert*-butyl)-N-(1-cyclohexylethyl)aniline

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a yellow syrup in L1: 69 %, L2: 62 % yield. ¹H NMR (400 MHz, CDCl₃): δ 7.13 – 7.04 (m, 2H), 6.43 (dd, J = 8.4, 1.4 Hz, 2H), 3.32 – 3.07 (m, 2H), 1.67 (ddd, J = 44.3, 31.2, 13.1 Hz, 5H), 1.33 (dd, J = 21.0, 9.7 Hz, 1H), 1.19 (s,9H), 1.16 – 1.05 (m, 3H), 1.01 (dd, J = 6.5, 1.3 Hz, 3H), 0.96 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 141.32 (s), 138.10 (s), 124.96 (s), 121.72 (s), 111.49 (s), 52.09 (s), 42.00 (s), 32.72 (s), 30.55 (s), 28.76 (s), 27.41 (s), 26.28 – 25.15 (m), 21.41 (s), 16.48 (s). HRMS (ESI): calculated for C₁₈H₂₉N [M+H]⁺ *m/z* 260.2378, found

260.2374. HPLC analysis: (AD-H, 0.5 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 99 % & with L2 99 %.

(5l) (S)-N-(1-cyclohexylethyl)pyren-4-amine

Titled compound prepared according to **General procedure A**. The crude product was purified by column chromatography (2 % EtOAc in hexane) to provide the aminated product as a pale yellowish semi-solid in L1: 58 %, L2: 65% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.11 – 7.99 (m, 3H), 7.98 – 7.87 (m, 4H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 3.77 (m, 1H), 2.00 (d, *J* = 12.5 Hz, 1H), 1.92 – 1.80 (m, 3H), 1.79 – 1.62 (m, 2H), 1.32 (d, *J* = 4.7 Hz, 3H),1.30 (m, 2H) 1.28 – 1.15 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 132.85 (s), 132.56 – 132.34 (m), 131.79 (s), 131.36 (s), 127.62 (s), 126.07 (s), 125.18 (s), 123.59 (s), 123.03 (s), 119.78 (s), 118.94 (s), 42.92 (s), 30.22 (s), 28.60 (s), 26.75 (d, *J* = 9.6 Hz), 26.51 (s), 22.72 (s), 17.29 (s), 14.40 (s). HRMS (ESI): calculated for C₂₄H₂₅N [M+H]⁺ *m/z* 328.2065, found 328.2076. HPLC analysis: (AD-H, 1.5 % IPA in Hexane, 1 mL/min, 254 nm) indicated ee with L1 73 % & with L2 87 %.

S5. Refinment data of single crystal X-ray diffraction

Single crystals of suitable size, coated with paraffin oil were mounted for all the complexes, substrates and ligand. Crystal data for all the compounds were collected on a Bruker Smart Apex Duo diffractometer at 100K/150 K using Mo K α radiation ($\lambda = 0.71073$ Å) or CuK α ($\lambda = 1.54178$). Collected data were integrated by using SAINT and then absorption correction was done by multi-scan method using SADABS program. All the structures were solved by direct methods and refined by full-matrix least-squares methods against F² (SHELXL-2014/7). The data were corrected for disordered electron density through the SQUEEZE procedure, as implemented in PLATON. Crystallographic Information File (CIF) for the structures has been deposited to the Cambridge Crystallographic Data centre as supplementary publication no: CCDC no:

L2 (2193639); 1 (2193662); 2 (2193663); 3 (2203939); 4f (2193666) 4i (2193667); 5c (2193664); 5h (2193665).

Identification code	L2	
Empirical formula	$C_{33}H_{54}N_3PSi$	
Formula weight	551.85	
Temperature/K	150(2)	
Crystal system	triclinic	
Space group	P-1	
a/Å	10.461(10)	
b/Å	10.611(10)	
c/Å	16.467(16)	
α/\circ	83.31(3)	
β/°	87.04(3)	

a/A	10.461(10)
b/Å	10.611(10)
c/Å	16.467(16)
α/°	83.31(3)
β/°	87.04(3)
γ/°	67.44(2)
Volume/Å ³	1676(3)
Ζ	2
$\rho_{calc}g/cm^3$	1.093
μ/mm^{-1}	0.142
F(000)	604.0
Crystal size/mm ³	$0.431 \times 0.321 \times 0.215$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.18 to 56.806
Index ranges	$-13 \le h \le 13, -14 \le k \le 14, -22 \le l \le 22$
Reflections collected	89242
Independent reflections	8352 [$R_{int} = 0.1013$, $R_{sigma} = 0.0529$]
Data/restraints/parameters	8352/0/357
Goodness-of-fit on F ²	1.032
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0447, wR_2 = 0.0914$
Final R indexes [all data]	$R_1 = 0.0694, wR_2 = 0.0998$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.34

Identification code 1 Empirical formula $C_{39}H_{50}Cl_2N_3PPdSi$ 797.18 Formula weight Temperature/K 150(2) Crystal system monoclinic Space group $P2_1/n$ a/Å 11.721(2) b/Å 14.864(3)c/Å 21.818(5) $\alpha/^{\circ}$ 90 β/° 98.244(6) $\gamma/^{\circ}$ 90 Volume/Å³ 3761.9(13) Ζ 4 $\rho_{calc}g/cm^3$ 1.408 μ/mm^{-1} 0.742 F(000) 1656.0 Crystal size/mm³ $0.431 \times 0.285 \times 0.251$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 4.218 to 56.718 Index ranges $\text{-15} \le h \le \text{15}, \, \text{-19} \le k \le \text{19}, \, \text{-29} \le \text{l} \le \text{29}$ **Reflections collected** 160554 Independent reflections 9403 [$R_{int} = 0.1096$, $R_{sigma} = 0.0425$] 9403/0/434 Data/restraints/parameters

1.044

0.59/-0.76

 $R_1 = 0.0365, wR_2 = 0.0744$

 $R_1 = 0.0566, wR_2 = 0.0820$

Goodness-of-fit on F²

Final R indexes $[I \ge 2\sigma(I)]$

Largest diff. peak/hole / e Å⁻³

Final R indexes [all data]

 Table S5b: Crystal data and structure refinement for 1 (CCDC: 2193662)

1

•	(
Identification code	2
Empirical formula	C ₃₃ H ₅₄ Cl ₂ N ₃ PPdSi
Formula weight	729.15
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	11.502(2)
b/Å	12.782(3)
c/Å	12.058(2)
$\alpha/^{\circ}$	90.00(3)
β/°	94.41(3)
$\gamma/^{\circ}$	90.00(3)
Volume/Å ³	1767.5(6)
Z	2
$\rho_{calc}g/cm^3$	1.370
μ/mm^{-1}	0.782
F(000)	764.0
Crystal size/mm ³	0.512 imes 0.321 imes 0.158
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.652 to 56.838
Index ranges	$-15 \le h \le 15, -17 \le k \le 17, -16 \le l \le 16$
Reflections collected	63801
Independent reflections	8840 [$R_{int} = 0.0821$, $R_{sigma} = 0.0519$]
Data/restraints/parameters	8840/1/385
Goodness-of-fit on F ²	1.048
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0351, wR_2 = 0.0768$
Final R indexes [all data]	$R_1 = 0.0422, wR_2 = 0.0795$
Largest diff. peak/hole / e Å ⁻³	0.72/-0.82
Flack parameter	0.06(3)

 Table S5c: Crystal data and structure refinement for 2(CCDC: 2193663).

3
$C_{37}H_{48}Cl_4N_3PPdSi_2$
870.13
293(2)
monoclinic
C2/c
25.422(4)
11.0674(13)
33.751(4)
90
109.835(6)
90
8933(2)
8
1.294
0.772
3584.0
0.27 imes 0.1 imes 0.09
MoKa ($\lambda = 0.71073$)
5.106 to 50.202
$-30 \le h \le 30, -13 \le k \le 13, -40 \le l \le 40$
125014
7861 [$R_{int} = 0.2289, R_{sigma} = 0.1392$]
7861/0/442
1.048
$R_1 = 0.0738, wR_2 = 0.1011$
$R_1 = 0.1432, wR_2 = 0.1192$
0.57/-0.64

Table S5d: Crystal data and structure refinement for 3(CCDC: 2203939).

Table S5e:Crystal data and structure refinement for 4f (CCDC:2193666).

Identification code	4f
Empirical formula	C ₄₁ H ₃₇ N
Formula weight	543.71
Temperature/K	150.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.939(2)
b/Å	26.563(6)
c/Å	11.124(2)
α/°	90
β/°	112.526(6)
$\gamma/^{\circ}$	90
Volume/Å ³	2985.7(11)
Ζ	4
$\rho_{calc}g/cm^3$	1.210
μ/mm^{-1}	0.069
F(000)	1160.0
Crystal size/mm ³	$0.315 \times 0.278 \times 0.169$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.25 to 56.82
Index ranges	$\text{-}14 \leq h \leq 14, \text{-}35 \leq k \leq 35, \text{-}14 \leq l \leq 14$
Reflections collected	105287
Independent reflections	7440 [$R_{int} = 0.1577, R_{sigma} = 0.0732$]
Data/restraints/parameters	7440/0/382
Goodness-of-fit on F ²	1.024
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0548, wR_2 = 0.1123$
Final R indexes [all data]	$R_1 = 0.1117, wR_2 = 0.1368$
Largest diff. peak/hole / e Å ⁻³	0.67/-0.32

4f
Identification code	4i
Empirical formula	$C_{46}H_{47}N$
Formula weight	613.84
Temperature/K	150(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	12.506(4)
b/Å	23.229(8)
c/Å	13.297(4)
α/°	90
β/°	114.039(11)
γ/°	90
Volume/Å ³	3528(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.156
μ/mm^{-1}	0.066
F(000)	1320.0
Crystal size/mm ³	$0.268 \times 0.265 \times 0.144$
Radiation	MoKa ($\lambda = 0.71073$)
2 Θ range for data collection/°	3.784 to 56.768
Index ranges	$-16 \le h \le 16, -31 \le k \le 30, -17 \le l \le 13$
Reflections collected	51581
Independent reflections	8793 [$R_{int} = 0.1240, R_{sigma} = 0.1053$]
Data/restraints/parameters	8793/0/432
Goodness-of-fit on F ²	1.007
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0644, wR_2 = 0.1364$
Final R indexes [all data]	$R_1 = 0.1468, wR_2 = 0.1720$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.26

Table S5f: Crystal data and structure refinement for 4i (CCDC:2193667)

Table S5g: Crystal data and structure refinement for 5c(CCDC:2193664).

5c
$C_{28}H_{21}N$
371.46
150.15
orthorhombic
P2 ₁ 2 ₁ 2 ₁
8.6857(15)
12.012(2)
37.160(6)
90
90
90
3877.1(11)
8
1.273
0.558
1568.0
$0.341 \times 0.268 \times 0.186$
$CuK\alpha (\lambda = 1.54178)$
4.756 to 155.666
$-10 \le h \le 10, -14 \le k \le 15, -46 \le l \le 45$
64151
7843 [$R_{int} = 0.1220, R_{sigma} = 0.0588$]
7843/0/526
1.151
$R_1 = 0.0737, wR_2 = 0.1242$
$R_1 = 0.0955, wR_2 = 0.1351$
0.24/-0.25
-0.6(4)

5c

Table S5h: Crystal data and structure refinement for 5h(CCDC:2193665).

Identification code	5h
Empirical formula	$C_{19}H_{25}N$
Formula weight	267.40
Temperature/K	150.15
Crystal system	monoclinic
Space group	C2
a/Å	23.428(3)
b/Å	5.9565(8)
c/Å	23.648(3)
$\alpha/^{\circ}$	90
β/°	101.376(6)
γ/°	90
Volume/Å ³	3235.2(7)
Z	8
$\rho_{calc}g/cm^3$	1.098
μ/mm^{-1}	0.469
F(000)	1168.0
Crystal size/mm ³	$0.315 \times 0.219 \times 0.169$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	3.812 to 151.31
Index ranges	$-28 \le h \le 27, -7 \le k \le 7, -29 \le l \le 29$
Reflections collected	61573
Independent reflections	6625 [$R_{int} = 0.0854, R_{sigma} = 0.0379$]
Data/restraints/parameters	6625/1/427
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0395, wR_2 = 0.0830$
Final R indexes [all data]	$R_1 = 0.0499, wR_2 = 0.0891$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.14
Flack parameter	-0.1(3)

5h

S6. Kinetic Experiments

I) Procedure for Standard Kinetic Experiments

In the standard rate measurements, a Schlenk tube was charged with ligand and metal precursor $(L2/Pd(dba)_2)$ (5 mg, 2 mol%), NaO'Bu (0.038 g, 0.4 mmol), aryl halide **2a** (22 µL, 0.2 mmol), Ar-NH₂ **1a** (0.088 g, 0.2 mmol), and 1.5 mL toluene was added as a reaction solvent. The Schlenk tube containing the reaction mixture was heated at 100 °C in a preheated oil bath, at regular interval of time (10, 20, 30, 60, 90, 120, 150 mins etc.) and after completion, the reaction solvent was completely evaporated in a vacuum. The total reaction mixture was dissolved in 0.6 mL of CDCl₃ and internal standard 1,4-dioxane (8 µL, 0.1 mmol) was added to the reaction tube. Then this reaction mixture was passed through a PTFE filter (25 mm, 0.22 µM), and reaction progress was monitored by ¹H NMR spectroscopy at regular intervals of time. (See Table S9 in the supporting information). The data of the concentration of product [M] *vs* time (min) plot was drawn with "Origin pro-8.5" (Figure S2). The rate was determined by initial rate method. The slope of the linear fitting represents the reaction rate.

Table S8: Concentrations of product 3a at different time intervals

				F	
Ph NH ₂ Ph ⁻	Sr No ^{Br}	Time ((PPA) M)	Yield %	HN Conc	centration of 3a
Ph Ph		<u> 7 2)Pd(dba)₂ (0.0026 3) NaO^tBu (0.267 M 3) </u>			[M]
	1	Toruene	' P17/	Ph	0.014
	2	20	9		0.018
0.133 M	0 3 133 M	30	12	3a	0.024
18	4^{2a}	60	15		0.030
	5	90	16		0.032
	6	120	18		0.036
	7	150	21		0.042
	8	180	26		0.052
	9	210	28		0.056
_	10	240	34		0.068

Figure S2: Time dependent formation of 3a, employing 0.0026 M catalyst loading (2 mol%)

II) Procedure for Rate Order Determination

The rate order of the amination reaction with various components was determined by the initial rate method. The data of the concentration of the product vs time (min) plot was fitted linear with Origin Pro 8.5. The slope of the linear fitting represents the reaction rate. The order of the reaction was then determined by plotting $\log_{10}(\text{rate})$ vs $\log_{10}(\text{canc.})$ for a particular component.

a) Representative procedure: rate determination with respect to amine

To determine the order of the amination reaction on Ar*-NH₂, initial rate at different initial concentration of amine were determined. The final data was obtained by averaging the results of two independent experiments for same initial concentration. In standard experiment, a Schlenk tube was charged with ligand and metal precursor ($L2/Pd(dba)_2$) (5 mg, 2 mol%), NaO'Bu (0.038 g, 0.4 mmol), aryl halide **2a** (22 µL, 0.2 mmol), Ar-NH₂ **1a** (0.088 g, 0.2 mmol), and 1.5 mL toluene was added as a reaction solvent. The Schlenk tube containing the reaction mixture was heated at 100 °C in a preheated oil bath, at regular interval of time (10, 20, 30, 60,

90, and 120 mins) and after completion, the reaction solvent was completely evaporated in a vacuum. The total reaction mixture was dissolved in 0.6 mL of CDCl₃ and internal standard 1,4-dioxane (8 μ L, 0.1 mmol) was added to the reaction tube. Then this reaction mixture was passed through a PTFE filter (25 mm, 0.22 μ m), The concentration of **3a** obtained in each sample is determined with respect to internal standard "1,4-dioxane".

Experiment	Amount of 1a (g)	Initial Conc. of 1a [M]	Initial Rate [Mmin ⁻¹] x 10 ⁻⁴	R ²
1	0.044	0.066	0.635 ± 0.048	0.9712
2	0.088	0.133	1.460 ± 0.127	0.9630
3	0.132	0.2	2.007 ± 0.107	0.9859
4	0.176	0.266	2.280 ± 0.098	0.9907

Table S9: Rate of amination reaction at different initial concentration of amine (1a)

Figure S3: (A) Time-dependent formation of **3a** at different initial concentrations of **1a** (A') Plot of log₁₀(Conc. of **1a**) *vs*. log₁₀(rate).

b) Representative procedure: rate determination with respect to catalyst

To determine the order of the amination reaction on catalyst loading initial rate at different initial concentration of amine were determined. The final data was obtained by averaging the results of two independent experiments for same initial concentration. In standard experiment, a Schlenk tube was charged with ligand and metal precursor ($L2/Pd(dba)_2$) (5 mg, 2 mol%), NaO'Bu (0.038 g, 0.4 mmol), aryl halide **2a** (22 µL, 0.2 mmol), Ar-NH₂ **1a** (0.088 g, 0.2 mmol), and 1.5 mL toluene was added as a reaction solvent. The Schlenk tube containing the reaction mixture was heated at 100 °C in a preheated oil bath, at regular interval of time (10, 20, 30, 60, and 90 mins) and after completion, the reaction solvent was completely evaporated in a vacuum. The total reaction mixture was dissolved in 0.6 mL of CDCl₃ and internal standard 1,4-dioxane (8 µL, 0.1 mmol) was added to the reaction tube. Then this reaction mixture was passed through a PTFE filter (25 mm, 0.22 µm), The concentration of **3a** obtained in each sample is determined with respect to internal standard "1, 4-dioxane".

Experiment	Amount of catalyst (g)	Initial Conc. of catalyst [M]	Initial Rate [Mmin ⁻¹] x 10 ⁻⁴	R ²
1	0.003	0.0013	1.020 ± 0.0845	0.9731
2	0.006	0.0026	2.451 ± 0.0738	0.9964
3	0.009	0.004	3.393 ± 0.383	0.9508
4	0.012	0.0053	9.208 ± 0.877	0.9646

Table S10: Rate of amination reaction at different initial concentrations of catalyst

Figure S4: (B) Time-dependent formation of **3a** at different initial concentrations of catalyst (B') Plot of log₁₀(Conc. of **catalyst**) *vs*. log₁₀(rate).

a) Representative procedure: rate determination with respect to aryl bromide

To determine the order of the amination reaction on aryl bromide, initial rate at different initial concentration of amine were determined. The final data was obtained by averaging the results of two independent experiments for same initial concentration. In standard experiment, a Schlenk tube was charged with ligand and metal precursor ($L2/Pd(dba)_2$) (5 mg, 2 mol%), NaO'Bu (0.038 g, 0.4 mmol), aryl halide **2a** (22 µL, 0.2 mmol), Ar-NH₂ **1a** (0.088 g, 0.2 mmol), and 1.5 mL toluene was added as a reaction solvent. The Schlenk tube containing the reaction mixture was heated at 100 °C in a preheated oil bath, at regular interval of time (10, 20, 30, 60, and 90 mins) and after completion, the reaction solvent was completely evaporated in a vacuum. The total reaction mixture was dissolved in 0.6 mL of CDCl₃ and internal standard 1,4-dioxane (8 µL, 0.1 mmol) was added to the reaction tube. Then this reaction mixture was passed through a PTFE filter (25 mm, 0.22 µm), The concentration of **2a** obtained in each sample is determined with respect to internal standard " 1,4-dioxane".

Experiment	Amount of 2a (g)	Initial Conc. of 2a [M]	Initial Rate [Mmin ⁻¹] x 10 ⁻⁴	R ²
1	0.0126	0.066	1.156 ± 0.118	0.9592
2	0.0253	0.133	1.799 ± 0.164	0.9674
3	0.0380	0.2	2.289 ± 0.243	0.9562
4	0.0506	0.266	2.355 ± 0.104	0.9921

Table S11: Rate of Amination reaction at different initial concentrations of aryl bromide (2a)

Figure S5: (C) Time-dependent formation of **3a** at different initial concentrations of **2a** (C') Plot of log₁₀(Conc. of **2a**) *vs*. log₁₀(rate).

S7. NMR Spectra

²⁹Si{¹H} NMR of L₂

¹³C{¹H} NMR of 1

²⁹Si{¹H} NMR of 1

¹³C{¹H} NMR of 3

¹³C{¹H} NMR of 4b

→ 23.94 → 23.94 → 14.28 → 1.18

~149.09 ~147.56 ~147.56 ~132.85 ~132.85 ~124.55 ~122.28 ~112.12

¹³C{¹H} NMR of 4e

¹³C{¹H} NMR of 4g

¹³C{¹H} NMR of 4k

¹H NMR of 4l

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F{¹H} NMR of 4l

¹³C{¹H} NMR of 4m

¹³C{¹H} NMR of 4n

¹³C{¹H} NMR of 40

¹H NMR of 4p

¹⁹F{¹H} NMR of 4p

¹³C{¹H} NMR of 5a

¹³C{¹H} NMR of 5b

4.45 4.45 4.45 4.45 4.45

6.44 6.44

CN

 $<^{1.52}_{1.50}$

¹³C{¹H} NMR of 5g

¹³C{¹H} NMR of 5h

S8. HPLC Data

HPLC: Column: Chiral Pak AD-H (250 mm × 4.6 mm × 5 μ m); Eluent: n-Hexane: Isopropyl Alcohol (Ratio specified with particular chromatogram); Gradient: Isocratic; Flow rate: 1ml/min; Injection volume: 10 μ L; UV detection: 254 nm; Column temp.: ambient; Retention time may vary by ±1.0 min.

I) Ligand effect on ee% with microwave method:

1) IPr

2) DPEPhos

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
3.873	359243258	81.74
4.200	80226176	18.26
Totals		
	439469434	100.00

4) L2

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
4.270	44134846	93.04
4.687	3300156	6.96
Totals		
	47435002	100.00

5) PNP(DIPP)

II) HPLC chromatogram for substrates 5a – 5l

Racemic

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
10.533	134259012	59.44
13.340	91602257	40.56
Totals		
	225861269	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
11.853	123838773	95.42
14.797	5945854	4.58
Totals		
	129784627	100.00

Racemic

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
7.883	26852383	53.69
9.000	23161041	46.31
Totals		
	50013424	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
20.977	172649448	51.05
25.863	165572386	48.95
Totals		
	338221834	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
23.380	3500052	2.37
29.070	143990419	97.63
Totals		
	147490471	100.00

5e)

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
4.043	121049064	39.65
4.263	184266536	60.35
Totals		
	305315600	100.00

L1

Retention Time	Area	Area %
4.050	37782763	7.64
4.273	456791225	92.36
Totals		
	494573988	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
4.053	381322	1.15
4.273	32829292	98.85
Totals		
	33210614	100.00

5f)

VWD: Signal A, 230 nm Results		
Retention Time	Area	Area %
2.873	9261795	10.17
4.247	81797329	89.83
Totals		
	91059124	100.00

Retention Time	Area	Area %
3.327	18980255	85.14
4.010	3311944	14.86
Totals		
	22292199	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
3.337	19878135	87.41
4.080	2862233	12.59
Totals		
	22740368	100.00

5h)

Racemic

v vv D. Signal A, 254 nin Kesuits		
Retention Time	Area	Area %
4.300	454308814	45.98
4.787	533763283	54.02
Totals		
	988072097	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
4.270	44134846	93.04
4.687	3300156	6.96
Totals		
	47435002	100.00

5i)

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
21.063	12573633	89.88
28.787	1415779	10.12
Totals		
	13989412	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
23.530	2712458	96.18
29.993	107601	3.82
Totals		
	2820059	100.00

5j)

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
11.110	271263	10.35
13.033	2349577	89.65
Totals		
	2620840	100.00

5k)

v wD: Signal A, 254 nm Kesuits		
Retention Time	Area	Area %
5.570	334954824	55.82
6.273	265108345	44.18
Totals		
	600063169	100.00

VWD: Signal A, 254 nm Results		
Retention Time	Area	Area %
5.720	34710778	100.00
Totals		
	34710778	100.00

5l)

L1

Retention Time	Area	Area %	Height	Height %
4.583	3373211	88.32	308670	86.29
4.993	446091	11.68	49054	13.71
Totals				
	3819302	100.00	357724	100.00

S9. References

- G. Berthon-Gelloz, M. A. Siegler, A. L. Spek, B.Tinant, J. N. H. Reek, and I. E. Markó, *Dalton Trans*. 2010, 39, 1444–1446.
- (2) (a) S. G. Weber, C. Loos, F. Rominger, and B. F. Straub, *Arkivoc*. 2012, 3, 226–242.
 (b) S. Pal, R. Dasgupta, and S. Khan, *Organometallics*, 2016, 35, 3635–3640 (c) S. Pal, N. Kathewad, R. Pant, and S. Khan, *Inorg. Chem.* 2015, 54, 10172–10183 (d) X. antreil, and S. P. Nolan, *Nat.Protoc*. 2011, 6, 69–77.
- (3) S. S. Sen, H. W. Roesky, D. Stern, J. Henn, and D. Stalke, J. Am. Chem. Soc. 2010, 132, 1123–1126.
- (4) S. Khan, S. Pal, N. Kathewad, I. Purushothaman, S. De, and P. Parameswaran, *Chem. Commun.*, 2016, **52**, 3880–3882.
- (5) R. Akhtar, S. H. Kaulage, M. P. Sangole, S. Tothadi, P. Parvathy, P. Parameswaran, K. Singh, and S. Khan, *Inorg. Chem.*, 2022, **61**, 13330–13341.
- (6) S. Nishimura, Book Reivews, *New York*. 2001, **8**, 293–300.
- (7) J. W. Raebiger, A. Miedaner, C. J. Curtis, S. M. Miller, O. P. Ander-son, and D. L. DuBois, J. Am. Chem. Soc., 2004, 126, 5502–5514.
- (8) L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano, and L. Cavallo, *Nat. Chem.*, 2019, **11**, 872–879.
- (9) C. A. Tolman, Chem. Rev. 1977, 77, 313–348.