Radical Alkylation and Protonation Induced anti-Markovnikov

Hydroalkylation of Unactivated Olefins via Cobalt Catalysis

(Supporting Information)

Shanshan Huang, Xiaoyang Chen, Zhangwenyi Xu, Xiaobao Zeng, Biao Xiong* and Xiaodong Qiu*

Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China

Email: qiuxiaodong@ntu.edu.cn; hsiung1987@ntu.edu.cn

Table of contents

1. General Information.	2
2. Other optimizations of the reaction conditions	2
3. General procedure for the synthesis of unsaturated amides	4
4. Experimental procedures for the synthesis of alkyl iodides	4
5. General procedure for the hydroalkylation of olefins	5
6. Mechanistic studies	13
6.1. Radical trapping experiment	13
6.2. Radical clock experiment	13
6.3. Deuteration experiments	14
7. Reference	15
8. Spectroscopic data	16

1. General Information.

Unless otherwise noted, all reactions were performed under an nitrogen atmosphere using flame-dried glassware. MeCN, MeOH, DMF, DMA, DMSO, THF and DCE were purchased as anhydrous solvents and were used directly. Toluene was dried and distilled over Na. All new compounds were fully characterized. NMR-spectra were recorded on Bruker ARX-400 MHz spectrometer. ¹H NMR spectra data were reported as δ values in ppm relative to chloroform (δ 7.26), methanol (δ 3.30), or DMSO (δ 2.50) if collected in CDCl₃, CD₃OD, or DMSO-d⁶. ¹³C NMR spectra data were reported as δ values in ppm relative to chloroform (δ 77.0) methanol (δ 49.0) or DMSO (δ 39.5) if collected in CDCl₃ (the carbon attached to B was not observed), CD₃OD, DMSO-d⁶. ¹H NMR coupling constants were reported in Hz, and multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet); m (multiplet); dd (doubletof doublets); ddd (doublet of doublets); dddd (doublet of doublet of doublets); dt (doublet of triplets); td (triplet of doublets); dt (doublet of doublet of triplets); dq (doubletof quartets); app (apparent); br (broad). Mass spectra were conducted at Micromass Q-Tof instrument (ESI) and Agilent Technologies 5973N (EI). Metal catalyzed reactions were carried out in flame-dried 25 mL Schlenk tubes with Teflon screw caps under nitrogen and the reactions was heated and reacted on the aluminum alloy heating reaction module. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. Other optimizations of the reaction conditions

Table S1.	Screening	of the	solvents
-----------	-----------	--------	----------

AQ 1a	+ 1	O (10 mol%) nol%) quiv) t, 24 h 3aa
entry	solvent	yield of 3aa (%) ^b
1	DMF	41
2	DMA	39
3	DMSO	21
4	DCM	trace
5	THF	trace
6	MeCN	47
7	Acetone	21
8	Ethyl acetate	trace
9	Toluene	n.r.
10	EtOH	n.r.

^aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), Co(hfaa)₂·xH₂O (0.02 mmol), L9 (0.02 mmol) and

Mn (0.4 mmol) react at room temperature in 2 mL solvent for 24 h. ^bIsolated yields.

		Co(hfaa) ₂ •xH ₂ O (10 mol%) <u>L9 (10 mol%)</u> Mn (2 equiv)		
	1a 2a	halide salt MeCN, rt, 24 h	3aa	
entry	ha	alide salt	yield of 3aa (%) ^b	
1		LiF	48	
2		NaF	45	
3		LiCl	48	
4		NaCl	50	
5		KCl	47	
6		LiBr	52	
7		NaBr	49	
8		KBr	48	
9		LiI	55	
10		NaI	53	
11		KI	50	
12		ZnBr ₂	18	
13		MgBr ₂	42	
14		CaCl ₂	21	
15 ^c		LiI	58	

Table S2. Screening of the halide salts^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Co(hfaa)₂·xH₂O (0.02 mmol), **L9** (0.02 mmol), Mn (0.4 mmol) and halide salt (0.4 mmol) react at room temperature in 2 mL MeCN for 24 h. ^{*b*}Isolated yields. ^{*c*}LiI (0.6 mmol) was applied.

Table S3. Screening of the reductants^a

AO	+ 1	Co(hfaa) ₂ •xH ₂ O (10 mol%) <u>L9 (10 mol%)</u>	
1a	2a	Lil (3 equiv) MeCN, rt, 24 h	3aa 3aa
entry	re	eductant	yield of 3aa (%) ^b
1		Mn	58
2	Zn		36
3	Fe		trace
4	Mg		25
5	ZnEt ₂		trace
6	LiAlH ₄		trace
7	PMHS		n.d.
8	(MeO) ₃ SiH		n.d.

^aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), Co(hfaa)₂·xH₂O (0.02 mmol), L9 (0.02 mmol),

reductant (0.4 mmol) and LiI (0.6 mmol) react at room temperature in 2 mL MeCN for 24 h. ^bIsolated yields. n.d. = not detected.

3. General procedure for the synthesis of unsaturated amides

Substrates **1a-1c** were synthesised according to the reported procedure.¹ The corresponding alkenyl acid (12 mmol) was charged into a 100 mL round bottom flask containing dichloromethane (30 mL). 8-Aminoquinoline (10 mmol, 1.44 g), pyridine (20 mmol, 1.58 g), and HATU (12 mmol, 4.56 g) were added sequentially, and the reaction was stirred at ambient temperature for 16 h. The residue was dissolved in EtOAc (40 mL), washed with sat. NaHCO₃ (2 × 30 mL) and brine (1 × 30 mL), and then purified by silica gel flash column chromatography to yield the corresponding product (mixed solution of petroleum ether and ethyl acetate used as the eluent). **1a** was obtained as a white solid (1.9 g, 90%). **1b** was obtained as a colorless oil (1.97 g, 87%). **1c** was obtained as a colorless oil (2.06 g, 91%).

4. Experimental procedures for the synthesis of alkyl iodides

Substrates **21**, **2m** were synthesised according to the reported procedure.² 3-Iodopropan-1-ol (10 mmol, 1.86 g) was charged into a 100 mL round bottom flask containing dichloromethane (20 mL). Benzoyl chloride (10.5 mmol, 1.47 g) or furan-2-carbonyl chloride (10.5 mmol, 1.37 g) was added and the mixture was stirred under 0 °C. Triethylamine (11 mmol, 1.11 g) was then added dropwise. After addition of triethylamine, the reaction was stirred under room temperature for 2h. Saturated NH₄Cl aqueous solution (30 mL) was added to the reaction, and the aqueous phase was extracted with ethyl acetate (20 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered to collect the filtrate. The solvent in filtrate was removed under reduced pressure and the crude product was purified through silica gel flash column chromatography (mixed solution of petroleum ether and ethyl acetate used as the eluent). Iodoalkane **2l** was obtained as a colorless oil (2.78 g, 96%) and **2m** was also obtained as a

colorless oil (2.63 g, 94%).

Substrates **2u**, **2v** were synthesised according to the reported procedure.^{3,4} In a 100 mL round bottom flask was charged with estrone (5 mmol, 1.35 g) or indometacin (5 mmol, 1.78 g) and K₂CO₃ (10 mmol, 1.38 g). Then MeCN (15 mL) and 1,3-diiodopropane (5 mmol, 1.48 g) were added at ambient temperature. The mixture was heated and stirred under 60 °C for 24 h. Then the reaction was quenched by water, and the aqueous phase was extracted with ethyl acetate (20 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered to collect the filtrate. Then the solvent in the filtrate was removed under reduced pressure and the crude product was purified through silica gel flash column chromatography (mixed solution of petroleum ether and ethyl acetate used as the eluent). Iodoalkane **2u** was obtained as a colorless oil (1.33 g, 61%) and **2v** was obtained as a white solid (1.70 g, 65%).

Substrates **2w** was synthesised according to the reported procedure.⁵ Add I₂ (13 mmol, 3.3 g) to a stirred solution of PPh₃ (12 mmol, 3.14 g) and imidazole (12 mmol, 0.82 g) in DCM at 0°C. Add alcohol (10 mmol, 1.0 g) dropwise to the mixture. Stir the mixture for 12 hours at room temperature. Wash the mixture with a saturated sodium sulfite solution. Then the solution was dried over anhydrous Na₂SO₄ and filtered to collect the filtrate. Then the solvent in the filtrate was removed under reduced pressure and the crude product was purified through silica gel flash column chromatography (petroleum ether as the eluent) to obtain 6-iodohex-1-ene **2w** (1.99 g, 95%).

5. General procedure for the hydroalkylation of olefins

A flame dried 25 mL Schlenk tube was charged with $Co(hfaa)_2 \cdot xH_2O(0.02 \text{ mmol}, 10.0 \text{ mg})$, L9 (0.02 mmol, 10.7 mg), 1 (0.2 mmol), Mn (0.4 mmol, 22 mg) and LiI (0.6 mmol, 80.4 mg). The tube was vacuumed and refilled with N₂ three times. MeCN (2.0 mL), H₂O (0.4 mmol, 7.2 mg) and 2 (0.4 mmol) were added to the reaction under N₂ atmosphere. The tube was screwed and the mixture was stirred at 50 °C in an aluminium alloy heating module. After 24 h, the mixture was cooled and transferred to the 25 mL round bottom flask. The solvent was removed under reduced pressure and the crude mixture was purified through silica gel column chromatography with ethyl acetate/petroleum ether as the eluent to provide product 3.

N-(quinolin-8-yl)octanamide (3aa)

Compound **3aa** was obtained in 78% yield (41.9 mg) as a colorless oil (eluted AQ **3aa** AQ AQ AQ BU $EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 9.80 (s, 1H), 8.84 – 8.72 (m, 2H), 8.13 (dd, J = 8.3, 1.5 Hz, 1H), 7.56 – 7.40 (m, 3H), 2.55 (t, J = 7.6 Hz, 2H), 1.81 (p, J = 7.6 Hz, 2H), 1.48 – 1.20 (m, 8H), 0.93 – 0.83 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 148.0, 138.2, 136.3, 134.5, 127.8, 127.3, 121.5, 121.2, 116.3, 38.2, 31.6, 29.2, 29.0, 25.6, 22.6, 14.1. The spectroscopic data was consisted with the reported literature.⁶

N-(quinolin-8-yl)pentanamide (3ab)

Compound **3ab** was obtained in 82% yield (37.2 mg) as a colorless oil (eluted **AQ 3ab ab ab by** EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.85 – 8.73 (m, 2H), 8.20 – 8.09 (m, 1H), 7.58 – 7.39 (m, 3H), 2.56 (t, *J* = 7.6 Hz, 2H), 1.80 (p, *J* = 7.6 Hz, 2H), 1.52 – 1.40 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 148.1, 138.2, 136.3, 134.5, 127.9, 127.4, 121.5, 121.3, 116.3, 38.0, 27.7, 22.4, 13.9. The spectroscopic data was consisted with the reported literature.⁶

N-(quinolin-8-yl)hexanamide (3ac)

Compound **3ac** was obtained in 77% yield (37.1 mg) as a colorless oil (eluted AQ Et by EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.83 – 8.74 (m, **3ac** 2H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.57 – 7.39 (m, 3H), 2.56 (t, J = 7.6 Hz, 2H), 1.83 (p, J = 7.4 Hz, 2H), 1.50 – 1.31 (m, 4H), 0.93 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 148.0, 138.3, 136.3, 134.5, 127.9, 127.4, 121.5, 121.3, 116.3, 38.2, 31.4, 25.3, 22.4, 13.9. The spectroscopic data was consisted with the reported literature.⁷

N-(quinolin-8-yl)dodecanamide (3ad)

Compound **3ad** was obtained in 74% yield (48.1 mg) as a colorless oil (eluted AQ **3ad 3ad 3**

6-Methyl-*N*-(quinolin-8-yl)heptanamide (3ae)

Compound **3ae** was obtained in 71% yield (38.3 mg) as a colorless oil (eluted by EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.84 – 8.75 (m, 2H), 8.16 (dd, J = 8.3, 1.5 Hz, 1H), 7.57 – 7.41 (m, 3H), 2.64 – 2.49 (m, 2H), 1.81 (p, J = 7.6 Hz, 2H), 1.61 – 1.51 (m, 1H), 1.48 – 1.38 (m, 2H), 1.30 – 1.21 (m, 2H), 0.88 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 148.0, 138.3, 136.4, 134.5, 127.9, 127.4, 121.5, 121.3, 116.4, 38.7, 38.3, 27.9, 27.1, 25.9, 22.6. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₇H₂₃N₂O, 271.1805; found, 271.1800.

7-Phenyl-N-(quinolin-8-yl)heptanamide (3af)

Compound **3af** was obtained in 75% yield (49.7 mg) as a white solid (eluted by EA:PE = 1:10). Melting point: 59.7 – 61.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.83 – 8.72 (m, 2H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.60 – 7.39 (m, 3H), 7.31 – 7.23 (m, 2H), 7.21 – 7.11 (m, 3H), 2.66 – 2.49 (m, 4H), 1.82 (p, *J* = 7.4 Hz, 2H), 1.65 (p, *J* = 7.6 Hz, 2H), 1.54 – 1.34 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 148.0, 142.7, 138.3, 136.4, 134.5, 128.4, 128.2, 127.9, 125.6, 121.5, 121.3, 116.4, 38.2, 35.9, 31.3, 29.1, 29.0, 25.6. HRMS (ESI) m/z: (M+H)⁺ calcd for C₂₂H₂₅N₂O, 333.1961; found, 333.1956.

5-Cyclopentyl-N-(quinolin-8-yl)pentanamide (3ag)

2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 148.0, 138.2, 136.3, 134.5, 127.9, 127.4, 121.5, 121.2, 116.3, 40.0, 38.3, 35.9, 32.6, 28.4, 25.9, 25.1. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₉H₂₅N₂O, 297.1961; found, 297.1957.

N-(quinolin-8-yl)-5-(tetrahydro-2H-pyran-4-yl)pentanamide (3ah)

Hz, 2H), 1.80 (p, J = 7.6 Hz, 2H), 1.62 – 1.53 (m, 2H), 1.52 – 1.38 (m, 3H), 1.35 – 1.18 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 148.0, 138.2, 136.3, 134.4, 127.8, 127.3, 121.5, 121.3, 116.3, 68.0, 38.1, 36.6, 34.7, 33.1, 25.9, 25.7. HRMS (ESI) m/z: (M+H)⁺ calcd for C₉H₂₅N₂O, 313.1911; found, 313.1905.

tert-Butyl 4-(5-oxo-5-(quinolin-8-ylamino)pentyl)piperidine-1-carboxylate (3ai)

Compound **3ai** was obtained in 62% yield (50.9 mg) as a colorless oil (eluted by EA:PE = 1:5). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.79 (t, *J* = 6.0 Hz, 2H), 8.16 (d, *J* = 8.1 Hz, 1H), 7.58 – 7.41 (m, 3H), 4.05 (d, *J* = 28.8 Hz, 2H), 2.76 – 2.46 (m, 4H), 1.80 (p, *J* = 7.5 Hz,

2H), 1.70 - 1.56 (m, 2H), 1.50 - 1.35 (m, 12H), 1.34 - 1.25 (m, 2H), 1.13 - 0.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 154.9, 148.0, 138.2, 136.4, 134.4, 127.9, 127.4, 121.5, 121.3, 116.5, 79.1, 43.9, 38.1, 36.2, 35.8, 32.1, 28.4, 26.3, 25.7. HRMS (ESI) m/z: (M+H)⁺ calcd for C₂₄H₃₄N₃O₃, 412.2595; found, 412.2587.

6-(1,3-Dioxolan-2-yl)-N-(quinolin-8-yl)hexanamide (3aj)

AQCompound **3aj** was obtained in 73% yield (45.6 mg) as a colorless oil
(eluted by EA:PE = 1:5). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H),
8.83 - 8.69 (m, 2H), 8.14 (dd, J = 8.3, 1.4 Hz, 1H), 7.57 - 7.39 (m, 3H),

4.85 (t, J = 4.8 Hz, 1H), 4.01 – 3.89 (m, 2H), 3.90 – 3.76 (m, 2H), 2.56 (t, J = 7.6 Hz, 2H), 1.83 (p, J = 7.4 Hz, 2H), 1.74 – 1.62 (m, 2H), 1.56 – 1.40 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 148.0, 138.2, 136.3, 134.4, 127.8, 127.4, 121.5, 121.3, 116.3, 104.4, 64.8, 38.0, 33.7, 29.1, 25.5, 23.8. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₈H₂₃N₂O₃, 315.1703; found, 315.1696.

6-Methoxy-N-(quinolin-8-yl)hexanamide (3ak)

Compound **3ak** was obtained in 76% yield (41.1 mg) as a colorless oil (eluted by EA:PE = 1:5). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.82 - 8.75 (m, 2H), 8.16 (d, *J* = 7.7 Hz, 1H), 7.57 - 7.41 (m, 3H), 3.39 (t, J = 6.5 Hz, 2H), 3.33 (s, 3H), 2.58 (t, J = 7.6 Hz, 2H), 1.85 (p, J = 7.6 Hz, 2H), 1.71 – 1.60 (m, 2H), 1.56 – 1.42 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 148.0, 138.2, 136.4, 134.5, 127.9, 127.4, 121.5, 121.4, 116.5, 72.6, 58.5, 38.1, 29.4, 25.8, 25.5. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₆H₂₁N₂O₂, 273.1598; found, 273.1592.

7-Oxo-7-(quinolin-8-ylamino)heptyl benzoate (3al)

Compound **3al** was obtained in 72% yield (54.1 mg) as a white solid (eluted by EA:PE = 1:10). Melting point: 78.9-80.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.85 – 8.72 (m, 2H), 8.16 (d, *J* = 8.2 Hz, 1H), 8.04 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.47 (m,

3H), 7.48 – 7.37 (m, 3H), 4.33 (t, J = 6.5 Hz, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.91 – 1.75 (m, 4H), 1.62 – 1.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 166.6, 148.1, 138.2, 136.4, 134.4, 132.8, 130.4, 129.5, 128.3, 127.9, 127.4, 121.5, 121.3, 116.4, 64.9, 38.0, 28.9, 28.6, 25.9, 25.5. HRMS (ESI) m/z: (M+H)⁺ calcd for C₂₃H₂₅N₂O₃, 377.1860; found, 377.1853.

7-Oxo-7-(quinolin-8-ylamino)heptyl furan-2-carboxylate (3am)

Compound **3am** was obtained in 67% yield (48.8 mg) as a colorless oil (eluted by EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.87 – 8.68 (m, 2H), 8.15 (d, *J* = 8.2 Hz,

1H), 7.62 – 7.39 (m, 4H), 7.16 (d, J = 3.4 Hz, 1H), 6.48 (dd, J = 3.4, 1.6 Hz, 1H), 4.30 (t, J = 6.6 Hz, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.90 – 1.70 (m, 4H), 1.58 – 1.40 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 158.8, 148.1, 146.1, 144.8, 138.3, 136.3, 134.5, 127.9, 127.4, 121.5, 121.3, 117.7, 116.4, 111.7, 64.9, 38.0, 28.9, 28.5, 25.7, 25.4. HRMS (ESI) m/z: (M+H)⁺ calcd for C₂₁H₂₃N₂O₄, 367.1652; found, 367.1648.

7-(1,3-Dioxoisoindolin-2-yl)-N-(quinolin-8-yl)heptanamide (3an)

Compound **3an** was obtained in 58% yield (46.4 mg) as a brown solid (eluted by EA:PE = 1:2). Melting point: 123.8-125.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.84 – 8.71 (m, 2H), 8.15 (dd, J = 8.2, 1.3 Hz, 1H), 7.82 (dt, J = 7.5,

3.7 Hz, 2H), 7.69 (dd, J = 5.4, 3.1 Hz, 2H), 7.57 – 7.39 (m, 3H), 3.69 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.5 Hz, 2H), 1.84 (dp, J = 22.5, 8.5, 7.6 Hz, 2H), 1.71 (q, J = 8.5, 8.0 Hz, 3H), 1.45 (dtt, J = 20.3, 9.3, 5.7 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 168.4, 148.1, 138.3, 136.3, 134.5, 133.8, 132.1, 127.9, 127.4, 123.1, 121.5, 121.3, 116.3, 38.0, 37.9, 28.8, 28.5, 26.6, 25.5. The spectroscopic data was consisted

with the reported literature.8

7,7,7-Trifluoro-N-(quinolin-8-yl)heptanamide (3ao)

Ethyl 7-oxo-7-(quinolin-8-ylamino)heptanoate (3ap)

Ethyl 8-oxo-8-(quinolin-8-ylamino)octanoate (3aq)

Compound **3aq** was synthesised from the reaction of **1a** and **2q**, and was obtained in 74% yield (48.6 mg) as a colorless oil (eluted by EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.84 - 8.71 (m, 2H), 8.14 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.59 - 7.38 (m, 3H),

4.10 (q, J = 7.2 Hz, 2H), 2.55 (t, J = 7.5 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 1.81 (p, J = 7.5 Hz, 2H), 1.64 (p, J = 7.5 Hz, 2H), 1.51 – 1.32 (m, 4H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 171.7, 148.0, 138.2, 136.3, 134.4, 127.8, 127.3, 121.5, 121.3, 116.3, 60.1, 38.0, 34.2, 28.84, 28.82, 25.4, 24.7, 14.2. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₉H₂₅N₂O₃, 329.1860; found, 329.1853.

5-Cyano-N-(quinolin-8-yl)pentanamide (3ar)

Compound **3ar** was obtained in 73% yield (37.0 mg) as a white solid (eluted by EA:PE = 1:5). Melting point: 96.4-97.9 °C. ¹H NMR (400 MHz,

CDCl₃) δ 9.88 (s, 1H), 8.81 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.78 – 8.72 (m, 1H), 8.18 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.47 (dd, *J* = 8.3, 4.2 Hz, 1H), 4.66 – 4.53 (m, 1H), 3.39 – 3.20 (m, 3H), 2.75 – 2.66 (m, 1H), 2.64 – 2.50 (m, 1H), 2.30 – 2.16 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 148.3, 138.2, 136.4, 133.8, 127.9, 127.3, 122.1, 121.7, 118.3, 116.7, 48.7, 35.6, 25.1, 18.3. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₅H₁₆N₃O, 254.1288; found, 254.1282.

6-Cyano-N-(quinolin-8-yl)hexanamide (3as)

Compound **3as** was obtained in 70% yield (37.4 mg) as a colorless oil AQ AQ CN (eluted by EA:PE = 1:5). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.80 (dd, J = 4.2, 1.5 Hz, 1H), 8.76 (dd, J = 7.1, 1.5 Hz, 1H), 8.16 (dd, J = 8.3, 1.4 Hz, 1H), 7.60 – 7.38 (m, 3H), 2.59 (t, J = 7.4 Hz, 2H), 2.37 (t, J = 7.1 Hz, 2H), 1.85 (p, J = 7.4 Hz, 2H), 1.80 – 1.69 (m, 2H), 1.65 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 148.1, 138.2, 136.4, 134.3, 127.9, 127.3, 121.6, 121.5, 119.6, 116.4, 37.5, 28.2, 25.2, 24.6, 17.0. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₆H₁₈N₃O, 268.1444; found, 268.1439.

7-Cyano-N-(quinolin-8-yl)heptanamide (3at)

Compound **3at** was obtained in 65% yield (36.6 mg) as a colorless oil (eluted by EA:PE = 1:5). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.86 – 8.73 (m, 2H), 8.16 (d, J = 8.2 Hz, 1H), 7.59 – 7.40 (m, 3H), 2.58 (t, J = 7.4 Hz, 2H), 2.35 (t, J = 7.1 Hz, 2H), 1.84 (p, J = 7.5 Hz, 2H), 1.69 (p, J = 7.0 Hz, 2H), 1.59 – 1.42 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 148.1, 138.2, 136.4, 134.4, 127.9, 127.4, 121.6, 121.4, 119.7, 116.4, 37.8, 28.4, 28.3, 25.2, 17.1. The spectroscopic data was consisted with the reported literature.¹⁰

7-(((8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl)oxy)-N-(quinolin-8-yl)heptanamide (3au)

Compound **3au** was obtained in 54% yield (56.6 mg) as a colorless oil (eluted by EA:PE = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 8.85 - 8.75 (m, 2H), 8.16 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.57 - 7.41 (m, 3H), 7.17 (d, *J* = 8.6 Hz, 1H), 6.70 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.64 (d, *J* =

2.4 Hz, 1H), 3.93 (t, *J* = 6.5 Hz, 2H), 2.92 – 2.82 (m, 2H), 2.58 (t, *J* = 7.5 Hz, 2H), 2.54 – 2.44 (m, 1H), 2.42 – 2.33 (m, 1H), 2.28 – 2.19 (m, 1H), 2.17 – 2.07 (m, 1H), 2.05 – 1.91 (m, 3H), 1.90 – 1.75 (m, 4H),

1.67 - 1.35 (m, 10H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 157.0, 148.0, 138.2, 137.6, 136.3, 134.4, 131.7, 127.9, 127.4, 126.2, 121.5, 121.3, 116.3, 114.4, 112.0, 67.7, 50.3, 47.9, 43.9, 38.3, 38.0, 35.8, 31.5, 29.6, 29.1, 29.0, 26.5, 25.8, 25.5, 21.5, 13.8. HRMS (ESI) m/z: (M+H)⁺ calcd for C₃₄H₄₁N₂O₃, 525.3112; found, 525.3106.

7-Oxo-7-(quinolin-8-ylamino)heptyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3yl)acetate (3av)

Compound **3av** was obtained in 47% yield (57.5 mg) as a colorless oil (eluted by EA:PE = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.81 – 8.70 (m, 2H), 8.15 (d, *J* = 7.7 Hz, 1H), 7.69 – 7.59 (m, 2H), 7.57 – 7.39 (m, 5H), 6.99 – 6.93 (m, 1H), 6.87 (d, *J* = 9.0 Hz, 1H), 6.67 (dd, *J* = 9.0, 2.1 Hz, 1H), 4.10 (t, *J* = 6.5 Hz, 2H), 3.82 (s, 3H), 3.65 (s, 2H), 2.52 (t, *J* = 7.5 Hz, 2H), 2.38 (s, 3H), 1.83 – 1.72

(m, 2H), 1.71 - 1.59 (m, 2H), 1.48 - 1.32 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 170.9, 168.2, 156.0, 148.0, 139.1, 138.2, 136.4, 135.8, 134.4, 133.9, 131.1, 130.7, 130.6, 129.0, 127.9, 127.4, 121.5, 121.3, 116.4, 114.9, 112.7, 111.6, 101.3, 65.0, 55.6, 37.9, 30.4, 28.8, 28.4, 25.7, 25.4, 13.3. HRMS (ESI) m/z: (M+H)⁺ calcd for C₃₅H₃₅ClN₃O₅, 612.2260; found, 612.2252.

Ethyl 6-methyl-7-oxo-7-(quinolin-8-ylamino)heptanoate (3bp)

Compound **3bp** was obtained in 66% yield (43.3 mg) as a colorless oil (eluted by EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.84 – 8.75 (m, 2H), 8.15 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.58 – 7.40 (m, 3H), 4.09 (q, *J* = 7.1 Hz, 2H), 2.66 – 2.55 (m, 1H), 2.29 (t, *J* = 7.5

Hz, 2H), 1.94 - 1.79 (m, 1H), 1.67 (p, J = 7.5 Hz, 2H), 1.62 - 1.51 (m, 1H), 1.51 - 1.38 (m, 2H), 1.32 (d, J = 6.9 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₉H₂₅N₂O₃, 329.1860; found, 329.1853.

Ethyl 8-oxo-8-(quinolin-8-ylamino)octanoate (3aq)

Compound **3aq** was synthesised from the reaction of **1c** and **2p**, and was obtained in 58% yield (38.1 mg) as a colorless oil (eluted by EA:PE = 1:10). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.82 - 8.73 (m, 2H), 8.14 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.57 - 7.40 (m, 3H), 4.11 (q, J = 7.1 Hz, 2H), 2.55 (t, J = 7.5 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 1.82 (p, J = 7.6 Hz, 2H), 1.65 (p, J = 7.5 Hz, 2H), 1.51 – 1.34 (m, 4H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 171.7, 148.0, 138.2, 136.3, 134.4, 127.9, 127.4, 121.5, 121.3, 116.3, 60.1, 38.1, 34.2, 28.9, 28.8, 25.4, 24.8, 14.2. HRMS (ESI) m/z: (M+H)⁺ calcd for C₁₉H₂₅N₂O₃, 329.1860; found, 329.1853.

6. Mechanistic studies

6.1. Radical trapping experiment

A flame dried 25 mL Schlenk tube was charged with $Co(hfaa)_2 \cdot xH_2O(0.02 \text{ mmol}, 10.0 \text{ mg})$, L9 (0.02 mmol, 10.7 mg), 1a (0.2 mmol, 42.4 mg), Mn (0.4 mmol, 22 mg), LiI (0.6 mmol, 80.4 mg) and tempo (0.6 mmol, 93.6 mg). The tube was vacuumed and refilled with N₂ three times. MeCN (2.0 mL), H₂O (0.4 mmol, 7.2 mg) and 2p (0.4 mmol, 91.2 mg) were added to the reaction under N₂ atmosphere. The tube was screwed and the mixture was stirred at 50 °C in an aluminium alloy heating module. After 24 h, the mixture was cooled and the reaction result was detected by GC-MS which showed no product 3ap was generated.

6.2. Radical clock experiment

A flame dried 25 mL Schlenk tube was charged with Co(hfaa)₂·xH₂O (0.02 mmol, 10.0 mg), L9 (0.02 mmol, 10.7 mg), 1a (0.2 mmol, 42.4 mg), Mn (0.4 mmol, 22 mg) and LiI (0.6 mmol, 80.4 mg). The tube was vacuumed and refilled with N₂ three times. MeCN (2.0 mL), H₂O (0.4 mmol, 7.2 mg) and 2e (0.4 mmol, 84.0 mg) were added to the reaction under N₂ atmosphere. The tube was screwed and the mixture was stirred at 50 °C in an aluminium alloy heating module. After 24 h, the mixture was cooled and transferred to the 25 mL round bottom flask. The solvent was removed under reduced pressure and the crude mixture was purified through silica gel column chromatography (EA:PE = 1:10 as the eluent) to provide product **3ag** (33.1 mg, 56%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.84 – 8.73 (m, 2H), 8.14 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.56 – 7.39 (m, 3H), 2.56 (t, *J* = 7.6 Hz, 2H), 1.88 – 1.68

(m, 5H), 1.64 – 1.31 (m, 8H), 1.13 – 0.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 148.0, 138.2, 136.3, 134.5, 127.9, 127.4, 121.5, 121.2, 116.3, 40.0, 38.3, 35.9, 32.6, 28.4, 25.9, 25.1.

6.3. Deuteration experiments

A flame dried 25 mL Schlenk tube was charged with Co(hfaa)₂·xH₂O (0.02 mmol, 10.0 mg), **L9** (0.02 mmol, 10.7 mg), **1a** (0.2 mmol, 42.4 mg), Mn (0.4 mmol, 22 mg) and LiI (0.6 mmol, 80.4 mg). The tube was vacuumed and refilled with N₂ three times. CD₃CN (2.0 mL), D₂O (0.4 mmol, 8.0 mg) and **2p** (0.4 mmol, 91.2 mg) were added to the reaction under N₂ atmosphere. The tube was screwed and the mixture was stirred at 50 °C in an aluminium alloy heating module. After 24 h, the mixture was cooled and transferred to the 25 mL round bottom flask. The solvent was removed under reduced pressure and the crude mixture was purified through silica gel column chromatography (EA:PE = 1:10 as the eluent) to provide product **3ap-d** (45.9 mg, 73%) as a colorless oil. ¹H NMR showed deuteration was scattered on the five carbons in **3ap-d**. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.87 – 8.72 (m, 2H), 8.17 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.60 – 7.41 (m, 3H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.58 (t, *J* = 7.5 Hz, 1.84H), 2.33 (t, *J* = 7.5 Hz, 1.82H), 1.85 (p, *J* = 7.6 Hz, 1.80H), 1.71 (p, *J* = 7.5 Hz, 1.90H), 1.54 – 1.38 (m, 1.87H), 1.24 (t, *J* = 7.1 Hz, 3H).

A flame dried 25 mL Schlenk tube was charged with Co(hfaa)₂·xH₂O (0.02 mmol, 10.0 mg), L9 (0.02 mmol, 10.7 mg), 1a (0.2 mmol, 42.4 mg), Mn (0.4 mmol, 22 mg) and LiI (0.6 mmol, 80.4 mg). The tube was vacuumed and refilled with N₂ three times. MeCN (2.0 mL), H₂O (0.4 mmol, 8.0 mg) and 2x (0.4 mmol, 93.6 mg, synthesized according to the literature report¹¹) were added to the reaction under N₂ atmosphere. The tube was screwed and the mixture was stirred at 50 °C in an aluminium alloy heating module. After 24 h, the mixture was cooled and a small sample was tested through GC-MS. Then the mixture was transferred to the 25 mL round bottom flask. The solvent was removed under reduced pressure and the crude mixture was purified through silica gel column chromatography (EA:PE = 1:10 as the eluent) to provide product **3ax** (39.5 mg, 62%) as a white solid. Both GC-MS and ¹H NMR results

showed that deuteration was not happened in other carbons. Spectroscopic data of **3ax**: ¹H NMR (400 MHz, CDCl3) δ 9.80 (s, 1H), 8.85 – 8.73 (m, 2H), 8.16 (d, *J* = 8.2 Hz, 1H), 7.59 – 7.41 (m, 3H), 7.32 – 7.22 (m, 2H), 7.18 (d, *J* = 7.5 Hz, 3H), 2.56 (t, *J* = 7.5 Hz, 2H), 1.86 (p, *J* = 7.6 Hz, 2H), 1.76 – 1.65 (m, 2H), 1.55 – 1.41 (m, 2H). ¹³C NMR (101 MHz, CDCl3) δ 171.8, 148.1, 142.5, 138.3, 136.4, 134.5, 128.4, 128.2, 127.9, 127.4, 125.6, 121.6, 121.3, 116.4, 38.1, 31.1, 28.8, 25.5.

A flame dried 25 mL Schlenk tube was charged with Co(hfaa)₂·xH₂O (0.02 mmol, 10.0 mg), **L9** (0.02 mmol, 10.7 mg), **1a-d** (0.2 mmol, 42.4 mg, 40% deuterated, synthesized according to the literature report¹²), Mn (0.4 mmol, 22 mg) and LiI (0.6 mmol, 80.4 mg). The tube was vacuumed and refilled with N₂ three times. MeCN (2.0 mL) and **2p** (0.4 mmol, 91.2 mg) were added to the reaction under N₂ atmosphere. The tube was screwed and the mixture was stirred at 50 °C in an aluminium alloy heating module. After 24 h, the mixture was cooled and was transferred to the 25 mL round bottom flask. The solvent was removed under reduced pressure and the crude mixture was purified through silica gel column chromatography (EA:PE = 1:10 as the eluent) to provide **3ap** (26.9 mg, 43%) as a white solid. ¹H NMR results showed that nearly no deuteration was happened in the carbon chain. Spectroscopic data of **3ap** from the above procedure: ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.79 (dd, *J* = 12.4, 5.7 Hz, 2H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.66 – 7.35 (m, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 2.58 (t, *J* = 7.5 Hz, 2H), 2.33 (t, *J* = 7.5 Hz, 2H), 1.84 (p, *J* = 7.6 Hz, 2H), 1.71 (p, *J* = 7.5 Hz, 2H), 1.47 (p, *J* = 7.7, 6.9 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H).

7. Reference

- 1. T. Ishii, Y. Kakeno, K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 2019, 141, 3854-3858.
- 2. J.-S. Yang, K. Lu, C.-X. Li, Z.-H. Zhao, F.-M. Zhang, X.-M. Zhang, Y.-Q. Tu. J. Am. Chem. Soc. 2023, 145, 22122-22134.
- 3. Y. Li, W. Nie, Z. Chang, J.-W. Wang, X. Lu, Y. Fu, Nat. Catal. 2021, 4, 901-911.
- 4. J.-W. Wang, Z. Li, D. Liu, J.-Y. Zhang, X. Lu, Y. Fu, J. Am. Chem. Soc. 2023, 145, 10411-10421.
- 5. X.-X. Wang, Y.-T. Xu, Z.-L. Zhang, X. Lu, Y. Fu, Nat. Commun. 2022, 13, 1890.
- 6. W. Wu, X. Sang, Y. Liu, G. Fang, H. Wang, W. Hao, Tetrahedron Lett. 2023, 115, 154316.

- 7. Y. Huang, X. Lv, H.-R. Tong, W. He, Z. Bai, H. Wang, G. He, G. Chen, Org. Lett. 2024, 26, 94-99.
- 8. R. Tomar, D. Bhattacharya, S. A. Babu, Tetrahedron 2019, 75, 2447-2465.
- X. Zhang, G. Lu, M. Sun, M. Mahankali, Y. Ma, M. Zhang, W. Hua, Y. Hu, Q. Wang, J. Chen, G. He, X. Qi, W. Shen, P. Liu, G. Chen, *Nat. Chem.* 2018, *10*, 540-548.
- D. Yang, H. Huang, M.-H. Li, X.-J. Si, H. Zhang, J.-L. Niu, M.-P. Song, Org. Lett. 2020, 22, 4333-4338.
- 11. B.-Y. Zhao, X.-L. Zhang, R.-L. Guo, M.-Y. Wang, Y.-R. Gao, Y.-Q. Wang, Org. Lett. 2021, 23, 1216-1221.
- 12. T. Shirai, Y. Migitera, R. Nakajima, T. Kumamoto, J. Org. Chem. 2024, 89, 2787-2793

