Supporting Information

The Lithium Effect in Ketenyl Anion Chemistry

Prakash Duari,^a Sunita Mondal,^a Mike Jörges,^a and Viktoria H. Gessner^{*a}

^aFaculty of Chemistry of Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany, Email: <u>viktoria.gessner@rub.de</u>

Table of Contents

1.	Expe	rimental Procedures	. 2
1.	.1.	General Information	. 2
1.	.2.	Synthesis of compounds 2	. 3
1.	.3.	Synthesis of compounds 3-Li	. 4
2.	NMR	and IR spectra	. 8
2.	.1.	NMR spectra of the metallated ylides 2	. 8
2.	.2.	NMR and IR spectra of compound 3a-Li	. 9
2.	.3.	NMR and IR spectra of compound 3b-Li	15
2.	.4.	NMR and IR Spectra of compound 3c-Li	21
3.	Crys	tal structure determination	28
3.	.1.	General information	28
3.	.2.	Molecular structure of 2b	30
3.	.3.	Molecular structure of 2c	31
3.	.4.	Molecular structure of 3a-Li	31
3.	.5.	Molecular structure of 3c-Li(PMDETA)	32
3.	.6.	Molecular structure of 4c	32
3.	7.	Molecular structure of potassium ketenyl anions	33
4.	Auth	or contributions	34
5.	Refe	rences	35

1. Experimental Procedures

1.1. General Information

Chemical and Conditions

If not stated otherwise, all experiments were carried out using standard Schlenk techniques under an argon atmosphere, which was dry and free of oxygen. Argon (99.999%) was a product of *Air Liquide* and was used without any further drying. An MBraun SPS 800 was used to dry solvents before their usage (THF, toluene, DCM, ACN, *n*-pentane, *n*-hexane). All solvents were stored over molecular sieves under an argon atmosphere. Reagents were purchased from Sigma-Aldrich, ABCR, Acros Organics or TCI Chemicals and used without further purification if not stated otherwise. **1a**, **1b**, **1c** were synthesized following literature procedures.^{1,2}

Analytical methods

<u>NMR Spectroscopy</u>. ¹H, ¹³C{¹H}, ⁷⁷Se{¹H}, ³¹P{¹H} <u>NMR spectra</u> were recorded on Avance-III-400 spectrometers at 22 °C if not stated otherwise. All values of the chemical shift are in ppm regarding the δ -scale. All spin-spin coupling constants (*J*) are printed in Hertz (Hz). To display multiplicities and signal forms correctly the following abbreviations were used: s = singlet, d = doublet, t = triplet m = multiplet, dd = doublet of doublet, br = broad signal. Signal assignment was supported by, HSQC (¹H / ¹³C), HMBC (¹H / ¹³C, ¹H / ³¹P) correlation experiments.

<u>IR spectra</u> were recorded on a Shimadzu IRSpirit with QATR-S module in an argon filled glovebox and on a Thermo Nicolet iS5 FT-IR in transmission mode with a Specac "Omnicell" with KBr plates and a 0.1 mm spacer at 22 °C. Measurement and processing details for individual spectra can be extracted from the corresponding tables in the supporting information.

Melting points were measured with the SMP30 melting point apparatus from Stuart.

Elemental analyses were performed on an Elementar vario MICRO cube elemental analyzer.

For details about the single-crystal Xray diffraction analyses, see chapter 3.

Safety comments

Caution! Strong bases such as organolithium bases, especially as neat compounds, are severely air-/moisture-sensitive and pyrophoric organometallic compounds. These compounds need to be handled under an inert gas atmosphere to exclude reactions with oxygen and water. Guidelines for their handling can be found in literature: T. L. Rathman, J. A. Schwindeman, *Org. Process Res. Dev.* **2014**, *18*, 1192.

Caution! Carbon monoxide (CO) is a highly toxic gas. Reactions should be performed in well-ventilated fumehoods, ideally with a CO sensor.

1.2. Synthesis of compounds 2

Synthesis of compounds 2a

20 mg (0.0406 mmol) of compound **1a** and 4.93 mg (0.0447 mmol) LDA were dissolved in 1 mL THF-d₈ and stirred for 10 min. After filtration, a yellow solution of **2a** was obtained. The compound was not isolated but used as a solution for further reaction. The successful formation of **2a** was confirmed

by ¹P{¹H}-NMR spectroscopy.

³¹**P**{¹**H**}-**NMR** (162 MHz, THF-d₈): δ = 31.83 (d, ²*J*_{PP} = 75.2 Hz, *P*Ph₂O), -4.91 (d, ²*J*_{PP} = 75.2 Hz, *P*Ph₃) ppm.

Synthesis of compounds 2b

20 mg (0.0406 mmol) of compound **1b** and 4.93 mg (0.0447 mmol) LDA were dissolved in 1 mL THF-d₈ and stirred for 10 min. After filtration, a yellow solution of **2b** was acquired. The compound was not isolated but used as a solution for further reaction. The successful formation of **2b** was confirmed

by ¹P{¹H}-NMR spectroscopy. In addition, few crystals suitable for X-ray diffraction (XRD) analysis could be grown by slow diffusion of hexane into toluene/THF solution.

³¹**P**{¹**H**}-**NMR** (162 MHz, THF-d₈): δ = 26.82 (d, ²*J*_{PP} = 32.2 Hz, *P*Ph₂S), -11.88 (d, ²*J*_{PP} = 32.2 Hz, *P*Ph₃) ppm.

Synthesis of compounds 2c

20 mg (0.0371 mmol) of compound **1c** and 4.51 mg (0.0408 mmol) LDA were dissolved in 1 mL THF-d₈ and stirred for 10 min. After filtration, a yellow solution of **2c**was acquired. The compound was not isolated but used as a solution for further reaction. The successful formation of **2a** was confirmed by

¹P{¹H}-NMR spectroscopy. In addition, few crystals suitable for X-ray diffraction (XRD) analysis could be grown by slow diffusion of hexane into toluene/THF solution.

³¹P{¹H}-NMR (162 MHz, THF-d₈): δ = 9.12 (d, ²J_{PP} = 18.6 Hz, *P*Ph₂Se), -10.01 (d, ²J_{PP} = 18.6 Hz, *P*Ph₃) ppm.

1.3. Synthesis of compounds 3-Li

Synthesis of compounds 3a-Li

$$Ph_{Ph} = C_{\oplus} = C_{\oplus}$$

 $Ph_{Ph} = C_{\oplus} = C_{\oplus}$
 $Ph_{Ph} = C_{\oplus} = C_{\oplus} = C_{\oplus}$
 $Ph_{Ph} = C_{\oplus} = C_{\oplus$

mL pentane was added resulting in the precipitation of a solid. The solid was filtered and washed with toluene (3 times) and pentane (3 times). After drying in vacuo, lithium ketenyl **3a-Li** was obtained as off-white solid. (702 mg, 3.15 mmol, 70 %).

¹**H-NMR** (400 MHz, THF-*d*₈): δ = 7.93 – 7.80 (m, 4H, PPh₂O*H*Ph,*ortho*), 7.29 – 7.18 (m, 6H, PPh₂O*H*Ph,*meta,para*), 3.65 – 3.59 (m, 2H, THF-OC*H*₂), 1.80 – 1.74 (m, 2H, THF-OCH₂C*H*₂). ¹³C{¹H}-NMR (101 MHz, THF-*d*₈): δ = 142.8 (d, ¹*J*_{PC} = 120.3 Hz, PPh₂O*C*_{Ph,*ipso*}), 141.91 (d, ²*J*_{PC} = 48.8 Hz, PCCO), 131.93 (d, ²*J*_{PC} = 10.4 Hz, PPh₂O*C*_{Ph,*ortho*}), 130.04 (d, ⁴*J*_{PC} = 2.8 Hz, PPh₂O*C*_{Ph,*para*}), 128.24 (d, ³*J*_{PC} = 12.4 Hz, PPh₂O*C*_{Ph,*meta*}), 68.39 (s, THF-OCH₂CH₂), 26.54 (s, THF-OCH₂CH₂), 2.28 (d, ¹*J*_{PC} = 218.3 Hz, PCCO) ppm. ⁷Li NMR (156 MHz, THF-*d*₈) δ = -1.92 ppm. ³¹P{¹H}-NMR (162 MHz, THF-*d*₈): δ = 12.26 (s, *P*Ph₂O) ppm. FT-IR (ATR, cm⁻¹): 3058.3 (bw), 2977.9 (bw), 2873.8 (bw), 2129.8 (s, CCO stretching), 1483.5 (w), 1435.4 (s), 1127.4 (m), 1118.1 (s), 1082.9 (s), 1067.8 (m), 1053.4 (s), 1027.6 (w), 912.0 (bw), 715.2(s), 692.9 (s), 650.6 (m), 616.8 (w), 550.8 (m), 528.5(s). Anal. Calcd. for C₁₈H₁₈Li₁O₃P₁: C, 67.51; H, 5.67. Found: C, 67.24; H, 5.49.

PMDETA complex of 3a-Li

1.5 g (3.15 mmol) of **1a** and 382.0 mg (03.46 mmol) of LDA were dissolved in 30 mL tol/thf (9:1) mixture. The solution was stirred for 20 min. 1.1 eq. of *N*,*N*,*N*',*N*"*N*"-pentamethyl-diethylenetriamine (PMDETA) (606 mg, 3.46 mmol) was added to the reaction mixture. After filtration the atmosphere in the flask was changed from argon to CO and the reaction was stirred for 24 hours. After concentrating the solution to 5ml, 30 mL pentane was added resulting in the precipitation of a solid. The solid was filtered and washed with toluene (3 times) and pentane (3 times). After drying in vacuo, **3a-Li**(PMDETA) was obtained as off-white solid (938 mg, 2.23 mmol, 70.7 %).

¹H-NMR (400 MHz, THF-*d*₈): δ = 7.95 – 7.76 (m, 4H, PPh₂O*H*Ph,*ortho*), 7.32 – 7.13 (m, 6H, PPh₂O*H*Ph,*meta*,*para*), 2.44 (t, ³*J*_{HH} = 6.7 Hz, 4H, C*H*₂-PMDETA), 2.34 (t, ³*J*_{HH} = 6.7 Hz, 4H, C*H*₂-PMDETA), 2.25 (s, 3H, C*H*₃-PMDETA), 2.19 (s, 12H, C*H*₃-PMDETA). ¹³C{¹H}-NMR (101 MHz, THF-*d*₈): δ = 142.9 (d, ¹*J*_{PC} = Hz, PPh₂O*C*_{Ph,*ipso*}), 142.0 (d, ²*J*_{PC} = 48.5 Hz, PCCO), 131.8 (d, ²*J*_{PC} = 10.4 Hz, PPh₂O*C*_{Ph,*ortho*}), 129.9 (d, ⁴*J*_{PC} = 2.8 Hz, PPh₂O*C*_{Ph,*para*}), 128.1 (d, ³*J*_{PC} = 12.3 Hz, PPh₂O*C*_{Ph,*meta*}), 58.7 (s, CH₂-PMDETA), 56.8 (s, CH₂-PMDETA), 46.3 (s, CH₃-PMDETA), 43.7 (s, CH₃-PMDETA), 2.2 (d, ¹*J*_{PC} = 216.8 Hz, PCCO) ppm. ⁷Li NMR (156 MHz, THF-*d*₈) δ = 0.36 ppm. ³¹P{¹H}-NMR (162 MHz, THF-*d*₈): δ = 14.03 (s, *P*Ph₂O) ppm. FT-IR (ATR, cm⁻¹): 2979.3 (bw), 2957.8 (bw), 2833.5 (w), 2109.5 (s, CCO stretching), 1653.0 (w), 1456.9 (w), 1436.2 (s), 1361.5 (m), 1301.2 (m), 1288.9 (m), 1142.5(s), 1114.5 (s), 1094.4 (s),1064.9 (m), 1057.7 (m), 898.3 (w), 789.8 (w), 755.4 (m), 714.5 (s), 695.8 (s), 617.6 (w), 569.4 (w), 529.9 (s), 500.5 (m).

Synthesis of compounds 3b-Li

 $Ph_{Ph} = C = C = 0$ $Ph_{Ph} = C = 0$ $Ph_{Ph} = C = 0$

¹H-NMR (400 MHz, THF-*d*₈): δ = 8.10 – 7.99 (m, 4H, PPh₂S*H*Ph,*ortho*), 7.24 – 7.17 (m, 6H, PPh₂S*H*Ph,*meta,para*) ppm. ¹³C{¹H}-NMR (101 MHz, THF-*d*₈): δ = 143.8 (d, ¹*J*_{PC} = 95.9 Hz, PPh₂SeC_{Ph,*ipso*}), 138.3 (d, ²*J*_{PC} = 46.0 Hz, PCCO), 131.8 (d, ²*J*_{PC} = 11.4 Hz, PPh₂SC_{Ph,*ortho*}), 129.6 (d, ⁴*J*_{PC} = 3.0 Hz, PPh₂SC_{Ph,*para*}), 127.9 (d, ³*J*_{PC} = 12.5 Hz, PPh₂SC_{Ph,*meta*}), 6.7 (d, ¹*J*_{PC} = 193.8 kHz, PCCO) ppm. ⁷Li NMR (156 MHz, THF-*d*₈) δ = -0.01 ppm. ³¹P{¹H}-NMR (162 MHz, THF-*d*₈): δ = 21.61 (s, *P*Ph₂S) ppm. FT-IR (ATR, cm⁻¹): 3051.1 (bw), 2982.2 (bw), 2878.8 (bw), 2142.0 (s, CCO stretching), 1597.7 (bs), 1571.9 (m), 1477.1 (w), 1435.4 (s), 1404.6 (m), 1100.1 (s), 1069.2 (m), 914.8 (bs), 859.5 (w), 835.1 (w), 743.9 (m), 706.6 (s), 688.6 (s), 675.0 (s), 644.1 (w), 608.9 (m), 550.1 (m), 491.1 (s). Attempts on obtaining satisfactory elemental analysis data were repeatedly unsuccessful.

PMDETA complex of 3b-Li

500 mg (1.02 mmol) of **1b** and 123.0 mg (1.12 mmol) of LDA were dissolved in 20 mL tol/thf (9:1) mixture. The solution was stirred for 20 min. 1.1 eq. of *N*,*N*,*N*',*N*"*N*"-pentamethyl-diethylenetriamine (PMDETA) (196 mg, 1.12 mmol) added. After filtration, the atmosphere in the flask was changed from argon to CO and the reaction was stirred for 24 hours. The solution was concentrated to 10 mL. 10 mL pentane were added resulting in the precipitation of a solid. The solid was filtered and washed with toluene (3 times) and pentane (3 times). After drying in vacuo, lithium ketenyl **3b-Li**(PMDETA) was obtained as yellowish white solid (302 mg, 0.69 mmol, 68 %).

¹H-NMR (400 MHz, THF-*d*₈): δ = 8.06 – 7.97 (m, 4H, PPh₂S*H*Ph,*ortho*), 7.24 – 7.19 (m, 6H, PPh₂Se*H*Ph,*meta*,*para*), 2.43 (t, ³*J*_{HH} = 6.7 Hz, 4H, *CH*₂-PMDETA), 2.33 (t, ³*J*_{HH} = 6.7 Hz, 4H, *CH*₂-PMDETA), 2.24 (s, 3H, *CH*₃-PMDETA), 2.17 (s, 12H, *CH*₃-PMDETA). ¹³C{¹H}-NMR (101 MHz, THF-*d*₈): δ = 143.7 (d, ¹*J*_{PC} = 94.3 Hz, PPh₂S*C*_{Ph,*ipso*}), 139.5 (d, ²*J*_{PC} = 42.0 Hz, PCCO), 131.7 (d, ²*J*_{PC} = 11.5 Hz, PPh₂S*C*_{Ph,*ortho*}), 129.6 (d, ⁴*J*_{PC} = 3.0 Hz, PPh₂Se*C*_{Ph,*para*}), 127.9 (d, ³*J*_{PC} = 12.7 Hz, PPh₂S*C*_{Ph,*meta*}), 58.8 (s, *CH*₂-PMDETA), 56.9 (s, *CH*₂-PMDETA), 46.3 (s, *CH*₃-PMDETA), 43.8 (s, *CH*₃-PMDETA), 5.5 (d, ¹*J*_{PC} = 183.2 Hz, PCCO) ppm. ⁷Li NMR (156 MHz, THF-*d*₈) δ = 0.05 ppm. ³¹P{¹H}-NMR (162 MHz, THF-*d*₈): δ = 22.40 (s, *P*Ph₂S) ppm. FT-IR (ATR, cm⁻¹): 3051.1 (bw), 2957.8 (bw), 2829.9 (bw), 2789.7 (bw), 2103.9 (s, CCO stretching), 1621.4 (m), 1542.4 (w), 1456.9 (m), 1435.4 (s), 1361.5 (m), 1352.1 (m), 1290.4 (m), 1253.05 (m), 1167.6 (w), 743.93 (m), 690.8 (s), 638.4 (m), 561.5 (m), 499.07 (s).

Synthesis of compounds 3c-Li

200 mg (0.37 mmol) of **1c** and 45.1 mg (0.41 mmol) of LDA were dissolved in 10 mL tol/thf(9:1) mixture. The solution was stirred for 20 min. After filtration the atmosphere in the flask was changed from argon to CO and

the reaction was stirred for 24 hours. The solution was concentrated to 5 mL. Subsequently, 5 mL pentane were added resulting in the precipitation of a solid. The solid was filtered and washed with toluene (3 times) and hexane (3 times). After drying in vacuo, lithium ketenyl **3c-Li** was obtained as off-white solid (82 mg, 0.37 mmol, 58 %). **3c-Li** is not stable for longer time in THF solution, but slowly converts to benzene derivative **4**.

¹H-NMR (400 MHz, THF-*d*₈): δ = 8.10 – 7.99 (m, 4H, PPh₂Se*H*Ph,*ortho*), 7.25 – 7.17 (m, 6H, PPh₂Se*H*Ph,*meta*,*para*), 3.65 – 3.59 (m, 2H, THF-OCH₂), 1.83 – 1.74 (m, 2H, THF-OCH₂CH₂). ¹³C{¹H}-NMR (101 MHz, THF-*d*₈): δ = 142.7 (d, ¹J_{PC} = 87.3 Hz, PPh₂SeC_{Ph},*ipso*), 139.8 (d, ²J_{PC} = 45.0 Hz, PCCO), 132.1 (d, ²J_{PC} = 11.8 Hz, PPh₂SeC_{Ph},*ortho*), 129.9 (d, ⁴J_{PC} = 3.0 Hz, PPh₂SeC_{Ph},*para*), 127.9 (d, ³J_{PC} = 12.7 Hz, PPh₂SeC_{Ph},*meta*), 68.4 (s, THF-OCH₂CH₂), 26.5 (s, THF-OCH₂CH₂), 5.9 (d, ¹J_{PC} = 184.9 Hz, PCCO) ppm. ⁷Li NMR (156 MHz, THF-*d*₈) δ = -0.13. ³¹P{¹H}-NMR (162 MHz, THF-*d*₈): δ = 5.57 (s, *P*Ph₂Se) ppm. ⁷⁷Se-NMR (76 MHz, THF-*d*₈): δ = 143.17 (d, ¹J_{PSe} = 703.1 Hz, PPh₂Se) ppm. FT-IR (ATR, cm⁻¹): 3051.8 (bw), 2969.3 (bw), 2875.19 (bw), 2138.4 (s, CCO stretching), 1749.2 (bs), 1541.4 (w), 1435.4 (s), 1403.1 (w), 1307.6 (s), 1096.5 (s), 1043.4 (m), 1027.6 (m), 998.1 (m), 915.5 (w), 742.5 (m), 688.6 (s), 646.3 (m), 529.2 (s), 486.9 (s). Anal. Calcd. for C₁₈H₁₈Li₁O₂P₁Se₁: C, 56.42; H, 4.73. Found: C, 56.80; H, 4.94.

PMDETA complex of 3c-Li

200 mg (0.37 mmol) of **1c** and 45.1 mg (0.41 mmol) of LDA were dissolved in 10 mL tol/thf(9:1) mixture. The solution was stirred for 20 min. 1.1 eq. of N,N,N',N''N''-pentamethyl-diethylenetriamine (PMDETA) (71.5 mg, 0.41 mmol) was added. After filtration the atmosphere in the flask was changed from argon to CO and the reaction was stirred for 24 hours. The solution was concentrated to 5 mL. Subsequently, 5 mL pentane were added resulting in the precipitation of a solid. The solid was filtered and washed with toluene (3 times) and hexane (3 times). After drying in vacuo, lithium ketenyl **3c-Li**(PMDETA) was obtained as off-white solids off-white solid (129 mg, 0.27 mmol, 72 %). Single crystal of **3c-Li**(PMDETA) were grown by slow diffusion of hexane into a toluene/THF solution of the compound at -30 °C.

¹H-NMR (400 MHz, THF-*d*₈): δ = 8.08 – 8.00 (m, 4H, PPh₂Se*H*Ph,*ortho*), 7.25 – 7.16 (m, 6H, PPh₂Se*H*Ph,*meta,para*), 2.44 (t, ³*J*_{HH} = 6.7 Hz, 4H, *CH*₂-PMDETA), 2.33 (t, ³*J*_{HH} = 6.7 Hz, 4H, *CH*₂-PMDETA), 2.24 (s, 3H, *CH*₃-PMDETA), 2.18 (s, 12H, *CH*₃-PMDETA). ¹³C{¹H}-NMR (101 MHz, THF-*d*₈): δ = 142.7 (d, ¹*J*_{PC} = 86.5 Hz, PPh₂Se*C*_{Ph,*ipso*}), 140.5 (d, ²*J*_{PC} = 43.0 Hz, PCCO), 132.0 (d, ²*J*_{PC} = 11.9 Hz, PPh₂Se*C*_{Ph,*ortho*}), 129.7 (d, ⁴*J*_{PC} = 3.0 Hz, PPh₂Se*C*_{Ph,*para*}), 127.9 (d, ³*J*_{PC} = 12.6 Hz, PPh₂Se*C*_{Ph,*meta*}), 58.8 (s, *CH*₂-PMDETA), 56.8 (s, *CH*₂-PMDETA), 46.3 (s, *CH*₃-PMDETA), 43.9 (s, *CH*₃-PMDETA), 5.5 (d, ¹*J*_{PC} = 178.4 Hz, PCCO) ppm. .⁷Li NMR (156 MHz, THF-*d*₈) δ = -0.11 ppm. ³¹P{¹H}-NMR (162 MHz, THF-*d*₈): δ = 6.17 (s, *P*Ph₂Se) ppm. ⁷⁷Se-NMR (76 MHz, THF-*d*₈): δ = 146.55 (d, ¹*J*_{PSe} = 694.7 Hz, PPh₂Se) ppm. FT-IR (ATR, cm⁻¹): 3047.5 (bw), 2952.7 (bw), 2855.1 (bw), 2829.2 (bw), 2786.2 (bw), 2098.2 (s, CCO stretching),

1604.2 (bw), 1470.6 (m), 1457.7 (m), 1436.1 (s), 1304.03 (w), 1094.4 (s), 1062.7 (m), 1019.7 (s), 936.7 (m), 705.2 (m), 690.8 (m), 667.8 (m), 529.9 (s), 492.6 (s), 472.5 (w), 429.4 (m).

2. NMR and IR spectra

2.1. NMR spectra of the metallated ylides 2

	Parameter	Value
1	Title	2a
2	Solvent	THF
3	Temperature	300.0
4	Experiment	1D
5	Number of Scans	32
6	Acquisition Date	2023-10-24T11:13:43
7	Spectrum Quality	0.000
8	Spectrometer Frequency	162.06
9	Spectral Width	64102.6
10	Lowest Frequency	-23948.5
11	Nucleus	31P
12	Acquired Size	32768
13	Spectral Size	65536
14	Digital Resolution	0.98

			11 <u>1177 - 775 - 775 - 7</u> 7			ter to the discovery		and the substant of the						-2000.000 (100), 10, 100 (10)					a balantafan yaar oo
240	220	200	180	160	140	120	100	80	60 f1 (p	40 ppm)	20	0	-20	-40	-60	-80	-100	-120	-140

 $< \frac{32.06}{31.60}$

<-4.68 -5.15

--11.78

26.92

Figure S1. ³¹P{¹H} NMR spectrum of compound 2a in THF-d₈.

		Parameter	Value
	1	Title	2b
	2	Solvent	THF
	3	Temperature	298.1
	4	Experiment	1D
	5	Number of Scans	16
	6	Acquisition Date	2024-06-03T17:40:07
	7	Spectrum Quality	0.000
	8	Spectrometer Frequency	162.06
	9	Spectral Width	64102.6
	10	Lowest Frequency	-23948.5
	11	Nucleus	31P
	12	Acquired Size	32768
	13	Spectral Size	65536
	14	Digital Resolution	0.98
ľ			

Figure S2. ³¹P{¹H} NMR spectrum of compound 2b in THF-d₈.

	Parameter	Value
1	Title	2c
2	Solvent	THF
3	Temperature	298.1
4	Experiment	1D
5	Number of Scans	16
6	Acquisition Date	2024-06-03T19:38:48
7	Spectrum Quality	0.000
8	Spectrometer Frequency	162.06
9	Spectral Width	64102.6
10	Lowest Frequency	-23948.5
11	Nucleus	31P
12	Acquired Size	32768
13	Spectral Size	65536
14	Digital Resolution	0.98

- 12.26

Figure S3. ³¹P{¹H} NMR spectrum of compound 2c in THF-d₈.

2.2. NMR and IR spectra of compound 3a-Li

		Parameter	Value
	1	Title	3a-Li
	2	Solvent	THF
	3	Temperature	300.0
	4	Experiment	1D
	5	Number of Scans	64
	6	Acquisition Date	2023-12-01T20:04:04
	7	Spectrum Quality	0.000
	8	Spectrometer Frequency	162.06
	9	Spectral Width	64102.6
	10	Lowest Frequency	-23948.5
	11	Nucleus	31P
	12	Acquired Size	32768
	13	Spectral Size	65536
	14	Digital Resolution	0.98
ľ			

240 60 40 f1 (ppm) 20 -100 -120 -140 220 200 180 160 120 100 0 -20 -40 -60 -80 140 80

Figure S4. $^{31}P\{^{1}H\}$ NMR spectrum of compound 3a-Li in THF-d_8.

_			
	Parameter	Value	
1	Title	3a-Li	L
2	Solvent	THE	
3	Temperature	300.0	L
4	Experiment	1D	L
5	Number of Scans	128	Ľ
6	Acquisition Date	2023-12-01T20:16:06	
7	Spectrum Quality	0.000	L
8	Spectrometer Frequency	400.33	L
9	Spectral Width	8012.8	L
10	Lowest Frequency	-805.1	L
11	Nucleus	1H	L
12	Acquired Size	32768	
13	Spectral Size	65536	L
14	Digital Resolution	0.12	

3.62
3.58 THF-d8

-1.77

Figure S5. ¹H NMR spectrum of compound 3a-Li in THF-d₈.

Figure S6. ¹³C{¹H} NMR spectrum of compound 3a-Li in THF-d₈.

	Parameter	Value
1	Title	3a-Li
2	Solvent	THF
3	Temperature	300.0
4	Experiment	1D
5	Number of Scans	128
6	Acquisition Date	2023-12-02T08:17:17
7	Spectrum Quality	0.000
8	Spectrometer Frequency	155.58
9	Spectral Width	25510.2
10	Lowest Frequency	-12755.1
11	Nucleus	7Li
12	Acquired Size	65536
13	Spectral Size	131072
14	Digital Resolution	0.19

Figure S7. ⁷Li NMR spectrum of compound 3a-Li in THF-d₈.

Figure S8. IR spectrum of compound 3a-Li (solid state).

	Parameter	Value
1	Title	3a-Li(PMDETA)
2	Solvent	THF
3	Temperature	298.1
4	Experiment	1D
5	Number of Scans	16
6	Acquisition Date	2024-06-18T12:50:06
7	Spectrum Quality	0.000
8	Spectrometer Frequency	162.06
9	Spectral Width	64102.6
10	Lowest Frequency	-23948.5
11	Nucleus	31P
12	Acquired Size	32768
13	Spectral Size	65536
14	Digital Resolution	0.98

Figure S10. ³¹P{¹H} NMR spectrum of compound **3a-Li**(PMDETA) in THF-d₈.

Figure S11. ¹H NMR spectrum of compound 3a-Li(PMDETA) in THF-d₈.

Figure S12. ¹³C{¹H} NMR spectrum of compound **3a-Li**(PMDETA) in THF-d₈.

	Parameter	Value
1	Title	3a-Li(PMDETA)
2	Solvent	THF
3	Temperature	298.0
4	Experiment	1D
5	Number of Scans	32
6	Acquisition Date	2024-06-18T12:55:36
7	Spectrum Quality	0.000
8	Spectrometer Frequency	155.58
9	Spectral Width	25510.2
10	Lowest Frequency	-12755.1
11	Nucleus	7Li
12	Acquired Size	65536
13	Spectral Size	131072
14	Digital Resolution	0.19

Figure S13. ⁷Li NMR spectrum of compound **3a-Li**(PMDETA) in THF-d₈.

Figure S14. IR spectrum of compound 3a-Li(PMDETA) (solid state).

2.3. NMR and IR spectra of compound 3b-Li

	Parameter	Value
1	Title	3b-Li
2	Solvent	THF
3	Temperature	300.0
4	Experiment	1D
5	Number of Scans	16
6	Acquisition Date	2023-11-01T17:28:45
7	Spectrum Quality	0.000
8	Spectrometer Frequency	162.06
9	Spectral Width	64102.6
10	Lowest Frequency	-23948.5
11	Nucleus	31P
12	Acquired Size	32768
13	Spectral Size	65536
14	Digital Resolution	0.98

-21.61

Figure S16. ¹H NMR spectrum of compound 3b-Li in THF-d₈.

Figure S17. ¹³C{¹H} NMR spectrum of compound **3b-Li** in THF-d₈.

	Parameter	Value
1	Title	3b-Li
2	Solvent	THF
3	Temperature	298.0
4	Experiment	1D
5	Number of Scans	128
6	Acquisition Date	2024-06-11T20:49:17
7	Spectrum Quality	0.000
8	Spectrometer Frequency	155.58
9	Spectral Width	25510.2
10	Lowest Frequency	-12755.1
11	Nucleus	7Li
12	Acquired Size	65536
13	Spectral Size	131072
14	Digital Resolution	0.19

Figure S18. ⁷Li NMR spectrum of compound 3b-Li in THF-d₈.

Figure S19. IR spectrum of compound 3b-Li (solid state).

Figure S20. IR spectrum of compound 3b-Li (THF solution).

	Parameter	Value
1	Title	3b-Li(PMDETA)
2	Solvent	THF
3	Temperature	300.0
4	Experiment	1D
5	Number of Scans	16
6	Acquisition Date	2024-02-16T17:14:22
7	Spectrum Quality	0.000
8	Spectrometer Frequency	162.06
9	Spectral Width	64102.6
10	Lowest Frequency	-23948.5
11	Nucleus	31P
12	Acquired Size	32768
13	Spectral Size	65536
14	Digital Resolution	0.98

— 22.40

Figure S21. ³¹P{¹H} NMR spectrum of compound 3b-Li(PMDETA) in THF-d₈.

Figure S22. ¹H NMR spectrum of compound 3b-Li(PMDETA) in THF-d₈.

Figure S23. ¹³C{¹H} NMR spectrum of compound 3b-Li(PMDETA) in THF-d₈.

Figure S24. ⁷Li NMR spectrum of compound 3b-Li(PMDETA) in THF-d₈.

Figure S25. IR spectrum of compound 3b-Li(PMDETA) (solid state).

Figure S26. IR spectrum of compound 3b-Li(PMDETA) (THF solution).

2.4. NMR and IR Spectra of compound 3c-Li

	Parameter	Value
1	Title	3c-Li
2	Solvent	THF
3	Temperature	298.1
4	Experiment	1D
5	Number of Scans	16
6	Acquisition Date	2024-06-09T16:55:22
7	Spectrum Quality	0.000
8	Spectrometer Frequency	162.06
9	Spectral Width	64102.6
10	Lowest Frequency	-23948.5
11	Nucleus	31P
12	Acquired Size	32768
13	Spectral Size	65536
14	Digital Resolution	0.98

--- 5.57

Figure S28. ¹H NMR spectrum of compound **3c-Li** in THF-d₈. * corresponds to toluene and # corresponds to hexane.

Figure S30. ⁷⁷Se{¹H} NMR spectrum of compound 3c-Li in THF-d₈.

	Parameter	Value
1	Title	3c-Li
2	Solvent	THF
3	Temperature	298.0
4	Experiment	1D
5	Number of Scans	32
6	Acquisition Date	2024-06-10T09:12:32
7	Spectrum Quality	0.000
8	Spectrometer Frequency	155.58
9	Spectral Width	25510.2
10	Lowest Frequency	-12755.1
11	Nucleus	7Li
12	Acquired Size	65536
13	Spectral Size	131072
14	Digital Resolution	0.19

Figure S32. IR spectrum of compound 3c-Li (solid state).

²⁴⁰ 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 f1 (ppm) **Figure S34.** ³¹P{¹H} NMR spectrum of compound **3c-Li**(PMDETA) in THF-d₈.

Figure S36. ¹³C{¹H} NMR spectrum of compound 3c-Li(PMDETA) in THF-d₈.

	Parameter	Value
1	Title	3c-Li(PMDETA)
2	Solvent	THF
3	Temperature	295.4
4	Experiment	1D
5	Number of Scans	4096
6	Acquisition Date	2024-02-04T05:26:53
7	Spectrum Quality	0.000
8	Spectrometer Frequency	76.33
9	Spectral Width	38265.3
10	Lowest Frequency	-42037.4
11	Nucleus	77Se
12	Acquired Size	32768
13	Spectral Size	65536
14	Digital Resolution	0.58

— -142.00 — -151.10

gure \$37. ⁷⁷ Se{ ¹ H} NMR spectrum of compound 3c-Li(PMDETA) in THF-d ₈ .	-90 -110 -13	30 -150 -170 -	-190 -210	-230	-250	-270 f1 (pp	-290	-310	-330	-350	-370	-390	-410	-430	-450	-4
Parameter Value 1 Title 3c-L(PMDETA) 2 Solvent THF 3 Temperature 295.0 4 Experiment 1D 1 Number of Scans 32 3 Acquisition Date 2024-02-04T05:30:12 7 SpectromQuity 0.000 3 SpectromQuity 0.000 3 SpectromQuity 0.000 1 Nucleus 7L1 2.Acquired State 55536 3 Spectral Width 2551.6 13 Nucleus 7L3 2.Acquired State 15356 3 Spectral State 131072 4 Digital Resolution 0.19	gure S37.77Se	{ ¹ H} NMR spec	trum of c	compo	und 3	c-Li(F	MDE	TA) ir	n THF	-d ₈ .						
Title Sufficient Sufficient 2 Solvent THF 3 Temperature 250.0 4 Experiment 10 5 Acquisition Date 2024-02-04TU5:30:12 7 Spectrum Quality 0.000 8 Spectrometer Frequency 15:58 9 Spectrum Quality 0.200 10 Lowest Frequency 1275.1 11 Nucleus 7U 21 Acquired Size 65536 3 Spectral Width 0.19	Barameter	Value				È		,								
Inte Socient Importance 295.0 Experiment ID Number of Scans 32 Acquisition Date 2024-02-04T05:30:12 Spectrum Quilty 0.000 Spectrum Quilty 0.000 Spectrum Quilty 0.000 Spectrum Quilty 12755.1 I Nucleus 7L 2 Acquired Size 65366 3 Spectral Size 131072 4 Digital Resolution 0.19	1 Title					Ŷ										
2 Jonestina 1111 1 Temperature 295.0 4 Experiment 10 10 Number of Scans 32 3 Acquisition Date 2024-02-04T05:30:12 3 Spectroniter Frequency 155.58 9 Spectroniter Frequency 155.58 10 Lowest Frequency 127255.1 13 Nucleus 7Li 14 Nucleus 7Li 15 Spectroniter Scans 131072 14 Digital Resolution 0.19	2 Solvent	THE														
1 Heingendure 251.0 Experiment ID 5 Number of Scans 32 Acquistion Dat 2024-02-04105:30:12 7 Spectrum Quality 0.000 3 Spectrometer Frequency 155.58 9 Spectral Wind 2551.0 10 Lowest Frequency -12755.1 11 Nucleus 7Li 2 Acquired Size 65536 3 Spectral Wind 0.19	2 Joinent	205.0														
Luper of Scans 32 Number of Scans 32 Spectrum Quality 0.000 Spectrum Quality 0.000 Spectral Width 255.03 O Lowest Frequency 1275.1 11 Nucleus 7Li 12 Acquired Size 6536 3 Spectral Width 0.19	1 Experiment	10														
Acquisition Data 2024-02-04T05:30:12 Spectrome Frequeny 55:88 5 Spectral Width 25510.2 10 Lowest Frequeny -12755.1 11 Nucleus 7L 2 Acquired Size 6536 3 Spectral Size 131072. 4 Digital Resolution 0.19	Number of Scane	22														
A.C.guiston Date 202+02/0105.30.12 Spectrom Quilty 0.000 3 Spectrometer Frequency 155.8 9 Ol cowest Frequency 12755.1 11 Nucleus 7Li 2 Acquired Size 65536 3 Spectral Size 131072 14 Digital Resolution 0.19	Acquisition Date	32 3034 03 04T0E-30-13														
a Jectural Equality 0.000 S Spectronal Frequency 155.58 0 Lowest Frequency 12755.1 1 Nucleus 7L 2 Acquired Size 65536 3 Spectral Size 131072 4 Digital Resolution 0.19	Acquisition Date	2024-02-04105.30.12														
s pectral wird 153.53 0 Lowest Frequency -12755.1 11 Nucleus 7L 2 Acquired Size 5310.2 3 Spectral Wird 255.36 3 Spectral Size 131072 4 Digital Resolution 0.19	Caraturates Francis	0.000														
Spectral Yudun 2531.2 10 Lowest Frequency - 12755.1 11 Nucleus 7L 2 Acquired Size 6536 3 Spectral Size 131072 4 Digital Resolution 0.19	Spectrometer Frequen	CY 155.58														
10 Uoves 7L 11 Nucleus 7L 12 Acquired Size 65536 13 Spectral Size 131072 14 Digital Resolution 0.19	Spectral Width	10755 1														
2 Acquired Size 6536 3 Spectral Size 131072 4 Digital Resolution 0.19	Lowest Frequency	-12/55.1														
2 Acquired Size 65536 3 Spectral Size 131072 4 Digital Resolution 0.19	1 Nucleus	/LI														
4 Digital Resolution 0.19	2 Acquired Size	121072														
	3 Spectral Size	1310/2														

 s0
 70
 60
 50
 40
 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80

 Figure S38. ⁷Li NMR spectrum of compound 3c-Li(PMDETA) in THF-d₈.

Figure S39. IR spectrum of compound 3c-Li (PMDETA) (solid state).

Figure S40. IR spectrum of compound 3c-Li (PMDETA) (solid state).

3. Crystal structure determination

3.1. General information

Good quality single crystals were hand-picked under polarized optical microscopy and then mounted on the diffractometer. The data collection was done at 100 K. X-ray intensity data measurements of all compounds were carried out on an Oxford SuperNova diffractometer with graphite-monochromatized (CuK_{α} = 1.54184 Å) radiation. The X-ray generator was operated at 50 kV and 30 mA. All the structures were solved using direct methods, refined with the Shelx software package³⁻⁶ and expanded using Fourier techniques. The crystals of all compounds were mounted in an inert oil such as perfluoropolyalkylether. Crystallographic data including structure factors have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC- 236206 to CCDC-236209 Copies of the data can be gained free of charge on application to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; [fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk].

Compound	2b	2c			
Formula	C70 H66 Li2 O2 P4 S2	C70 H66 Li2 O2 P4 Se2			
CCDC	2362607	2362606			
Formula weight	1141.10	1234.90			
Temperature [K]	100(2)	100(2)			
Wave lenght [Å]	1.54184	1.54184			
Crystal system	Monoclinic	Monoclinic			
Space group	P2 ₁ /c	P2 ₁ /c			
a [Å]	14.7042(2)	15.72650(10)			
b [Å]	11.10570	9.50190(10)			
c [Å]	18.8325(2)	20.4394(2)			
α[°]	90	90			
β [°]	106.0010(10)	97.1570(10)			
γ [°]	90	90			
Volumen [Å ³]	2956.21(6)	3030.50(5)			
Z	2	2			
Calc. density [Mg⋅m⁻³]	1.282	1.353			
μ (Mo _{Kα}) [mm ⁻¹]	2.193	2.869			
F(000)	1200	1272			
Crystal dimensions [mm]	0.360 x 0.310 x 0.080	0.280 x 0.200 x 0.140			
Theta range θ [°]	3.127 to 67.997	2.832 to 76.746			

 Table S1. Data collection and structure refinement details for compounds 2b and 2c.

Index ranges	-17<=h<=16	-19<=h<=19			
	-13<=k<=13	-10<=k<=11			
	-22<= <=22	-25<= <=25			
Reflections collected	35590	38788			
Independent reflections	5382 [R(int) = 0.0413]	6214 [R(int) = 0.0445]			
Data/Restraints/Parameter	5382 / 0 / 361	6214 / 0 / 361			
Goodness-of-fit on F ²	1.016	1.045			
Final R indices [I>2sigma(I)]	R1 = 0.0343, wR2 = 0.0900	R1 = 0.0343, wR2 = 0.0879			
Largest diff. peak and hole	0.486 and -0.407	1.184 and -0.595			
[e·Å-3]					

Compound	3a-Li	3c-Li(PMDETA)
Formula	C36 H36 Li2 O6 P2	C46 H66 Li2 N6 O2 P2 Se2
CCDC	2362609	2362608
Formula weight	640.47	968.78
Temperature [K]	293(2)	100(2)
Wave lenght [Å]	1.54184	1.54184
Crystal system	Triclinic	Monoclinic
Space group	P-1	C2
a [Å]	14.2502(3)	23.8309(5)
b [Å]	15.4854(3)	9.4168(2)
c [Å]	15.5126(3)	11.2449(2)
α[°]	90.527(2)	90
β [°]	91.990(2)	103.333(2)
γ [°]	100.300(2)	90
Volume [Å ³]	3365.56(12)	2455.46(9)
Z	4	2
Calc. density [Mg⋅m⁻³]	1.264	1.310
μ (Mo _{Kα}) [mm ⁻¹]	1.528	2.818
F(000)	1344	1008
Crystal dimensions [mm]	0.313 x 0.144 x 0.136	0.250 x 0.190 x 0.090
Theta range θ [°]	2.851 to 76.831	3.812 to 76.642
Index ranges	-17<=h<=17	-26<=h<=30
	-19<=k<=19	-11<=k<=11
	-17<=l<=19	-14<= <=13

Table S1. Data collection and structure refinement details for compounds 3a-Li and 3c-Li(PMDETA).

Reflections collected	22471	12718
Independent reflections	22471 [R(int) = 0.0564]	4616 [R(int) = 0.0454]
Data/Restraints/Parameter	22471 / 0 / 830	4616 / 1 / 276
Goodness-of-fit on F ²	1.157	1.049
Final R indices [I>2sigma(I)]	R1 = 0.0660, wR2 = 0.1833	R1 = 0.0552, wR2 = 0.1450
Largest diff. peak and hole	0.672 and -0.537	2.188 and -0.715
[e·Å-3]		

3.2. Molecular structure of 2b

Figure S41. Molecular structure of compound **2b**. Thermal ellipsoids at 50% probability level. Selected bond lengths [Å] and angles [°]: P1-C1 1.671(2), P2-C1 1.651(2), P1-S1 2.0296(5), C1-Li1 2.128(3), S1-Li1 2.558(3), P1-C1-P2 135.86(10).

3.3. Molecular structure of 2c

Figure S42. Molecular structure of compound **2b**. Thermal ellipsoids at 50% probability level. Selected bond lengths [Å] and angles [°]: P1-C1 1.674(2), P2-C1 1.646(2), P1-Se1 2.193(5), C1-Li1 2.159(4), Se1-Li1 2.622(4), P1-C1-P2 132.04(12).

3.4. Molecular structure of 3a-Li

Figure S43. Molecular structure of compound **3a-Li**. Thermal ellipsoids at 50% probability level. Selected bond lengths [Å] and angles [°]: P1-C1 1.677(4), C1-C2 1.230(6), C2-O1 1.216(5), P1-O1 1.510(3), P1-C1-C2 161.9(4), C1-C2-O1 176.7(5), P2-C3 1.673(4), C3-C4 1.231(6), C4-O2 1.206(5), P2-O6 1.509(3), P2-C3-C4 162.4(4), C1-C2-O1 176.7(5).

3.5. Molecular structure of 3c-Li(PMDETA)

Figure S44. Molecular structure of compound **3c-Li**(PMDETA). Thermal ellipsoids at 50% probability level. Selected bond lengths [Å] and angles [°]: P1-Se1 2.132(1), P1-C1 1.698(6), C1-C2 1.243(8), C2-O1 1.222(7), O1-Li1 2.069(10), P1-C1-C2 147.8(5), C1-C2-O1 173.9(6).

3.6. Molecular structure of 4c

Figure S45. Molecular structure of compound **4c**. Thermal ellipsoids at 50% probability level. H atoms and THF molecules are omitted for clarity. The bond lengths and bond angles are not discussed due to the low quality of the crystal.

3.7. Molecular structure of potassium ketenyl anions

Figure S46. Molecular structure of **3b-K**. (CCDC-2201263) Thermal ellipsoids at 50% probability level. Selected bond lengths [Å] and angles [°]: P1-C1 1.695(6), C1-C2 1.240(8), C2-O1 1.216(7), P1-C1-C2 145.6(6), C1-C2-O1 175.0(7). This structure has been reported in reference 1.

Figure S47. Molecular structure of **3b-K(18-C-5)**. (CCDC-2201261) Thermal ellipsoids at 50% probability level. Selected bond lengths [Å] and angles [°]: P1-C1 1.698(3), C1-C2 1.178(8), C2-O1 1.248(8), C1-K1 3.056(3), P1-C1-C2 146.2(5), C1-C2-O1 174.5(11). This structure has been reported in reference 1.

Figure S48. Molecular structure of **3b**^{Cy}-**K.** (CCDC-2320773) Thermal ellipsoids at 50% probability level. Selected bond lengths [Å] and angles [°]: C1–C2 1.235(4), C2–O1 1.217(3), P–C1 1.704(3), P–S 2.007(1), P– C1–C2 150.9(2), C1–C2–O1 175.5(3). This structure has been reported in reference 2.

4. Author contributions

P.D. and S.M. carried out the synthetic work and standard analytical characterization. P.D. conducted the XRD analyses. M.J. prepared one starting material. V.H.G. has designed the study, supervised the research activities, and prepared the manuscript together with P.D. and the help of S.M.

5. References

- 1. M. Jorges, F. Krischer and V. H. Gessner, *Science* 2022, **378**, ,1331–1336.
- 2. M. Jörges, S. Mondal, M. Kumar, P. Duari, F. Krischer, J. Löffler and V. H. Gessner, Organometallics 2024, **43**, 585–593
- G. M. Sheldrick, A short history of SHELX. Acta Cryst A 2008, 64 (Pt 1), 112–122. DOI: 10.1107/S0108767307043930. Published Online: Dec. 21, 2007.
- 4. G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst C 2015, **71 (Pt** 1), 3–8. DOI: 10.1107/S2053229614024218. Published Online: Jan. 1, 2015.
- G. M. Sheldrick, SHELXT integrated space-group and crystal-structure determination. Acta Cryst A 2015, **71 (Pt 1)**, 3–8. DOI: 10.1107/S2053229614024218. Published Online: Jan. 1, 2015.
- A. Thorn, B. Dittrich, G. M. Sheldrick, Enhanced rigid-bond restraints. Acta Cryst A 2012, 68 (4), 448–451. DOI: 10.1107/S0108767312014535.