Diversity-Oriented Synthesis of Chromone Inden-1-one fused Cyclopentadienylides and C-acylated Chromone Adducts *via* Allylic Phosphorus Ylides

Durga Prasad Gurram, Gangababu Marri, Naveen Jothimani, Yi-Ru Chen, Wenwei Lin*

Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan R.O.C.

Contents

I. General Information	S2
II. Preliminary studies	S 3
III. Plausible reaction mechanism for compound 6	S 3
IV. Detailed optimization of compound 5aa	S 4
V. Typical procedures for the preparation of New compounds	S5
VI. Characterization of all Compounds	S 6
VII. X-ray Crystallographic Data	S 40
VIII. ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR, and ³¹ P NMR Spectra of All Products	S43

I. General Information

a) Materials and reagents

All reactions were carried out under argon atmosphere in oven-dried glassware with magnetic stirring. All solvents and reagents were used as purchased from commercial suppliers without further purification. Triethylamine (Et₃N) was freshly distilled from calcium hydride under argon atmosphere and stored over 4 Å molecular sieves. Starting materials which were not commercially available were synthesized according to the previously reported methods.

b) Instrumentation

Thin layer chromatography (TLC): TLC analyses were performed on precoated aluminum-backed silica gel plate (Merck 60 F254, 0.2 mm thickness) which was visualized by florescence quenching.

Flash Column Chromatography: The crude products were purified on silica gel (Merck Kieselgel 60 230-400 mesh).

NMR Spectroscopy: ¹H, ¹³C{¹H}, ¹⁹F{¹H}, and ³¹P{¹H}-NMR spectra were recorded on an Oxford JEOL 400 MHz spectrometer, a Bruker Ascend 400 MHz spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F, and 162 MHz for ³¹P). All NMR spectra were recorded at 299 K unless otherwise noted. Chemical shifts are reported in δ ppm referenced to an internal standard, such as TMS for ¹H-NMR (δ = 0.0 ppm), CDCl₃ for ¹³C-NMR (δ = 77.0 ppm), CD₂Cl₂ for ¹³C-NMR (δ = 53.5 ppm), The following abbreviations were used to explain the multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), sep (septet), m (multiplet), brs (broad singlet), dd (doublet of doublet), td (triplet of doublet), dtd (doublet of triplet of doublet) and p (pseudo). Coupling constants (J) are reported in Hertz (Hz).

Single Crystal X-Ray Diffraction: The X-ray diffraction measurements were carried out at 200 K or 224 K on either a Bruker D8 Venture or a Bruker KAPPA APEX II CCD area detector system equipped with a graphite monochromator, a Mo-K α fine-focus sealed tube (k = 0.71073 Å) or a Cu-K α fine-focus sealed tube (k = 1.54178 Å).

Melting Point: Melting points were measured on a hot stage melting point apparatus and were uncorrected.

High-Resolution Mass Spectrometry (HRMS): HRMS were recorded on Waters XeVo G2-S QTof using ESI (TOF analyzer) or JEOL JMS-700 using EI (double-focusing magnetic sector). UltrafleXtreme MALDI-TOF/TOF using MALDI (Bruker

Daltonik, Bremen, Germany).

II. Preliminary studies

1a (0.3 mmol)	(PB) R ¹ CC Et	u ₃ (1.2 equiv.) OCI 2a (x equiv.) (y equiv.) HF (1.5 mL) 30° C, 24 h	PBu ₃ +			<u></u> * C	ζ
	entry	R¹COCl (x equiv.)	Et ₃ N (y equiv.)	t (h)	3a (%) ^a	5/4 (%) ^a	
	1	PhCOCl (1.5)	1.8	24	37	5/42	
	2	4-Me-BzCl (1.5)	1.8	24	29	2/55	
	3	4-OMePhCl (1.5)	1.8	24	32	3/57	
	4	4-NO ₂ PhCl (1.5)	1.8	24	20	7/45	
	5	(Boc) ₂ O (1.5)	1.8	24	0	0/93	
	6°	PhCOCl (1.5)	1.8	24	27	4/60	
	7	PhCOCl (2.5)	2.8	22	50	20/15	
	8	PhCOCl (3.0)	3.6	24	57	13/0	

*^a*Yield of the products **3a, 4 & 5** were determined by ¹H NMR analysis of the crude reaction mixture using triphenyl methane as an internal standard. *^b*Reaction carried out at 60 °C.

III. Reaction conditions and plausible reaction mechanism for compound 6.

IV. Detailed optimization of compound 5aa.^a

	Solve	PR3 COCI 2a Et3N	++++++++++++++++++++++++++++++++++++++	PR3 PR3	}° ∕∑⁺[Ph o
ontry	\mathbf{PP}_{1} (mol%)	PhCOCl	Base	Solvent	t	5aa	1a/4
chu y	I KS (110170)	(eqiuv.)	(eqiuv.)	(mL)	(h)	$(\%)^b$	$(\%)^b$
1	MePPh ₂ (120)	3.0	Et ₃ N (3.6)	THF	5	81	0
2	MePPh ₂ (20)	3.0	Et ₃ N (3.6)	THF	0.5	99	0
3	MePPh ₂ (20)	1.2	Et ₃ N (1.3)	THF	3	71	18
4	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	THF	0.5	88	0(6)
5	Et ₂ PPh (20)	1.2	Et ₃ N (1.3)	THF	3	39	38
6	$EtPPh_2(20)$	1.2	Et ₃ N (1.3)	THF	3	36	49
7	PBu ₃ (20)	1.2	Et ₃ N (1.3)	THF	4	36	32(4)
8	PPh ₃ (20)	1.2	Et ₃ N (1.3)	THF	24	0	86
9	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	Et ₂ O	0.5	0	24(0)
10	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	CH ₃ CN	3	28	40(13
11	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	toluene	18	47	34(18
12	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	DCM	3	53	22(8)
13	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	DCE	3	57	17(10
14	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	EtOAc	18	53	30(17)
15	Me ₂ PPh (20)	1.2	DIPEA(1.3)	THF	0.5	87	0
16	Me ₂ PPh (20)	1.2	DBU (1.3)	THF	5	11	3(8)
17	Me ₂ PPh (20)	1.2	DMAP (1.3)	THF	0.5	0	35(13)
18	Me ₂ PPh (20)	1.2	Et ₃ N (1.5)	THF	2	87	(10)
19	Me ₂ PPh (20)	1.3	Et ₃ N (1.5)	THF	0.5	88	(5)
20	Me ₂ PPh (20)	1.2	Et ₃ N (1.3)	THF (0.75)	5	87	(6)
21	Me ₂ PPh (10)	1.2	Et ₃ N (1.3)	THF	2	74	16(4)
22°	Me_2PPh (20)	1.2	Et ₃ N (1.3)	THF	2	89	0

^{*a*}Unless otherwise specified, all reactions were carried out with **1a** (0.3 mmol), PhCOCl **2a**, **Base** and **PR**₃, in the given anhydrous solvent (1.5 mL) under argon atmosphere at 30 °C. ^{*b*}Yield of the products **5aa & 4, 1a**

were determined by ¹H NMR analysis of the crude reaction mixture using triphenyl methane as an internal standard. ^{*c*}Reaction carried out at 60 °C.

V. a) Typical Procedure for the Preparation of compound 1 (TP-A)

Following the reported procedure¹, a round-bottomed flask equipped with a magnetic stir bar was charged with 3-Formylchromone² (5.0 mmol.), 1,3-indanedione (1.0 equiv.), and (\pm)-Camphor-10-Sulfonic Acid (CSA) (0.2 equiv.) in water: EtOH (1:1) at 80 °C in an oil bath for 4 h. After that, the resulting mixture was filtered under a vacuum and the residue was washed with methanol (2 times) then ethyl ether (2 times) to obtain product **1**.

b) Typical Procedure for the Preparation of compound 3 (TP-B).

A dry and argon-flushed 10 mL Schlenk flask equipped with a magnetic stir bar was charged with 1 (0.3 mmol.), PBu₃ (1.2 equiv.), PhCOCl 2a (3.0 equiv.), and Et₃N (3.6 equiv.) in anhydrous CH_2Cl_2 (1.5 mL) at 30 °C. After completion of the reaction, the reaction mixture was diluted with CH_2Cl_2 (4 mL), and the organic phase was washed with sodium bicarbonate solution. The resulted organic layer was dried over sodium sulfate and filtered through filter paper then the organic solution was concentrated under vacuum. Further, the crude reaction mixture was purified by flash column chromatography on silica gel to obtain the desired products **3**.

c) Typical Procedure for the Preparation of compound 5 (TP-C).

A dry and argon-flushed 10 mL Schlenk flask equipped with a magnetic stir bar was charged with compound 1 (0.3 mmol.), PPhMe₂ (0.2 equiv.), R¹COCl (1.2 equiv.), and Et₃N (1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C. After completion of the reaction, the solvent was removed under vacuum and the crude residue was subjected to flash column chromatography on silica gel to obtain the desired products **5**.

VI. Characterization of all Compounds

2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1a.

Following the **TP-A**, **1a** was obtained from 4-oxo-4H-chromene-3-carbaldehyde (0.87 g, 5.0 mmol), 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), and CSA (0.23 g, 0.2 equiv.). The residue was filtered under vacuum and obtain **1a** as a pale yellow solid (1.2 g, 80% yield). $R_f = 0.50$ (Hexanes:EtOAc = 7:3) : mp.: 277.3-278.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 10.40 (s, 1H), 8.44 (s, 1H), 8.32 (dd, J = 8.1, 1.6 Hz, 1H), 8.08-7.98 (m, 2H), 7.89-7.80 (m, 2H), 7.75 (dtd, J = 8.7, 7.2, 1.7 Hz, 1H), 7.57 (dd, J = 8.4, 0.5 Hz, 1H), 7.50 (dtd, J = 9.1, 7.2, 0.9 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.2, 189.0, 175.3, 163.4, 156.1, 142.1, 140.4, 136.5, 135.6, 135.4, 134.5, 129.4, 126.7, 126.4, 124.0, 123.6, 123.4, 118.6, 118.7. HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₁₁O₄: 302.0579 found: 302.0600.

2-(5-methyl-2-phenylbenzofuran-3-yl)-1-oxo-1H-inden-3-yl pivalate 1b.

Following the **TP-A**, **1b** was obtained from 6-methyl-4-oxo-4H-chromene-3carbaldehyde (0.94 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1b** as a pale green solid (1.1 g, 70%). $R_f = 0.50$ (Hexanes:EtOAc = 8:2) ; mp.: 228.2-229.4 °C. ¹H **NMR** (400 MHz, CDCl₃) δ /ppm: 10.37 (s, 1H), 8.43 (pd, J = 0.6 Hz, 1H), 8.09 (pd, J = 1.1 Hz, 1H), 8.06-7.97 (m, 2H), 7.87-7.79 (d, 2H), 7.54 (d, J = 8.7, 2.2 Hz, 1H), 7.45 (pd, J = 8.5 Hz, 1H), 2.49 (s, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.2, 189.1, 175.3, 163.4, 154.3, 142.1, 140.3, 136.8, 136.6, 135.6, 135.5, 135.3, 129.1, 126.0, 123.6, 123.5, 123.3, 118.4, 118.3,

20.9. **HRMS** (EI) m/z: [M]⁺ calcd for C₂₀H₁₂O₄: 316.0736 found: 316.0737.

2-(5-methoxy-2-phenylbenzofuran-3-yl)-1-oxo-1H-inden-3-yl pivalate 1c.

Following the **TP-A**, **1c** was obtained from 6-methoxy-4-oxo-4H-chromene-3carbaldehyde (1.02 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1c** as a pale green solid (1.2 g, 72%). $R_f = 0.38$ (Hexanes:EtOAc = 7:3) ; mp.: 266.7-267.7 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 10.37 (s, 1H), 8.46 (s, 1H), 8.08-7.96 (m, 2H), 7.89-7.89 (m, 2H), 7.68 (d, J = 3.1 Hz, 1H), 7.49 (pd, J = 9.1 Hz, 1H), 7.32 (dd, J = 9.1, 3.1 Hz, 1H), 3.93 (s, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.2, 189.2, 175.2, 163.1, 157.8, 150.8, 142.1, 140.3, 136.9, 135.5, 135.3, 129.1, 124.8, 124.3, 123.5, 123.4, 120.0, 117.8, 105.9, 50.1.

HRMS (EI) m/z: [M]⁺ calcd for C₂₀H₁₂O₅: 332.0685 found: 332.0677.

2-((6-fluoro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1d.

Following the **TP-A**, **1d** was obtained from 6-fluoro-4-oxo-4H-chromene-3carbaldehyde (0.96 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1d** as a half-white solid (1.1 g, 68%). $R_f = 0.40$ (Hexanes:EtOAc = 8:2) ; mp.: 265.8-266.9 °C ¹H NMR (400 MHz, CDCl₃) δ /ppm: 10.39 (d, J = 0.6 Hz, 1H), 8.39 (s, 1H), 8.06-8.00 (m, 2H), 7.96 (dd, J = 8.6, 3.1 Hz, 1H), 7.88-7.80 (m, 2H), 7.60 (dd, J = 9.1, 4.1 Hz, 1H), 7.51-7.43 (m, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.1, 188.9, 174.1, 163.2, 154.8, 142.2, 140.4, 137.5, 135.7, 135.5, 129.8, 129.3, 125.2, 123.6, 123.5, 120.5, 119.9, 118.7.
¹⁹F NMR (376 MHz, CDCl₃) δ/ppm: -112.9.

HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₉FO₄:320.0485 found: 320.0466.

2-((6-chloro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1e.

Following the **TP-A**, **1e** was obtained from 6-chloro-4-oxo-4H-chromene-3carbaldehyde (1.04 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1e** as a half-white solid (1.0 g, 60%). $R_f = 0.40$ (Hexanes:EtOAc = 8:2) ; mp.: 271.2-272.3 °C. ¹H **NMR** (400 MHz, CDCl₃) δ /ppm: 10.37 (s, 1H), 8.38 (s, 1H), 8.28 (d, *J* = 2.6 Hz, 1H), 8.06-7.99 (m, 2H), 7.89-7.82 (m, 2H), 7.69 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.53 (d, *J* = 8.9 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.1, 188.9, 174.1, 163.2, 154.8, 142.2, 140.4, 137.5, 135.7, 135.5, 129.8, 129.3, 125.2, 123.6, 123.5, 120.5, 119.9, 118.7. HRMS (EI) m/z: $[M]^+$ calcd for C₁₉H₉³⁵ClO₄: 336.0189 found: 336.0197. HRMS (EI) m/z: $[M]^+$ calcd for C₁₉H₉³⁷ClO₄: 338.0160 found: 338.0156.

2-((6-bromo-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1f.

Following the **TP-A**, **1f** was obtained from 6-bromo-4-oxo-4H-chromene-3carbaldehyde (1.25 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1f** as a pale green solid (1.0 g, 52%). $R_f = 0.38$ (Hexanes:EtOAc = 9:1); mp.: 264.4-265.6 °C ¹H **NMR** (400 MHz, CDCl₃) δ /ppm: 10.37 (s, 1H), 8.45 (d, J = 2.4 Hz, 1H), 8.37 (s, 1H), 8.07-7.97 (m, 2H), 7.90-7.80 (m, 3H), 7.47 (d, J = 8.9 Hz, 1H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 190.1, 188.9, 174.1, 163.2, 154.8, 142.2, 140.4, 137.5, 135.7, 135.5, 129.8, 129.3, 125.2, 123.6, 123.5, 120.5, 119.9, 118.7. **HRMS** (EI) m/z: [M]⁺ calcd for C₁₉H₉⁷⁹BrO₄: 379.9684 found: 379.9700. **HRMS** (EI) m/z: [M]⁺ calcd for C₁₉H₉⁸¹BrO₄: 381.9664 found: 381.9627.

2-((6-nitro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1g.

Following the TP-A, 1g was obtained from 6-nitro-4-oxo-4H-chromene-3-

carbaldehyde (1.09 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1g** as a pale yellow solid (1.3 g, 76%). R_f = 0.45 (Hexanes:EtOAc = 6:4); mp.: 309.2-310.5 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 10.39 (s, 1H), 9.19 (d, *J* = 2.7 Hz, 1H), 8.58 (dd, *J* = 9.7, 2.8 Hz, 1H), 8.34 (s, 1H), 8.08-8.02 (m, 2H), 7.90-7.84 (m, 2H), 7.74 (d, *J* = 9.1 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.1, 188.5, 174.0, 162.8, 158.8, 145.5, 142.2, 140.5, 135.9, 135.6, 134.4, 130.8, 128.7, 123.1, 123.8, 123.6, 123.3, 120., 119. HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₉NO₆: 347.0430 found: 347.0425.

2-((7-methyl-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1h.

Following the **TP-B**, **1h** was obtained from 7-methyl-4-oxo-4H-chromene-3carbaldehyde (0.94 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1h** as a half-white solid (1.25 g, 80%). R_f = 0.45 (Hexanes:EtOAc = 8:2) ; mp.: 224.4-225.6 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 10.34 (s, 1H), 8.40 (s, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 8.06-7.94 (m, 2H), 7.87-7.78 (m, 2H), 7.33 (s, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 2.51 (s, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.1, 189.1, 175.1, 163.3, 156.1, 146.1, 142.0, 136.6, 135.5, 135.3, 129.0, 127.8, 126.3, 123.4, 123.3, 121.6, 118.4, 118.3, 21.8. HRMS (EI) m/z: [M]⁺ calcd for C₂₀H₁₂O₄: 316.0736 found: 316.0752.

2-((7-methoxy-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1i.

Following the **TP-B**, **1i** was obtained from 7-methoxy-4-oxo-4H-chromene-3carbaldehyde (1.02 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1i** as a half-white solid (1.1 g, 68%). $R_f = 0.45$ (Hexanes:EtOAc =7:2) ; mp.: 268.8-269.3 °C. ¹H **NMR** (400 MHz, CDCl₃) δ /ppm: 10.34 (s, 1H), 8.44 (s, 1H), 8.22 (d, *J* = 8.8 Hz, 1H) 8.09-7.97 (m, 2H), 7.89-7.77 (m, 2H), 7.04 (dd, *J* = 9.2, 2.5 Hz, 1H), 6.94 (d, *J* = 2.3 Hz, 1H), 3.64 (s, 3H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.3, 189.1, 174.5, 164.7, 163.1, 157.8, 142.1, 140.4, 136.8, 135.5, 135.3, 129.2, 128.1, 123.5, 123.3, 118.6, 117.7, 115.4, 101.0, 55.9.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{20}H_{12}O_5$: 332.0685 found: 332.0668.

2-((7-fluoro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1j.

Following the **TP-A**, **1j** was obtained from 7-fluoro-4-oxo-4H-chromene-3carbaldehyde (0.96 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1j** as a half-white solid (1.1 g, 76%). $R_f = 0.48$ (Hexanes:EtOAc =8:2) ; mp.: 284.3-285.5 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 10.36 (s, 1H), 8.39 (s, 1H), 8.34 (dd, J = 10, 6.2Hz, 1H), 8.08-7.99 (m, 2H), 7.87-7.82 (m, 2H), 7.33-7.16 (m, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.1, 188.9, 174.3, 167.3, 164.8, 163.2, 157.1 (d, $J_{C-F} = 13.3$ Hz) 142.2, 140.4, 135.8, 135.7, 135.5, 129.8, 129.1, 123.6, 123.4, 120.8, 118.7, 115.1 (d, $J_{C-F} = 22.8$ Hz), 105.4 (d, $J_{C-F} = 24.5$ Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ/ppm: -100.9.

HRMS (EI) m/z: $[M]^+$ calcd for C₁₉H₉FO₄:320.0485 found: 320.0464.

2-((8-nitro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1k.

Following the **TP-A**, **1k** was obtained from 8-nitro-4-oxo-4H-chromene-3carbaldehyde (1.1 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1k** as a brown solid (1.3 g, 76%). $R_f = 0.50$ (Hexanes:EtOAc =7:3) ; mp.: 249.3-250.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 10.40 (s, 1H), 7.54 (d, *J* = 8.1, 1.7 Hz, 1H), 7.54 (d, *J* = 8.2, 1.6 Hz, 1H), 8.31 (s, 1H), 8.08-8.01 (m, 2H), 7.92-7.82 (d, 2H), 7.62 (t, *J* = 7.9 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 189.7, 188.6, 173.5, 162.3, 148.3, 142.2, 140.5, 139.2, 135.9, 135.7, 133.9, 132.3, 130.9, 130.3, 125.6, 125.5, 123.7, 123.6, 119.3. HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₉NO₆:347.0430 found: 347.0423.

Following the **TP-A**, **11** was obtained from 6,8-dimethyl-4-oxo-4H-chromene-3carbaldehyde (1.0 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **11** as a pale green solid (1.05 g, 64%). $R_f = 0.45$ (Hexanes:EtOAc = 7:3) ; mp.: 296.6-297.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 10.41 (s, 1H), 8.46 (s, 1H), 8.06-7.98 (m, 2H), 7.94 (pd, *J* = 0.8 Hz, 1H), 7.87-7.79 (m, 2H), 7.39 (pd, *J* = 0.9 Hz, 1H), 2.51 (s, 3H), 2.44 (s, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.3, 189.2, 175.7, 163.1, 152.9, 142.1, 140.3, 137.1, 136.8, 135.9, 135.5, 135.3, 128.9, 127.8, 127.6, 123.6, 123.5, 123.3, 118.2, 20.9, 15.3.

HRMS (EI) m/z: $[M]^+$ calcd for C₂₁H₁₄O₄:330.0892 found: 330.0864.

2-((6,8-dibromo-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1m.

Following the **TP-A**, **1m** was obtained from 6,8-dibromo-4-oxo-4H-chromene-3carbaldehyde (1.65 mg, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1m** as a pale green solid (1.2 g, 55%). $R_f = 0.50$ (Hexanes/EtOAc = 7: 3); mp: 302.5-303.6 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 10.41 (s, 1H), 8.39 (d, *J* = 2.5 Hz, 1H, 1H), 8.33 (s, 1H), 8.09 (d, *J* = 2.2 Hz, 1H), 8.07-8.00 (m, 2H), 7.90-7.82 (m, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 189.9, 188.7, 173.7, 162.8, 151.9, 142.2, 140.4, 140.2, 135.8, 135.6, 134.6, 130.4, 128.6, 128.6, 125.9, 123.7, 123.6, 119.8, 118.7, 133.4.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{19}H_8^{79}Br^{79}Br O_4$: 457.8789 found: 457.8772. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{19}H_8^{79}Br^{81}BrO_4$: 459.8769 found: 459.8758. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{19}H_8^{81}Br^{81}Br O_4$: 461.8748 found: 461.8722. 2-((1-oxo-1H-benzo[f]chromen-2-yl)methylene)-1H-indene-1,3(2H)-dione 1n.

Following the **TP-A**, **1n** was obtained from 1-oxo-1H-benzo[f]chromene-2carbaldehyde (1.1 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1n** as a halfwhite solid (1.3 g, 76%). $R_f = 0.38$ (Hexanes:EtOAc = 8:2); mp.: 297.4-298.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 10.56 (s, 1H), 8.61-8.53 (m, 1H), 8.49 (s, 1H), 8.24 (d, *J* = 8.7 Hz, 1H), 8.09-8.01 (m, 2H), 8.00-7.93 (m, 1H), 7.89-7.82 (m, 3H), 7.78-7.69 (m, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.2, 189.1, 176.7, 160.9, 157.4, 142.2, 140.4, 136.9, 136.4, 135.6, 135.4, 131.1, 130.6, 129.8, 129.6, 127.3, 127.2, 123.6, 123.4, 120.7, 117.5.

HRMS (EI) m/z: $[M]^+$ calcd for C₂₃H₁₂O₄: 352.0736 found: 352.0741.

2-((4-oxo-4H-benzo[h]chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1o.

Following the **TP-A**, **10** was obtained from 4-oxo-4H-benzo[h]chromene-3carbaldehyde (1.1 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **10** as a yellow solid (1.4 g, 80%). $R_f = 0.47$ (Hexanes/EtOAc = 8:2); mp.: 287.3-288.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 10.56 (s, 1H), 8.61-8.53 (m, 1H), 8.58 (s, 1H), 8.25 (d, *J* = 8.7 Hz, 1H), 8.81-8.01 (m, 2H), 7.99-7.93 (m, 1H), 7.87-7.82 (m, 3H), 7.79-7.69 (m, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.2, 188.9, 175.1, 162.3, 153.6, 142.2, 140.4, 136.3, 136.2, 135.6, 135.4, 129.8, 129.7, 128.2, 127.6, 126.4, 123.9, 123.6, 123.4, 122.3, 121.3, 120.4, 119.7.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{23}H_{12}O_4$: 352.0736 found: 352.0719.

Following the **TP-A**, **1p** was obtained from 5-hydroxy-4-oxo-4H-chromene-3carbaldehyde (0.95 g, 5.0 mmol), and 1H-indene-1,3(2H)-dione (0.73 g, 1.0 equiv.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1p** as a yellow solid (1.2 g, 75%). $R_f = 0.43$ (Hexanes:EtOAc =7:3) ; mp.: 249.1-250.2 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 12.31 (s, 1H), 10.38 (s, 1H), 8.31 (s, 1H), 8.13-7.97 (m, 2H) 7.90-7.77 (m, 2H), 7.60 (t, *J* = 8.3 Hz, 1H), 7.01 (pd, *J* = 8.4, 0.6 Hz, 1H), 6.89 (pd, *J* = 8.4, 0.6 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.1, 188.8, 180.6, 164.2, 161.5, 156.1, 142.1, 140.4, 136.4, 135.7, 135.5, 134.3, 129.6, 123.6, 123.5, 117.3, 112.9, 110.7, 107.7.
HRMS (EI) m/z: [M]⁺ calcd for C₂₁H₁₀O₅: 318.0528 found: 318.0517.

5,6-dimethoxy-2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione 1q.

Following the **TP-A**, **1q** was obtained from 4-oxo-4H-chromene-3-carbaldehyde (0.87 g, 5.0 mmol), and 5,6-dimethoxy-1H-indene-1,3(2H)-dione (1.03 g, 5.0 mmol.), CSA (0.23 g, 0.2 equiv.). The residue was filtered under a vacuum and obtain **1q** as a yellow solid (1.2 g, 68%). $R_f = 0.49$ (Hexanes:EtOAc = 5:5); mp.: 271.7-272.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ /ppm: 10.28 (s, 1H), 8.33 (d, *J* = 7.8 Hz, 1H), 8.26 (s, 1H), 7.74 (t, *J* = 8.3 Hz, 1H), 7.56 (d, *J* = 8.5 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.04 (d, *J* = 11.4 Hz, 1H), 7.33 (s, 2H), 4.03 (s, 6H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 196.6, 162.7, 155.9, 138.4, 134.3, 133.1, 126.6, 126.2, 118.6, 118.5, 103.9, 103.8, 103.2, 56.7, 44.7.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{21}H_{14}O_6$: 362.0790 found: 362.0775.

2-((4-oxo-4H-chromen-3-yl)methylene)-1,3-diphenylpropane-1,3-dione 6.

Following the reported procedure,³ A 50 mL round-bottomed flask equipped with a magnetic stir bar was charged with 4-oxo-4H-chromene-3-carbaldehyde (0.87 g, 5.0 mmol.), 1,3-diphenylpropane-1,3-dione (1.6 g, 1.5 equiv.), K₃CO₃ (0.69 g, 0.2 equiv.) and acetic anhydride (30.0 mL). The reaction mixture was stirred for 8 h at 80 °C. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 65:35) to give **6** as a half-white solid (1.45 g, 76%). $R_f = 0.45$ (Hexanes:EtOAc = 7:3); mp.: 177.0-178.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.26 (d, *J* = 0.7 Hz, 1H), 8.17 (d, *J* = 8.2, 1.8 Hz, 1H), 8.00-7.91 (m, 4H), 7.68 (d, *J* = 0.9 Hz, 1H), 7.67-7.56 (m, 2H), 7.55-7.47 (m, 3H), 7.45-7.36 (m, 4H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 190.1, 188.8, 180.6, 164.2, 161.5, 156.1, 142.1, 140.4, 136.4, 135.7, 135.5, 134.3, 129.6, 123.6, 123.5, 117.3, 112.9, 110.7, 107.7.
HRMS (EI) m/z: [M]⁺ calcd for C₂₅H₁₆O₄: 380.1049 found: 380.1068.

11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2-b]chromene-10,12(11H)-dione 3a.

ollowing the **TP-B**, **3a** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1Hindene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.) and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 8 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3a** as a dark red solid (135.0 mg, 92%). $R_f = 0.30$ (Hexanes:EtOAc = 9:1); mp.: 184.2-185.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.23 (dd, J = 7.9, 1.9 Hz 1H), 7.57 (dtd, J = 9.0, 7.0, 1.7,Hz 1H), 7.46-7.44 (m, 1H), 7.33 (d, J = 7.2 Hz 1H), 7.29-7.25 (m, 1H), 6.94-6.88 (m, 1H), 2.73-2.54 (m, 6H), 1.48-1.44 (m, 12H), 0.93-0.89 (t, J = 8.0 Hz, 9H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 189.7, 174.2, 156.3, 146.1 (d, ² $J_{C-P} = 12.4$ Hz), 141.3, 139.3, 134.4, (d, ³ $J_{C-P} = 9.4$ Hz), 133.8, 132.3, 126.1, 124.7, 123.3, 122.8, 122.6 (d, ² $J_{C-P} = 10.5$ Hz), 122.5, 122.3, (d, ³ $J_{C-P} = 12.7$ Hz), 118.9, 117.5, 82.8, (d, ¹ $J_{C-P} = 102.9$ Hz), 24.1, (d, ³ $J_{C-P} = 4.0$ Hz), 23.8, (d, ² $J_{C-P} = 16.0$ Hz), 21.3, (d, ¹ $J_{C-P} = 52.3$ Hz), 13.5. ³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.0. **HRMS** (EI) m/z: [M]⁺ calcd for C₃₁H₃₅O₃P: 486.2324 found: 486.2310.

8-methyl-11-(tributyl- λ^5 -phosphanylidene)-10H-benzo[5,6]pentaleno[1,2-b]chromene-10,12(11H)-dione 3b.

Following the **TP-B**, **3b** was obtained from 2-((6-methyl-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **1b** (94.89 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 48 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3b** as a dark red solid (138.0 mg, 90%). $R_f = 0.45$ (Hexanes:EtOAc = 8:2); mp.: 179.9-181.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.03 (s, 1H), 7.40-7.30 (m, 3H), 7.28-7.20 (m, 2H), 6.95-6.85 (m, 1H), 2.70-2.58 (m, 6H), 2.43 (s, 3H), 1.53-1.39 (m, 12H), 0.92 (t, *J* = 6.7 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.6, 174.3, 154.5, 146.3 (d, ²*J*_{C-P} = 11.9 Hz), 141.3, 139.2, 139.1, 135.4 (d, ³*J*_{C-P} = 9.7 Hz), 133.8, 133.4, 132.0, 125.6, 124.5, 123.2, 122.4 (d, ³*J*_{C-P} = 10.6 Hz), 122.3 (d, ²*J*_{C-P} = 11.2 Hz), 121.2, 118.9, 117.2, 82.0 (d, ¹*J*_{C-P} = 104.2 Hz), 24.1 (d, ³*J*_{C-P} = 3.9 Hz), 23.7 (d, ²*J*_{C-P} = 15.7 Hz), 21.5 (d, ¹*J*_{C-P} = 52.7 Hz), 20.7, 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.0.

HRMS (EI) m/z: [M]⁺ calcd for C₃₂H₃₇O₃P: 500.2480 found: 500.2462.

8-methoxy-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3c.

Following the **TP-B**, **3c** was obtained from 2-((6-methoxy-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1c** (99.69 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 24 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3c** as a dark red

solid (114.5 mg, 73%). $R_f = 0.45$ (Hexanes:EtOAc = 8:2); mp.: 115.3-116.2 °C. ¹**H NMR** (400 MHz, CDCl₃) δ /ppm: 7.65 (d, J = 3.2 Hz, 1H), 7.38 (d, J = 9.1, 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.28-7.21 (m, 1H), 7.18 (dd, J = 9.1, 3.2 Hz, 1H), 6.94-6.86 (m, 1H), 2.75-2.53 (m, 6H), 1.55-1.37 (m, 12H), 0.91 (t, J = 6.7 Hz, 9H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.7, 173.9, 155.2, 151.1, 146.5 (d, ² $_{JC-P} = 2$

12.1 Hz), 141.4, 139.2, 134.6 (d, ${}^{3}J_{C-P}$ = 9.9 Hz), 133.8, 124.6, 123.2, 122.9, 122.4 (d, ${}^{3}J_{C-P}$ = 10.4 Hz), 122.1 (d, ${}^{2}J_{C-P}$ = 12.3 Hz), 121.9, 118.9, 118.7, 105.9, 81.6 (d, ${}^{1}J_{C-P}$ = 103.3 Hz), 55.8, 24.2 (d, ${}^{3}J_{C-P}$ = 3.8 Hz), 23.8 (d, ${}^{2}J_{C-P}$ = 15.8 Hz), 21.5 (d, ${}^{1}J_{C-P}$ = 52.8 Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 21.9.

HRMS (EI) m/z: [M]⁺ calcd for C₃₂H₃₇O₄P: 516.2429 found: 516.2454.

8-fluoro-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3d.

Following the **TP-B**, **3d** was obtained from 2-((6-fluoro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1d** (96.01 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 8 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3d** as a dark red solid (135.0 mg, 89%). R_f= 0.46 (Hexanes:EtOAc = 9:1); mp.: 169.7-170.5 °C ¹H NMR (400 MHz, CDCl₃) δ /ppm: 7.87 (dd, *J* = 9.0, 3.1 Hz, 1H), 7.43 (dd, *J* = 9.1, 4.3 Hz, 1H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.3-7.28 (m, 1H), 7.3-7.2 (m, 1H), 6.94-6.90 (td, *J* = 6.9, 2.0 Hz, 1H), 2.80-2.52 (m, 6H), 1.55-1.37 (m, 12H), 0.92 (t, *J* = 6.9 Hz, 9H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.7, 173.2, 159.5, 157.1, 152.4, 146.2, ,

(d, ${}^{2}J_{C-P}$ = 12.0 Hz), 141.2, 139.1, 134.9, (d, ${}^{3}J_{C-P}$ = 9.6 Hz), 133.9, 124.8, 123.7, (d, J_{C-F} F = 6.7 Hz), 123.4, 122.3, (d, ${}^{3}J_{C-P}$ = 10.6 Hz), 121.5, (d, ${}^{2}J_{C-P}$ = 12.2 Hz), 120.0 (d, J_{C-F} = 25.2 Hz), 119.8, 119.0, 118.9, 111.0 (d, J_{C-F} = 23.7 Hz), 81.1 (d, ${}^{1}J_{C-P}$ = 103.0 Hz), 24.1 (d, ${}^{3}J_{C-P}$ = 3.9 Hz), 23.8 (d, ${}^{2}J_{C-P}$ = 15.8 Hz), 21.4 , (d, ${}^{1}J_{C-P}$ = 52.5 Hz), 13.5. ³¹**P NMR** (162 MHz, CDCl₃) δ /ppm: 22.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ/ppm: -119.9.

HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₃₄O₃PF: 504.2230 found: 504.2198.

8-chloro-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3e.

Following the **TP-B**, **3e** was obtained from 2-((6-chloro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1e** (101.02 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 8 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3e** as a dark red solid (141.2 mg, 90%). $R_f = 0.55$ (Hexanes:EtOAc = 9:1); mp.: 161.7-162.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.20 (d, *J* = 2.6 Hz, 1H), 7.50 (dd, *J* = 8.9, 2.6 Hz, 1H), 7.4 (d, *J* = 8.8 Hz, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 6.90 (td, *J* = 7.2, 1.7 Hz, 1H), 2.70-2.55 (m, 6H), 1.54-1.37 (m, 12H), 0.92 (t, *J* = 6.9 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.6, 172.8, 154.6, 146.1 (d, ²*J*_{C-P} = 12.7 Hz), 141.2, 139.1, 135.0 (d, ³*J*_{C-P} = 9.6 Hz), 133.9, 132.1, 128.1, 125.7, 124.8, 123.9, 123.4, 122.4 (d, ³*J*_{C-P} = 10.8 Hz), 121.7 (d, ²*J*_{C-P} = 12.3 Hz), 119.1, 119.0, 82.5 (d, ¹*J*_{C-P} = 102.7 Hz), 24.1 (d, ³*J*_{C-P} = 4.1 Hz), 23.7 (d, ²*J*_{C-P} = 15.7 Hz), 21.7(d, ¹*J*_{C-P} = 52.8 Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.2.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{31}H_{34}O_3P^{35}Cl$: 520.1934 found: 520.1919. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{31}H_{34}O_3P^{37}Cl$: 522.1905 found: 522.1904.

8-bromo-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3f.

Following the **TP-B**, **3f** was obtained from 2-((6-bromo-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **1f** (114.4 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 8 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3f** as a dark red solid (148.2 mg, 87%). R_f = 0.50 (Hexanes:EtOAc = 8:2); mp.: 170.3-171.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.36 (d, *J* = 2.5 Hz, 1H), 7.63 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.35-7.34 (m, 1H), 7.33 (s, 1H), 6.94-6.90 (td, *J* = 14.1, 7.1 Hz, 1H), 2.71-2.53 (m,

6H), 1.54-1.36 (m, 12H), 0.92 (t, *J* = 6.9 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.6, 172.7, 155.0, 145.9 (d, ²*J*_{C-P} = 11.6 Hz), 141.1, 139.1, 135.0 (d, ³*J*_{C-P} = 9.4 Hz), 134.9, 133.9, 128.8, 124.3, 124.3, 123.4, 122.4 (d, ²*J*_{C-P} = 10.5 Hz), 121.6 (d, ³*J*_{C-P} = 11.93 Hz), 119.3, 119.1, 115.5, 83.1 (d, ¹*J*_{C-P} = 101.8 Hz), 24.1(d, ³*J*_{C-P} = 3.8 Hz), 23.8 (d, ²*J*_{C-P} = 15.4 Hz), 21.4 (d, ¹*J*_{C-P} = 52.7 Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.2.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{31}H_{34}O_3P^{79}Br$: 564.1429 found: 564.1411. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{31}H_{34}O_3P^{81}Br$: 566.1408 found: 566.1397.

8-nitro-11-(tributyl- λ^5 -phosphanylidene)-4c,10a,11,11a-tetrahydro-10Hbenzo[5,6]pentaleno[1,2-b]chromene-10,12(4bH)-dione 3g.

Following the **TP-B**, **3g** was obtained from 2-((6-nitro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1g** (104.18 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride 2a (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 8 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes: EtOAc = 70:30) to give **3g** as a dark red solid (128.0 mg, 80%). R_f = 0.50 (Hexanes: EtOAc = 8:2); mp.: 212.5-213.6 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 9.15 (d, *J* = 2.8 Hz, 1H), 8.40 (dd, *J* = 9.1 2.9 Hz, 1H), 7.54 (d, *J* = 9.2 Hz, 1H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.34-7.24 (m, 1H), 6.97 (td, *J* = 7.3, 1.2 Hz, 1H), 2.76-2.56 (m, 6H), 1.57-1.39 (m, 12H), 0.93 (t, *J* = 6.8 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.5, 172.0, 159.4, 146.3 (d, ²*J*_{C-P} = 11.7 Hz), 143.1, 140.7, 139.1, 135.3 (d, ³*J*_{C-P} = 9.4 Hz), 134.1, 126.6, 125.2, 123.6, 123.3, 122.9, 122.7 (d, ³*J*_{C-P} = 10.4 Hz), 121.2 (d, ²*J*_{C-P} = 12.3 Hz), 119.3, 118.6, 83.5 (d, ¹*J*_{C-P} = 102.2 Hz), 24.1 (d, ³*J*_{C-P} = 4.0 Hz), 23.3 (d, ²*J*_{C-P} = 15.8 Hz), 21.7 (d, ³*J*_{C-P} = 52.3 Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.7.

HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₃₄NO₅P: 531.2175 found: 531.2171.

7-methyl-11-(tributyl- λ^5 -phosphanylidene)-10H-benzo[5,6]pentaleno[1,2-b]chromene-10,12(11H)-dione 3h.

Following the **TP-B**, **3h** was obtained from 2-((7-methyl-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **1h** (94.89 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 48 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3h** as a dark red solid (113.5 mg, 75%). R_f = 0.48 (Hexanes:EtOAc = 8:2); mp.: 157.2-158.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.11 (d, *J* = 8.1 Hz, 1H), 7.32 (d, *J* = 7.2 Hz 1H), 7.28-7.20 (m, 3H), 7.09 (d, *J* = 8.1 Hz, 1H), 6.96-6.85 (m, 1H), 2.74-2.55 (m, 6H), 2.47 (s, 3H), 1.55-1.36 (m, 12H), 0.91 (t, *J* = 6.8 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.6, 174.3, 156.4, 146.1 (d, ³*J*_{C-P} = 12.2 Hz), 143.3, 141.4, 141.3, 139.3, 134.0 (d, ²*J*_{C-P} = 9.9 Hz), 133.7, 125.8, 124.6, 123.9, 123.2, 122.6 (d, ²*J*_{C-P} = 10.3 Hz), 122.3 (d, ³*J*_{C-P} = 12.2 Hz), 120.4 118.9, 117.4, 82.2 (d, ¹*J*_{C-P} = 103.7 Hz), 24.1 (d, ³*J*_{C-P} = 3.8 Hz), 23.8 (d, ²*J*_{C-P} = 15.6 Hz), 21.7 (d, ¹*J*_{C-P} = 52.9 Hz), 21.2, 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 21.9.

HRMS (EI) m/z: [M]⁺ calcd for C₃₂H₃₇O₃P: 500.2480 found: 500.2492.

7-methoxy-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3i.

Following the **TP-B**, **3i** was obtained from 2-((7-methoxy-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1i** (99.69 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 24 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 75:25) to give **3i** as a dark red solid (109.0 mg, 70%). R_f = 0.38 (Hexanes:EtOAc = 8:2); mp.: 152.9-153.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.13 (d, *J* = 8.8 Hz, 1H), 7.32 (d, *J* = 7.1 Hz 1H), 7.26-7.21 (m, 3H), 6.96-6.80 (m, 3H), 3.91 (s, 3H), 2.7-2.55 (m, 6H), 1.53-1.37 (m, 12H), 0.91 (t, *J* = 6.7 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 189.5, 174.1, 163.3, 158.0, 146.1 (d, ${}^{3}J_{C-P}$ = 12.1 Hz), 141.3, 139.4, 133.6, 133.4 (d, ${}^{2}J_{C-P}$ = 9.8 Hz), 127.4, 124.6, 123.2, 122.6 (d,

 ${}^{2}J_{C-P}$ = 10.5 Hz), 122.2 (d, ${}^{3}J_{C-P}$ = 12.1 Hz), 118.9, 116.6, 111.5, 100.2, 82.2 (d, ${}^{1}J_{C-P}$ = 103.3 Hz), 55.7, 24.2 (d, ${}^{3}J_{C-P}$ = 3.4 Hz), 23.8 (d, ${}^{2}J_{C-P}$ = 15.8 Hz), 21.5 (d, ${}^{1}J_{C-P}$ = 53.1 Hz).

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.0.

HRMS (EI) m/z: [M]⁺ calcd for C₃₂H₃₇O₄P: 516.2429 found: 516.2416.

7-fluoro-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3j.

Following the **TP-B**, **3j** was obtained from 2-((7-fluoro-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **1j** (96.08 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 24 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3j** as a dark red solid (132.1 mg, 87%). R_f = 0.50 (Hexanes:EtOAc = 8:2); mp.: 150.9-151.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ /ppm: 8.23 (dd, *J* = 8.9, 6.6 Hz, 1H), 7.33 (d, *J* = 7.3 Hz 1H), 7.30-7.20 (m, 2H), 6.96 (dd, *J* = 9.6, 2.4 Hz, 1H), 7.99 (td, *J* = 8.2, 2.4 Hz, 1H), 6.92 (td, *J* = 7.1, 1.6 Hz, 1H), 2.76-2.53 (m, 6H), 1.58-1.36 (m, 12H), 0.92 (t, *J* = 6.8 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 189.5, 173.4, 166.3, 163.8, 157.3 (d, $J_{C-F} = 13.2 \text{ Hz}$), 146.1 (d, ${}^{3}J_{C-P} = 11.8 \text{ Hz}$) 141.1, 139.2, 134.2 (d, ${}^{2}J_{C-P} = 9.7 \text{ Hz}$), 133.8, 128.3 (d, $J_{C-F} = 10.6 \text{ Hz}$), 124.8, 123.3, 122.5 (d, ${}^{2}J_{C-P} = 10.8 \text{ Hz}$) 121.7 (d, ${}^{3}J_{C-P} = 12.2 \text{ Hz}$) 119.6, 119.0, 110.9 (d, ${}^{2}J_{C-P} = 22.2 \text{ Hz}$), 103.9 (d, ${}^{2}J_{C-P} = 25.2 \text{ Hz}$), 82.5 (d, ${}^{1}J_{C-P} = 103.2 \text{ Hz}$), 24.1 (d, ${}^{3}J_{C-P} = 3.8 \text{ Hz}$), 23.8 (d, ${}^{2}J_{C-P} = 15.7 \text{ Hz}$), 21.4 (d, ${}^{1}J_{C-P} = 52.6 \text{ Hz}$), 13.5. ³¹P NMR (162 MHz, CDCl₃) δ/ppm: 22.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ/ppm: -106.4.

HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₃₄O₃PF: 504.2230 found: 504.2215.

6-nitro-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3k.

Following the **TP-B**, **3k** was obtained from 2-((8-nitro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1k** (104.18 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 3 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc= 70:30) to give **3k** as a dark red solid (138.0 mg, 86%). $R_f = 0.33$ (Hexanes:EtOAc = 8:2); mp.:179.7-180.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.53 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.38 (dd, *J* = 7.9, 1.7 1H), 7.38-7.28 (m, 4H), 6.96 (td, *J* = 7.2, 2.1 Hz, 1H), 2.71-2.56 (m, 6H), 1.55-1.39 (m, 12H), 0.92 (t, *J* = 6.6 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.6, 171.7, 148.8, 144.5 (d, ³*J*_{C-P} = 11.8 Hz), 140.6, 138.9, 138.5, 135.6 (d, ²*J*_{C-P} = 9.6 Hz), 134.3, 132.1, 128.4, 125.3, 125.2, 123.4, 123.1 (d, ³*J*_{C-P} = 10.5 Hz), 121.3, 120.8 (d, ²*J*_{C-P} = 12.4 Hz), 119.6, 81.1 (d, ¹*J*_{C-P} = 102.6 Hz), 24.1 (d, ³*J*_{C-P} = 3.9 Hz), 23.5 (d, ²*J*_{C-P} = 15.8 Hz), 21.2 (d, ¹*J*_{C-P} = 52.6 Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.6.

HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₃₄NO₅P: 531.2175 found: 531.2159.

6,8-dimethyl-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3l.

Following the **TP-B**, **31** was obtained from 2-((6,8-dimethyl-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **11** (330.3 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.) and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 24 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc= 70:30) to give **31** as a dark red solid (116.0 mg, 75%). $R_f = 0.50$ (Hexanes:EtOAc = 8:2); mp.: 211.1-212.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 7.88 (d, J = 1.4 Hz, 1H), 7.32 (d, J = 7.3 Hz, 1H), 7.28-7.21 (m, 2H), 7.18 (d, J = 7.2 Hz, 1H), 6.90 (dd, J = 7.3, 0.82 Hz, 1H), 2.73-2.58 (m, 6H), 2.53(s, 3H), 2.40 (s, 3H), 1.57-1.36 (m, 12H), 0.91 (t, J = 6.8 Hz 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.7, 174.7, 152.8, 146.3 (d, ²*J*_{C-P} = 12.1 Hz), 141.4, 139.3, 134.6, 134.1 (d, ³*J*_{C-P} = 9.8 Hz), 133.7, 131.4, 126.2, 124.5, 123.2, 122.6 (d, ³*J*_{C-P} = 10.9 Hz), 122.1 (d, ²*J*_{C-P} = 12.2 Hz), 122.0, 118.8, 82.3 (d, ¹*J*_{C-P} = 103.7 Hz), 24.2 (d, ³*J*_{C-P} = 3.7 Hz), 23.8 (d, ²*J*_{C-P} = 15.7 Hz), 21.5 (d, ¹*J*_{C-P} = 53.7 Hz), 20.7, 15.7, 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 21.9. **HRMS** (EI) m/z: [M]⁺ calcd for. C₃₃H₃₉ O₃P: 514.2637 found: 514.2618.

6,8-dibromo-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3m.

Following the **TP-B**, **3m** was obtained from 2-((6,8-dibromo-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1m** (138.02 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.). in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 8 h. After workup, the residue was purified by column chromatography (SiO₂, Hexane:EtOAc = 75:25) to give **3m** as a dark red solid (165.0 mg, 85%). $R_f = 0.40$ (Hexanes:EtOAc = 9:1); mp.: 214.2-215.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.30 (d, *J* = 8.3 Hz, 1H), 7.91 (d, *J* = 2.3 Hz, 1H), 7.35 (d, *J* = 7.4 Hz, 1H), 7.32-7.27 (m, 2H), 6.99-6.90 (m, 1H), 2.73-2.49 (m, 6H), 1.58-1.35 (m, 12H), 0.91 (t, *J* = 6.7 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.7, 171.8, 151.6, 145.3 (d, ²*J*_{C-P} = 11.8 Hz), 140.9, 140.8, 139.0, 137.5, 135.4 (d, ³*J*_{C-P} = 9.6 Hz), 134.1, 128.3, 125.1, 125.0, 123.5, 122.8 (d, ³*J*_{C-P} = 10.5 Hz), 120.8 (d, ²*J*_{C-P} = 12.4 Hz), 119.4, 115.1, 112.0, 82.8 (d, ¹*J*_{C-P} = 102.8 Hz), 24.1 (d, ³*J*_{C-P} = 4.1 Hz), 23.8 (d, ²*J*_{C-P} = 15.8 Hz), 21.3 (d, ¹*J*_{C-P} = 52.8 Hz), 13.5.

³¹P NMR (162 MHz, CDCl₃) δ/ppm: 22.4.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{31}H_{33}^{79}Br^{79}Br O_3P$: 642.0534 found: 642.0519. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{31}H_{33}^{79}Br^{81}BrO_4P$: 644.0514 found: 644.0522. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{31}H_{33}^{81}Br^{81}Br O_4P$: 646.0493 found: 646.0487.

13-(tributyl-λ⁵-phosphanylidene)-12H-benzo[f]benzo[5,6]pentaleno[1,2b]chromene-12,14(13H)-dione 3n.

Following the **TP-B**, **3n** was obtained from 2-((1-oxo-1H-benzo[f]chromen-2yl)methylene)-1H-indene-1,3(2H)-dione **1n** (105.7 mg, 0.3 mmol), PBu₃ (88.8 μ L, 1.2 equiv.), benzoyl chloride **2a** (104.5 μ L, 3.0 equiv.), and Et₃N (150.5 μ L, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 48 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **3n** as a dark red solid (85.1 mg, 52%). R_f = 0.53 (Hexanes:EtOAc = 7:3); mp.: 189.4-190.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 10.17 (d, *J* = 8.7 Hz, 1H), 7.98 (d, *J* = 9.1 Hz 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 9.1 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.3 Hz, 1H), 7.29-7.20 (m, 2H), 6.95-6.85 (m, 1H), 2.79-2.59 (m, 6H), 1.55-1.40 (m, 12H), 0.92 (t, *J* = 6.7 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.6, 177.2, 157.3, 144.7 (d, ³*J*_{C-P} = 12.0 Hz), 141.3, 141.2, 139.4, 133.8, 133.7, 133.4 (d, ²*J*_{C-P} = 10.0 Hz), 132.2, 130.2, 128.1, 126.9, 125.2 (d, ²*J*_{C-P} = 11.4 Hz), 124.9, 124.6, 123.2, 122.7, (d, ³*J*_{C-P} = 10.6 Hz), 118.7, 118.6, 114.7, 81.2 (d, ¹*J*_{C-P} = 104.5 Hz), 24.3 (d, ³*J*_{C-P} = 3.9 Hz), 23.8 (d, ²*J*_{C-P} = 15.7 Hz), 21.8 (d, ¹*J*_{C-P} = 53.7 Hz), 13.6.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 21.9.

HRMS (EI) m/z: [M]⁺ calcd for C₃₅H₃₇O₃P: 536.2480 found: 536.2464.

8-(tributyl-λ⁵-phosphanylidene)-7H-benzo[h]benzo[5,6]pentaleno[1,2b]chromene-7,9(8H)-dione 3o.

Following the **TP-B**, **30** was obtained from 2-((4-oxo-4H-benzo[h]chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **10** (105.72 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.), and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 24 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc =75:25) to give **30** as a dark red solid (118.0 mg, 73%). R_f = 0.50 (Hexanes:EtOAc = 8:2); mp.: 191.3-192.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.69-8.61 (m, 1H), 8.23 (d, *J* = 8.7 Hz, 1H), 7.94-7.84 (m, 1H), 7.73-7.60 (m, 3H), 7.42-7.29 (m, 3H), 6.94 (td, *J* = 7.4, 1.0 Hz, 1H), 2.79-2.56 (m, 6H), 1.62-1.37 (m, 12H), 0.91 (t, *J* = 6.9 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.7, 174.4, 153.1, 145.9 (d, ³*J*_{C-P} = 12.2 Hz), 141.3, 139.6, 135.6, 133.9 (d, ²*J*_{C-P} = 9.9 Hz), 133.8, 128.3, 127.8, 126.3, 124.8, 124.4, 123.3, 123.1 (d, ²*J*_{C-P} = 10.3 Hz), 122.9 (d, ³*J*_{C-P} = 12.3 Hz), 122.7, 122.4, 121.9, 118.9, 117.9, 81.7 (d, ¹*J*_{C-P} = 104.0 Hz), 24.2 (d, ³*J*_{C-P} = 3.9 Hz), 23.8 (d, ³*J*_{C-P} = 15.7 Hz), 21.6 (d, ³*J*_{C-P} = 53.3 Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.1.

HRMS (EI) m/z: [M]⁺ calcd for C₃₅H₃₇O₃P: 536.2480 found: 536.2489.

10,12-dioxo-11-(tributyl-λ⁵-phosphanylidene)-11,12-dihydro-10Hbenzo[5,6]pentaleno[1,2-b]chromen-9-yl benzoate 3p.

Following the **TP-B**, **3p** was obtained from 2-((5-hydroxy-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1p** (95.40 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (156.83 µL, 4.5 equiv.) and Et₃N (192.30 µL, 4.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 24 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc= 80:20) to give **3p** as a dark red solid (128.0 mg, 70%). $R_f = 0.40$ (Hexanes:EtOAc = 9:1); mp.: 190.8-191.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.26 (d, *J* = 7.3 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.57-7.47 (m, 3H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.30 (d, *J* = 7.3 Hz, 1H), 7.27-7.28 (m, 2H), 6.98 (d, *J* = 7.6 Hz, 1H), 7.39 (dd, *J* = 7.1, 1.6 Hz, 1H), 2.51-2.34 (m, 6H), 1.58-1.28 (m, 12H), 0.86 (t, *J* = 6.8 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.5, 173.4, 165.4, 157.7, 150.2, 144.9 (d, ${}^{2}J_{C-P} = 11.8$ Hz), 141.3, 141.2, 139.3, 133.8 (d, ${}^{3}J_{C-P} = 11.8$ Hz), 133.7, 132.8, 131.6, 130.8, 130.3, 128.2, 124.6, 123.3 (d, ${}^{3}J_{C-P} = 12.3$ Hz), 123.2, 122.3 (d, ${}^{2}J_{C-P} = 12.2$ Hz), 118.9, 116.9, 115.9, 82.4 (d, ${}^{1}J_{C-P} = 103.5$ Hz), 24.1 (d, ${}^{3}J_{C-P} = 3.9$ Hz), 23.8 (d, ${}^{2}J_{C-P} = 15.9$ Hz), 21.5 (d, ${}^{1}J_{C-P} = 53.0$ Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 21.6.

HRMS (EI) m/z: [M]⁺ calcd for C₃₈H₃₉ O₅P: 606.2535 found: 606.2524.

2,3-dimethoxy-11-(tributyl-λ⁵-phosphanylidene)-10H-benzo[5,6]pentaleno[1,2b]chromene-10,12(11H)-dione 3q.

Following the **TP-B**, **3q** was obtained 5,6-dimethoxy-2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1q** (108.7 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.) and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 3 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc =72:25) to give **3q** as a reddish brown solid (90.0 mg, 55%). R_f = 0.38 (Hexanes/EtOAc = 8:2); mp.: 160.7-161.7 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 8.23 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.56 (dtd, *J* = 8.9,

7.5, 1.7 Hz, 1H), 7.27 (dd, *J* = 7.5, 0.7 Hz, 1H), 6.98 (s, 1H), 6.83 (s, 1H), 4.03 (s, 3H), 3.86 (s, 3H), 2.71-2.55 (m, 6H), 1.57-1.38 (m, 12H), 0.92 (t, *J* = 6.7 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.2, 173.6, 156.2, 153.9, 146.4, 145.6 (d, ${}^{2}J_{C-P} = 11.9$ Hz), 136.7, 135.3 (d, ${}^{3}J_{C-P} = 9.6$ Hz), 132.0, 131.2, 126.1, 122.8, 122.5, 121.4 (d, ${}^{2}J_{C-P} = 12.1$ Hz), 120.5 (d, ${}^{3}J_{C-P} = 10.7$ Hz), 117.3, 107.9, 103.4, 82.9 (d, ${}^{1}J_{C-P} = 103.2$ Hz), 56.3, 56.2, 24.2 (d, ${}^{3}J_{C-P} = 3.8$ Hz), 23.8 (d, ${}^{2}J_{C-P} = 15.7$ Hz), 21.4 (d, ${}^{1}J_{C-P} = 52.8$ Hz), 13.5.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.0.

HRMS (EI) m/z: [M]⁺ calcd for C₃₃H₃₉O₅P: 546.2535. found: 546.2538.

3-(4-benzoyl-2,5-diphenylfuran-3-yl)-4H-chromen-4-one 6.

Following the **TP-B**, **6** was obtained 2-((4-oxo-4H-chromen-3-yl)methylene)-1,3diphenylpropane-1,3-dione **1r** (114.1 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.), benzoyl chloride **2a** (104.5 µL, 3.0 equiv.) and Et₃N (150.5 µL, 3.6 equiv.) in anhydrous CH₂Cl₂ (1.5 mL) at 30 °C for 3 h. After workup, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc =70:30) to give **6** as a half-white solid (99.0 mg, 75%). $R_f = 0.38$ (Hexanes/EtOAc = 8:2); mp.: 115.8-116.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.16 (dd, *J* = 7.9, 1.6 Hz, 1H), 8.02 (s, 1H), 7.86 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.73-7.62 (m, 3H), 7.55-7.48 (m, 2H), 7.44 (d, *J* = 8.4, Hz, 1H), 7.40-7.28 (m, 5H), 7.27-7.18 (m, 5H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 192.4, 175.6, 156.2, 154.9, 152.6, 150.5, 137.2, 133.6, 132.9, 129.8, 129.7, 129.2, 128.6, 128.6, 128.2, 128.1, 127.1, 126.2, 126.1, 125.1, 123.8, 123.8, 118.0, 117.4, 113.8.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{32}H_{20}O_4P$: 468.1362. found: 468.1352.

2-(2-oxo-1-(4-oxo-4H-chromen-3-yl)-2-phenylethylidene)-1H-indene-1,3(2H)dione 5aa.

Following the **TP-C**, **5aa** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54µL, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc= 70:30) to give **5aa** as a pale yellow solid (110.0 mg, 90%). R_f = 0.41 (Hexanes:EtOAc = 7:3); mp.: 248.2-248.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.30 (s, 1H), 8.29 (dd, *J* = 7.9, 1.5 Hz 1H), 8.11 (dd, *J* = 7.3, 1.2,Hz 1H), 7.96-7.92 (m, 1H), 7.89-7.84 (m, 1H), 7.84-7.74 (m, 2H), 7.70 (dtd, *J* = 9.0 7.3, 1.6,Hz, 1H), 7.57 (t, *J* = 7.4 Hz 1H), 7.50-7.41 (m, 4H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 195.4, 187.6, 187.3, 173.0, 155.9, 155.4, 146.2, 142.6, 140.7, 135.8, 132.7, 134.9, 134.3, 134.2, 131.6, 129.0, 128.9, 126.6, 126.0, 123.7, 123.6, 123.5, 118.4, 118.2.

HRMS (ESI) m/z: [M+H]⁺ calcd for. C₂₆H₁₄ O₅: 407.0919 found: 407.0916.

2-(1-(6-methyl-4-oxo-4H-chromen-3-yl)-2-oxo-2-phenylethylidene)-1H-indene-1,3(2H)-dione 5ba.

Following the **TP-C**, **5ba** was obtained from 2-((6-methyl-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **1b** (94.89 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 3 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc =70:30) to give **5ba** as a pale yellow solid (101.0 mg, 80%). R_f = 0.45 (Hexanes:EtOAc = 7:3); mp.: 290.3-291.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.27 (s, 1H), 8.14-8.07 (m, 3H), 7.95 (dd, J = 6.1, 1.5 Hz, 1H), 7.90-7.85 (m, 1H), 7.83-7.75 (m, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.52 (dd, J = 8.6, 2.1 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.38 (d, J = 8.6 Hz, 1H), 2.50 (s, 3H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 195.4, 187.8, 187.4, 173.1, 155.3, 154.2, 146.5, 142.7, 140.8, 136.2, 135.8, 135.6, 135.5, 135.1, 134.2, 131.5, 129.1, 128.9, 126.0, 145.1, 145

123.7, 123.6, 123.4, 118.2, 117.9, 20.9. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₆O₅: 420.0998 found: 420.0989.

2-(1-(6-chloro-4-oxo-4H-chromen-3-yl)-2-oxo-2-phenylethylidene)-1H-indene-1,3(2H)-dione 5ea.

Following the **TP-C**, **5ea** was obtained from 2-((6-chloro-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1e** (101.02 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc= 70:30) to give **5ea** as a pale yellow solid (95.0 mg, 72%). R_f = 0.45 (Hexanes:EtOAc = 7:3); mp.: 270.1-271.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.29 (s, 1H), 8.27 (dd, *J* = 2.6 Hz, 1H), 8.12-8.07 (m, 2H), 7.99-7.95 (m, 1H), 7.91-7.87 (m, 1H), 7.85-7.77 (m, 2H), 7.70 (dd, *J* = 9.4, 2.7 Hz, 1H), 7.62-7.56 (m, 1H), 7.51-7.43 (m, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 195.3, 187.6, 187.3, 171.9, 155.2, 154.3, 145.4, 142.6, 140.8, 135.9, 135.7, 134.9, 134.5, 134.4, 132.1, 131.8, 129.1, 128.9, 126.1, 124.6, 123.7, 123.6, 119.9, 118.4.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{26}H_{13}{}^{35}Cl O_5$: 440.0452 found: 440.0434. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{26}H_{13}{}^{37}Cl O_5$: 442.0422 found: 442.0436.

2-(1-(7-methoxy-4-oxo-4H-chromen-3-yl)-2-oxo-2-phenylethylidene)-1H-indene-1,3(2H)-dione 5ia.

Following the **TP-C**, **5ia** was obtained from 2-((7-methoxy-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1i** (99.69 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 2 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc= 70:30) to give **5ia** as a pale yellow solid (82.0 mg, 62%). R_f= 0.40 (Hexanes:EtOAc = 7:3) ; mp.: 268.8-269.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.23 (s, 1H), 8.19 (d, J = 8.9 Hz, 1H), 8.14-8.07 (m, 2H), 7.99-7.95 (m, 1H), 7.90-7.86 (m, 1H), 7.85-7.74 (m, 2H), 7.62-7.54 (m, 1H), 7.50-7.43 (m, 2H), 7.02 (dd, J = 9.1, 2.3 Hz, 1H), 6.87 (d, J = 2.4 Hz, 1H), 3.91 (s, 3H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 195.5, 187.8, 187.4, 172.3, 164.6, 157.7, 155.1, 146.6, 142.7, 140.8, 135.8, 135.6, 135.1, 134.1, 131.6, 129.1, 128.9, 128.1, 123.7, 123.6, 118.5, 117.6, 115.2, 100.5, 55.9. **HRMS** (EI) m/z: [M]⁺ calcd for C₂₇H₁₆O₆: 436.0947 found: 436.0966.

2-(1-(7-fluoro-4-oxo-4H-chromen-3-yl)-2-oxo-2-phenylethylidene)-1H-indene-1,3(2H)-dione 5ja.

Following the **TP-C**, **5ja** was obtained from 2-((7-fluoro-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **1j** (96.08 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc =70:30) to give **5ja** as a pale yellow solid (95.4 mg, 75%). R_f = 0.43 (Hexanes:EtOAc = 7:3); mp.: 223.5-224.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ /ppm: 8.3 (dd, J = 8.7, 6.3 Hz, 1H), 8.29 (s, 1H), 8.11 (d, J = 7.8 Hz, 2H), 7.96 (dd, J = 6.4, 1.3 Hz, 1H), 7.93-7.85 (m, 1H), 7.85-7.75 (m, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.24-7.15 (m, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 195.3, 187.7, 187.3, 172.2, 167.2, 164.6, 157.9 (d, $J_{C-F} = 13.3$ Hz), 155.2, 145.6, 142.6, 140.8, 135.9, 135.8, 134.9, 134.3, 131.8, 129.1 (d, $J_{C-F} = 10.9$ Hz), 129.1, 128.9, 123.8, 123.7, 120.7, 120.6, 118.7, 114.8 (d, $J_{C-F} = 22.8$ Hz), 105.0 (d, $J_{C-F} = 25.6$ Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ/ppm: -101.3.

HRMS (EI) m/z: [M]⁺ calcd for C₂₆H₁₃O₅F: 424.0747 found: 424.0745.

2-(1-(6,8-dimethyl-4-oxo-4H-chromen-3-yl)-2-oxo-2-phenylethylidene)-1Hindene-1,3(2H)-dione 5la.

Following the **TP-C**, **5la** was obtained from2-((6,8-dimethyl-4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1l** (99.10 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc= 70:30) to give **5la** as a pale yellow solid (105.1 mg, 80%). R_f= 0.53 (Hexanes:EtOAc = 7:3); mp.:

304.1-305.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.32 (s, 1H), 8.10 (dd, *J* = 7.3, 1.4 Hz, 1H), 7.99-7.93 (m, 1H), 7.92 (d, *J* = 0.8 Hz, 1H), 7.89-7.85 (m, 1H), 7.83-7.75 (m, 2H), 7.60-7.53 (m, 1H), 7.50-7.42 (m, 2H), 7.36 (s, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 195.4, 187.9, 187.4, 173.4, 155.2, 152.8, 146.8, 142.7, 140.8, 136.5, 135.8, 135.6, 135.5, 135.1, 134.1, 131.4, 129.1, 128.9, 127.4, 123.7, 123.6, 123.5, 123.4, 117.9, 20.9, 15.3.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{28}H_{18}O_5$: 434.1154 found: 434.1163.

2-(1-(6,8-dibromo-4-oxo-4H-chromen-3-yl)-2-oxo-2-phenylethylidene)-1Hindene-1,3(2H)-dione 5ma.

Following the **TP-C**, **5ma** was obtained from 2-((6,8-dibromo-4-oxo-4H-chromen-3yl)methylene)-1H-indene-1,3(2H)-dione **1m** (138.04 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **5ma** as a pale yellow solid (85.0 mg, 50%). R_f = 0.30 (Hexanes:EtOAc = 7:3); mp.: 269.1-270.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.41-8.34 (m, 2H), 8.12-8.04 (m, 3H), 7.98-7.94 (m, 1H), 7.92-7.87 (m, 1Hz), 7.86-7.77 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 194.9, 187.4, 187.3, 171.4, 154.8, 151.6, 144.6, 142.6, 140.9, 140.0, 136.0, 135.9, 134.8, 134.4, 132.1, 129.1, 129.0, 128.7, 125.7, 123.8, 119.4, 118.6, 113.1.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{26}H_{12}^{79}BrO_5$: 561.9051 found: 561.9042. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{26}H_{12}^{79}Br^{81}BrO_5$: 563.9031 found: 563.9021. **HRMS** (EI) m/z: $[M]^+$ calcd for $C_{26}H_{12}^{81}Br^{81}BrO_5$: 565.9011 found: 565.9024.

2-(2-oxo-1-(1-oxo-1H-benzo[f]chromen-2-yl)-2-phenylethylidene)-1H-indene-1,3(2H)-dione 5na.

Following the **TP-C**, **5na** was obtained from 2-((1-oxo-1H-benzo[f]chromen-2yl)methylene)-1H-indene-1,3(2H)-dione **1n** (105.70 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 2 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 65:35) to give **5na** as a pale yellow solid (97.0 mg, 74%). R_f = 0.45 (Hexanes:EtOAc = 7:3); mp.: 264.5-265.6 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 9.94 (d, J = 8.7 Hz, 1H), 8.32 (s, 1H), 8.23-8.20 (m, 2H), 8.12 (d, J = 9.1 Hz, 1H), 7.97-7.94 (m, 1H), 7.92 (d, J = 7.4 Hz, 1H), 7.90-7.86 (m, 1H), 7.84.7.72 (m, 3H), 7.63 (dtd, J = 8.78, 7.2, 1.2 Hz, 1H), 7.60-7.55 (m, 1H), 7.53-7.44 (m, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 195.5, 187.9, 187.3, 174.7, 157.2, 152.9, 146.8, 142.7, 140.8, 136.1, 135.8, 135.6, 135.2, 134.2, 134.3, 131.6, 131.0, 130.6, 129.6, 129.2, 128.9, 128.3, 127.2, 126.9, 123.7, 123.6, 120.9, 117.4, 117.3.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{30}H_{16}$ O₅: 456.0998 found: 456.1010.

2-(2-oxo-1-(4-oxo-4H-benzo[h]chromen-3-yl)-2-phenylethylidene)-1H-indene-1,3(2H)-dione 50a.

Following the **TP-C**, **50a** was obtained from 2-((1-oxo-1H-benzo[f]chromen-2yl)methylene)-1H-indene-1,3(2H)-dione **10** (105.70 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), benzoyl chloride **2a** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 75:25) to give **50a** as a pale yellow solid (98.0 mg, 75%). R_f = 0.40 (Hexanes:EtOAc = 7:3); mp.: 180.2-181.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.50 (s, 1H), 8.45 (d, *J* = 8.2 Hz, 1H), 8.21 (d, *J* = 8.7 Hz, 1H), 8.18-8.12 (m, 2H), 8.0-7.95 (m, 1H), 7.93 (d, *J* = 7.7 Hz, 1H), 7.91-7.87 (m, 1H), 7.85-7.76 (m, 3H), 7.75-7.64 (m, 2H), 7.80 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 195.5, 187.8, 187.3, 172.8, 154.4, 153.5, 146.2, 142.7, 140.8, 136.0, 135.8, 135.7, 135.0, 134.2, 131.8, 129.7, 129.1, 128.9, 128.1, 127.1, 127.5, 126.1, 123.8, 123.7, 123.7, 122.2, 121.1, 120.2, 119.7.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{30}H_{16}$ O₅: 456.0998 found: 456.0983.

2-(2-oxo-1-(4-oxo-4H-chromen-3-yl)-2-(p-tolyl)ethylidene)-1H-indene-1,3(2H)dione 5ab.

Following the **TP-C**, **5ab** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 1.2 equiv.), 4methylbenzoyl chloride **2b** (52.35 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc =80:20) to give **5ab** as a pale yellow solid (109.0 mg, 86%). R_f = 0.40 (Hexanes:EtOAc = 90:10); mp.: 284.1-285.0 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.35-8.25 (m, 2H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.96 (d, *J* = 6.6 Hz, 1H), 7.91-7.85 (m, 1H), 7.84-7.75 (m, 2H), 7.71 (td, *J* = 6.7, 1.0 Hz, 1H), 7.54-7.41 (m, 2H), 7.30-7.22 (m, 2H), 2.37 (s, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 194.9 187.8, 187.4, 172.9, 155.9, 155.2, 146.4, 145.3, 142.6, 140.8, 135.8, 135.6, 134.2, 132.6, 131.4, 129.7, 129.2, 126.7, 125.9, 123.8, 123.7, 123.6, 118.6, 118.2, 21.8.

HRMS (EI) m/z: $[M]^+$ calcd for C₂₇H₁₆O₅: 420.0998 found: 420.0989.

2-(2-(4-methoxyphenyl)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethylidene)-1H-indene-1,3(2H)-dione 5ac.

Following the **TP-C**, **5ac** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), 4methoxy benzoyl chloride **2c** (52.8 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 3 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **5ac** as a pale yellow solid (115.0 mg, 88%). R_f = 0.36 (Hexanes:EtOAc = 7:3); mp.: 251.9-252.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.33-8.27 (m, 1H), 8.16-8.05 (m, 2H), 7.99-7.93 (m, 1H), 7.92-7.87 (m, 1H), 7.84-7.77 (m, 2H), 7.71 (dtd, *J* = 9.4, 7.7, 1.7 Hz, 1H),

7.51-7.43 (m, 2H), 6.97-6.88 (m, 2H), 3.83 (s, 3H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 193.8, 187.8, 187.5, 173.0, 164.5, 156.0, 154.9, 146.4, 142.6, 140.9, 135.8, 135.6, 134.2, 131.6, 131.3, 128.2, 126.7, 125.9, 123.8, 123.7, 123.6, 118.8, 118.2, 114.4, 55.5.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{27}H_{16}O_6$: 436.0947 found: 436.0945.

2-(2-oxo-1-(4-oxo-4H-benzo[h]chromen-3-yl)-2-phenylethylidene)-1H-indene-1,3(2H)-dione 5ad.

Following the **TP-C**, **5ad** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), 4fluorobenzoyl chloride **2d** (42.59 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **5ad** as a pale yellow solid (110.0 mg, 86%). R_f = 0.45 (Hexanes:EtOAc = 7:3); mp.: 267.4-268.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.30 (s, 1H), 8.29 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.18-8.11 (m, 2H), 7.99-7.94 (m, 1H), 7.86-7.78 (m, 2H), 7.73 (dtd, *J* = 9.5, 6.9, 1.7 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.75-7.45 (m, 2H), 7.19-7.10 (m, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 193.8, 187.8, 187.2, 173.3, 167.6, 167.6, 165.1, 155.9, 155.5, 145.9, 142.6, 140.7, 135.9 (d, J_{C-F} = 17.2 Hz), 134.3, 131.8, 131.7, 131.6, 126.6, 126.1, 123.7, 123.6, 118.3, 118.3, 116.2 (d, J_{C-F} = 23.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ/ppm: -102.8.

HRMS (EI) m/z: $[M]^+$ calcd for. C₂₆H₁₃ O₅F: 424.0747 found: 424.0764.

2-(2-(4-chlorophenyl)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethylidene)-1H-indene-

1,3(2H)-dione 5ae.

Following the **TP-C**, **5ae** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54µL, 0.2 equiv.), 4chlorobenzoyl chloride **2e** (41.82 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 2 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **5ae** as a pale yellow solid (121.1 mg, 92%). R_f = 0.53 (Hexanes:EtOAc = 7:3); mp.: 196.4-197.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.32 (s, 1H), 8.27 (dd, *J* = 8.1, 1.5 Hz, 1H), 8.17-8.03 (m, 2H), 7.97-7.95 (m, 1H), 7.91-7.87 (m, 1H), 7.87-7.78 (m, 2H), 7.76-7.69 (m, 1H), 7.49 (t, *J* = 8.6 Hz, 2H), 7.46-7.41 (m, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 194.3, 187.8, 187.2, 173.3, 155.9, 155.8, 145.9, 142.6, 140.7, 140.6, 135.9, 135.8, 134.4, 133.6, 131.6, 131.5, 130.3, 129.3, 128.8, 126.6, 126.1, 123.8, 123.7, 123.6, 118.3, 118.2.

HRMS (EI) m/z: $[M]^+$ calcd for C₂₆H₁₃³⁵ClO₅: 440.0452 found: 440.0431. **HRMS** (EI) m/z: $[M]^+$ calcd for C₂₆H₁₃³⁷ClO₅: 442.0422 found: 442.0396.

2-(2-(4-bromophenyl)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethylidene)-1H-indene-1,3(2H)-dione 5af.

Following the **TP-C**, **5af** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), 4bromobenzoyl chloride **2f** (49.09 mg, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **5af** as a pale yellow solid (110.0 mg, 75%). R_f = 0.50 (Hexanes:EtOAc = 65: 35); mp.: 236.5-237.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.32 (s, 1H), 8.28 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.97 (d, *J* = 8.6 Hz, 3H), 7.92-7.76 (m, 1H), 7.86-7.77 (m, 2H), 7.73 (dtd, *J* = 8.7, 6.7, 1.5 Hz, 1H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.53-7.44 (m, 2H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 194.5, 187.8, 187.2, 173.3, 155.9, 155.9, 145.9, 142.7, 140.7, 135.9, 135.8, 134.4, 134.1, 132.3, 131.7, 130.4, 129.5, 126.6, 126.1, 123.8, 123.6, 123.7, 118.3, 118.2.

HRMS (EI) m/z: $[M]^+$ calcd for C₂₆H₁₃⁷⁹BrO₅: 483.9946 found: 483.9971.

HRMS (EI) m/z: $[M]^+$ calcd for $C_{26}H_{13}^{81}BrO_5$: 485.9926 found: 485.9979.

2-(2-(3-bromophenyl)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethylidene)-1H-indene-1,3(2H)-dione 5ag.

Following the **TP-C**, **5ag** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), 3bromobenzoyl chloride **2g** (47.53 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **5ag** as a pale yellow solid (120.0 mg, 82%). R_f = 0.48 (Hexanes:EtOAc = 7:3); mp.: 250.1-251.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.32 (s, 1H), 8.31-8.34 (m, 2H), 8.01-7.95 (m, 2H), 7.98-7.86 (m, 1H), 7.85-7.77 (m, 2H), 7.72 (dtd, *J* = 9.2, 7.7, 1.7 Hz, 1H), 7.78-7.66 (m, 1H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.56-7.44 (m, 1H), 7.32 (t, *J* = 7.9 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 194.2, 187.8, 187.1, 173.3, 156.2, 155.9, 145.9, 142.7, 140.6, 136.9, 136.8, 135.9, 135.8, 134.4, 131.7, 131.3, 130.4, 127.9, 126.6, 126.1, 123.8, 123.7, 123.2, 118.3, 118.1.

HRMS (EI) m/z: $[M]^+$ calcd for C₂₆H₁₃⁷⁹BrO₅: 483.9946 found: 483.9931. **HRMS** (EI) m/z: $[M]^+$ calcd for C₂₆H₁₃⁸¹BrO₅: 485.9926 found: 485.9912.

2-(2-(2-bromophenyl)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethylidene)-1H-indene-1,3(2H)-dione 5ah.

Following the **TP-C**, **5ah** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), 2bromobenzoyl chloride **2h** (59.49 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 2 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 70:30) to give **5ah** as a pale yellow solid (113.0 mg, 77%). R_f = 0.38 (Hexanes:EtOAc = 7:3); mp.: 242.2-243.3 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.48 (s, 1H), 8.26 (dd, *J* = 8.0, 1.4 Hz, 1H), 8.08

(dd, J = 7.5, 1.9 Hz, 1H), 7.99-7.92 (m, 1H), 7.91-7.86 (m, 1H), 7.85-7.78 (m, 2H), 7.75-7.70 (m, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.42-7.31 (m, 2H). ¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 193.7, 188.0, 187.5, 173.6, 157.2, 155.9, 147.0, 142.5, 140.5, 135.8, 135.7, 135.4, 134.8, 134.4, 133.6, 133.3, 130.8, 127.4, 126.6, 126.1, 123.8, 123.7 122.2, 118.4, 118.3.

HRMS (EI) m/z: $[M]^+$ calcd for C₂₆H₁₃⁷⁹BrO₅: 483.9946 found: 483.9935. **HRMS** (EI) m/z: $[M]^+$ calcd for C₂₆H₁₃⁸¹BrO₅: 485.9926 found: 485.9921.

4-(2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-2-(4-oxo-4H-chromen-3-yl)acetyl)benzonitrile 5ai.

Following the **TP-C**, **5ai** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), 4cyanobenzoyl chloride **2i** (59.0 mg, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 2 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 65:35) to give **5ai** as a yellow solid (84.0 mg, 65%). R_f = 0.50 (Hexanes:EtOAc = 5:5); mp.: 265.1-266.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.42 (s, 1H), 8.27-8.16 (m, 3H), 7.99 (d, *J* = 7.1 Hz, 1H), 7.90-7.80 (m, 3H), 7.79-7.71 (m, 3H), 7.54 (d, *J* = 8.5 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 194.3, 187.9, 187.0, 173.9, 157.4, 155.9, 146.1, 142.6, 140.4, 138.6, 136.2, 136.0, 134.6, 132.6, 131.7, 129.1, 126.5, 126.3, 126.5, 126.3, 123.9, 123.7, 123.6, 118.3, 117.9, 116.7.

HRMS (MALDI) m/z: $[M+H]^+$ calcd for C₂₇H₁₄NO₅: 432.0872 found: 432.0867.

2-(2-(naphthalen-1-yl)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethylidene)-1H-indene-1,3(2H)-dione 5aj.

Following the **TP-C**, **5aj** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54 μ L, 0.2 equiv.), 1naphthoyl chloride **2j** (54.24 μ L, 1.2 equiv.), and Et₃N (54.36 μ L, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 2 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 75:25) to give **5aj** as a pale yellow solid (117.0 mg, 85%). R_f = 0.43 (Hexanes:EtOAc = 7:3); mp.: 190.3-191.5 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 9.43 (d, *J* = 6.8 Hz, 1H), 8.41 (s, 1H), 8.34 (dd, *J* = 8.5, 1.1 Hz, 1H), 8.26 (d, *J* = 7.1 Hz, 1H), 8.03 (d, *J* = 8.2 Hz, 1H), 7.94 (d, *J* = 7.4 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.85-7.67 (m, 5H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.51-7.41 (m, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 197.1, 188.1, 187.7, 173.1, 156.0, 154.7, 146.9, 142.7, 140.8, 135.7, 135.6, 135.2, 134.2, 134.0, 133.7, 131.0, 130.9, 130.7, 129.2, 128.6, 126.8, 126.7, 126.2, 125.9, 124.7, 123.8, 123.7, 123.6, 119.2, 118.2.
HRMS (EI) m/z: [M]⁺ calcd for C₂₇H₁₆O₅: 456.0998 found: 456.0984.

2-(3-methyl-2-oxo-1-(4-oxo-4H-chromen-3-yl)butylidene)-1H-indene-1,3(2H)dione 5ak.

Following the **TP-C**, **5ak** was obtained from 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), Me₂PhP (8.54µL, 0.2 equiv.), isobutyryl chloride **2k** (37.7 µL, 1.2 equiv.), and Et₃N (54.36 µL, 1.3 equiv.) in anhydrous THF (1.5 mL) at 30 °C for 0.5 h. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc =70:30) to give **5ak** as a pale yellow solid (62.0 mg, 55%). $R_f = 0.48$ (Hexanes:EtOAc = 7:3); mp.: 200.1-201.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.30 (dd, J = 8.0, 1.5 Hz, 1H), 8.17 (s, 1H), 7.99-7.95 (m, 1H), 7.93-7.89 (m, 1H), 7.85-7.78 (m, 2H), 7.85-7.75 (m, 2H), 7.73 (td, J = 8.8, 7.4, 1.6 Hz, 1H), 7.53-7.45 (m, 2H), 3.13 (sep, J = 7.01 Hz, 1H), 1.26 (brs, 3H), 1.24 (brs, 3H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 209.8, 188.5, 187.3, 173.1, 155.9, 154.4, 147.8, 142.5, 140.7, 135.9, 135.7, 134.2, 130.4, 126.7, 126.0, 123.7, 123.6, 123.5, 118.6, 118.2, 41.1, 17.6.

HRMS (EI) m/z: [M]⁺ calcd for. C₂₃H₁₆O₅: 372.0998 found: 372.0981.
1-oxo-2-((4-oxo-4H-chromen-3-yl)(tributylphosphonio)methyl)-1H-inden-3-olate

A 50 mL round-bottomed flask equipped with a magnetic stir was bar charged with 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **1a** (90.75 mg, 0.3 mmol), PBu₃ (88.8µL, 1.2 equiv.) in anhydrous CH₂Cl₂ (15 mL). The reaction mixture was stirred for 30 minutes at 30 °C. After completion of the reaction, the residue was purified by column chromatography (SiO₂, DCM:MeOH = 90:10) to give **4** as a pale yellow solid (138.0 mg, 92%). R_f = 0.45 (DCM:MeOH = 9.5:0.5); mp.: 227.1-228.4 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 8.86 (d, *J* = 3.8 Hz, 1H), 8.21 (dtd, *J* = 8.6, 7.0, 1.6 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.40-7.36 (m, 2H), 7.35-7.23 (m, 2H), 5.35 (d, *J* = 18.5 Hz, 1H), 2.38-2.13 (m, 6H), 1.66-1.34 (m, 12H), 0.87 (t, *J* = 7.3 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 190.7, 190.6, 177.0, 159.2 (d, ²*J*_{C-P}= 6.2 Hz), 156.2, 139.3, 133.9, 130.0, 125.7 (d, ²*J*_{C-P}= 29.7 Hz), 123.1, 120.4, 118.3, 118.1, 96.5 (d, ³*J*_{C-P}= 3.3 Hz), 27.6 (d, ¹*J*_{C-P}= 64.7 Hz), 25.2 (d, ²*J*_{C-P}= 46.9 Hz), 24.8, 24.1, 23.9, 20.4 (d, ³*J*_{C-P}= 43.9 Hz), 13.3.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 36.9.

HRMS (MALDI) m/z: [M]⁺ calcd for. C₃₁H₃₇O₄P: 504.2429 found: 504.2424.

tributyl(10,12-dioxo-11,12-dihydro-10H-benzo[5,6]pentaleno[1,2-b]chromen-11yl)phosphonium trifluoromethanesulfonate 7.

A 50 mL round-bottomed flask equipped with a magnetic stir bar was charged with 11-(tributyl- λ^5 -phosphanylidene)-10H-benzo[5,6]pentaleno[1,2-b]chromene-10,12(11H)dione **3a** (90.75 mg, 0.15 mmol), Trifluoromethanesulfonic acid (1.2 equiv.) in acetonitrile (1.5 mL). The reaction mixture was stirred for 30 minutes at 30 °C and monitored by TLC. After completion of the reaction, the solvent was removed in *vacuo*

and the crude compound was without purification to give 7 as a purple solid (85.0 mg, 90%). $R_f = 0.35$ (Hexanes:EtOAc = 9:1); mp.: 170.9-171.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.61 (d, *J* = 8.1 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.65-7.43 (m, 4H), 7.22-7.09 (m, 1H), 2.87-2.54 (m, 6H), 1.71-1.35 (m, 12H), 0.94 (t, *J* = 6.8 Hz, 9H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ /ppm: 189.0, 164.2, 155.8, 147.8(d, ³*J*_{C-P}=7.6 Hz), 146.8(d, ³*J*_{C-P}=8.5 Hz), 140.1, 138.4, 135.7, 135.3, 126.6, 125.9, 125.3, 125.1, 124.9, 120.9, 120.3 (q, *J*_{C-F}=320.3 Hz) 119.6 (d, ²*J*_{C-P}=9.9 Hz), 118.4 (d, ²*J*_{C-P}=12.1 Hz), 117.9, 114.9, 86.5 (d, ¹*J*_{C-P}=98.2 Hz), 24.2 (d, ³*J*_{C-P}=4.2 Hz), 23.6 (d, ²*J*_{C-P}=15.9 Hz), 21.5, (d, ¹*J*_{C-P}=51.3 Hz), 13.4.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 24.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ/ppm: -78.2.

HRMS (MALDI) m/z: [M+Na]⁺ calcd for C₃₂H₃₆F₃O₆PSNa: 659.1820 found: 659.1814.

12-hydroxy-11-(tributyl- λ^5 -phosphanylidene)-11,12-dihydro-10Hbenzo[5,6]pentaleno[1,2-b]chromen-10-one8.

A 50 mL round-bottomed flask equipped with a magnetic stir bar was charged with LAH (11.0 mg, 2.0 equiv.) in anhydrous THF (0.5 mL) at 0 °C and 11-(tributyl- λ^5 -phosphanylidene)-10H-benzo[5,6]pentaleno[1,2-b]chromene-10,12(11H)-dione **3a** (73.0 mg, 0.15 mmol) dissolved in anhydrous THF (0.5 mL) adding to reaction mixture. The reaction mixture was stirred for 30 minutes at 0 °C and monitored by TLC. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 80:20) to give **8** as a yellow solid (59.0 mg, 80%). R_f = 0.38 (Hexanes:EtOAc =7:3); mp.: 172.9-173.8 °C.

¹**H NMR** (400 MHz, DMSO) δ/ppm: 8.18 (dd, J = 7.9, 1.2 Hz, 1H), 7.65-7.59 (m, 1H), 7.58-7.54 (m, 1H), 7.43-7.36 (m, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 5.60 (d, J = 8.8 Hz, 1H), 5.38 (d, J = 8.8 Hz, 1H), 2.68-2.50 (m, 6H), 1.54-1.26 (m, 12H), 0.84 (t, J = 6.9 Hz, 1H).

¹³C{¹H}-NMR (100 MHz, DMSO) δ /ppm: 169.7, 154.8, 148.8, 148.6 (d, ${}^{3}J_{C-P} = 9.6$ Hz), 144.8 (d, ${}^{2}J_{C-P} = 11.5$ Hz), 137.8, 131.1, 128.1, 125.6, 124.7, 122.9, 122.6, 122.2, 117.4, 117.0, 116.4 (d, ${}^{2}J_{C-P} = 13.4$ Hz), 115.7 (d, ${}^{3}J_{C-P} = 12.5$ Hz), 74.8 (d, ${}^{1}J_{C-P} = 107.4$ Hz), 70.6, 23.3 (d, ${}^{3}J_{C-P} = 4.4$ Hz), 23.2 (d, ${}^{2}J_{C-P} = 7.6$ Hz), 19.7 (d, ${}^{1}J_{C-P} = 53.4$ Hz), 13.3.

³¹**P NMR** (162 MHz, CDCl₃) δ/ppm: 22.1. **HRMS** (MALDI) m/z: [M]⁺ calcd for. C₃₁H₃₇O₃P: 488.2480 found: 488.2475.

2-(1-benzyl-4-oxo-2-phenyl-1,4-dihydrochromeno[2,3-b]pyrrol-3-yl)-1H-indene-1,3(2H)-dione 9.

A 50 mL round-bottomed flask equipped with a magnetic stir bar was charged with 2-((4-oxo-4H-chromen-3-yl)methylene)-1H-indene-1,3(2H)-dione **5aa** (61.0 mg, 0.15 mmol), and benzylamine (25.0 μ L, 1.5 equiv.) in DMSO (0.75 mL). The reaction mixture was stirred for 30 minutes at 30 °C. After completion of the reaction, the residue was purified by column chromatography (SiO₂, Hexanes:EtOAc = 65:35) to give **9** as an Off-white solid (56.0 mg, 75%). R_f = 0.40 (Hexanes:EtOAc = 7:3); mp.: 211.0-212.2 °C.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm: 8.11 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.09-8.03 (m, 2H), 7.98-7.83 (m, 2H), 7.55 (td, *J* = 8.9, 6.8, 1.5 Hz, 1H), 7.52-7.46 (m, 2H), 7.45-7.37 (m, 4H), 7.34-7.24 (m, 4H), 7.07 (d, *J* = 6.8 Hz, 1H), 5.26 (s, 2H), 4.28 (s, 1H).

¹³C{¹H}-NMR (100 MHz, CDCl₃) δ/ppm: 198.1, 172.9, 154.2, 149.8, 142.3, 136.1, 135.2, 133.5, 132.4, 131.3, 129.2, 128.9, 128.8, 128.6, 127.9, 126.8, 126.7, 124.2, 123.3, 123.2, 117.2, 107.1, 104.3, 53.8, 46.8.

HRMS (EI) m/z: [M]⁺ calcd for. C₃₃H₂₁NO₄: 495.1471 found: 495.1457.

References

- 1. D. Kumbhar, R. Patil, D. Patil, A. Patravale, D. Chandam, S. Jadhav, M. Deshmukh, *Synth. Commun.*, 2016, **46**, 85-92.
- 2. L. Pellegatti, S. L. Buchwald, Org. Process Res. Dev., 2012, 16, 1442-1448.
- 3. T. Lepitre, C. Denhez, M. Sanselme, M. Othman, A. M. Lawson, A Daich, *J. Org. Chem.*, 2016, **18**, 8837-8849.

VII. X-ray crystallographic data for selected compounds

a) Crystal Data and Structure Refinement for compound **3a** (CCDC no. 2360174):

	The purified co CH ₂ Cl ₂ in a glas became turbid. a few days, a da	The purified compound 3a was dissolved in a minimal amount of CH_2Cl_2 in a glass vial. Hexanes were then added until the solution became turbid. The solution was allowed to slowly evaporate. After a few days, a dark red color crystals were obtained.		
لحوض محور				
Empirical formula	C ₃₁	H ₃₅ O ₃ P		
Formula weight	486	5.56		
Temperature	200	(2) K		
Wavelength	0.7	1073 Å		
Crystal system	Мо	noclinic		
Space group	P 2	1/c		
Unit cell dimensions	a =	12.4838(16) Å	<i>α</i> = 90°.	
	b =	21.180(2) Å	$\beta = 96.690(4)^{\circ}.$	
	c =	10.3247(11) Å	$\gamma = 90^{\circ}.$	
Volume	271	1.4(5) Å ³		
Z	4			
Density (calculated)	1.19	92 Mg/m ³		
Absorption coefficient	0.13	31 mm ⁻¹		
F(000)	104	0		
Crystal size	0.24	4 x 0.21 x 0.02 mm ³		
Theta range for data collection	2.53	3 to 25.06°.		
Index ranges	-14	-14<=h<=14, -25<=k<=25, -12<=l<=12		
Reflections collected	258	69		
Independent reflections	480	4800 [R(int) = 0.0956]		
Completeness to theta = 25.06°	99.8	8 % Absorption corre	ection multi-scan	
Max. and min. transmission	0.99	974 and 0.9693		
Refinement method	Ful	Full-matrix least-squares on F ²		
Data / restraints / parameters	480	0 / 0 / 319		
Goodness-of-fit on F ²	1.0	17		
Final R indices [I>2sigma(I)]	R1	R1 = 0.0534, $wR2 = 0.1240$		
R indices (all data)	R1	= 0.0872, wR2 = 0.1	428	
Largest diff. peak and hole	0.2	14 and -0.345 e.Å ⁻³		

b) Crystal Data and Structure Refinement for compound **5aa** (CCDC no. 2360188):

The purified compound **5aa** was dissolved in a minimal amount of CH_2Cl_2 in a glass vial. Hexanes were then added until the solution became turbid. The solution was allowed to slowly evaporate. After a few days, a pale yellow color crystals were obtained.

Empirical formula	$C_{26}H_{14}O_5$		
Formula weight	406.37		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 19.4485(7) Å	α= 90°.	
	b = 6.3637(2) Å	$\beta = 105.2800(10)^{\circ}.$	
	c = 15.7718(5) Å	$\gamma = 90^{\circ}$.	
Volume	1882.98(11) Å ³		
Z	4		
Density (calculated)	1.433 Mg/m ³		
Absorption coefficient	0.100 mm ⁻¹		
F(000)	840		
Crystal size	0.41 x 0.20 x 0.04 mm ³		
Theta range for data collection	2.68 to 25.10°.		
Index ranges	-23<=h<=23, -7<=k<=7, -18<=l<=18		
Reflections collected	19261		
Independent reflections	3344 [R(int) = 0.0838]		
Completeness to theta = 25.10°	99.3 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.9960 and 0.9602		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3344 / 0 / 280		
Goodness-of-fit on F ²	1.023		
Final R indices [I>2sigma(I)]	R1 = 0.0443, wR2 = 0.1107		
R indices (all data)	R1 = 0.0584, wR2 = 0.1239		
Largest diff. peak and hole	0.219 and -0.184 e.Å ⁻³		

c) Crystal Data and Structure Refinement for compound 4 (CCDC no. 2360233):

The purified compound **4** was dissolved in a minimal amount of CH₂Cl₂ in a glass vial. Hexanes were then added until the solution became turbid. The solution was allowed to slowly evaporate. After a few days, a pale yellow color crystals were obtained.

<u> </u>			
Empirical formula	$C_{31}H_{36}O_4P$		
Formula weight	503.57		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 9.6734(4) Å	α= 90°.	
	b = 14.6130(6) Å	$\beta = 101.356(2)^{\circ}.$	
	c = 19.9002(9) Å	$\gamma = 90^{\circ}$.	
Volume	2758.0(2) Å ³		
Z	4		
Density (calculated)	1.213 Mg/m ³		
Absorption coefficient	0.133 mm ⁻¹		
F(000)	1076		
Crystal size	0.13 x 0.10 x 0.03 mm ³		
Theta range for data collection	2.20 to 25.38°.		
Index ranges	-11<=h<=11, -17<=k<=17, -23<=l<=23		
Reflections collected	31956		
Independent reflections	5064 [R(int) = 0.0799]		
Completeness to theta = 25.38°	99.8 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.9960 and 0.9829		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5064 / 0 / 327		
Goodness-of-fit on F ²	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0684, wR2 = 0.1967		
R indices (all data)	R1 = 0.1036, $wR2 = 0.2344$		
Largest diff. peak and hole	1.277 and -0.440 e.Å ⁻³		

d) Crystal Data and Structure Refinement for compound 8 (CCDC no. 2363295):

The purified compound **4** was dissolved in a minimal amount of CH_2Cl_2 in a glass vial. Hexanes were then added until the solution became turbid. The solution was allowed to slowly evaporate. After a few days, a pale yellow color crystals were obtained.

Empirical formula	$C_{31}H_{37}O_3P$			
Formula weight	488.58	488.58		
Temperature	200(2) K	200(2) K		
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/n			
Unit cell dimensions	a = 11.3575(5) Å	$\alpha = 90^{\circ}$.		
	b = 11.1326(5) Å	$\beta = 97.976(2)^{\circ}$		
	c = 21.2159(11) Å	$\gamma = 90^{\circ}.$		
Volume	2656.6(2) Å ³			
Z	4	4		
Density (calculated)	1.222 Mg/m ³	1.222 Mg/m^3		
Absorption coefficient	0.134 mm ⁻¹	0.134 mm ⁻¹		
F(000)	1048	1048		
Crystal size	0.22 x 0.09 x 0.03 mm ³	0.22 x 0.09 x 0.03 mm ³		
Theta range for data collection	2.07 to 25.05°.	2.07 to 25.05°.		
Index ranges	-13<=h<=13, -13<=k<=1	-13<=h<=13, -13<=k<=13, -25<=l<=23		
Reflections collected	24725	24725		
Independent reflections	4697 [R(int) = 0.0721]	4697 [R(int) = 0.0721]		
Completeness to theta = 25.05°	99.9 %	99.9 %		
Absorption correction	None	None		
Max. and min. transmission	0.9960 and 0.9712	0.9960 and 0.9712		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²		
Data / restraints / parameters	4697 / 0 / 319	4697 / 0 / 319		
Goodness-of-fit on F ²	1.029	1.029		
Final R indices [I>2sigma(I)]	R1 = 0.0442, wR2 = 0.12	R1 = 0.0442, $wR2 = 0.1230$		
R indices (all data)	R1 = 0.0590, wR2 = 0.13	R1 = 0.0590, wR2 = 0.1386		
Largest diff. peak and hole	0.199 and -0.331 e.Å ⁻³	0.199 and -0.331 e.Å ⁻³		

VIII. ¹H, ¹³C NMR, ¹⁹F NMR and ³¹P NMR spectra for all compounds

5

¹H NMR spectrum of compound **1d** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound 1e (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound **1f** (CDCl₃, 100 MHz)

¹³C NMR spectrum of compound **1g** (CDCl₃, 100 MHz)

¹H NMR spectrum of compound 1k (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **11** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **1m** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **1n** (CDCl₃, 400 MHz)

³¹P NMR spectrum of compound **3a** (CDCl₃, 162 MHz)

S64

Ul

6.17 3.05

2

1

9.48

12.50

3

.

9

יד 7

3.06 2.17 1.05

6

5

4

8

1.00

1.00

.....

ppm

¹⁹F NMR spectrum of compound **3d** (CDCl₃, 376 MHz)

¹H NMR spectrum of compound **3f** (CDCl₃, 400 MHz)

³¹P NMR spectrum of compound **3j** (CDCl₃, 162 MHz)

¹⁹F NMR spectrum of compound **3j** (CDCl₃, 376 MHz)

¹H NMR spectrum of compound **3k** (CDCl₃, 400 MHz)

³¹P NMR spectrum of compound **3m** (CDCl₃, 162 MHz)

¹H NMR spectrum of compound **3n** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **3p** (CDCl₃, 400 MHz)

¹³C NMR spectrum of compound 6 (CDCl₃, 100 MHz)

¹H NMR spectrum of compound **5aa** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5ba** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5ea** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5ja** (CDCl₃, 400 MHz)

-101.32 Current Data Parameters NAME DP-1282(3f) EXPNO 7 PROCNO 1
 PROCNO
 1

 F2 - Acquisition Parameters Date_
 20240621

 Time
 10.53

 INSTRUM
 spect

 PROBHD 5 mm PABBO BB/
 PULPROC

 PULPROC
 zgig

 TD
 131072

 SOLVENT
 CDC13

 NS
 16

 DS
 0

 SWH
 89285.711 Hz

 FIDRES
 0.681196 Hz

 AQ
 0.7340032 sec

 DG
 198.09

 DW
 5.600 usec

 DE
 6.50 usec

 DE
 298.7 K

 D1
 1.0000000 sec

 D11
 0.0300000 sec

 D11
 0.10300000 sec

 D11
 0.10300000 sec

 D11
 0.10300000 sec

 D11
 1.00000000 sec

 D11
 1.0000000 sec
0 0 0 Ó 5ja SFO1 NUC1 P1 PLW1 CHANNEL f1 ======= 376.4607168 MHz 19F 15.00 usec 16.50000000 W G[2 0.34722000 W G[2 0.34722000 W 0.34722000 W _____ SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 F2 - Processing parameters sing parameters 65536 376.4983662 MHz EM 0 1.00 Hz 0 1.00 SI SF WDW SSB LB GB PC Ó -20 -40 -60 -80 -100 -120 -140 -160 -180 ppm

¹⁹F NMR spectrum of compound 5ja (CDCl₃, 376 MHz)

¹H NMR spectrum of compound **5ma** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **50a** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5ab** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of compound 5ad (CDCl₃, 376 MHz)

¹H NMR spectrum of compound **5ae** (CDCl₃, 400 MHz)

8.326 8.2214 8.2274 8.2274 8.2274 8.2274 8.2274 8.2274 9.2574 9.2574 9.2574 9.2574 9.2574 9.2574 9.2574 9.2574 9.2777 9.2796 8.6727 7.7729 8.8727 7.7729 7.7 Current Data Parameters DP-1164(3f) NAME EXPNO PROCNO 1 F2 - Acquisition Parameters 20240223 21.58 Date_ Time INSTRUM spect PROBHD PULPROG 5 mm PABBO BB/ zg30 32768 TD CDC13 16 0 SOLVENT NS DS Br 7211.539 Hz SWH 0.220079 Hz 2.2719147 sec FIDRES AQ RG 0 113.31 69.333 usec DW ο 10.06 usec 298.3 K 2.00000000 sec ΤE D1 TD0 1 o Ó ===== CHANNEL f1 ====== SF01 400.1324008 MHz SFO1 NUC1 5ag 1H 15.00 usec 13.5000000 W P1 PLW1 F2 - Processing parameters SI SF 16384 400.1300084 MHz WDW EM SSB 0 LB 0 Hz 0 GB 1.00 PC ____ 7 5 10 9 8 6 4 3 2 1 ppm 0.95 2.06 1.01 1.01 1.07 1.04 1.04 ¹³C NMR spectrum of compound 5ag (CDCl₃, 100 MHz) 173.30 156.13 156.13 156.13 155.93 1145.67 1145.67 1142.67 1142.67 1131.69 1131.69 1131.69 1131.69 1131.69 1131.69 1132.64 1132.64 1132.64 1132.64 1132.64 1132.64 1132.64 Current Data Parameters 194.16 DP-1164(3f) 77.32 77.00 76.68 NAME EXPNO PROCNO 1 F2 - Acquisition Parameters r2 - Acquisiti Date_ Time INSTRUM PROBHD 5 mm PULPROG 20240223 22.00 spect 5 mm PABBO BB/ zgpg30 32768 TD SOLVENT CDC13 Br NS DS 13499 13499 0 24038.461 Hz 0.733596 Hz 0.6815744 sec 198.09 SWH FIDRES 0 AQ RG 198.09 20.800 usec 6.50 usec 298.6 K 2.00000000 sec 0.03000000 sec DW DE TE D1 D11 0 TD0 O Ó 5ag SF01 13C 10.00 usec NUC1 P1 PLW1 49.50000000 W = CHANNEL f2 ===== ____ SF02 NUC2 CPDPRG[2 PCPD2 PLW2 DIW12 400.1316005 MHz 400.1316005 MHz 1H waltz16 90.00 usec 12.5000000 W 0.34722000 W 0.28125000 W PLW12 PLW13 F2 - Processing parameters SI SF 32768 100.6127720 MHz EM WDW SSB LB GB PC 2.00 Hz 0 200 180 160 140 120 100 80 60 40 20 ppm

¹H NMR spectrum of compound **5ag** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5ah** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5ai** (CDCl₃, 400 MHz)

¹H NMR spectrum of compound **5aj** (CDCl₃, 400 MHz)

S111

³¹P NMR spectrum of compound 4 (CDCl₃, 162 MHz)

¹H NMR spectrum of compound 7 (CDCl₃, 400 MHz)

³¹P NMR spectrum of compound 7 (CDCl₃, 162 MHz)

³¹P NMR spectrum of compound 8 (DMSO, 162 MHz)

S118