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Experimental Section

Materials. All chemicals were purchased from commercially available sources and were used without
further purification unless otherwise specified. Solvents were deoxygenated and dried using a Grubbs
Solvent Purification System. Chloro-bridged cyclometalated iridium dimer precursors, [Ir(C*N)(u-Cl),],

were prepared by way of Nonoyama,' and fluorophores C3H and C4H were prepared by known methods.*?

Physical methods. 'H and >C{'"H} NMR spectra were recorded at room temperature on a JEOL ECA-400,
ECA-500 or ECA-600 NMR spectrometer. UV—vis absorption spectra were recorded in screw-capped 1 cm
quartz cuvettes using an Agilent Carey 8454 UV—vis spectrophotometer. Photoluminescence (PL) spectra
were obtained at room temperature using a Horiba FluoroMax-4 spectrofluorometer, with samples housed
in 1 cm quartz cuvettes with septum-sealed screw caps. Solutions for these measurements were prepared
inside a nitrogen-filled glovebox using dry and deoxygenated solvents to exclude air. Luminescence
lifetimes were measured with a Horiba DeltaFlex Lifetime System, using pulsed diode excitation at 330
nm. PL wavelengths for lifetime measurements were selected by using appropriate long-pass filters, and
the decay trace was fitted using the instrument’s analysis software or the software Origin 2020b. PL
quantum Yyields for all complexes were measured relative to a standard tetraphenylporphyrin, which has a
reported fluorescence quantum yield (®pi,) of 0.11%. The quantum yields of the Ir-fluorophore conjugates
(®.) were calculated using Equation S1 below, where @, = the quantum yield of the standard, m, = the
slope of emission intensity versus absorbance for the samples, my = the slope of emission intensity versus
absorbance for the standard compound, and 7 and 1 are the refractive indexes of the solvents of the sample

and standard, respectively.

D, = 0[] 2] (s1)

Msed N5t

Oxygen quenching experiments. The iridium-coumarin complexes were dissolved in dichloromethane in
a nitrogen-filled glovebox. The stock solutions were further diluted into quartz cuvettes to reach a
concentration of 1.0 x 10~ M in each sample. The volume of solution present in each cuvette was 3.0 mL,
leaving 0.5 mL of headspace for addition of varying aliquots of air. The PL spectrum for each complex was
recorded under nitrogen atmosphere (pO. = 0 mmHg), then aliquots of air were added to each cuvette via
syringe (100 pL per addition) and the PL spectra were recorded after each aliquot using an excitation
wavelength of 310 nm. The process was repeated five total times, reaching an oxygen pressure pO: = 160
mmHg, equivalent to the atmospheric oxygen level. The ratio of phosphorescence to fluorescence intensity
was plotted versus oxygen partial pressure to obtain Stern-Volmer quenching constants (Ksy) for these
complexes (Fig. S30-S37). The Stern-Volmer quenching constant Ksv and the quenching rate constant (k)

were calculated for each complex.
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X-ray crystal details. Single crystals were grown by vapor diffusion of pentane into nearly saturated
dichloromethane solutions. Crystals were mounted on a Bruker Apex II three-circle diffractometer using
MoK radiation (A = 0.71073 A). The data was collected at 123(2) K and was processed and refined within
the APEXII software. Structures were solved by intrinsic phasing in SHELXT and refined by standard
difference Fourier techniques in program SHELXL.’ Hydrogen atoms were placed in calculated positions
using standard riding model and refined isotropically; all non-hydrogen atoms were refined anisotropically.

Crystallographic details are summarized in Table S1.

Photodegradation experiments. Iridium-coumarin complexes piq-C3 and piq-C® were each dissolved in
dichloromethane under aerated conditions. Stock solutions of each complex were further diluted in quartz
cuvettes (1 cm path length) to an absorbance of 0.50 at 310 nm. The photodegradation tests were performed
by irradiation using a glass bowl wrapped with UV LED strips (A = 285 nm), and covered on the outside
with aluminum foil. To maintain a constant irradiation temperature, the vessel was cooled with a fan. For
all experiments, PL spectra were recorded in regular intervals by exciting at 310 nm and recording the

spectrum from 350-720 nm.
Syntheses

Synthesis of Coumarin C3H. This compound was prepared by a modified literature procedure.” A mixture
of 7-amino-4-methyl coumarin (200 mg, 1.14 mmol) and salicylaldehyde (120 pL, 1.15 mmol) in methanol
(10 mL) was combined, and then a drop of trifluoroacetic acid was added (formic acid was used in the
literature procedure). The reaction was refluxed overnight, then filtered, and the product was washed with
cold methanol and pentane to give an orange solid. Yield: 185 mg (58%). '"H NMR (400 MHz, CDCl;): § =
8.64 (s, 1H, N=CH), 7.64 (d, 1H, J=8.2 Hz, ArH), 7.42 (t,2H, J= 7.9 Hz, ArH), 7.19-7.23 (m, 2H, ArH),
7.04 (d, 1H, J=8.1 Hz, ArH), 6.97 (t, 1H, J="7.5 Hz, AtH), 6.27 (s, 1H, lactone C=CH), 2.45 (s, 3H, CH3).

Synthesis of Coumarin C4H. This compound was prepared as described in the literature.’ (1) A solution
of 7-amino-4-methyl coumarin (175 mg, 1.00 mmol) in 5 mL of concentrated HCI was prepared. Sodium
nitrite (80 mg, 1.2 mmol) in deionized water (3 mL) was then added dropwise. The reaction was stirred for
an hour at a maintained temperature between —5 °C to 0 °C. After that the mixture was poured into a
prepared cold solution of stannous chloride dihydrate (0.72 g, 3.2 mmol) in 7.2 mL of concentrated HCI.
Stirring was continued for an hour at a maintained temperature below 0 °C, then the solid was filtered and
washed with cold water, alcohol, and diethyl ether respectively to get the light-yellow solid of coumarin
hydrazine: Yield 183 mg (96%) 'H NMR (400 MHz, DMSO-d¢): & = 9.40 (br, 2H, NH>), 8.66 (s, 1H,
N=CH), 7.60 (d, 1H, J= 8.7 Hz, ArH), 6.83 (dd, 1H, J= 8.8, 1.8 Hz, ArH), 6.77 (d, 1H, J= 2.1 Hz, ArH),
6.10 (s, 1H, lactone C=CH), 2.33 (s, 3H, CH»).
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(2) A solution of salicylaldehyde (0.60 mL, 5.8 mmol) in methanol (3 mL) was poured into a prepared
mixture solution of coumarin hydrazine (0.11 g, 0.58 mmol) in methanol (5 mL) with a few drops of
trifluoroacetic acid. Stirring was continued for 30 min, then the product was filtered and washed with cold
alcohol and diethyl ether to get a yellow solid of coumarin C4H: (Yield 78 mg, 47%) '"H NMR (500 MHz,
DMSO-de): 6 =10.94 (s, 1H, OH), 10.16 (s, 1H, NH), 8.23 (s, 1H, N=CH), 7.67 (dd, 1H, J=7.7, 1.7 Hz,
ArH), 7.58 (d, 1H, J = 8.7 Hz, ArH), 7.14-7.18 (m, 1H, ArH), 6.91 (dd, 1H, J= 8.7, 2.1 Hz, ArH), 6.82—
6.86 (m, 3H, ArH), 6.03 (d, 1H, J= 1.1 Hz, C=CH), 2.32 (s, 3H, CH53).

General procedure for the preparation of cyclometalated iridium-coumarin complexes. 1 equivalent
of the chloro-bridged cyclometalated iridium dimer [Ir(C”N),(u-Cl)], was treated with 20 equivalents of
Na,CO; or TEA (triethylamine) in 10 mL of reagent alcohol and stirred for 1 h, and then 2 equivalents of
the respective coumarin ligand (C3H or C4H) were added. The reaction mixture was refluxed for 3—5 days.
The solvent was removed under vacuum, and then the residue was redissolved in CH»Cl, followed by
filtration through a thin layer of alumina using CH>Cl, as the eluent to flush the product out. After removing
the solvent under vacuum, the remaining solid was further purified by precipitation from CH,Cl,/CsHi, (1:5

v/v) to obtain a solid.

Synthesis of piq-C3. This complex was prepared according to general procedure using [Ir(piq)(u-CD]» (54
mg, 0.041 mmol), an excess of Na,CO; (85 mg, 0.80 mmol), and C3H (22 mg, 0.079 mmol). The reaction
was refluxed for 3 days. The product was obtained as a red solid. Yield: 23 mg (33%). 'H NMR (400 MHz,
CDCl3): 6 =8.95 (d, 1H, J = 9.6 Hz, ArH), 8.84 (d, 1H, J = 6.4 Hz, ArH), 8.74 (d, 1H, J = 6.4 Hz, ArH),
8.44 (d, 1H, J=8.5 Hz, ArH), 8.17 (d, 1H, J = 8.5 Hz, ArH), 8.10 (s, 1H, N=CH), 7.94 (d, 1H, J= 8.3 Hz,
ArH), 7.88-7.90 (m, 1H, ArH), 7.68-7.73 (m, 3H, ArH), 7.58 (t, 1H, J= 8.6 Hz, ArH), 7.54 (d, 1H, J=8.3
Hz, ArH), 7.49 (d, 1H, J = 6.4 Hz, ArH), 7.39 (d, 1H, J= 6.3 Hz, ArH), 7.20 (t, 1H, J = 6.8 Hz, ArH), 7.12
(d, 1H, J=17.2 Hz, ArH), 6.92 (t, 1H, J= 7.6 Hz, ArH), 6.76 (d, 1H, J = 8.6 Hz, ArH), 6.63—6.69 (m, 2H,
ArH), 6.48 (dt, 2H, J = 19.8, 7.0 Hz, ArH), 6.39 (t, 1H, J = 7.3 Hz, ArH), 6.32 (d, 1H, J = 7.6 Hz, ArH),
6.22 (d, 1H, J=17.5 Hz, ArH), 6.20 (d, 1H, J = 10 Hz, ArH), 6.07 (s, 1H, lactone C=CH), 6.02 (d, 2H, J =
8.6 Hz, ArH), 2.21 (s, 3H, CH;). *C{'H} NMR (151 MHz, CDCl;): § = 169.8, 169.1, 167.6, 161.3, 160.7,
154.5, 154.3, 154.2, 152.7, 151.9, 146.3, 145.6, 141.6, 140.7, 137.1, 136.9, 135.4, 134.8, 133.9, 133.1,
130.9, 130.9, 129.9, 129.4, 129.3, 129.2, 127.9, 127.7, 127.6, 127.2, 126.6, 126.3, 126.0, 125.3, 123.4,
121.4,121.2,120.2, 120.1, 119.4, 119.2, 116.7, 113.9, 113.8, 111.3, 18.7.

Synthesis of pphen-C3. This complex was prepared in the glove box using [Ir(pphen),(u-Cl)]> (54 mg,
0.038 mmol), an excess of TEA (0.1 mL, 0.8 mmol), and C3H (22 mg, 0.079 mmol) in 5 mL of CH,Cl.
The reaction was stirred at room temperature under N, gas for 5 days. The crude product was filtered

through a thin layer of alumina, using CH,Cl, as an eluent to flush the product out, and then further purified
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by precipitation from CH>Clo/CsHi, (1:5 v/v) to give a brown solid. Yield: 32 mg (43%). "H NMR (600
MHz, CDCl;): § =9.38 (d, 1H, J = 8.5 Hz, ArH), 9.17 (d, 1H, J= 8.2 Hz, ArH), 8.61 (d, 1H, /= 8.6 Hz,
ArH), 8.53 (d, 1H, J= 8.4 Hz, ArH), 8.44 (d, 1H, J= 8.3 Hz, ArH), 8.41 (d, 1H, J=7.9 Hz, ArH), 8.31 (d,
1H, J= 8.2 Hz, ArH), 8.19 (dd, 2H, J = 8.6, 4.1 Hz, ArH), 7.88 (d, 1H, J= 7.9 Hz, ArH), 7.85 (t, IH, J =
7.7 Hz, AtrH), 7.78 (t, 1H, J= 7.7 Hz, AtrH), 7.67 (t, 1H, J= 7.7 Hz, ArH), 7.50-7.55 (m, 2H, ArH), 7.45 (t,
1H, J=17.5 Hz, AtH), 7.37 (t, 1H, J = 7.5 Hz, ArH), 7.33 (t, 1H, J= 7.7 Hz, AtH), 7.17 (s, 1H, N=CH),
7.07 (d, 1H, J="7.7 Hz, AtH), 7.00 (t, 1H, J= 7.5 Hz, AtrH), 6.69 (t, lH, J="7.5 Hz, AtH), 6.70 (d, 1H, J=
8.2 Hz, ArH), 6.67 (t, 1H, J= 7.4 Hz, ArH), 6.60 (t, 1H, J= 7.4 Hz, AtH), 6.52 (d, 1H, J= 7.7 Hz, ArH),
6.30 (t, 1H, J= 7.5 Hz, ArH), 6.16 (d, 1H, J = 7.6 Hz, ArH), 6.11 (s, 1H, lactone C=CH), 6.05-6.07 (m,
2H, ArH), 5.74-5.77 (m, 2H, ArH), 2.14 (s, 3H, CH3). "C{'H} NMR (151 MHz, CDCl3): § = 174.2, 174.0,
170.1, 165.2, 160.6, 153.2, 152.9, 152.8, 152.2, 151.8, 148.6, 147.5, 145.1, 143.7, 137.6, 135.2, 134.0,
133.9, 133.7, 133.3, 132.0, 131.5, 131.1, 131.0, 130.5, 129.5, 129.2, 129.0, 128.2, 127.7, 127.2, 127.0,
126.8,126.0, 125.8, 125.5,124.1, 123.9, 123.7, 123.4, 122.52, 122.49, 122.4, 122.01, 121.99, 121.6, 121.5,
119.8,118.9, 117.5, 114.0, 113.0,110.6, 18.6. One "*C resonance was not clearly located.

Synthesis of bt-C3. This complex was prepared according to general experimental preparation using
[Ir(bt)2(1-Cl)]2 (52 mg, 0.040 mmol), an excess of TEA (0.1 mL, 0.8 mmol) and C3H (22 mg, 0.079 mmol).
The reaction was refluxed for 4 days. The product was obtained as an orange solid. Yield: 34 mg (45%). 'H
NMR (600 MHz, CDCls): 6 = 8.59 (d, 1H, J = 8.2 Hz, ArH), 8.19 (d, 1H, J = 8.0 Hz, ArH), 7.98 (s, 1H,
N=CH), 7.84-7.87 (m, 2H, ArH), 7.66 (d, 1H, J = 7.6 Hz, AtH), 7.41 (t, 1H, J = 7.5 Hz, ArH), 7.35-7.39
(m, 3H, ArH), 7.16 (t, 1H, J= 6.7 Hz, ArH), 7.01 (d, 1H, J = 8.3 Hz, ArH), 6.96 (d, 1H, J = 8.3 Hz, ArH),
6.65-6.89 (m, 2H, ArH), 6.69 (d, 1H, J= 8.7 Hz, ArH), 6.66 (t, 1H, J = 7.3 Hz, ArH), 6.55 (t, 1H, J= 6.6
Hz, ArH), 6.52 (t, 1H, J= 7.3 Hz, ArH), 6.34 (d, 2H, J= 7.6 Hz, ArH), 6.28 (t, 1H, J= 7.3 Hz, ArH), 6.17—
6.19 (m, 2H, ArH), 6.13 (s, 1H, lactone C=CH), 2.28 (s, 3H, CH5). C{'H} NMR (151 MHz, CDCl3): § =
181.4, 180.5, 168.6, 163.2, 160.9, 154.4, 152.8, 152.0, 151.5, 151.3, 150.9, 150.7, 141.5, 141.1, 135.3,
134.9, 134.8, 133.7, 131.4, 131.1, 130.8, 128.3, 127.3, 125.8, 125.51, 125.45, 125.3, 124.8, 123.4, 122.9,
122.7,122.4,122.1,121.3,120.2, 119.8, 119.5, 116.8, 114.0, 113.8, 111.7, 18.7. One "*C resonance was not

clearly located.

Synthesis of btp-C3. This complex was prepared according to general procedure using [Ir(btp).(u-Cl)]»
(52 mg, 0.040 mmol), an excess of Na,COs (85 mg, 0.80 mmol), and C3H (22 mg, 0.079 mmol). The
reaction was refluxed for 3 days. The product was obtained as a pale orange solid. Yield: 18 mg (26%). 'H
NMR (400 MHz, CDCls): 6 = 8.81 (d, 1H, J = 5.8 Hz, ArH), 8.77 (d, 1H, J = 5.8 Hz, ArH), 8.11 (s, 1H,
N=CH), 7.72-7.78 (m, 2H, ArH), 7.63 (t, 2H, J = 8.4 Hz, ArH), 7.41 (d, 1H, J= 8.1 Hz, ArH), 7.27-7.32
(m, 2H, ArH), 7.15 (dd, 1H, J=28.0, 1.9 Hz, ArH), 7.02-7.06 (m, 3H, ArH), 6.95-6.98 (m, 1H, ArH), 6.88
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(t, 1H, J = 7.5 Hz, AtH), 6.72-6.75 (m, 2H, ArH), 6.62 (d, 1H, J = 7.9 Hz, AtH), 6.45 (t, IH, J=7.1 Hz,
ArH), 6.29 (d, 1H, J= 7.8 Hz, ArH), 6.11 (d, 2H, J = 9.9 Hz, ArH), 6.04 (d, 1H, J = 8.5 Hz, ArH), 5.96 (s,
1H, lactone C=CH), 2.19 (s, 3H, CH3). *C{'H} NMR (126 MHz, CDCl;): § = 166.5, 166.3, 165.8, 160.9,
160.7, 154.2, 152.8, 151.9, 149.9, 149.6, 149.3, 148.6, 146.7, 146.6, 142.6, 142.5, 138.4, 138.2, 136.3,
135.5, 135.2, 134.8, 125.7, 125.5, 125.2, 125.1, 124.9, 124.1, 123.7, 123.4, 122.8, 122.2, 120.7, 119.4,
119.12, 119.11, 118.9, 117.9, 117.3, 114.4, 114.0, 110.6, 18.7.

Synthesis of piq-C4. This complex was prepared according to general procedure using [Ir(piq)(u-Cl)]2 (54
mg, 0.041 mmol), an excess of Na,COs (85 mg, 0.80 mmol), and C4H (24 mg, 0.082 mmol). The reaction
was refluxed for 3 days. The product was obtained as a brown solid. Yield: 27 mg (36%). '"H NMR (400
MHz, CDCL): 6 = 8.95 (d, 1H, J= 6.4 Hz, ArH), 8.92 (d, 1H, J= 9.7 Hz, ArH), 8.51 (d, 1H, J= 6.4 Hz,
ArH), 8.34 (d, 1H, J= 8.7 Hz, ArH), 8.22 (s, 1H, N=CH), 8.15 (d, 1H, J="7.9 Hz, ArH), 7.96 (d, 1H, J =
8.0 Hz, ArH), 7.84-7.86 (m, 1H, ArH), 7.73 (d, 1H, J= 8.0 Hz, ArH) 7.65-7.70 (m, 2H, ArH), 7.46 (t, 2H,
J=71.8HHz, ArH), 7.37 (d, 1H, J= 6.4 Hz, AtH), 7.32 (t, |H, J= 7.8 Hz, ArH), 7.21 (t, 1H, J= 7.7 Hz, AtH),
7.06 (d, 1H, J= 5.8 Hz, ArH), 6.92 (q, 2H, J = 7.6 Hz, ArH), 6.65-6.72 (m, 5H, ArH), 6.48 (d, 1H, J= 6.8
Hz, ArH), 6.39 (m, 2H, ArH), 5.76-5.82 (m, 3H, ArH + lactone C=CH), 2.02 (s, 3H, CH3). The NH
resonance was not clearly located, presumably due to overlap with aromatic CH resonances. *C {'H} NMR
(151 MHz, CDCls): 6 = 169.6, 168.4, 166.9, 163.3, 161.0, 155.0, 153.9, 151.8, 150.7, 150.1, 147.3, 146.3,
141.0, 140.9, 137.2, 137.0, 135.0, 134.8, 133.8, 132.7, 130.9, 130.5, 130.2, 130.0, 129.9, 129.2, 127.9,
127.3, 127.2, 126.9, 126.7, 125.8, 125.6, 124.7, 124.4, 121.4, 121.2, 121.0, 120.4, 118.1, 114.2, 112.8,
111.3,109.2,98.7, 18.7.

Synthesis of pphen-C4. This complex was prepared in the glove box using [Ir(pphen)(pn-Cl)]z (54 mg,
0.038 mmol), an excess of TEA (0.1 mL, 0.8 mmol), and C4H (24 mg, 0.082 mmol) in 5 mL of CH,Cl,.
The reaction was stirred at room temperature under N, gas for 4 days. The remaining solid was filtered
through a thin layer of alumina, using CH,Cl, as an eluent to flush the product out and then further purified
by precipitation from CH>Clo/CsHi, (1:5 v/v) to give a brown solid. Yield: 27 mg (36%). "H NMR (600
MHz, CDCl3): § =9.40 (d, 1H, J="7.9 Hz, ArH), 9.14 (d, 1H, J = 8.2 Hz, ArH), 8.67 (s, I|H, N=CH), 8.43
(d, 1H, J=8.2 Hz, ArH), 8.34 (s, 1H, ArH), 8.17-8.21 (m, 4H, ArH), 8.10 (s, 1H, ArH), 7.85 (t, IH,J="7.6
Hz, AtH), 7.77 (t, 1H, J= 7.7 Hz, ArH), 7.50-7.54 (m, 6H, ArH), 7.40 (s, 1H, N=CH), 7.17 (d, 1H, J="7.7
Hz, ArH), 7.08 (t, 1H, J= 7.6 Hz, ArH), 7.01 (t, 1H, J= 7.5 Hz, AtH), 6.73 (d, 2H, J= 7.7 Hz, AtH), 6.61
(t, IH, J=17.4 Hz, AtH), 6.46 (t, 1H, J= 7.9 Hz, ArH), 6.41 (d, 1H, J="7.7 Hz, ArH), 6.28 (d, 1H, J= 8.6
Hz, ArH), 6.14 (d, 1H, J=7.6 Hz, ArH), 5.92 (s, 1H, lactone C=CH), 5.89 (d, 2H, J = 8.0 Hz, ArH), 5.78—
5.83 (m, 2H, ArH), 2.06 (s, 3H, CH3). The NH resonance was not clearly located, presumably due to overlap
with aromatic CH resonances. “C{'H} NMR (151 MHz, CDCl;): § = 174.3, 173.3, 168.9, 165.7, 161.1,
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153.7, 153.5, 152.1, 151.1, 150.3, 149.1, 148.2, 146.1, 143.0, 139.4, 134.9, 134.0, 133.8, 133.6, 133.3,
132.6, 131.5, 131.1, 131.0, 130.6, 130.1, 129.9, 129.5, 128.0,127.8, 127.3, 127.0, 126.7, 126.1, 126.0,
125.7, 124.7, 123.6, 123.4, 122.6, 122.5, 122.43, 122.38, 121.7, 121.1, 120.8, 120.6, 119.2, 112.9, 112.6,
111.2, 108.2, 100.0, 18.5. One "*C resonance was not clearly located.

Synthesis of bt-C4. This complex was prepared according to general experimental preparation using
[Ir(bt)2(1-Cl)]2 (52 mg, 0.040 mmol), an excess of TEA (0.1 mL, 0.8 mmol), and C4H (24 mg, 0.082 mmol).
The reaction was refluxed for 3 days. The product was obtained as an orange solid. Yield: 24 mg (33%). 'H
NMR (400 MHz, CDCl): 6 = 8.61-8.64 (m, 1H, ArH) 8.10 (s, I1H, N=CH), 7.97 (d, 1H, J= 7.9 Hz, ArH),
7.84 (dd, 1H, J = 8.1, 1.2 Hz, ArH), 7.65 (dd, 1H, J= 7.6, 1.2 Hz, ArH), 7.54 — 7.56 (m, 1H, ArH), 7.36 —
7.48 (m, 5H, ArH), 7.17 (ddd, 1H, J =8.7, 6.9, 1.9 Hz, ArH), 6.86 — 6.94 (m, 4H, ArH), 6.67 — 6.74 (m, 3H,
ArH), 6.61 (t, 2H, J= 3.4 Hz, ArH), 6.28 — 6.32 (m, 2H, ArH), 6.02 (d, 1H, J= 1.3 Hz, lactone C=CH) 5.84
(dd, 1H, J = 8.7, 2.3 Hz, ArH), 5.79 (d, 1H, J = 2.4 Hz, ArH), 2.28 (d, 3H, J = 1.1 Hz, CH3). The NH
resonance was not clearly located, presumably due to overlap with aromatic CH resonances. *C{'H} NMR
(151 MHz, CDCl3): 6=181.1, 180.5, 167.9, 165.0, 160.9, 154.4, 152.4, 152.2,151.2, 150.49, 150.47, 146.5,
142.6, 141.9, 135.4, 134.8, 134.7, 133.3, 131.5, 131.4, 131.3, 130.4, 128.6, 127.4, 126.4, 125.73, 125.69,
125.3,124.7,124.3,123.0, 122.4,122.2,121.9, 121.4, 119.4, 118.9, 114.0, 113.4, 111.6, 109.5, 99.22, 18.7.

Synthesis of btp-C4. This complex was prepared according to general experimental preparation using
[Ir(btp)2(u-CD]2 (52 mg, 0.040 mmol), an excess of TEA (0.1 mL, 0.8 mmol) and C4H (24 mg, 0.082
mmol). The reaction was refluxed for 5 days. The product was obtained as an orange solid. Yield: 23 mg
(32%). "H NMR (400 MHz, CDCl;): § = 8.93 (d, 1H, J = 5.8 Hz, ArH), 8.56 (d, 1H, J= 5.7 Hz, ArH), 8.25
(s, IH, N=CH), 7.67-7.75 (m, 2H, ArH), 7.61 (t, 1H, J=9.2 Hz, ArH), 7.38 (t, IH, J= 7.7 Hz, ArH), 7.30
(t, I1H, J=17.9 Hz, ArH), 7.06-7.17 (m, 3H, ArH), 7.02 (q, 2H, J = 6.5 Hz, ArH), 6.94 (t, 1H, J= 6.5 Hz,
ArH), 6.88 (t, 2H, J = 8.3 Hz, ArH), 6.76 (d, 1H, J = 8.6 Hz, ArH), 6.72 (t, 1H, J= 7.6 Hz, ArH), 6.47 (t,
1H, J=17.3 Hz, ArH), 6.29 (d, 2H, J = 8.0 Hz, ArH), 6.06 (s, 1H, lactone C=CH), 6.00 (d, 1H, J= 8.1 Hz,
ArH), 5.94 (d, 1H, J = 2.4 Hz, ArH), 5.78 (dd, 1H, J = 8.7, 2.3 Hz, ArH), 2.33 (s, 3H, CH3). The NH
resonance was not clearly located, presumably due to overlap with aromatic CH resonances. *C{'H} NMR
(151 MHz, CDCl3): 6 = 166.4, 166.1, 165.7, 162.9, 161.1, 154.4, 152.4, 150.6, 150.0, 149.9, 149.4, 146.7,
146.2, 144.6, 142.8, 142.5, 138.3, 137.8, 137.3, 136.7, 135.2, 134.9, 125.6, 125.4, 124.90, 124.88, 124.6,
124.2, 123.7, 123.1, 122.8, 119.9, 119.3, 117.60, 117.57, 114.7, 113.4, 111.6, 110.1, 98.6, 18.7. Two “*C

resonances were not clearly located.
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Table S1. Crystallographic summary for bt-C3, btp-C4, and piq-C3.

bt-C3-CH,Cl, btp-C4 piq-C3
CCDC c 2355725 2355726
Crystal data
Chemical formula CasH30ClLIrN303S, Ca3H2oIrN4O3S, C47H3IrN303
M, 975.93 906.02 878.95

Crystal system, space

Monoclinic, P2,/c

Monoclinic, P2,/n

Monoclinic, P2/n

group

a, b, c(A) 11.1502(17), 24.938(4), | 15.564(2), 14.1664(19), | 17.873(5), 10.022(3),
14.546(2) 15.798(2) 19.645(6)

o, B,y (°) 90, 100.657(2), 90 90, 100.365(2), 90 90, 100.260(4), 90

V(A% 3975.0(10) 3426.4(8) 3462.6(18)

z 4 4 4

u (mm™) 3.64 4.07 3.91

Crystal size (mm) 0.38 0.3 x0.2 0.30 x 0.30 x 0.20 0.32x0.17 x 0.11

Data collection

Tnins Trmax 0.490, 0.746 0.608, 0.746 0.497, 0.746

No. of measured,

independent and

24800, 9149, 8335

20884, 7877, 7046

20396, 7606, 5846

observed [>20(/)]

Rint 0.028 0.033 0.061

(sin 0/A)max (A™) 0.651 0.651 0.641

Refinement

R[F*> 20(F)], 0.026, 0.061, 1.03 0.025, 0.062, 1.03 0.043, 0.091, 1.01
wR(F?), S

No. of reflections 9149 7877 7606

No. of parameters 497 482 488

No. of restrains 0 1 0

Aprmax, Apmin (€A™) 1.40, —0.90 1.79, -1.25 2.00, -1.21
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Fig. S20. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of

coumarin C3H recorded at 293 K in dichloromethane, Aex= 310 nm.
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Fig. S21. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of

coumarin C4H recorded at 293 K in dichloromethane (stock solution is prepared in DMSO to promote

solubility), Aex= 310 nm.
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Fig. S22. Overlaid UV—vis absorption (black solid line) and photoluminescence (red solid line) spectra of
piq-C3 recorded at 293 K in CH>Cly, Aex =310 nm.

w
o
1

—— Absorption
—PL
25 ©/L
z
T ]
520 3 I \\O
I§ § |F‘N
;15- -~ B]
o (o
X
w10
S
5_
bt-c3 O

O T T T T T T T T T
250 300 350 400 450 500 550 600 650 700
A/ nm

Fig. S23. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of
bt-C3, recorded at 293 K in CH,Cl,, Aex= 310 nm.
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Fig. S24. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of
btp-C3, recorded at 293 K in CH»Cl, Aex =310 nm. The PL spectrum was truncated to avoid detection of

the second-order harmonic of the coumarin-centered fluorescence band.
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Fig. S25. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of
pphen-C3, recorded at 293 K in CH,Cly, Aex =310 nm.
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Fig. S26. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of
piq-C4, recorded at 293 K in CH»Cly, Aex= 310 nm.
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Fig. S27. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of
bt-C4, recorded at 293 K in CH,Cly, Aex= 310 nm.

S23



—— Absorption
—PL

d pozijeuwLoN

250 300 350 400 450 500 550 600 650 700 750 800
Al nm

Fig. S28. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of
btp-C4, recorded at 293 K in CH,Cl,, Aex =310 nm.
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Fig. S29. Overlaid UV-vis absorption (black solid line) and photoluminescence (red solid line) spectra of
pphen-C4, recorded at 293 K in CH,Cly, Aex= 310 nm.
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Table S2. Summary of photophysical data for the salicylaldimine-coumarin precursors C3H and C4H,

recorded in dichloromethane at 293 K.

Absorption A / nm (k< x 107 /s7hy
Aem” / NM DOpy,” 1™/ ns
(ex102/M'em™) (k> 1078 /s7h
272 (1) 292 (11),
C3H 420 0.34% 2.7 1.3/3.7
357 (20)
C4H 325 (8.9), 380 (31) 442 8.8%¢ 2.3¢ 38/4.0

aexcitation wavelength at 310 nm. ® excitation wavelength at 330 nm. ¢ kr = ®riw/t and kar = (1-®rw)/t. ¢ stock solution is

prepared by DMSO to promote solubility.

S25



Table S3. Additional photophysical data for the iridium-coumarin complexes, recorded in
dichloromethane at 293 K.

Absorption A / nm
(ex107°/M'em™)

(kepros® % 107 1SV (Kurpnos® X 107° /571

piq-C3

bt-C3

btp-C3

pphen-C3

piq-C4

bt-C4

btp-C4

pphen-C4

290 (18), 315 (14)
355 (sh), 391 (5.0), 430 (4)
323 (23), 424 (5.9)

287 (43), 323 (35), 353 (sh), 427 (10)

292 (34), 322 (sh), 458 (6.3)
293 (28), 342 (23), 425 (6.8)
324 (32), 355 (18) 417 (8.4)

290 (34), 329 (30), 345 (sh)

364 (27), 437 (6.1)

0.74/43

0.13/1.5
0.016/2.8

1.9/27

2.0/22

0.12/0.95

0.034/2.1

2.3/13

a kr,Phos = Dphos/TPhos and knr = (lfq)Phos)/‘CPhos.
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Fig. S30. Plot of the ratio of phosphorescence to fluorescence intensity of piq-C3, recorded as a function
of oxygen partial pressure (pO). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/pnos) and short-wavelength fluorescence (/riwor) bands.
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Fig. S31. Plot of the ratio of phosphorescence to fluorescence intensity of bt-C3, recorded as a function of
oxygen partial pressure (pO,). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/phos) and short-wavelength fluorescence (Iriuor) bands.
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Fig. S32. Plot of the ratio of phosphorescence to fluorescence intensity of btp-C3, recorded as a function

of oxygen partial pressure (pO). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/pnos) and short-wavelength fluorescence (Jriuor) bands.
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Fig. S33. Plot of the ratio of phosphorescence to fluorescence intensity of pphen-C3, recorded as a function

of oxygen partial pressure (pO). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/pnos) and short-wavelength fluorescence (/rior) bands.
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Fig. S34. Plot of the ratio of phosphorescence to fluorescence intensity of piq-C4, recorded as a function
of oxygen partial pressure (pO). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/pnos) and short-wavelength fluorescence (Jriuor) bands.
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Fig. S35. Plot of the ratio of phosphorescence to fluorescence intensity of bt-C4, recorded as a function of
oxygen partial pressure (pO,). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/pnos) and short-wavelength fluorescence (/rior) bands.
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Fig. S36. Plot of the ratio of phosphorescence to fluorescence intensity of btp-C4, recorded as a function
of oxygen partial pressure (pO). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/pnos) and short-wavelength fluorescence (Jriuor) bands.
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Fig. S37. Plot of the ratio of phosphorescence to fluorescence intensity of pphen-C4, recorded as a function
of oxygen partial pressure (pO,). The luminescence intensities were rerecorded as the maximum intensity
values of the long-wavelength phosphorescence (/pnos) and short-wavelength fluorescence (/rior) bands.
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Fig. S38. Stern-Volmer plot of piq-C3 fit using the phosphorescence intensity method stated in Equation 1
of the main text. The ratio /o// represents the ratio of phosphorescence intensity in the absence of oxygen to
the phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Kgy is
provided, along with the R value of the best-fit line.
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Fig. S39. Stern-Volmer plot of bt-C3 fit using the ratiometric intensity method stated in Equation 1 of the
main text. The ratio /o/I represents the ratio of phosphorescence intensity in the absence of oxygen to the
phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Ksy is provided,

along with the R* value of the best-fit line.
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Fig. S40. Stern-Volmer plot of btp-C3 fit using the ratiometric intensity method stated in Equation 1 of the
main text. The ratio /o/I represents the ratio of phosphorescence intensity in the absence of oxygen to the
phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Ksy is provided,
along with the R* value of the best-fit line.
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Fig. S41. Stern-Volmer plot of pphen-C3 fit using the ratiometric intensity method stated in Equation 1 of
the main text. The ratio /o// represents the ratio of phosphorescence intensity in the absence of oxygen to
the phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Kgy is
provided, along with the R? value of the best-fit line.
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Fig. S42. Stern-Volmer plot of piq-C4 fit using the ratiometric intensity method stated in Equation 1 of the
main text. The ratio /o/I represents the ratio of phosphorescence intensity in the absence of oxygen to the
phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Ksy is provided,

along with the R* value of the best-fit line.
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Fig. S43. Stern-Volmer plot of bt-C4 fit using the ratiometric intensity method stated in Equation 1 of the
main text. The ratio /o/I represents the ratio of phosphorescence intensity in the absence of oxygen to the
phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Ksy is provided,

along with the R* value of the best-fit line.
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Fig. S44. Stern-Volmer plot of btp-C4 fit using the ratiometric intensity method stated in Equation 1 of the
main text. The ratio /o/I represents the ratio of phosphorescence intensity in the absence of oxygen to the
phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Kgy is provided,
along with the R* value of the best-fit line.
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Fig. S45. Stern-Volmer plot of pphen-C4 fit using the ratiometric intensity method stated in Equation 1 of
the main text. The ratio /o/I represents the ratio of phosphorescence intensity in the absence of oxygen to
the phosphorescence intensity at a given partial pressure of oxygen. The Stern-Volmer constant Kgy is
provided, along with the R* value of the best-fit line.
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Fig. S46. Time evolution of the UV-vis absorption spectra of complex piq-C3 upon irradiation with UV
light, in CH>Cl, under aerobic conditions.
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Fig. S47. Time evolution of the photoluminescence spectra of complex piq-C3 upon irradiation with UV
light, in CH,Cl, under aerobic conditions.
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Fig. S48. Time evolution of the UV-vis absorption spectra of complex piq-C upon irradiation with UV

light, in CH,Cl, under aerobic conditions.

70

60

50 +

40

30 4

20

Emission Intensity x 107 (a.u.)

10

——t=0min
——t=2min
——t=4min
——t=6min
T ———t=8min
———t=10min
——t=20min
——t=30min
——t=40min
——t=50min
——t=60min
——t=90min

piq-C

I5(|Jol
A/ nm

——
700

piq-C

Fig. S49. Time evolution of the photoluminescence spectra of complex piq-C upon irradiation with UV

light, in CH>Cl, under aerobic conditions.
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Fig. S50. Normalized fluorescence intensity as a function of time for piq-C3 (black) and piq-C (red),
observed at their respective fluorescence maxima.
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Fig. S51. Normalized phosphorescence intensity as a function of time for piq-C3 (black) and piq-C (red),
observed at their respective phosphorescence maxima.
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