Visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with *t*-BuONO

Yufen Lv*a, Jindong Haoa, Jian Huanga, Lianhui Songa, Huilan Yue,^b Wei Wei*a, Dong Yi*c

^a School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R.China. E-

mail: yufenlv06@163.com; weiweiqfnu@163.com

^b Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine

Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.

^c Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical

University, Luzhou 646000, Sichuan, P. R. China. E-mail: yidong@swmu.edu.cn

Contents

1.	General information	52
2.	General procedure for synthesis of organic nitrate esters	S2
3.	Preliminary mechanistic studies	S5
4.	Synthetic transformations of product	S6
5.	Characterization data of products	14
6.	Copies of NMR spectra for products	344

1.General information

All commercially available reagent grade chemicals were purchased from Macklin, MCMEC, Bidepharm and Energy Chemical Company and used as received without further purification unless otherwise stated. The solvents were used as analytical reagent grade. ¹H NMR and ¹³C NMR were recorded in CDCl₃ on a Bruker Avance III spectrometer with TMS as internal standard (400 MHz ¹H, 101 MHz ¹³C or 500 MHz ¹H, 126 MHz ¹³C) at room temperature, the chemical shifts (δ) were expressed in ppm and J values were given in Hz. The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh).

2.General procedure for synthesis of organic nitrate esters

To a mixture of α -diazo ester **1** (0.2 mmol, 1.0 equiv), t-BuONO **2** (0.4 mmol, 47.5 μ L), and cyclic ether **3** (Analytical Reagent, 1.5 mL) was added ethyl acetate (Analytical Reagent, 0.5 mL). The reaction mixture was open to molecular oxygen (balloon) and stirred under the irradiation of 12 W blue LEDs at room temperature for 12 h. After completion of the reaction, the reaction mixture was concentrated to remove

solvent. The residue was purified by column chromatography (eluent: petroleum ether and ethyl acetate) to afford the product **4**.

3. Preliminary mechanistic studies

3.1 The model reaction was conducted under N₂.

To a mixture of methyl phenyldiazoacetate **1a** (0.2 mmol, 35.2 mg), t-BuONO **2a** (0.4 mmol, 48 μ L), and THF **2a** (Analytical Reagent, 1.5 mL) was added ethyl acetate (AR, 0.5 mL). The reaction mixture was stirred under N₂ with the irradiation of 12 W blue LEDs at room temperature for 12 h. After completion of the reaction, the reaction mixture was concentrated to remove solvent. None of desired product **4aa** was detected.

3.2 The model reaction was conducted in anhydrous solvent.

To a mixture of methyl phenyldiazoacetate **1a** (0.2 mmol, 35.2 mg), t-BuONO **2a** (0.4 mmol, 48 μ L), 4ÅMS (50 mg) and anhydrous THF **2a** (1.5 mL) was added anhydrous ethyl acetate (0.5 mL). The reaction mixture was stirred under molecular oxygen (balloon) with the irradiation of 12 W blue LEDs at room temperature for 12 h. After completion of the reaction, the reaction mixture was concentrated to remove solvent. The desired product **4aa** was not detected.

3.3The model reaction was conducted in the presence of D₂O.

To a mixture of methyl phenyldiazoacetate (0.2 mmol, 35.2 mg), t-BuONO **2a** (0.4 mmol, 48 μ L), D₂O (1 mmol, 20 μ L) and anhydrous THF **3a** (1.5 mL) was added

anhydrous ethyl acetate (0.5 mL). The reaction mixture was stirred under molecular oxygen (balloon) with the irradiation of 12 W blue LEDs at room temperature for 12 h. After completion of the reaction, the solution was concentrated to remove solvent, the product **D-4aa** was obtained in 67% yield (38 mg). The product **D-4aa** was determined by ¹H NMR.

3.4 The model reaction was conducted in the presence of H₂¹⁸O under O₂.

To a mixture of methyl phenyldiazoacetate **1a** (0.2 mmol, 35.2 mg), t-BuONO **2a** (0.4 mmol, 48 μ L), H₂¹⁸O (1 mmol, 20 μ L) and anhydrous THF **3a** (1.5 mL) was added anhydrous ethyl acetate (0.5 mL). The reaction mixture was stirred under molecular oxygen (balloon) with the irradiation of 12 W blue LEDs at room temperature for 12 h. After completion of the reaction, a mixture of **4aa** and ¹⁸O-**4aa** was detected by HRMS.

3.5 The reaction of α-diazoester (1a), THF (3a), and HNO₃.

To a mixture of methyl phenyldiazoacetate (0.2 mmol, 35.2 mg), HNO₃ (0.4 mmol, 28 μ L), and THF **3a** (Analytical Reagent, 1.5 mL) was added ethyl acetate (AR, 0.5 mL). The reaction mixture was stirred under molecular oxygen (balloon) with the irradiation of 12 W blue LEDs at room temperature for 12 h. After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by column chromatography (eluent: petroleum ether and ethyl acetate 10:1) to afford the product **4aa** in 53% yield (30 mg).

3.6 The reaction of α-diazoester (1a), THF (3a), and NaNO₃.

To a mixture of methyl phenyldiazoacetate (0.2 mmol, 35.2 mg), NaNO₃ (0.4 mmol, 34 mg), and THF **3a** (Analytical Reagent, 1.5 mL) was added ethyl acetate (AR, 0.5 mL). The reaction mixture was stirred under molecular oxygen (balloon) with the irradiation of 12 W blue LEDs at room temperature for 12 h. After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by column chromatography (eluent: petroleum ether and ethyl acetate 10:1) to afford the product **4aa** in 51% yield (29 mg).

4. Synthetic transformations of product.

Oranic nitrate ester **4aa** (0.1 mmol, 30.5 mg) and KSCN (0.4 mmol, 38.8 mg) were added in a 25 mL reaction tube. Then, DMSO (2 mL) was added to the above mixture. The reaction mixture was stirred at 120°C for 6 h. After completion of the reaction, the reaction mixture was concentrated in vacuum, the desired organic thiocyanate **A** was obtained in 80% yield (22.3 mg).

Oranic nitrate ester **4aa** (0.1 mmol, 30.5 mg) and NaN₃ (0.3 mmol, 19.5 mg) were added in a 25 mL reaction tube. Then, DMF (2 mL) was added to the above mixture. The reaction mixture was stirred at 100°C for 6 h. After completion of the reaction, the reaction mixture was concentrated in vacuum, the desired organic thiocyanate **B** was obtained in 73% yield (19.2 mg).

Oranic nitrate ester **4aa** (0.1 mmol, 30.5 mg), NH₄Cl (0.3 mmol, 16 mg) H₂O (1 mmol, 18ul) and Zn (0.35 mmol, 23 mg) were added in a 25 mL reaction tube. Then, CH₃OH (2 mL) was added to the above mixture. The reaction mixture was stirred at 80°C for 4 h. After completion of the reaction, the reaction mixture was concentrated in vacuum, the desired compound **C** was obtained in 64% yield (15.2 mg).

4. Characterization data of products

 $0^{(+)}_{4}ONO_{2}$ $0^{(-)}_{0}$ methyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4aa). The resultant

residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4aa** (42.0mg, 74% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.44 (m, 2H), 7.34-7.39 (m, 3H), 4.86 (s, 1H), 4.49-5.53 (m, 2H), 3.71 (s, 3H), 3.55-3.61 (m, 1H), 3.46-3.51 (m, 1H), 1.85-1.90 (m, 2H), 1.74-1.79 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 171.3, 136.4, 128.8, 128.7, 127.1, 81.1, 73.1, 68.9, 52.3, 25.8, 23.9. ESI HRMS: calculated for C₁₃H₁₇NO₆Na [M+Na]⁺ 306.0956, found 306.0980.

methyl 2-(4-(nitrooxy)butoxy)-2-(p-tolyl)acetate (**4ba**). The resultant

residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4ba** (35.8mg, 60% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.82 (s, 1H), 4.48-4.52 (m, 2H), 3.70 (s, 3H), 3.53-3.60 (m, 1H), 3.44-3.49 (m, 1H), 2.35 (s, 3H), 1.83-1.90 (m, 2H), 1.71-1.78 (m 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 171.4, 138.7, 133.4, 129.4, 127.1, 80.9, 73.1, 68.7, 52.3, 25.8, 23.8, 21.2. ESI HRMS: calculated for C₁₄H₁₉NO₆Na [M+Na]⁺ 320.1110, found 320.1115.

methyl 2-(4-(nitrooxy)butoxy)-2-(m-tolyl)acetate (4ca). The resultant

residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4ca** (38.0mg, 64% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.20-7.26 (m, 3H), 7.15 (d, *J* = 7.2 Hz, 1H), 4.81 (s, 1H), 4.49-4.52 (m, 2H), 3.71 (s, 3H), 3.54-3.59 (m, 1H), 3.46-3.50 (m, 1H), 2.36 (s, 3H), 1.85-1.89 (m, 2H), 1.74-1.78 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 171.4, 138.5, 136.3, 129.6, 128.6, 127.8, 124.3, 81.2, 73.1, 68.8, 52.3, 25.8, 23.8, 21.4. ESI HRMS: calculated for C₁₄H₁₉NO₆Na [M+Na]⁺ 320.1110, found 320.1168.

t-Bu methyl 2-(4-(tert-butyl)phenyl)-2-(4-(nitrooxy)butoxy)acetate (4da). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford 4da (49.0 mg, 72% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.83 (s, 1H), 4.47-4.53 (m, 2H), 3.71 (s, 3H), 3.54-3.58 (m, 1H), 3.46-3.51 (m, 1H), 1.86-1.89 (m, 2H), 1.74-1.78 (m, 2H), 1.31 (s, 9H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 171.5,

151.8, 133.3, 126.9, 125.7, 80.9, 73.1, 68.8, 52.2, 34.6, 31.3, 31.3, 25.8, 23.8. ESI HRMS: calculated for $C_{17}H_{25}NO_6Na$ [M+Na]⁺ 362.1580, found 362.1581.

^{OMe} methyl 2-(3-methoxyphenyl)-2-(4-(nitrooxy)butoxy)acetate (4ea). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 8:1, v/v) to afford 4ea (45.0mg, 72% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.30 (m, 1H), 6.98-7.02 (m, 2H), 6.87-6.89 (m, 1H), 4.83 (s, 1H), 4.49-4.53 (m, 2H), 3.81 (s, 3H), 3.71 (s, 3H), 3.54-3.59 (m, 1H), 3.46-3.52 (m, 1H), 1.84-1.90 (m, 3H), 1.74-1.79 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 171.2, 159.8, 137.8, 129.7, 119.5, 114.5, 112.4, 81.0, 73.1, 68.9, 55.3, 52.3, 25.8, 23.9. ESI HRMS: calculated for C₁₄H₁₉NO₇Na [M+Na]+ 336.1059, found 336.1066.

F methyl 2-(4-fluorophenyl)-2-(4-(nitrooxy)butoxy)acetate (4fa). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 9:1, v/v) to afford 4fa (48.5mg, 81% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.43 (m, 2H), 7.03-7.07 (m, 2H), 4.84 (s, 1H), 4.49-4.53 (m, 2H), 3.72 (s, 3H), 3.55-3.61 (m, 1H), 3.45-3.51 (m, 1H), 1.84-1.90 (m, 2H), 1.72-1.79 (m, 2H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 171.1, 162.9 (d, *J* = 246.2 Hz), 132.2 (d, *J* = 3.2 Hz), 128.9 (d, *J* = 8.1 Hz), 115.7(d, *J* = 21.6 Hz), 80.4, 73.0, 68.9, 52.4, 25.8, 23.8. ESI HRMS: calculated for C₁₃H₁₆FNO₆Na [M+Na]⁺ 324.0859, found 324.0862.

O[†]↓ONO₂ ↓__O

methyl 2-(3-fluorophenyl)-2-(4-(nitrooxy)butoxy)acetate (4ga). The

resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 9:1, v/v) to afford **4ga** (53.5 mg, 89% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.36 (m, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 7.15-7.18 (m, 1H), 7.01-7.06 (m, 1H), 4.86 (s, 1H), 4.49-4.55 (m, 2H), 3.73 (s, 3H), 3.57-3.62 (m, 1H), 3.47-3.53 (m, 1H), 1.86-1.93 (m, 2H), 1.74-1.81 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 170.8, 162.9 (d, *J* = 244.9 Hz), 138.8 (d, *J* = 7.3 Hz), 130.2 (d, *J* = 8.1 Hz), 122.7 (d, *J* = 3.0 Hz), 115.7 (d, *J* = 21.0 Hz), 114.1(d, *J* = 22.4 Hz), 80.4 (d, *J* = 1.8 Hz), 73.0, 69.1, 52.4, 25.8, 23.8. ESI HRMS: calculated for C₁₃H₁₆FNO₆Na [M+Na]⁺ 324.0859, found 324.0860.

Ö methyl 2-(3-chlorophenyl)-2-(4-(nitrooxy)butoxy)acetate (4ha). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford 4ha (52.0mg, 82% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.44 (m, 1H), 7.30-7.33 (m, 3H), 4.83 (s, 1H), 4.50-4.53 (m, 2H), 3.73 (s, 3H), 3.56-3.62 (m, 1H), 3.47-3.52 (m, 1H), 1.85-1.91 (m, 2H), 1.75-1.80 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 170.7, 138.3, 134.6, 130.0, 128.9, 127.2, 125.2, 80.4, 73.0, 69.1, 52.5, 25.8, 23.8. ESI HRMS: calculated for C₁₃H₁₆ClNO6Na [M+Na]+ 340.0564, found 340.0577.

 $CI O (\frac{1}{4}ONO_2)$ O methyl 2-(2-chlorophenyl)-2-(4-(nitrooxy)butoxy)acetate (4ia). The

resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4ia** (47.0mg, 76% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.49 (m, 1H), 7.39-7.41 (m, 1H), 7.28-7.31 (m, 2H), 5.35 (s, 1H), 4.47-4.51 (m, 2H), 3.73 (s, 3H), 3.62-3.68 (m, 1H), 3.49-3.54 (m, 1H), 1.84-1.90 (m, 2H), 1.73-1.78 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 170.7, 134.5, 133.8, 130.0, 129.7, 128.7, 127.3, 77.3, 73.0, 69.3, 52.4, 25.8, 23.8. ESI HRMS: calculated for C₁₃H₁₆ClNO₆Na [M+Na]⁺ 340.0564, found 340.0578.

Br methyl 2-(4-bromophenyl)-2-(4-(nitrooxy)butoxy)acetate (**4ja**). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4ja** (49.0mg, 68% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.51 (m, 2H), 7.30-7.33 (m, 2H), 4.81 (s, 1H), 4.49-4.53 (m, 2H), 3.71 (s, 3H), 3.56-3.61 (m, 1H), 3.45-3.50 (m, 1H), 1.86-1.90 (m, 2H), 1.74-1.79 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 170.8, 135.4, 131.8, 128.7, 122.9, 80.4, 73.0, 69.1, 52.4, 25.8, 23.8. ESI HRMS: calculated for C₁₃H₁₆BrNO₆Na [M+Na]+ 384.0059, found 384.0043.

^{F₃C'} *ethyl* 2-(4-(*nitrooxy*)*butoxy*)-2-(4-(*trifluoromethyl*)*phenyl*)*acetate* (4*ka*). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 8:1, v/v) to afford 4*ka* (49.0mg, 67% yield), Yellow oil. ¹H NMR (500MHz, CDCl₃): δ 7.63 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 4.89 (s, 1H), 4.51-4.54 (m, 2H), 4.14-4.22 (m, 2H), 3.61-3.66 (m, 1H), 3.49-3.53 (m, 1H), 1.87-1.91 (m, 2H), 1.77-1.81 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C{1H} NMR (126 MHz, CDCl₃): 170.2, 140.4, 130.8 (d, J = 32.3 Hz), 128.9, 127.3, 125.6 (q, J = 3.8 Hz), 123.9 (d, J = 272.6 Hz), 80.6, 73.0, 69.2, 61.6, 25.8, 23.9, 14.1. ESI HRMS: calculated for C₁₅H₁₈F₃NO₆Na [M+Na]⁺ 388.0984, found 388.1006.

$$O_2N$$
 $ethyl 2-(4-(nitrooxy)butoxy)-2-(4-nitrophenyl)acetate (4la). The$

resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 8:1, v/v) to afford **4la** (48.0mg, 70% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 4.95 (s, 1H), 4.54 (t, J = 6.7 Hz, 2H), 4.16-4.23 (m, 2H), 3.65-3.71 (m, 1H), 3.52-3.57 (m, 1H), 1.88-1.93 (m, 2H), 1.79-1.84 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 169.7, 148.0, 143.5, 127.8, 123.8, 80.2, 73.0, 69.5, 61.8, 25.8, 23.9, 14.1. ESI HRMS: calculated for C₁₄H₁₈N₂O₈Na [M+Na]⁺ 365.0961, found 365.0982.

methyl 4-(2-methoxy-1-(4-(nitrooxy)butoxy)-2-oxoethyl)benzoate

(4ma). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 8:1, v/v) to afford 4ma (56.5mg, 83% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 4.91 (s, 1H), 4.50-4.53 (m, 2H), 3.92 (s, 3H), 3.72 (s, 3H), 3.60-3.64 (m, 1H), 3.48-3.52 (m, 1H), 1.86-1.91 (m, 2H), 1.75-1.81 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 170.7, 166.7, 141.2, 130.5, 129.9, 127.0, 80.7, 73.0, 69.2, 52.5, 52.2, 25.8, 23.8. ESI HRMS: calculated for C₁₅H₁₉NO₈Na [M+Na]⁺ 364.1008, found 364.1009.

OttONO2

OHAONO2

 0^{4} ONO₂

methyl 2-(4-cyanophenyl)-2-(4-(nitrooxy)butoxy)acetate (4na) The

resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 8:1, v/v) to afford **4na** (33.2 mg, 54% yield), Yellow oil. ¹H NMR (400MHz, CDCl₃): δ 7.67 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 4.91 (s, 1H), 4.53 (t, J = 6.5 Hz, 2H), 3.73 (s, 3H), 3.62-3.65 (m, 1H), 3.49-3.54 (m, 1H), 1.86-1.92 (m, 2H), 1.77-1.82 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 170.3, 141.5, 132.5, 127.6, 118.5, 112.6, 80.4, 72.9, 69.5, 52.7, 25.8, 23.8. ESI HRMS: calculated for C₁₄H₁₆N₂O₆Na [M+Na]⁺ 331.0906, found 331.0914.

ethyl 2-(benzo[c][1,2,5]thiadiazol-5-yl)-2-(4-(nitrooxy)butoxy)acetate (*4oa*). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 8:1, v/v) to afford **4oa** (52.0 mg, 74% yield), Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 8.08 (s, 1H), 8.01 (d, *J* = 9.1 Hz, 1H), 7.70-1.72 (m, 1H), 5.02 (s, 1H), 4.52-4.55 (m, 2H), 4.16-4.25 (m, 2H), 3.66-3.71 (m, 1H), 3.55-3.59 (m, 1H), 1.89-1.94 (m, 2H), 1.80-1.84 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C {1H} NMR (126 MHz, CDCl₃): δ 170.0, 154.8, 154.6, 138.3, 128.2, 121.8, 119.9, 80.8, 73.0, 69.3, 61.7, 25.9, 23.9, 14.1. ESI HRMS: calculated for C₁₄H₁₇N₃O₆SNa [M+Na]⁺ 378.0736, found 378.0773.

ethyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4pa). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4pa** (39.5mg, 66% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.45 (m, 2H), 7.33-7.38 (m, 3H), 4.84 (s, 1H), 4.49-4.53 (m, 2H), 4.12-4.22 (m, 2H), 3.56-3.61 (m, 1H), 3.47-3.52 (m, 1H), 1.85-1.90 (m, 2H), 1.73-1.79 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 170.8, 136.5, 128.7, 128.6, 127.1, 81.2, 73.1, 68.8, 61.3, 25.8, 23.9, 14.1. ESI HRMS: calculated for C₁₄H₁₉NO₆Na [M+Na]⁺ 320.1110, found 320.1123.

residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4qa** (34.0mg, 52% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.44 (m, 2H), 7.33-7.38 (m 3H), 4.84 (s, 1H), 4.49- 4.53 (m, 2H), 4.09-4.13 (m, 2H), 3.56-3.62 (m, 1H), 3.47-3.52 (m, 1H), 1.85-1.91 (m, 2H), 1.73-1.79 (m, 2H), 1.54-1.57 (m, 2H), 1.23-1.31 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 170.9, 136.6, 128.7, 128.6, 127.1, 81.2, 73.1, 68.8, 65.1, 30.5, 25.8, 23.9, 18.9, 13.6. ESI HRMS: calculated for C₁₆H₂₃NO₆Na [M+Na]⁺ 348.1423, found 348.1434.

 $p_{h} \rightarrow p_{0}$ *pentyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4ra).* The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4ra** (33.0mg, 49% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.45 (m, 2H), 7.33-7.38 (m, 3H), 4.84 (s, 1H), 4.49- 4.53 (m, 2H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.56-3.62 (m, 1H), 3.48-3.52 (m, 1H), 1.85-1.92 (m, 2H), 1.73-1.80 (m, 2H), 1.55-1.60 (m, 2H), 1.19-1.24 (m, 4H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 170.9, 136.6, 128.7, 128.6, 127.1, 81.2, 73.1, 68.8, 65.3, 28.2, 27.8, 25.8, 23.9, 22.2, 13.9. ESI HRMS: calculated for C₁₇H₂₅NO₆Na [M+Na]⁺

362.1580, found 362.1612.

Ph O Ph O Ph O Ph

phenethyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4sa). The resultant

residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 9:1, v/v) to afford **4sa** (54.0mg, 72% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.38 (m, 2H), 7.33-7.35 (m, 3H), 7.21-7.25 (m, 3H), 7.07-7.09 (m, 2H), 4.80 (s, 1H), 4.46-4.50 (m, 2H), 4.31-4.35 (m, 2H), 3.48-3.53 (m, 1H), 3.41-3.46 (m, 1H), 2.85-2.89 (m, 2H), 1.81-1.88 (m, 2H), 1.70-1.75 (m, 2H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 170.8, 137.5, 136.4, 128.9, 128.7, 128.7, 128.5, 127.1, 126.6, 81.1, 73.1, 68.8, 65.6, 34.9, 25.8, 23.9. ESI HRMS: calculated for C₂₀H₂₃NO₆Na [M+Na]⁺ 396.1423, found 396.1424.

Ph O Ph

benzyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4ta). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 9:1, v/v) to afford 4ta (38.0mg, 53% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.43 (m, 2H), 7.34-7.36 (m, 3H), 7.30-7.31 (m, 3H), 7.21-7.22 (m, 2H), 5.11-5.18 (m, 2H), 4.89 (s, 1H), 4.46-4.49 (m, 2H), 3.55-3.60 (m, 1H), 3.47-3.51 (m, 1H), 1.82-1.87 (m, 2H), 1.73-1.77 (m, 2H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 170.7, 136.3, 135.4, 128.8, 128.7, 128.5, 128.3, 128.0, 127.2, 81.2, 73.1, 68.9, 66.8,

25.8, 23.9. ESI HRMS: calculated for $C_{19}H_{21}NO_6Na$ [M+Na]⁺ 382.1267, found 382.1267.

isopropyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4ua). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4ua** (36.0mg, 58% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.44 (m, 2H), 7.32-7.37 (m, 3H), 5.01-5.06 (m, 1H), 4.80 (s, 1H), 4.49-4.54 (m, 2H), 3.57-3.61 (m, 1H), 3.48-3.52 (m, 1H), 1.86-1.92 (m, 2H), 1.74-1.79 (m, 2H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.12 (d, *J* = 6.3 Hz, 3H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 170.4, 136.6, 128.6, 128.6, 127.0, 81.3, 73.2, 68.8, 68.8, 25.8, 23.9, 21.8, 21.5. ESI HRMS: calculated for C₁₅H₂₁NO₆Na [M+Na]⁺ 334.1267, found 334.1352.

^{Ph} isobutyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4va). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford 4va (47.0mg, 72% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.45 (m, 2H), 7.33-7.38 (m 3H), 4.85 (s, 1H), 4.49- 4.53 (m, 2H), 3.85-3.93 (m, 3H), 3.57-3.62 (m, 1H), 3.47-3.52 (m, 1H), 1.83-1.92 (m, 4H), 1.75-1.80 (m, 2H), 0.83 (d, *J* = 1.3 Hz, 3H), 0.81 (d, *J* = 1.3 Hz, 3H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 170.9, 136.7, 128.7, 128.6, 127.1, 81.2, 73.1, 71.1, 68.8, 27.7, 25.8, 23.9, 18.9. ESI HRMS: calculated for C₁₆H₂₃NO₆Na [M+Na]⁺ 348.1423, found 348.1437.

^{ph} \int_{0}^{0} *isopentyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4wa)*. The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford **4wa** (53.0mg, 78% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.44 (m, 2H), 7.34-7.38 (m, 3H), 4.83 (s, 1H), 4.49-4.53 (m, 2H), 4.09-4.16 (m, 2H), 3.57-3.61 (m, 1H), 3.47-3.51 (m, 1H), 1.86-1.90 (m, 2H), 1.75-1.79 (m, 2H), 1.52-1.57 (m, 1H), 1.45-1.48 (m, 2H), 0.83-0.86 (m, 6H); ¹³C {1H} NMR (101 MHz, CDCl₃): δ 170.9, 136.6, 128.7, 128.6, 127.1, 81.2, 73.1, 68.8, 63.9, 37.1, 25.8, 25.0, 23.9, 22.4, 22.3. ESI HRMS: calculated for C₁₇H₂₅NO₆Na [M+Na]⁺ 362.1580, found 362.1598.

Ö allyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4xa). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 9:1, v/v) to afford 4xa (31 mg, 50% yield), Yellow oil. ¹H NMR (400MHz, CDCl₃): δ 7.36-7.38 (m, 2H), 7.26-7.31 (m, 3H), 5.73-5.80 (m, 1H), 5.09-5.14 (m, 2H), 4.80 (s, 1H), 4.53-4.55 (m, 2H), 4.42-4.45 (m, 2H), 3.50-3.55 (m, 1H), 3.40-3.45 (m, 1H), 1.79-1.83 (m, 2H), 1.67-1.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 136.4, 131.6, 128.8, 128.6, 127.1, 118.5, 81.2, 73.1, 68.9, 65.6, 25.8, 23.9. ESI HRMS: calculated for C₁₅H₁₉NO₆Na [M+Na]⁺ 332.1110, found 332.1115.

O (E)-hex-2-enyl 2-(4-(nitrooxy)butoxy)-2-phenylacetate (4ya). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 9:1, v/v) to afford 4ya (30 mg, 43% yield), Yellow oil. ¹H NMR (400MHz, CDCl₃): δ 7.35-7.37 (m, 2H), 7.25-7.30 (m, 3H), 5.57-5.63 (m, 1H), 5.38-5.49 (m, 1H), 4.78 (s, 1H), 4.41-4.50 (m, 4H), 3.49-3.54 (m, 1H), 3.40-3.45 (m, 1H), 1.88-1.93 (m, 2H), 1.79-1.83 (m, 2H), 1.67-1.72 (m, 2H), 1.26-1.31 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 136.9, 136.5, 128.7, 128.6, 127.1, 123.3, 81.2, 73.1, 68.8, 65.8, 34.2, 25.8, 23.9, 21.9, 13.5. ESI HRMS: calculated for C₁₈H₂₅NO₆Na [M+Na]⁺ 374.1580, found 374.1583.

ONO2

methyl 2-((5-(*nitrooxy*)*pentyl*)*oxy*)-2-*phenylacetate* (4*ab*). The resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 10:1, v/v) to afford 4*ab* (35.5mg, 60% yield), Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.43-7.45 (m, 2H), 7.33-7.39 (m, 3H), 4.86 (s, 1H), 4.44 (t, *J* = 6.6 Hz, 2H), 3.71 (s, 3H), 3.53-3.57 (m, 1H), 3.42-3.47 (m, 1H), 1.72-1.76 (m, 2H), 1.67-1.71 (m, 2H), 1.50-1.55 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 171.4, 136.5, 128.7, 128.6, 127.1, 81.2, 73.2, 69.4, 52.3, 29.1, 26.5, 22.4. ESI HRMS: calculated for C₁₄H₁₉NO₆Na [M+Na]⁺ 320.1110, found 320.1138.

methyl 2-(2-(nitrooxy)ethoxy)-2-phenylacetate (4ac). The

resultant residue was purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc= 6:1, v/v) to afford **4ac** (10.5mg, 18% yield), Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.45 (m, 2H), 7.33-7.39 (m, 3H), 4.97 (s, 1H), 4.61 (t, *J* = 4.6 Hz, 2H), 3.77-3.83 (m, 2H), 3.70-3.73 (m, 5H), 3.61-3.68 (m, 2H); ¹³C{1H} NMR (101 MHz, CDCl₃): δ 171.2, 136.3, 128.7, 128.6, 127.3, 81.4, 72.2, 70.8, 69.1, 67.3, 52.2. ESI HRMS: calculated for C₁₃H₁₇NO₇Na [M+Na]⁺ 322.0903, found 322.0935.

O methyl 2-phenyl-2-(4-thiocyanatobutoxy)acetate (A), Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.37 (m, 2H), 7.28 - 7.32 (m, 3H), 4.78 (s, 1H), 3.69 (s, 3H), 3.49 - 3.52 (m, 1H), 3.42 - 3.45 (m, 1H), 2.96 (t, J = 7.2 Hz, 2H), 1.89 - 1.93 (m, 2H), 1.72 - 1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 171.3, 136.3, 128.8, 128.7, 127.2, 112.3, 81.2, 68.8, 52.3, 33.8, 27.7, 27.0; ESI HRMS: calculated for C₁₄H₁₇NO₃SNa [M+Na]⁺ 302.0827, found 302.0823.

Ph

^{\circ} *methyl 2-(4-azidobutoxy)-2-phenylacetate (B)*, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.38 (m, 2H), 7.26 – 7.31 (m, 3H), 4.79 (s, 1H), 3.63 (s, 3H), 3.48 – 3.51 (m, 1H), 3.39 – 3.41 (m, 1H), 3.21-3.23 (m, 2H), 1.62 – 1.66 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 136.5, 128.7, 128.6, 127.2, 81.1, 69.1, 52.2, 51.2, 26.8, 25.7. ESI HRMS: calculated for C₁₃H₁₈N₃O₃ [M+H]⁺ 264.1348, found 264.1343.

Ö methyl 2-(4-hydroxybutoxy)-2-phenylacetate (**C**), Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.38 (m, 2H), 7.26 – 7.31 (m, 3H), 4.80 (s, 1H), 3.64 (s, 3H), 3.60 (t, J = 6.2 Hz, 2H), 3.48 – 3.52 (m, 1H), 3.39 – 3.44 (m, 1H), 1.90 (brs, 1H), 1.60 – 1.69 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 136.4, 128.7, 128.6, 127.2, 81.2, 69.8, 62.6, 52.3, 29.8, 26.4. ESI HRMS: calculated for C₁₃H₁₉O₄ [M+H]⁺ 239.1283, found 239.1277.

5. Copies of NMR spectra for products

4aa ¹H NMR (400 MHz, CDCl₃)

4ba ¹H NMR (400 MHz, CDCl₃)

CH-7

4-JIAJI

Z7.3205 Z7.3003 Z7.1867 Z7.1669 4ca ¹H NMR (400 MHz, CDCl₃)

7 2604 7 2522 7 2588 7 2368 7 2196 7 2196 7 2195 7 1573 7 1573 7 1428

4ca ¹³C NMR (101 MHz, CDCl₃)

CH-12 2185 254 264-12 2656 21 2657 2657 2657 2657 2657 2657 2657 2657	~81,1583 77,3520 77,0444 77,0444 76,7268 73,0999 ~68,8235	52.2931	/26.7599 /23.8477 /21.4188
---	---	---------	----------------------------------

4fa ¹³C NMR (101 MHz, CDCl₃)

CH-2		∠132,2558 ∑132,2240 ∑128,9238 128,8425 <115,5479	20.3811 777.3601 777.3601 76.7248 76.7248 76.7248 76.9442	52.3656	~25.7805 ~23.8481
------	--	--	---	---------	----------------------

4ia ¹H NMR (400 MHz, CDCl₃)

CH-10	7, 4826 7, 7, 4856 7, 7, 4748 7, 7, 4748 7, 7, 4748 7, 7, 4708 7, 7, 4708 7, 7, 4708 7, 7, 4708 7, 7, 2009 7, 7, 2001 7, 2000	-5.3474	4.5100 4.5100 4.4937 4.4903 4.4772 4.4772	3.7318 3.8574 3.8574 3.8574 3.8524 3.85248 3.85248 3.85248 3.85244 3.85248 3.85244 1.8778 1.8682 1.8682 1.8683 1.8683 1.8683 1.8683 1.8683 1.8683 1.8683 1.8683 1.8683 1.8683 1.8683 1.8683 1.7781 1.7784 1.7766 1.77744 1.77744 1.77744 1.77744 1.77744 1.77744 1.77744 1.77744 1.
-------	--	---------	--	--

4ma ¹H NMR (400 MHz, CDCl₃)

4na ¹H NMR (400 MHz, CDCl₃)

7 6812 7 6812 7 7 6803 -7 7 6803 -7 7 6803 -7 2670	4.9121	4.5413 4.5251 4.5086	37302 36552 36552 36552 36552 355400 35540 35540 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 355400 3554000 3554000 35540000000000
---	--------	----------------------------	---

⁴na ¹³C NMR (101 MHz, CDCl₃)

40a ¹H NMR (500 MHz, CDCl₃)

8.0153 7.9970 7.7.2970 7.7.230 7.7.7048 7.7.048

40a ¹³C NMR (126 MHz, CDCl₃)

	<154.7789 <154.6462					~25.8619	
--	------------------------	--	--	--	--	----------	--

4pa ¹³C NMR (101 MHz, CDCl₃)

25			→81.1781 →77.370502 →77.370502 →76.7349 →73.1211 →61.2616	
----	--	--	--	--

33 / 46

4sa ¹H NMR (400 MHz, CDCl₃)

CH-3	8740 84691 84631 8453 8453 8463 8476 8477 8678 8677 8678	3035	1817 1776 8376 8296 8204	5196 1970 1454 1308 1227	8907 88739 8699 8699 8525 8457 8457 7529 8457 7529 77386 77386 77386 77386 77386 77386 77386 77386 77386 7091
		-4.8	44444	non non	

4sa ¹³C NMR (101 MHz, CDCl₃)

CH-3	-170.7619	-137.4726 -137.4726 -138.8182 -128.7073 -128.657 -128.657 -128.657 -128.657 -128.657 -128.657 -126.6590	281.1371 277.073915 777.073915 777.073915 773.07560 73.1523 73.1523 73.1223 665.5601	-34.9367 -25.7804 -23.8520
				1 1/

4ua ¹H NMR (400 MHz, CDCl₃)

7,4368 7,4339 7,4206 7,3721 7,3721 7,3368 7,3368 7,3345 7,3345 7,3345 7,3345 7,3345 7,3345 7,3345	5 0616 5 0616 5 0366 5 0366 5 0361 5 0361 5 0361 5 5 3 3 5 3 3 5 3 3 5 3 3 5 3 5 3 5 3 5	3.5968 3.5787 3.5787 3.5787 3.5664 3.5664 3.5664 3.5664 3.5664 3.4947 3.482	118908 17765 177643 1777643 17777643 1777643 1777643 17777643 17777643 17777643 1777777777777777777777777777777777777
--	---	---	---

4ua ¹³C NMR (101 MHz, CDCl₃)

			81.266 777.386 777.048 773.150 68.839 68.839	25.796 21.768 21.492
--	--	--	---	----------------------------

4wa ¹H NMR (400 MHz, CDCl₃)

4xa ¹H NMR (400 MHz, CDCl₃)

4ya ¹H NMR (400 MHz, CDCl₃)

7, 3733, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 3734, 7, 7, 3734, 7, 7, 2854, 7, 7, 2874, 7, 7, 2874, 7, 7, 2876, 7, 2876, 7, 2976,

