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Experimental section

Materials synthesis: Firstly, 0.2 g zinc nitrate hexahydrate (Zn(NO3)2·6H2O) was 

added into 10 mL N, N-dimethylformamide (DMF) and completely dissolved, then 1 g 

PAN and 0.6 g spherical graphite were added to the above solution and ultrasonically 

dispersed for 30 min and then placed on a magnetic stirring table for 12 h at a speed 

of 500 rpm to obtain a dispersed black solution. Using an electrostatic spinner, the 

distance between the needle and the receiver was set at 18 cm, the voltage was 20 

kV, the solution was advanced at a rate of 1 mL h−1, the syringe translation distance 

was 80 mm, the translation speed was set at 40 mm min-1 and the receiver rotation 

speed was set at 60 rpm. The resulting film was removed and placed in a blower at 80 

°C for 12 h. The dried spun filaments were placed in a muffle furnace and cured by 

annealing at 200 °C for 2 h at a temperature increase rate of 0.5 °C min−1 (denoted as 

Gr@PAN). Subsequently, black flexible films (referred to as Gr@CNF) were carbonized 

at high temperature for 2 h under an Ar atmosphere by ramping up to 800 °C at a rate 

of 1 °C min-1. The obtained membrane is washed by 1M HCl. For comparison, carbon 

fiber films without the addition of spherical graphite with Zn(NO3)2-H2O (denoted as 

CNF) were prepared by the same procedure. The Gr/CNF composite was prepared by 

ball-milling spherical graphite with carbon fibers at 300 rpm for two hours.

Materials Characterization: The crystal structure and morphology of the as-

prepared electrocatalysts were characterized by X-ray diffraction (XRD, Bruker, D8 

Advance) with Cu Kα radiation (λ =0.15418 nm) as an X-ray source, scanning electron 

microscopy (SEM, SU 3500) with 15 kV working voltage. Raman spectroscopy was 

obtained using the WITec system (alpha 300 R with a 532 nm wavelength laser). 

Nitrogen adsorption/desorption isotherms were collected from the samples, and the 

specific surface areas were calculated by the multipoint Brunauer−Emmett−Teller 

(BET) procedure. The surface electronic config-uration of samples was determined by 

X-ray photoelectron spectros-copy (XPS, ESCALAB 250Xi). 

Electrochemical tests: Spherical graphite, Super P and polyvinylidene fluoride 

(PVDF) binder were mixed in a mass ratio of 8: 1:1 in N-methylpyrrolidone (NMP) and 

the paste was coated on copper foil to prepare anode and was dried in a vacuum oven 

at 80 °C for 12 h and then cut into small discs of 12 mm diameter to be used as 

electrode pieces. The average active substance loading of the negative electrode was 

about 1.2 mg cm−2. Gr @CNF and CNF can be used directly as anode electrode. 

Electrolyte using 0.8M KPF6/EC/DEC. 



Galvanostatic charge-discharge and galvanostatic intermittent titration 

technique (GITT) tests were performed using a LAND battery test system over a 

voltage range of 0.01-3.0 V (vs K+/K).For the GITT tests, cells were discharged at 25 

mAg-1 for 20 min, followed by open-circuit relaxation for 2 h, and this process was 

continued until the potential was≤0.01 V. Cyclic voltammogram (CV) profiles were 

scaled in a potential range of 0.01-2.5 V (vs. K+/K) on a CHI750E electrochemical 

workstation. Electrochemical impedance spectroscopy (EIS) tests were performed on 

a Reference 3000 Gamry with a recording range of 0.1 Hz-100 kHz and an amplitude 

of 0.5 mV. All tests are conducted at room temperature.

The energy density and power density are calculated by using equations: 

 and , where ,  and  are the beginning and 𝑃= ∆𝐸𝑖/𝑚 𝐸= 𝑃𝑡 ∆𝐸= (𝐸𝑚𝑎𝑥+ 𝐸𝑚𝑖𝑛)/2 𝑉𝑚𝑎𝑥 𝑉𝑚𝑖𝑛

end of the potential in the discharge curve,  is the charge-discharge current (A),  is 𝐼 𝑡

the discharge time (h), and  is the mass of the active material, including both anode 𝑚

and cathode.



Figure S1. Schematic diagram of Gr@CNF synthesis by electrostatic spinning.
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Figure S2. XRD patterns of Gr@CNF and CNF. 
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Figure S3. The Raman spectra of Gr@CNF and CNF.
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Figure S4. The N2 adsorption and desorption curves and pore size distribution.
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Figure S5. The GCD curves and 50 cycles of CNF at the current density of C/3.
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Figure S6. GCD curves with different number of turns of three electrodes cycled at a 
current density of C/3: (a) Graphite; (b) Gr@CNF; (c)CNF. 
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Figure S7. 200 cycles of Gr/CNF at the current density of C/3.
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Figure S8. CV curves for two electrodes at different scan rates and b-values calculated 
from the curves.
Note to S8: Both materials show obvious reduction peaks in the low potential interval, 
as well as oxidation peaks around 0.5 V. The difference is that the peak shift of the 
Gr@CNF curves is smaller and the deformation is weaker with the increasing sweep 

rate. From the relationship between the peak current ( ) and the scan rate ( ) ( ), 𝑖 𝑣 𝑖= 𝑎𝑣𝑏

the  value can be calculated to determine the electrochemical behavior of K+ during 𝑏

cycling.
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Figure S9. GITT curves for the two electrodes.

Note to S9: According to GITT test results,  can be calculated using the 𝐷+
𝐾

following equation

.
𝐷
𝐾+

=
4
𝜋𝜏(𝑚𝐵𝑉𝑚

𝑀𝐵𝑆 )2(
∆𝐸𝑆
∆𝐸𝜏)2

Where  is the relaxation time,  is the mass of active material  is the molar 𝜏 𝑚𝐵 𝑀𝐵

mass of active material,  is the molar volume of hard carbon,  is the surface area 𝑉𝑚 𝑆

of active material,  and  can be obtained from GITT curves. ∆𝐸𝑆 ∆𝐸𝜏
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Figure S10. XPS spectra of Gr@CNF electrode after 20 cycles: (e) C 1s, (f) O 1s, (g) F 1s.
Note to S10: The C-C/C-H, C=C, C-O-C, C-O, C=O and C-O3 bonds located at 285, 284.2, 
285.7, 287.2 and 288.4 eV in the C1s spectra, as well as the O1s spectra showing O-
C=O (533. 5 eV), -C-O-C- (532.3 eV), C=O (531.4 eV) and - C-O-K (530.3 eV) 
characteristic peaks. which are mainly due to organic matter produced by solvent 
decomposition.
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Figure S11. (a) CV curve of Gr@CNF//AC at 2 mV s−1; (b) Rate performance at different 
current densities of Gr@CNF//AC.
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