Supporting Information

Synthesis and Characterization of Chlorotriarylbismuthonium Salts

Jennifer Kuziola, Nils Nöthling, Markus Leutzsch, Josep Cornella

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany

cornella@kofo.mpg.de

Table of Contents

1. General methods	3
2. Synthesis of Triarylbismuth Complex	4
2.1 Synthesis and characterization data of tris(3,5-di-methylphenyl)bismuthane (2)	4
3. Synthesis of Triarylbismuth(V) dichlorides	5
3.1 Characterization data of triphenylbismuth dichloride (5)	5
3.2 Characterization data of tris(3,5-di-methylphenyl)bismuth dichloride (6)	6
3.3 Characterization data of tris(3,5-di-tert-butylphenyl)bismuth dichloride (7)	6
3.4 Characterization data of trimesitylbismuth dichloride (8)	6
3.5 SC-XRD of triaryldibismuth dichlorides 6, 7 and 8	7
4. Synthesis of high-valent chlorobismuthonium tetrakis [3,5 bis(trifluoromethyl) pheny	l]borate
salts	8
4.1 Characterization data of $[Ph_3BiCl][BAr^F]$ (9) and $[(Ph_3BiCl_2)Cl][BAr^F]$ (9a)	8
4.2 Characterization data of $[m-Xyl_3BiCl][BAr^F]$ (10) and $[(m-Xyl_3BiCl_2)Cl][BAr^F]$ (10a)	9
4.3 Characterization data of $[3,5^{-tBu}Ar_3BiCl][BAr^F]$ (11) and $[(3,5^{-tBu}Ar_3BiCl_2)Cl][BAr^F]$ (11a)	10
4.4 Characterization data of [Mes ₃ BiCl][BAr ^F] (12)	11
5. Reactivity of Chlorotrimesitylbismuthonium salt (13)	12
6. DOSY Experiments	13
7. Determination of Lewis acidity	16
8. Polymerization of THF- d_8	19
9. X-ray Data	22
10. References	84
11. NMR Data	85

1. General methods

Unless otherwise stated, all manipulations were performed using standard Schlenk techniques under dry argon in flame-dried glassware or in a MBraun argon-filled glove box.

Anhydrous solvents were distilled from appropriate drying agents and were transferred under Ar (DCM and *n*-pentane (CaH₂), CDCl₃ (molecular sieves)) and stored over 4 Å molecular sieves under argon prior to use. Anhydrous BiCl₃ (99.9%, trace metal basis) and NaBAr^F were purchased from Alfa Aesar, BiPh₃ was purchased from abcr. Trimesitylbismuth and tris(3,5-di-tert-butylphenyl)bismuthane have been synthesized by the reported method.¹

NMR data were recorded using a Bruker AVIII HD 300 MHz, Bruker AVIII HD 400 MHz, Bruker AVIII 500 MHz or Bruker AVNeo 600 MHz NMR spectrometer. Chemical shifts (δ) are given in ppm, relative to deuterated solvent residual peak, and coupling constants (*J*) provided in Hz. ¹H and ¹³C chemical shifts δ are reported relative to the solvent residual peaks as an internal reference. For ¹H NMR the following residual proton peaks of the deuterated solvents were used: CDCl₃, $\delta_{\rm H}$ = 7.260 ppm, CD₂Cl₂ = 5.320 ppm and for ¹³C NMR: CDCl₃, δ = 77.16 ppm. ¹⁹F NMR data measured at 585 MHz was generally measured without ¹H decoupling.

2. Synthesis of Triarylbismuth Complex

Trimesitylbismuth and tris(3,5-di-*tert*-butylphenyl)bismuthane have been synthesized by the reported method,¹ while triphenylbismuth was commercially available.

2.1 Synthesis and characterization data of tris(3,5-di-methylphenyl)bismuthane (2)

Procedure: A flame-dried Schlenk-flask was charged with activated magnesium turnings (214.7 mg, 8.8 mmol, 1.2 equiv.) and dissolved in in anhydrous THF (0.5 mL), followed by the addition of iodine and 0.5 mL of 5-bromo-xylene (0.37 mmol). The mixture was gently heated with a heat gun (70 °C) and a solution of the remaining 5-bromo-xylene (0.95 mL, 7 mmol, in total: 1.0 equiv.) in anhydrous THF (15 mL) was slowly added. The mixture was placed in an oil bath and heated at 70 °C for 3 h. Then, the solution was cooled to room temperature, additional 10 mL of anhydrous THF were added. The mixture was cooled to 0 °C and BiCl₃ was added in one portion. The reaction was allowed to warm up to room temperature and stirred overnight. The solvent was evaporated under reduced pressure and the crude mixture was extracted with anhydrous *n*-pentane (3× 10 mL). The removal of pentane under vacuum afforded tris(3,5-di-methylphenyl)bismuth (**2**). Yield: 88% (1.02 g)

¹H NMR (300 MHz, CDCl₃) δ 7.41 (s, 6H, *H*-2), 6.95 (s, 3H, *H*-4), 2.27 (s, 18H, *H*-5).

¹³C NMR (75 MHz, CDCl₃) δ 154.9 (*C*-1), 139.7 (*C*-3), 135.32 (*C*-4), 129.6 (*C*-2), 21.5 (*C*-5).

HRMS (ESI) calc'd for C₂₄H₂₇Bi₁ [M]⁺ 524.191160, found 524.191148.

SC-XRD: Crystal of sufficient quality for SC-XRD were obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **2** in CH₂Cl₂ at +23 °C.

3. Synthesis of Triarylbismuth(V) dichlorides

Scheme S1. Overview of the synthesized triarylbismuth dichlorides.

General procedure: An oven dried vial with a septum cap was charged with the corresponding triarylbismuthane (1.0 equiv.) under an Ar atmosphere and dissolved in anhydrous CH_2Cl_2 , followed by the addition of SO_2Cl_2 (1.3 equiv.). The reaction was stirred for 2 h at room temperature and the solvent was evaporated via schlenk vaccum, affording the corresponding triarylbismuth dichloride.

3.1 Characterization data of triphenylbismuth dichloride (5)

Compound **5** was prepared following the general procedure from triphenylbismuth (**1**) (1.0 g, 2.38 mmol, 1.0 equiv.) and SO_2Cl_2 (0.3 mL, 3.1 mmol, 1.3 equiv.) in 20 mL of anhydrous CH_2Cl_2 . Yield: 90% (1.1 g)

¹H NMR (300 MHz, CDCl₃) δ 8.63 – 8.46 (m, 6H, H-*Ar*), 7.67 (m, 6H, H-*Ar*), 7.62 – 7.44 (m, 3H, *H*-4).

¹³C NMR (75 MHz, CDCl₃) δ 156.1 (*C*-1), 134.7 (C-*Ar*), 131.9 (C-*Ar*). 131.7 (C-4).

HRMS (ESI) calc'd for C₁₈H₁₅BiCl₂Na₁ [M+Na]⁺ 533.02526, found 533.02470

3.2 Characterization data of tris(3,5-di-methylphenyl)bismuth dichloride (6)

Compound **6** was prepared following the general procedure from tris(3,5-di-methylphenyl)bismuth (**2**) (120 mg, 0.22 mmol, 1.0 equiv.) and SO₂Cl₂ (24.2 μ L, 0.3 mmol, 1.3 equiv.) in 12 mL of anhydrous CH₂Cl₂. Yield: 90% (123 mg)

617.11860.

SC-XRD: Crystal of sufficient quality for SC-XRD were obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **6** in dichloromethane at +23 °C.

3.3 Characterization data of tris(3,5-di-tert-butylphenyl)bismuth dichloride (7)

Compound **7** was prepared following the general procedure from tris(3,5-di-tert-butylphenyl)bismuth (**3**) (52 mg, 0.07 mmol, 1.0 equiv.) and SO₂Cl₂ (7.3 μ L, 0.09 mmol, 1.3 equiv.) in 5 mL of anhydrous CH₂Cl₂. Yield: 95% (53.7 mg).

869.40030.

SC-XRD: Crystal of sufficient quality for SC-XRD were obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **7** in CH₂Cl₂ at +23 $^{\circ}$ C.

3.4 Characterization data of trimesitylbismuth dichloride (8)

Compound **8** was prepared following the general procedure from trimesitylbismuth (**4**) (70 mg, 1.23 mmol, 1.0 equiv.) and SO₂Cl₂ (16 μ L, 0.16 mmol, 1.3 equiv.) in 7 mL of anhydrous CH₂Cl₂. Yield: 90% (71 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 6H, *H*-3), 2.71 (s, 18H *H*-6), 2.32 (s, 9H, *H*-5).

¹³C NMR (101 MHz, CDCl₃) δ 167.8 (*C*-1), 142.0 (C-2), 141.3 (C-4), 132.3 (*C*-3), 25.6 (*C*-6), 21.0 (*C*-5).

HRMS (ESI) calc'd for C₂₇H₃₂BiCl₂ [M] 635.16742, found 635.16796.

SC-XRD: Crystal of sufficient quality for SC-XRD were obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **8** in CH₂Cl₂ at +23 $^{\circ}$ C.

3.5 SC-XRD of triaryldibismuth dichlorides 6, 7 and 8

Complexes **5** and **8** are known,^{2,3} **6** and **7** represent new structures.

Figure S1. Solid state of structure of **6** (A), **7** (B)⁴ and **8** (C)⁴. Ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): (A) **6**, Bi1-C1: 2.1980(15), Bi1-C9: 2.202(2), Bi1-C11: 2.5898(4), C11–Bi1–C11, 177.391(18). (B) **7**, Bi1-C1: 2.221(2), Bi1-C15: 2.212(3), Bi1–C11, 2.5954(5), C11–Bi1–C11, 178.59(3). Selected bond lengths (Å) and angles (°) are the average of two molecules in the asymmetric unit cell: (C), **8**: Bi1-C1:2.239(3), Bi1-C19: 2.2315(3), Bi1-C10: 2.235(3), Bi1-C11: 2.5977(8), Bi1-C12: 2.63265(8), C11-Bi1-C12: 175.94(3).

Structures **6**, **7** and **8** adopt a slightly distorted trigonal bipyramidal geometry with the chloride atoms occupying the apical positions. The Bi1–Cl1 bond lengths of **6**, **7** and **8** are in the range of the unsubstituted Ph₃BiCl₂ [**5**: 2.5896(10) Å;² **6**: 2.5898(4); **7**: Bi1–Cl1 = 2.5954(5) Å; 8: 2.6151(8) Å;]. Whereas the fluorinated analogues ^{*t*Bu}Ar₃BiF₂ (^{*t*Bu}Ar = 3,5-*t*Bu₂-C₆H₃) and Mes₃BiF₂ (Mes = 2,4,6-Me₃-C₆H₃) display a quasi-linear F–Bi–F axis [^{*t*Bu}Ar₃BiF₂: 179.1(2)°; Mes₃BiF₂: 179.00(5)°],¹ complexes **6**, **7** and **8** exhibit deviations from linearity with Cl–Bi–Cl angles of 177.391(18)° (**6**), 178.59(3)° (**7**) and 175.94(3)° (**8**). The replacement of the more electronegative fluoride ligands with chlorine atoms leads to a distinct organization of the aryl groups, adopting rather a propeller-like configuration in all cases.

This effect can be attributed to the weaker interactions of the *ortho* C–H bonds with the Cl as a result of the lower electronegativity compared to fluorine.

4. Synthesis of high-valent chlorobismuthonium tetrakis [3,5 bis(trifluoromethyl) phenyl]borate salts

 $[Ar = Ph, 3,5-Me_2-C_6H_3, 3,5-{}^tBu_2-C_6H_3, Mes]$

General procedure: In the glovebox, an oven dried vial with a septum cap was charged with the corresponding triarylbismuth dichloride (1.0 equiv.) and either 1.0 or 0.5 equiv. of NaBAr^F, followed by the addition of 5 mL of anhydrous dichloromethane. The reaction was stirred for 2 h at room temperature and the precipitate was filtered off via a syringe filter. The solvent was evaporated under reduced pressure via the Schlenk line, affording the corresponding triarylbismuth dichloride.

4.1 Characterization data of [Ph₃BiCl][BAr^F] (9) and [(Ph₃BiCl₂)Cl][BAr^F] (9a)

Addition of <u>1.0 equiv.</u> of NaBAr^F: Prepared according to the general procedure from triphenylbismuth dichloride (1) (50 mg, 0.08 mmol, 1.0 equiv.) and NaBAr^F (52 mg, 0.06 mmol, 1.0 equiv.) in 5 mL of anhydrous dichloromethane. The analytical data refer to the formal monomeric chlorobismuthonium species (9) in solution. Yield: 48 mg

-128.8 (m) (*BAr*^{*F*}), 124.7 (q, J = 272.6 Hz, BAr^{F}), 118.2 -116.9 (m) (*BAr*^{*F*}).

¹⁹F NMR (282 MHz, CDCl₃) δ –62.3.

HRMS (ESI): calc'd for $C_{18}H_{15}Bi_1Cl_1$ [M]⁺ 475.06608, found 475.06619.

Addition of <u>0.5 equiv.</u> of NaBAr^F: Prepared according to the general procedure from triphenylbismuth dichloride (1) (50 mg, 0.08 mmol, 1.0 equiv.) and NaBAr^F (17.3 mg, 0.09 mmol, 0.5 equiv.) in 5 mL of anhydrous dichloromethane. The analytical data refer to the dimeric chlorobismuthonium species (**9a**) in solution and solid-state. Yield: 87% (43.3 mg)

¹H NMR (600 MHz, CDCl₃) δ 7.99 – 7.94 (m, 12H, *H*-2), 7.72 – 7.69 (m, 8H, *BAr^F*), 7.61 (m, 12H, *H*-3), 7.59 – 7.54 (m, 6H, *H*-4), 7.49 (s, 4H, *BAr^F*).

¹³C NMR (151 MHz, CDCl₃) δ 161.9 (q, J = 49.8 Hz, BAr^F), 153.7 (C-1), 134.9 (BAr^F), 134.3 (C-2), 133.0 (C-3), 132.9 (C-4), 129.0 (qq, J = 31.5, 2.8 Hz, BAr^F), 124.7 (q, J = 272.5 Hz, BAr^F), 117.6

(hept, $J = 4.0 \text{ Hz}, BAr^{F}$).

¹⁹F NMR (565 MHz, CDCl₃) δ –62.4.

HRMS (ESI): calc'd for C₃₆H₃₀Bi₂Cl₃ [M]⁺ 985.10224, found 958.10156.

SC-XRD: Crystal of sufficient quality for SC-XRD was obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **9a** in CH₂Cl₂ at +23 °C.

4.2 Characterization data of [m-Xyl₃BiCl][BAr^F] (10) and [(m-Xyl₃BiCl₂)Cl][BAr^F] (10a)

Addition of <u>1.0 equiv.</u> of NaBAr^F: Prepared according to the general procedure from **6** (50 mg, 0.084 mmol, 1.0 equiv.) and NaBAr^F (78.1 mg, 0.088 mmol, 1.05 equiv.) in 5 mL of anhydrous dichloromethane. The analytical data refer to the monomeric chlorobismuthonium species in solution and solid-state. Yield: 91.4 % (64 mg)

¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.61 (m, 8H, *BAr^F*), 7.47 (s, 4H, *BAr^F*), 7.38 (s, 6H, *H*-2), 7.33 – 7.29 (m, 3H, *H*-4), 2.38 – 2.36 (m, 18H, *H*-5).

¹³C NMR (151 MHz, CDCl₃) δ 161.8 (q, J = 49.9 Hz, BAr^{F}),

146.1–145.1 (*C*-1), 144.8 (C-3), 136.5 (*C*-4), 134.9 (BAr^F), 131.3 (*C*-2), 129.9–128.5 (m) (BAr^F), 124.6 (q, J = 272.6 Hz, BAr^F), 118.5–115.9 (m) (BAr^F), 21.8 (*C*-5).

¹⁹F NMR (565 MHz, CDCl₃) δ –62.4.

HRMS (ESI): calc'd for C₂₄H₂₇Bi₁Cl₁ [M]⁺ 559.16011, found 559.15998.

SC-XRD: Crystal of sufficient quality for SC-XRD was obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **10** in CH₂Cl₂ at -18 °C.

Addition of <u>0.5 equiv.</u> of NaBAr^F: Prepared according to the general procedure from 6 (47 mg, 0.08 mmol, 1.0 equiv.) and NaBAr^F (35.1 mg, 0.04 mmol, 0.5 equiv.) in 5 mL of anhydrous dichloromethane. The analytical data refer to the formal dimeric chlorobismuthonium species (**10a**) in solution. Yield: 62 mg

● [BAr^F] \ominus ¹H NMR (400 MHz, CDCl₃) δ 7.74 - 7.68 (m, 8H, BAr^F), 7.61 (s, 12H, H-2), 7.50 (s, 4H, BAr^F), 7.16 (s, 6H, H-4), 2.26 (s, 36H, H-5).

¹³C NMR (101 MHz, CDCl₃) δ 161.8 (q, J = 49.9 Hz, BAr^{F}), 153.4 (C-1), 143.0 (C-3), 135.0

(*BAr^F*), 134.4 (*C*-4), 131.4 (*C*-2), 129.7 – 128.3 (m) (*BAr^F*), 124.7 (q, *J* = 272.4 Hz, *BAr^F*), 118.0 – 116.9 (m) (*BAr^F*), 21.7 (*C*-5).

¹⁹F NMR (282 MHz, CDCl₃) δ –62.3.

Based on the HRMS analysis several species have been detected:

1. HRMS (ESI): calc'd for C₂₄H₂₇Bi₁Cl₁ [M]⁺ 559.15995, found 559.15998.

2. HRMS (ESI): calc'd for C₄₈H₅₄Bi₂Cl₃ [M]⁺ 1153.28936, found 1153.28963.

4.3 Characterization data of [3,5-tBuAr₃BiCl][BAr^F] (11) and [(3,5-tBuAr₃BiCl₂)Cl][BAr^F] (11a)

Addition of <u>1.0 equiv.</u> of NaBAr^F: Prepared according to the general procedure from complex **7** (50 mg, 0.06 mmol, 1.0 equiv.) and NaBAr^F (52mg, 0.06 mmol, 1.0 equiv.) in 5 mL of anhydrous dichloromethane. The analytical data refer to the monomeric chlorobismuthonium species (**11**) in solution and the yield is based on the dinuclear structure in solid state. <u>Yield:</u> 79 % (59 mg)

¹H NMR (600 MHz, CDCl₃) δ 7.80 (t, J = 1.6 Hz, 3H, H-4), 7.69 – 7.64 (m, 8H, BAr^F), 7.62 (d, J = 1.6 Hz, 6H, H-2), 7.46 (s, 4H, BAr^F), 1.34 (s, 54H, H-6).

¹³C NMR (151 MHz, CDCl₃) δ 161.83 (q, J = 49.9 Hz, BAr^F), 157.9 (C-3), 147.5 (bs, C-1), 134.9 (BAr^F), 129.1 (C-4), 128.9 (qq, J = 31.5, 2.8 Hz, BAr^F), 128.1 (C-2), 124.7

 $(q, J = 272.6 \text{ Hz}, BAr^{F}), 117.5 \text{ (hept, } J = 4.0 \text{ Hz}, BAr^{F}), 36.5 \text{ (C-5)}, 31.2 \text{ (C-6)}.$

¹⁹F NMR (564 MHz, CDCl₃) δ –62.4.

Based on the HRMS analysis several species have been detected:

1. HRMS (ESI): $811.44 = [C_{42}H_{63}Bi_1Cl_1]^+$ (11) equal to $[C_{42}H_{63}Bi_1Cl_2 - Cl]^+$ (7);

HRMS (ESI): calc'd for C₄₂H₆₃Bi₁Cl₁ [M]⁺ 811.44131, found 811.44168.

2. HRMS (ESI): calc'd for C₈₄H₁₂₆Bi₂Cl₃ [M]⁺ 1657.85177, found 1657.85276. (11a)

SC-XRD: Crystal of sufficient quality for SC-XRD were obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **11** in CH₂Cl₂ at -18 °C, affording dimeric Bi complex **11a**.

Addition of <u>0.5 equiv.</u> of NaBAr^F: Prepared according to the general procedure from complex 7 (30 mg, 0.035 mmol, 1.0 equiv.) and NaBAr^F (15.7mg, 0.017 mmol, 0.5 equiv.) in 5 mL of anhydrous dichloromethane. The analytical data refer to the dimeric chlorobismuthonium species in solution and the yield is based on the dinuclear structure in solid state. Yield: 88% (45 mg)

¹H NMR (600 MHz, CDCl₃) δ 7.94 (s, 12H, *H*-2), 7.68 (m, *J* = 5.2, 2.2 Hz, 8H, *BAr^F*), 7.63 (d, *J* = 1.6 Hz, 6H, *H*-4), 7.48 (s, 4H, *BAr^F*), 1.29 (s, 108H, *H*-6).

¹³C NMR (151 MHz, CDCl₃) δ 161.9 (q, J = 49.9 Hz, BAr^{F}), 156.2 (*C*-3), 153.3 (*C*-1), 134.9 (BAr^{F}),

129.0 (qq, J = 31.4, 2.9 Hz, BAr^F), 128.6 (C-2), 127.1 (C-4), 124.7 (q, J = 272.4 Hz, BAr^F), 119.7 – 116.6 (m) (BAr^F), 36.3 (C-5), 31.4 (C-6).

 ^{19}F NMR (564 MHz, CDCl₃) δ –62.3.

Based on the HRMS analysis several species have been detected:

1. HRMS (ESI): $811.44 = [C_{42}H_{63}Bi_1Cl_1]^+$ (11) equal to $[C_{42}H_{63}Bi_1Cl_2 - Cl]^+$ (7);

HRMS (ESI): calc'd for C₄₂H₆₃Bi₁Cl₁ [M]⁺ 811.44131, found 811.44168.

2. HRMS (ESI): calc'd for C₈₄H₁₂₆Bi₂Cl₃ [M]⁺ 1657.85177, found 1657.85276. (11a)

4.4 Characterization data of [Mes₃BiCl][BAr^F] (12)

Addition of <u>1.0 equiv.</u> of NaBAr^F: Prepared according to the general procedure from complex **8** (50 mg, 0.08 mmol, 1.0 equiv.) and NaBAr^F (73 mg, 0.08 mmol, 1.0 equiv.) in 5 mL of anhydrous dichloromethane. <u>Yield:</u> 90% (104 mg)

 $\stackrel{^{1}}{=} \frac{^{1}}{H} NMR (400 MHz, CDCl_{3}) \delta 7.71 - 7.66 (m, 8H, BAr^{F}), 7.49 (s, 4H, BAr^{F}), 7.27 (s, 6H, H-3), 2.42 (s, 18H, H-6), 2.34 (s, 9H, H-5).$

¹³C NMR (101 MHz, CDCl₃) δ 161.8 (q, J = 49.9 Hz, BAr^{F}),

157.5 (*C*-1), 145.5, (*C*-4), 141.9 (*C*-2), 134.9 (BAr^F), 133.8 (*C*-3), 129.1 (qq, J = 31.6, 2.8 Hz, BAr^F), 124.6 (q, J = 272.5 Hz, BAr^F), 117.6 (hept, J = 4.0 Hz, BAr^F), 24.6 (*C*-6), 21.1 (*C*-5).

¹⁹F NMR (282 MHz, CDCl₃) δ –62.4.

HRMS (ESI) calc'd for $C_{27}H_{33}BiCl_1$ [M-BAr^F]⁺ 601.20621, found 601.20693.

5. Reactivity of Chlorotrimesitylbismuthonium salt (13)

Procedure: In the glovebox, an oven dried vial with a septum cap was charged with the corresponding chlorotrimesitylbismuthonium salt (**12**) (50 mg, 0.03 mmol, 1.0 equiv.) and pyridine-N-oxide (3.4 mg, 0.04 mmol, 1.05 equiv.), followed by the addition of 5 mL of anhydrous dichloromethane. The reaction was stirred for 2 h at room temperature, and afterwards the solvent was evaporated under reduced pressure using the Schlenk line, affording a light yellowish solid. Yield: 87.7 % (46.7 mg)

(C-3), 132.8 (bs) (C-9), 129.1 (qq, J = 31.5, 2.8 Hz, BAr^F), 127.3 (C-8), 124.6 (q, J = 272.7 Hz, BAr^F), 117.6 (hept, J = 4.0 Hz, BAr^F), 25.0 (C-5), 21.0 (C-6).

¹⁹F NMR (565 MHz, CDCl₃) δ –62.5.

The connectivity of the pyridine-N-oxide with the Bi-species is supported based on a NOESY cross peak between *H*-5 and *H*-7. The carbon signal of *C*-9 is surprisingly broad. The observed ¹⁵N NMR shift (-108.0 ppm) is lower compared to the value of the free oxide (-87.5 ppm, DMSO), but higher compared to the pyr-NO*TFA (-135.7ppm).⁵ As also the MS department could not find the mass of the cationic species, the binding of the N-oxide might be weak and might also explain the observations from the NMR data.

HRMS: MS department could not find the mass of the cationic species (13), but rather compound 12.

SC-XRD: Crystal of sufficient quality for SC-XRD was obtained *via* liquid-liquid diffusion of pentane into a concentrated solution of complex **13** in CH₂Cl₂ at -18 °C

6. DOSY Experiments

After we observed that the addition of 1.0 equiv. of NaBAr^F to complex **7** resulted in the formation of a formally monomeric chlorobismuthonium salt **11** in solution and a dimeric bismuthonium salt **11a** in solid-state, we repeated the reaction with 0.5 equiv. of NaBAr^F (Scheme S2). This reaction led to the formation of a dimeric chlorobismuthonium salt **11a** in solution and solid state. However, the ¹H NMR spectrum of this reaction displays broader signals in comparison to the addition of 1.0 equiv. of NaBAr^F (Figure S2,), indicating a fast dynamic exchange between different species in solution.

Scheme S2. Synthesis and crystallization of chlorotriaryl bismuthonium salts 11 and 11a.

In contrast to the reaction of **6** with 0.5 equiv. of NaBAr^F where compound **6** crystallized, the installation of 'Bu-substituents in *meta*-position might facilitate the formation of the dimeric structure *via* London dispersion forces.⁶⁻⁸ In order to understand the dynamic behaviour of this chlorobismuthonium species **11** and **11a**, we carried out this reaction with different amounts of NaBAr^F (1.0, 0.85, 0.5 and 0.25 equiv.). As depicted in Figure 2, a trend can be clearly observed: as the amounts of NaBAr^F decrease, the signals of the observed bismuth species are more similar to **6**, however, separate Bi species were not observed at any time in the ¹H NMR spectra.

Figure S2. Stacked ¹H NMR spectra of the reaction of complex **7** with various amount of NaBAr^F (1.0, 0.85, 0.5, 0.25 equiv.) in CH₂Cl₂ at 25 °C for 2 h. The precipitate was filtered off and the ¹H NMR spectra were recorded (500 MHZ, CDCl₃).

Furthermore, the addition of 1.0 equiv. of NaBAr^F leads to sharper signals, whereas a reduced amount of the halide scavenger results in broader signals. Whereas all the aromatic H signals experience a shift with an increased amount of NaBAr^F, the chemical shift of the 'Bu groups reaches a minimum at 0.5 equiv.. This indicates that a fast and reversible equilibrium between at least three different species is present in solution after the abstraction of a chloride from the Bi. These results again, are in stark contrast to the behaviour of the analogous fluorobismuthonium salt.¹

To gain deeper insights into the distinct behavior of chlorobismuthonium salts in both solution and solidstate, we conducted DOSY (Diffusion Ordered Spectroscopy) experiments. For this, different amount of equivalents of NaBAr^F (1.0, 0.85, 0.5, 0.25 equiv.) were added to **7**, and the reaction was left to stir for 2 h at room temperature. After this time, the precipitate was removed through filtration, and subsequent evaporation under Schlenk vacuum conditions yielded the corresponding chlorobismuthonium salts, for which ¹H NMR spectra were recorded (see Figure S2). Based on these, the self-diffusion coefficients D_{self} were determined (Figure S3). Figure S3 illustrates the self-diffusion coefficients. Increased quantities of NaBAr^F result in decreased D_{self} values, suggesting the formation of molecules with higher molecular masses, potentially as dimeric species. However, it cannot be ruled out that the presence of BAr^F as anion might distort the values in the solution.

Figure S3. D_{self} values of chlorobismuthonium salts after the addition of different equivalents of NaBAr^F.

7. Determination of Lewis acidity

The Lewis acidity of the chlorotriarylbismuthonium salts was determined by the Gutmann-Beckettmethod. This method is based on the use of trietylphospine oxide (Et₃P=O) as Lewis base which interacts with the Lewis acid, resulting in a chemical shift (δ) of the phosphine oxide in the ³¹P NMR spectrum. The strength of the Lewis acidity is determined by the acceptor number (AN), which is calculated as followed:

AN (Et₃PO) =
$$2.21 \cdot (\delta_{P(LA)} - 41.0)$$

Table S1. Determination of the Lewis acidity by the acceptor number in CD_2Cl_2 . Equimolar amounts of the corresponding Lewis acid and Lewis base (Et₃PO) were dissolved in CD_2Cl_2 . The ³¹P NMR spectra were recorded at 121.5 MHz at 298 K. Stacked ³¹P NMR spectra of the corresponding Ar₃BiCl·OPEt₃ adduct are shown in Figure S8 and S9.

Entry	Compound		δ ³¹ P (ppm)	AN
1	Et ₃ PO		50.45	
	Formally r	nonomeric Bi spec	cies:	
2	$[Ph_{3}BiCl][BAr^{F}] (9)$		69.86	63.78
3	$[3,5-Me_2-C_6H_3-BiCl][BAr^F]$ (10)		68.29	60.31
4	$[3,5-tBu_2-C_6H_3-BiCl][BAr^F]$ (11)		67.67	58.94
5	$[Mes_{3}BiCl][BAr^{F}] (12)$		60.85	43.86
	Formally	y dimeric Bi specie	es:	
6	$[(Ph_3BiCl)_2][BAr^F] (9a)$		69.88	63.82
7	$[((3,5-Me_2-C_6H_3)_3-BiCl)_2][BAr^F]$		68 30	60.33
/	(10 a)		00.50	00.55
8	$[((3,5-tBu_2-C_6H_3)_3-BiCl)_2][BAr^F]$		67 67	58 94
0	(11a)		07.07	50.94

Table S1 displays the ³¹P NMR chemical shifts and acceptor numbers of the chlorotriarylbismuthonium salts (9-12 and 9a-11a). A closer look into the chemical shifts and acceptor numbers of the formally monomeric Bi species indicates a ligand effect on the Lewis acidity. The more steric the aryl-ligand, the lower the AN, resulting in a lower Lewis acidity. The ³¹P NMR of complex **9** displays three signals at $\delta_P = 78.65$, $\delta_P = 69.86$ and $\delta_P = 55.64$ ppm in CD₂Cl₂.

The experimental observation on the formally dimeric Bi species show the same trend as the formally monomeric. Furthermore, the dimeric species show identical ³¹P NMR shifts as the corresponding monomeric structures, indicating the formation of a monomeric Ar₃BiCl·OPEt₃ adduct and Ar₃BiCl₂, which is further confirmed by the ¹H NMR spectra, emphasizing a dynamic equilibrium in solution (Figure S4).

Figure S4. Formation of Ar₃BiCl·OPEt₃ adduct and Ar₃BiCl₂ after the addition of Et₃PO to dimeric chlorobismuthonium salts (**9a-11a**).

Figure S5. ¹H NMR spectra of the mixture of Lewis acid 9a with Et₃PO (121.5 MHz, 298K, CD₂Cl₂).

Figure S6. ¹H NMR spectra of the mixture of Lewis acid 10a with Et₃PO (121.5 MHz, 298K, CD₂Cl₂).

Figure S7. ¹H NMR spectra of the mixture of Lewis acid 11a with Et₃PO (121.5 MHz, 298K, CD₂Cl₂).

Figure S8. Stacked ³¹P NMR spectra of the mixture of Lewis acid **9-12** with Et₃PO (121.5 MHz, 298K, CD₂Cl₂).

³¹P (ppm)

Figure S9. Stacked ³¹P NMR spectra of the mixture of Lewis acid **9a-11a** with Et₃PO (121.5 MHz, 298K, CD₂Cl₂).

8. Polymerization of THF-d₈

General procedure: A flame-dried *J*-Young tube was charged with the corresponding chlorotriarylbismuthonium salt (0.01 mmol) and dissolved in 0.5 mL anhydrous THF- d_8 . ¹H NMR spectra of the reactions were measured by NMR spectroscopy upon mixing and after 12 h (see figure S10 – S13).

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 1H (ppm)

Figure S10. Stacked ¹H NMR spectra of the reaction mixture of **9** with THF- d_8 upon mixing and after 12 h (300 MHz, 298K). THF (m) = monomer, THF (p) = polymer.

Figure S11. Stacked ¹H NMR spectra of the reaction mixture of **10** with THF- d_8 upon mixing and after 12 h (300 MHz, 298K). THF (m) = monomer, THF (p) = polymer.

c) Reaction of 12 with THF-d₈

Figure S13. Stacked ¹H NMR spectra of the reaction mixture of **9**a with THF- d_8 upon mixing and after 12 h (300 MHz, 298K). THF (m) = monomer, THF (p) = polymer.

The reaction of chlorobismuthonium salts **11**, **10a**, **11a** with THF- d_8 did not show any reactivity towards polymerized THF- d_8 .

9. X-ray Data

Figure S14: The solid state structure of 6. H atoms have been removed for clarity.

X-ray Crystal Structure Analysis:

C₂₄ H₂₇ Bi Cl₂, $M_r = 595.33$ g mol⁻¹, colourless prism, crystal size 0.091 x 0.072 x 0.043 mm³, orthorhombic, space group *Pbcn* [60], a = 15.9412(6) Å, b = 10.4632(4) Å, c = 13.6006(5) Å, V = 2268.53(15) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.743$ g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 8.014$ mm⁻¹, Gaussian correction ($T_{min} = 0.60986$, $T_{max} = 0.81139$), Bruker-AXS Kappa Mach3 with APEX-II detector and IµS micro focus Mo-anode X-ray source, $2.328 < \theta < 34.958^{\circ}$, 85206 measured reflections, 4976 independent reflections, 3558 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0451$. The structure was solved by *SHELXT* and refined by full-matrix least-squares (*SHELXL*) against F^2 to $R_I = 0.0163$ [$I > 2\sigma(I)$], $wR_2 = 0.0330$ [all data] with 127 parameters and 0 restraints.

Figure S15: Crystal faces and unit cell determination/refinement of 6.

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.80	83	83	100.0	24.83	129.09	92.99	0.0211	0.0061
2.80 - 1.78	196	196	100.0	30.30	118.30	93.41	0.0213	0.0060
1.78 - 1.39	276	276	100.0	31.94	77.23	82.47	0.0261	0.0067
1.39 - 1.20	286	286	100.0	32.09	64.70	71.46	0.0310	0.0075
1.20 - 1.09	263	263	100.0	30.01	55.01	63.75	0.0370	0.0091
1.09 - 1.00	302	302	100.0	22.29	49.45	49.42	0.0398	0.0115
1.00 - 0.94	270	270	100.0	17.95	40.91	38.05	0.0475	0.0152
0.94 - 0.89	286	286	100.0	15.60	32.96	31.24	0.0548	0.0187
0.89 - 0.85	271	271	100.0	14.51	32.21	28.27	0.0584	0.0209
0.85 - 0.81	322	322	100.0	13.83	31.35	26.38	0.0601	0.0223
0.81 - 0.79	201	201	100.0	13.05	22.24	19.60	0.0820	0.0306
0.79 - 0.76	319	319	100.0	12.96	26.17	21.77	0.0745	0.0279
0.76 - 0.74	252	252	100.0	12.15	23.34	19.14	0.0836	0.0330
0.74 - 0.72	263	263	100.0	12.04	20.90	17.39	0.0942	0.0367
0.72 - 0.70	308	308	100.0	11.54	22.11	17.43	0.0914	0.0368
0.70 - 0.68	344	344	100.0	11.19	17.43	13.97	0.1177	0.0470
0.68 - 0.67	183	183	100.0	10.73	18.19	14.46	0.1126	0.0470
0.67 - 0.65	404	404	100.0	10.39	16.13	12.38	0.1280	0.0545
0.65 - 0.64	219	219	100.0	10.25	14.40	11.14	0.1391	0.0605
0.64 - 0.63	239	239	100.0	9.73	14.31	10.82	0.1513	0.0644
0.63 - 0.62	232	242	95.9	6.95	14.53	8.75	0.1550	0.0912
0.72 - 0.62	1929	1939	99.5	10.22	16.90	12.90	0.1210	0.0541
Inf - 0.62	5519	5529	99.8	16.48	36.10	32.88	0.0437	0.0204

INTENSITY STATISTICS FOR DATASET

Complete .cif-data of the compound are available under the CCDC number CCDC-2356069.

 Table S2: Crystal data and structure refinement of 6.

Identification code	15527	
Empirical formula	C ₂₄ H ₂₇ Bi Cl ₂	
Color	colourless	
Formula weight	595.33 g·mol ⁻¹	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	<i>Pbcn</i> , (no. 60)	
Unit cell dimensions	a = 15.9412(6) Å	<i>α</i> = 90°.
	b = 10.4632(4) Å	$\beta = 90^{\circ}$.
	c = 13.6006(5) Å	$\gamma = 90^{\circ}$.
Volume	2268.53(15) Å ³	
Z	4	
Density (calculated)	1.743 Mg·m ⁻³	
Absorption coefficient	8.014 mm ⁻¹	
F(000)	1152 e	
Crystal size	0.091 x 0.072 x 0.043 m	m ³
θ range for data collection	2.328 to 34.958°.	
Index ranges	$-25 \leq h \leq 25, -16 \leq k \leq 1$	6, $-21 \le 1 \le 21$
Reflections collected	85206	
Independent reflections	4976 [$R_{int} = 0.0451$]	
Reflections with $I > 2\sigma(I)$	3558	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Gaussian	
Max. and min. transmission	0.83538 and 0.52512	
Refinement method	Full-matrix least-square	s on F ²
Data / restraints / parameters	4976 / 0 / 127	
Goodness-of-fit on F ²	1.013	
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0163$	$wR^2 = 0.0291$
R indices (all data)	$R_1 = 0.0338$	$wR^2 = 0.0330$
Extinction coefficient	n/a	
Largest diff. peak and hole	0.830 and -0.748 e·Å ⁻³	

			-
Bi(1)-Cl(1)	2.5898(4)	Bi(1)-Cl(1)#1	2.5898(4)
Bi(1)-C(1)	2.1980(15)	Bi(1)-C(1)#1	2.1980(15)
Bi(1)-C(9)	2.202(2)	C(1)-C(2)	1.387(2)
C(1)-C(6)	1.382(2)	C(2)-H(2)	0.9500
C(2)-C(3)	1.390(2)	C(3)-C(4)	1.395(3)
C(3)-C(7)	1.504(2)	C(4)-H(4)	0.9500
C(4)-C(5)	1.389(2)	C(5)-C(6)	1.399(2)
C(5)-C(8)	1.503(3)	C(6)-H(6)	0.9500
C(7)-H(7A)	0.9800	C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800	C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800	C(8)-H(8C)	0.9800
C(9)-C(10)#1	1.379(2)	C(9)-C(10)	1.379(2)
C(10)-H(10)	0.9500	C(10)-C(11)	1.402(3)
C(11)-C(12)	1.505(3)	C(11)-C(13)	1.394(2)
C(12)-H(12A)	0.9800	C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800	C(13)-H(13)	0.9500
Cl(1)#1-Bi(1)-Cl(1)	177.391(18)	C(1)-Bi(1)-Cl(1)	89.86(4)
C(1)#1-Bi(1)-Cl(1)#1	89.86(4)	C(1)-Bi(1)-Cl(1)#1	91.55(4)
C(1)#1-Bi(1)-Cl(1)	91.55(4)	C(1)#1-Bi(1)-C(1)	114.70(8)
C(1)-Bi(1)-C(9)	122.65(4)	C(1)#1-Bi(1)-C(9)	122.65(4)
C(9)-Bi(1)-Cl(1)	88.696(9)	C(9)-Bi(1)-Cl(1)#1	88.695(9)
C(2)-C(1)-Bi(1)	117.68(11)	C(6)-C(1)-Bi(1)	119.55(11)
C(6)-C(1)-C(2)	122.76(15)	C(1)-C(2)-H(2)	120.6
C(1)-C(2)-C(3)	118.84(15)	C(3)-C(2)-H(2)	120.6
C(2)-C(3)-C(4)	118.61(15)	C(2)-C(3)-C(7)	120.60(16)
C(4)-C(3)-C(7)	120.78(16)	C(3)-C(4)-H(4)	118.8
C(5)-C(4)-C(3)	122.46(16)	C(5)-C(4)-H(4)	118.8
C(4)-C(5)-C(6)	118.56(16)	C(4)-C(5)-C(8)	121.54(16)
C(6)-C(5)-C(8)	119.89(16)	C(1)-C(6)-C(5)	118.74(15)
C(1)-C(6)-H(6)	120.6	C(5)-C(6)-H(6)	120.6
C(3)-C(7)-H(7A)	109.5	C(3)-C(7)-H(7B)	109.5
C(3)-C(7)-H(7C)	109.5	H(7A)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7C)	109.5	H(7B)-C(7)-H(7C)	109.5
C(5)-C(8)-H(8A)	109.5	C(5)-C(8)-H(8B)	109.5
C(5)-C(8)-H(8C)	109.5	H(8A)-C(8)-H(8B)	109.5

 Table S3: Bond lengths [Å] and angles [°] of 6.

H(8A)-C(8)-H(8C)	109.5	H(8B)-C(8)-H(8C)	109.5
C(10)#1-C(9)-Bi(1)	118.11(10)	C(10)-C(9)-Bi(1)	118.11(10)
C(10)#1-C(9)-C(10)	123.8(2)	C(9)-C(10)-H(10)	120.8
C(9)-C(10)-C(11)	118.34(17)	C(11)-C(10)-H(10)	120.8
C(10)-C(11)-C(12)	119.88(18)	C(13)-C(11)-C(10)	118.52(18)
C(13)-C(11)-C(12)	121.60(17)	C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5	C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12B)	109.5	H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5	C(11)#1-C(13)-C(11)	122.5(2)
C(11)#1-C(13)-H(13)	118.8	C(11)-C(13)-H(13)	118.8

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2

9.2 Single crystal structure analysis of chloro-tris(3,5-dimethylphenyl)bismuthonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (10)

Figure S16: The solid state structure of 10. H atoms have been removed for clarity and disordered parts shown in grey.

X-ray Crystal Structure Analysis:

C₅₆ H₃₉ B Bi Cl F₂₄, $M_r = 1423.11$ g mol⁻¹, colourless needle, crystal size 0.422 x 0.15 x 0.083 mm³, monoclinic, space group $P2_1/c$ [14], a = 18.1228(8) Å, b = 15.8254(6) Å, c = 20.0417(9) Å, $\beta = 106.109(2)^\circ$, V = 5522.3(4) Å³, T = 150(2) K, Z = 4, $D_{calc} = 1.712$ g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 3.360$ mm⁻¹, Gaussian correction ($T_{min} = 0.47600$, $T_{max} = 0.83841$), Bruker-AXS Kappa Mach3 with APEX-II detector and IµS micro focus Mo-anode X-ray source, $1.169 < \theta < 30.508^\circ$, 179506 measured reflections, 16869 independent reflections, 13456 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0466$. The structure was solved by *SHELXT* and refined by full-matrix least-squares (*SHELXL*) against F^2 to $R_I = 0.0329$ [$I > 2\sigma(I)$], $wR_2 = 0.0809$ [all data] with 934 parameters and 102 restraints.

Figure S17: Crystal faces and unit cell determination/refinement of 10.

Resolution	#Data :	#Theory	%Complete	Redundancy	Mean I	Mean I/s	s Rmerge	Rsigma
Inf - 2.82	288	288	100.0	16.49	63.66	86.74	0.0240	0.0082
2.82 - 1.87	677	677	100.0	18.05	42.34	78.37	0.0227	0.0086
1.87 - 1.48	958	958	100.0	18.24	26.53	66.88	0.0271	0.0096
1.48 - 1.28	997	997	100.0	18.18	18.88	55.58	0.0330	0.0112
1.28 - 1.16	991	991	100.0	17.59	14.89	48.71	0.0420	0.0135
1.16 - 1.08	936	936	100.0	15.74	12.69	41.45	0.0489	0.0165
1.08 - 1.01	1034	1034	100.0	12.13	10.82	32.23	0.0566	0.0215
1.01 - 0.96	943	943	100.0	10.33	9.49	26.49	0.0650	0.0264
0.96 - 0.92	932	932	100.0	9.07	7.44	20.67	0.0766	0.0341
0.92 - 0.88	1081	1081	100.0	8.15	6.78	18.35	0.0844	0.0398
0.88 - 0.85	964	964	100.0	7.74	5.57	15.30	0.1025	0.0491
0.85 - 0.82	1103	1103	100.0	7.43	4.98	13.59	0.1155	0.0570
0.82 - 0.80	812	812	100.0	7.22	4.35	11.76	0.1281	0.0664
0.80 - 0.78	937	937	100.0	7.01	4.03	11.00	0.1440	0.0738
0.78 - 0.76	1006	1006	100.0	6.81	3.69	9.83	0.1589	0.0829
0.76 - 0.74	1133	1133	100.0	6.63	3.36	8.80	0.1740	0.0944
0.74 - 0.73	596	596	100.0	6.39	2.87	7.51	0.1969	0.1120
0.73 - 0.71	1329	1329	100.0	6.28	2.84	7.19	0.2098	0.1181
0.71 - 0.70	720	720	100.0	6.14	2.45	6.22	0.2297	0.1383
0.70 - 0.68	1726	1919	89.9	4.50	2.27	5.05	0.2570	0.1908
0.78 - 0.68	6510	6703	97.1	5.90	2.87	7.23	0.1997	0.1229
Inf - 0.68	19163	19356	99.0	9.92	9.87	24.98	0.0470	0.0298

INTENSITY STATISTICS FOR DATASET

Complete .cif-data of the compound are available under the CCDC number CCDC-2356071.

A resolution cut-off (SHEL 999 0.70) was applied to the data set to exclude the poorly determined reflections at high diffraction angles. The terminal $-CF_3$ groups show strong rotational disorders over two or more positions. The ISOR instruction was applied to several F atoms in the main part of the $-CF_3$ rotational disorders. Atomic occupancies have been refined with fixed values and isotropic displacement parameters are applied to atoms in the minor parts of the disorder.

 Table S4: Crystal data and structure refinement of 10.

Identification code	15634	
Empirical formula	C ₅₆ H ₃₉ B Bi Cl F ₂₄	
Color	colourless	
Formula weight	1423.11 g·mol ⁻¹	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$, (no. 14)	
Unit cell dimensions	a = 18.1228(8) Å	<i>α</i> = 90°.
	b = 15.8254(6) Å	β=106.109(2)°.
	c = 20.0417(9) Å	$\gamma = 90^{\circ}.$
Volume	5522.3(4) Å ³	
Z	4	
Density (calculated)	1.712 Mg·m ⁻³	
Absorption coefficient	3.360 mm ⁻¹	
F(000)	2784 e	
Crystal size	0.422 x 0.15 x 0.083 mm ³	
θ range for data collection	1.169 to 30.508°.	
Index ranges	$-25 \le h \le 25, -22 \le k \le 22, -2$	$8 \le 1 \le 28$
Reflections collected	179506	
Independent reflections	16869 [$R_{int} = 0.0466$]	
Reflections with $I > 2\sigma(I)$	13456	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Gaussian	
Max. and min. transmission	0.83841 and 0.47600	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	16869 / 102 / 934	
Goodness-of-fit on F^2	1.027	
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0329$	$wR^2 = 0.0741$
R indices (all data)	$R_1 = 0.0486$	$wR^2 = 0.0809$
Extinction coefficient	n/a	
Largest diff. peak and hole	1.721 and -1.012 $e \cdot Å^{-3}$	

-			
Bi(1)-Cl(1)	2.4028(8)	Bi(1)-C(1)	2.185(3)
Bi(1)-C(9)	2.180(3)	Bi(1)-C(17)	2.189(3)
C(1)-C(2)	1.382(4)	C(1)-C(6)	1.384(4)
C(2)-H(2)	0.9500	C(2)-C(3)	1.390(4)
C(3)-C(4)	1.395(5)	C(3)-C(7)	1.513(5)
C(4)-H(4)	0.9500	C(4)-C(5)	1.389(4)
C(5)-C(6)	1.396(4)	C(5)-C(8)	1.498(4)
C(6)-H(6)	0.9500	C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800	C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800	C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800	C(9)-C(10)	1.381(4)
C(9)-C(14)	1.383(4)	C(10)-H(10)	0.9500
C(10)-C(11)	1.399(4)	C(11)-C(12)	1.389(5)
C(11)-C(15)	1.501(4)	C(12)-H(12)	0.9500
C(12)-C(13)	1.389(5)	C(13)-C(14)	1.389(4)
C(13)-C(16)	1.507(5)	C(14)-H(14)	0.9500
C(15)-H(15A)	0.9800	C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800	C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800	C(16)-H(16C)	0.9800
C(17)-C(18)	1.387(4)	C(17)-C(22)	1.380(4)
C(18)-H(18)	0.9500	C(18)-C(19)	1.392(5)
C(19)-C(20)	1.387(5)	C(19)-C(23)	1.512(5)
C(20)-H(20)	0.9500	C(20)-C(21)	1.387(5)
C(21)-C(22)	1.395(4)	C(21)-C(24)	1.503(5)
C(22)-H(22)	0.9500	C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800	C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800	C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800	C(25)-C(26)	1.398(4)
C(25)-C(30)	1.398(4)	C(25)-B(1)	1.645(4)
C(26)-H(26)	0.9500	C(26)-C(27)	1.397(4)
C(27)-C(28)	1.382(4)	C(27)-C(31)	1.497(4)
C(28)-H(28)	0.9500	C(28)-C(29)	1.387(4)
C(29)-C(30)	1.392(4)	C(29)-C(32)	1.488(4)
C(30)-H(30)	0.9500	C(31)-F(1A)	1.408(8)
C(31)-F(2A)	1.339(8)	C(31)-F(3A)	1.332(17)
C(31)-F(1B)	1.26(4)	C(31)-F(2B)	1.35(3)

 Table S5: Bond lengths [Å] and angles [°] of 10.

C(31)-F(3B)	1.32(6)	C(31)-F(1C)	1.23(3)
C(31)-F(2C)	1.40(4)	C(31)-F(3C)	1.41(4)
C(32)-F(4A)	1.344(5)	C(32)-F(5A)	1.371(5)
C(32)-F(6A)	1.320(5)	C(32)-F(4B)	1.295(16)
C(32)-F(5B)	1.292(14)	C(32)-F(6B)	1.430(18)
C(32)-F(4C)	1.333(17)	C(32)-F(5C)	1.342(17)
C(32)-F(6C)	1.359(16)	C(33)-C(34)	1.399(4)
C(33)-C(38)	1.398(4)	C(33)-B(1)	1.648(4)
C(34)-H(34)	0.9500	C(34)-C(35)	1.390(4)
C(35)-C(36)	1.376(4)	C(35)-C(39)	1.496(4)
C(36)-H(36)	0.9500	C(36)-C(37)	1.380(4)
C(37)-C(38)	1.390(4)	C(37)-C(40)	1.487(4)
C(38)-H(38)	0.9500	C(39)-F(7A)	1.283(6)
C(39)-F(8A)	1.361(6)	C(39)-F(9A)	1.366(5)
C(39)-F(7B)	1.430(7)	C(39)-F(8B)	1.332(9)
C(39)-F(9B)	1.307(8)	C(40)-F(10A)	1.334(5)
C(40)-F(11A)	1.307(6)	C(40)-F(12A)	1.367(6)
C(40)-F(10B)	1.369(12)	C(40)-F(11B)	1.341(9)
C(40)-F(12B)	1.367(11)	C(40)-F(10C)	1.265(11)
C(40)-F(11C)	1.430(10)	C(40)-F(12C)	1.343(11)
C(41)-C(42)	1.395(4)	C(41)-C(46)	1.405(4)
C(41)-B(1)	1.642(4)	C(42)-H(42)	0.9500
C(42)-C(43)	1.394(4)	C(43)-C(44)	1.383(4)
C(43)-C(47)	1.493(4)	C(44)-H(44)	0.9500
C(44)-C(45)	1.388(4)	C(45)-C(46)	1.387(4)
C(45)-C(48)	1.497(4)	C(46)-H(46)	0.9500
C(47)-F(13A)	1.300(6)	C(47)-F(14A)	1.356(6)
C(47)-F(15A)	1.342(5)	C(47)-F(13B)	1.310(15)
C(47)-F(14B)	1.244(17)	C(47)-F(15B)	1.397(13)
C(47)-F(13C)	1.561(17)	C(47)-F(14C)	1.396(15)
C(47)-F(15C)	1.334(12)	C(48)-F(16A)	1.341(9)
C(48)-F(17A)	1.345(6)	C(48)-F(18A)	1.358(6)
C(48)-F(16B)	1.49(4)	C(48)-F(17B)	1.42(2)
C(48)-F(18B)	1.250(17)	C(48)-F(16C)	1.18(2)
C(48)-F(17C)	1.29(2)	C(48)-F(18C)	1.488(17)
C(49)-C(50)	1.394(4)	C(49)-C(54)	1.400(4)
C(49)-B(1)	1.644(4)	C(50)-H(50)	0.9500
C(50)-C(51)	1.388(4)	C(51)-C(52)	1.379(5)

C(51)-C(55A)	1.560(7)	C(51)-C(55B)	1.440(10)
C(52)-H(52)	0.9500	C(52)-C(53)	1.387(4)
C(53)-C(54)	1.389(4)	C(53)-C(56A)	1.491(9)
C(53)-C(56B)	1.646(18)	C(53)-C(56C)	1.41(2)
C(54)-H(54)	0.9500	F(19A)-C(55A)	1.339(7)
F(20A)-C(55A)	1.208(8)	F(21A)-C(55A)	1.384(7)
F(22A)-C(56A)	1.348(10)	F(23A)-C(56A)	1.389(12)
F(24A)-C(56A)	1.309(11)	F(19B)-C(55B)	1.497(13)
F(20B)-C(55B)	1.350(17)	F(21B)-C(55B)	1.184(18)
F(22B)-C(56B)	1.297(19)	F(23B)-C(56B)	1.26(3)
F(24B)-C(56B)	1.38(2)	F(22C)-C(56C)	1.32(2)
F(23C)-C(56C)	1.39(2)	F(24C)-C(56C)	1.35(2)
C(1)-Bi(1)-Cl(1)	101.22(8)	C(1)-Bi(1)-C(17)	111.32(10)
C(9)-Bi(1)-Cl(1)	105.68(7)	C(9)-Bi(1)-C(1)	121.63(11)
C(9)-Bi(1)-C(17)	112.55(11)	C(17)-Bi(1)-Cl(1)	101.47(8)
C(2)-C(1)-Bi(1)	116.4(2)	C(2)-C(1)-C(6)	123.4(3)
C(6)-C(1)-Bi(1)	119.8(2)	C(1)-C(2)-H(2)	120.8
C(1)-C(2)-C(3)	118.4(3)	C(3)-C(2)-H(2)	120.8
C(2)-C(3)-C(4)	118.7(3)	C(2)-C(3)-C(7)	119.9(3)
C(4)-C(3)-C(7)	121.4(3)	C(3)-C(4)-H(4)	118.7
C(5)-C(4)-C(3)	122.6(3)	C(5)-C(4)-H(4)	118.7
C(4)-C(5)-C(6)	118.4(3)	C(4)-C(5)-C(8)	121.0(3)
C(6)-C(5)-C(8)	120.6(3)	C(1)-C(6)-C(5)	118.5(3)
C(1)-C(6)-H(6)	120.7	C(5)-C(6)-H(6)	120.7
C(3)-C(7)-H(7A)	109.5	C(3)-C(7)-H(7B)	109.5
C(3)-C(7)-H(7C)	109.5	H(7A)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7C)	109.5	H(7B)-C(7)-H(7C)	109.5
C(5)-C(8)-H(8A)	109.5	C(5)-C(8)-H(8B)	109.5
C(5)-C(8)-H(8C)	109.5	H(8A)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8C)	109.5	H(8B)-C(8)-H(8C)	109.5
C(10)-C(9)-Bi(1)	120.3(2)	C(10)-C(9)-C(14)	124.2(3)
C(14)-C(9)-Bi(1)	115.5(2)	C(9)-C(10)-H(10)	121.3
C(9)-C(10)-C(11)	117.4(3)	C(11)-C(10)-H(10)	121.3
C(10)-C(11)-C(15)	120.3(3)	C(12)-C(11)-C(10)	118.8(3)
C(12)-C(11)-C(15)	120.9(3)	C(11)-C(12)-H(12)	118.5
C(11)-C(12)-C(13)	123.0(3)	C(13)-C(12)-H(12)	118.5
C(12)-C(13)-C(14)	118.3(3)	C(12)-C(13)-C(16)	121.2(3)

C(14)-C(13)-C(16)	120.4(3)	C(9)-C(14)-C(13)	118.3(3)
C(9)-C(14)-H(14)	120.9	C(13)-C(14)-H(14)	120.9
C(11)-C(15)-H(15A)	109.5	C(11)-C(15)-H(15B)	109.5
C(11)-C(15)-H(15C)	109.5	H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5	H(15B)-C(15)-H(15C)	109.5
C(13)-C(16)-H(16A)	109.5	C(13)-C(16)-H(16B)	109.5
C(13)-C(16)-H(16C)	109.5	H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5	H(16B)-C(16)-H(16C)	109.5
C(18)-C(17)-Bi(1)	117.0(2)	C(22)-C(17)-Bi(1)	119.4(2)
C(22)-C(17)-C(18)	123.6(3)	C(17)-C(18)-H(18)	120.8
C(17)-C(18)-C(19)	118.3(3)	C(19)-C(18)-H(18)	120.8
C(18)-C(19)-C(23)	120.3(4)	C(20)-C(19)-C(18)	118.2(3)
C(20)-C(19)-C(23)	121.5(3)	C(19)-C(20)-H(20)	118.4
C(19)-C(20)-C(21)	123.3(3)	C(21)-C(20)-H(20)	118.4
C(20)-C(21)-C(22)	118.5(3)	C(20)-C(21)-C(24)	121.7(3)
C(22)-C(21)-C(24)	119.8(3)	C(17)-C(22)-C(21)	118.1(3)
C(17)-C(22)-H(22)	121.0	C(21)-C(22)-H(22)	121.0
C(19)-C(23)-H(23A)	109.5	C(19)-C(23)-H(23B)	109.5
C(19)-C(23)-H(23C)	109.5	H(23A)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23C)	109.5	H(23B)-C(23)-H(23C)	109.5
C(21)-C(24)-H(24A)	109.5	C(21)-C(24)-H(24B)	109.5
C(21)-C(24)-H(24C)	109.5	H(24A)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24C)	109.5	H(24B)-C(24)-H(24C)	109.5
C(26)-C(25)-C(30)	115.7(2)	C(26)-C(25)-B(1)	124.0(2)
C(30)-C(25)-B(1)	120.4(2)	C(25)-C(26)-H(26)	119.1
C(27)-C(26)-C(25)	121.8(2)	C(27)-C(26)-H(26)	119.1
C(26)-C(27)-C(31)	118.7(2)	C(28)-C(27)-C(26)	121.3(2)
C(28)-C(27)-C(31)	119.8(2)	C(27)-C(28)-H(28)	121.0
C(27)-C(28)-C(29)	118.0(2)	C(29)-C(28)-H(28)	121.0
C(28)-C(29)-C(30)	120.4(2)	C(28)-C(29)-C(32)	120.4(3)
C(30)-C(29)-C(32)	119.1(3)	C(25)-C(30)-H(30)	118.6
C(29)-C(30)-C(25)	122.8(2)	C(29)-C(30)-H(30)	118.6
F(1A)-C(31)-C(27)	109.8(5)	F(2A)-C(31)-C(27)	112.7(4)
F(2A)-C(31)-F(1A)	107.0(11)	F(3A)-C(31)-C(27)	111.8(8)
F(3A)-C(31)-F(1A)	110.3(12)	F(3A)-C(31)-F(2A)	105.1(9)
F(1B)-C(31)-C(27)	120.7(11)	F(1B)-C(31)-F(2B)	106.1(16)
F(1B)-C(31)-F(3B)	102(3)	F(2B)-C(31)-C(27)	114.0(12)
F(3B)-C(31)-C(27)	111(2)	F(3B)-C(31)-F(2B)	100(2)

F(1C)-C(31)-C(27)	116.7(16)	F(1C)-C(31)-F(2C)	105(2)
F(1C)-C(31)-F(3C)	96.8(18)	F(2C)-C(31)-C(27)	109.3(14)
F(2C)-C(31)-F(3C)	115.7(18)	F(3C)-C(31)-C(27)	113.1(13)
F(4A)-C(32)-C(29)	113.9(3)	F(4A)-C(32)-F(5A)	106.1(4)
F(5A)-C(32)-C(29)	111.2(3)	F(6A)-C(32)-C(29)	114.0(3)
F(6A)-C(32)-F(4A)	105.7(4)	F(6A)-C(32)-F(5A)	105.3(4)
F(4B)-C(32)-C(29)	113.4(7)	F(4B)-C(32)-F(6B)	109.9(9)
F(5B)-C(32)-C(29)	114.3(7)	F(5B)-C(32)-F(4B)	113.7(10)
F(5B)-C(32)-F(6B)	98.6(9)	F(6B)-C(32)-C(29)	105.4(7)
F(4C)-C(32)-C(29)	112.7(7)	F(4C)-C(32)-F(5C)	107.6(9)
F(4C)-C(32)-F(6C)	107.0(9)	F(5C)-C(32)-C(29)	110.6(8)
F(5C)-C(32)-F(6C)	102.5(9)	F(6C)-C(32)-C(29)	115.7(7)
C(34)-C(33)-B(1)	122.5(2)	C(38)-C(33)-C(34)	115.4(2)
C(38)-C(33)-B(1)	122.1(2)	C(33)-C(34)-H(34)	118.8
C(35)-C(34)-C(33)	122.4(3)	C(35)-C(34)-H(34)	118.8
C(34)-C(35)-C(39)	119.1(3)	C(36)-C(35)-C(34)	120.9(3)
C(36)-C(35)-C(39)	119.8(3)	C(35)-C(36)-H(36)	121.0
C(35)-C(36)-C(37)	117.9(3)	C(37)-C(36)-H(36)	121.0
C(36)-C(37)-C(38)	121.2(3)	C(36)-C(37)-C(40)	118.8(3)
C(38)-C(37)-C(40)	119.9(3)	C(33)-C(38)-H(38)	119.0
C(37)-C(38)-C(33)	122.0(3)	C(37)-C(38)-H(38)	119.0
F(7A)-C(39)-C(35)	116.0(3)	F(7A)-C(39)-F(8A)	105.0(4)
F(7A)-C(39)-F(9A)	106.2(4)	F(8A)-C(39)-C(35)	110.4(3)
F(8A)-C(39)-F(9A)	107.7(4)	F(9A)-C(39)-C(35)	111.0(3)
F(7B)-C(39)-C(35)	108.7(4)	F(8B)-C(39)-C(35)	113.3(4)
F(8B)-C(39)-F(7B)	103.9(5)	F(9B)-C(39)-C(35)	115.5(4)
F(9B)-C(39)-F(7B)	110.8(5)	F(9B)-C(39)-F(8B)	103.9(5)
F(10A)-C(40)-C(37)	113.3(3)	F(10A)-C(40)-F(12A)	103.4(4)
F(11A)-C(40)-C(37)	115.1(3)	F(11A)-C(40)-F(10A)	108.5(4)
F(11A)-C(40)-F(12A)	104.9(4)	F(12A)-C(40)-C(37)	110.8(3)
F(10B)-C(40)-C(37)	112.0(6)	F(11B)-C(40)-C(37)	114.2(4)
F(11B)-C(40)-F(10B)	104.7(7)	F(11B)-C(40)-F(12B)	104.3(7)
F(12B)-C(40)-C(37)	113.5(5)	F(12B)-C(40)-F(10B)	107.3(8)
F(10C)-C(40)-C(37)	118.3(6)	F(10C)-C(40)-F(11C)	109.6(7)
F(10C)-C(40)-F(12C)	106.1(8)	F(11C)-C(40)-C(37)	109.5(4)
F(12C)-C(40)-C(37)	112.2(5)	F(12C)-C(40)-F(11C)	99.3(7)
C(42)-C(41)-C(46)	115.3(2)	C(42)-C(41)-B(1)	123.9(2)
C(46)-C(41)-B(1)	120.8(2)	C(41)-C(42)-H(42)	118.8

C(43)-C(42)-C(41)	122.4(3)	C(43)-C(42)-H(42)	118.8
C(42)-C(43)-C(47)	119.2(3)	C(44)-C(43)-C(42)	120.9(3)
C(44)-C(43)-C(47)	119.8(3)	C(43)-C(44)-H(44)	121.0
C(43)-C(44)-C(45)	117.9(3)	C(45)-C(44)-H(44)	121.0
C(44)-C(45)-C(48)	119.7(3)	C(46)-C(45)-C(44)	120.7(3)
C(46)-C(45)-C(48)	119.6(3)	C(41)-C(46)-H(46)	118.7
C(45)-C(46)-C(41)	122.6(3)	C(45)-C(46)-H(46)	118.7
C(43)-C(47)-F(13C)	104.8(7)	F(13A)-C(47)-C(43)	113.1(3)
F(13A)-C(47)-F(14A)	103.5(4)	F(13A)-C(47)-F(15A)	107.7(4)
F(14A)-C(47)-C(43)	112.8(3)	F(15A)-C(47)-C(43)	112.1(3)
F(15A)-C(47)-F(14A)	107.0(4)	F(13B)-C(47)-C(43)	113.7(7)
F(13B)-C(47)-F(15B)	104.5(8)	F(14B)-C(47)-C(43)	118.6(8)
F(14B)-C(47)-F(13B)	104.2(10)	F(14B)-C(47)-F(15B)	107.3(9)
F(15B)-C(47)-C(43)	107.5(6)	F(14C)-C(47)-C(43)	109.7(7)
F(14C)-C(47)-F(13C)	114.2(9)	F(15C)-C(47)-C(43)	118.1(6)
F(15C)-C(47)-F(13C)	94.9(8)	F(15C)-C(47)-F(14C)	114.0(8)
F(16A)-C(48)-C(45)	112.8(5)	F(16A)-C(48)-F(17A)	105.4(5)
F(16A)-C(48)-F(18A)	105.8(6)	F(17A)-C(48)-C(45)	113.2(4)
F(17A)-C(48)-F(18A)	106.4(4)	F(18A)-C(48)-C(45)	112.6(3)
F(16B)-C(48)-C(45)	105.3(14)	F(17B)-C(48)-C(45)	109.2(9)
F(17B)-C(48)-F(16B)	117.6(17)	F(18B)-C(48)-C(45)	116.8(8)
F(18B)-C(48)-F(16B)	97.6(16)	F(18B)-C(48)-F(17B)	110.3(11)
F(16C)-C(48)-C(45)	119.6(13)	F(16C)-C(48)-F(17C)	101.1(14)
F(16C)-C(48)-F(18C)	106.7(12)	F(17C)-C(48)-C(45)	114.0(10)
F(17C)-C(48)-F(18C)	110.8(10)	F(18C)-C(48)-C(45)	104.5(7)
C(50)-C(49)-C(54)	115.7(2)	C(50)-C(49)-B(1)	122.6(2)
C(54)-C(49)-B(1)	121.4(2)	C(49)-C(50)-H(50)	118.9
C(51)-C(50)-C(49)	122.1(3)	C(51)-C(50)-H(50)	118.9
C(50)-C(51)-C(55A)	117.1(3)	C(50)-C(51)-C(55B)	123.6(5)
C(52)-C(51)-C(50)	121.4(3)	C(52)-C(51)-C(55A)	120.9(3)
C(52)-C(51)-C(55B)	113.7(5)	C(51)-C(52)-H(52)	121.2
C(51)-C(52)-C(53)	117.6(3)	C(53)-C(52)-H(52)	121.2
C(52)-C(53)-C(54)	120.9(3)	C(52)-C(53)-C(56A)	119.1(4)
C(52)-C(53)-C(56B)	119.6(6)	C(52)-C(53)-C(56C)	112.5(8)
C(54)-C(53)-C(56A)	119.9(4)	C(54)-C(53)-C(56B)	118.0(7)
C(54)-C(53)-C(56C)	124.6(8)	C(49)-C(54)-H(54)	118.9
C(53)-C(54)-C(49)	122.2(3)	C(53)-C(54)-H(54)	118.9
C(25)-B(1)-C(33)	110.0(2)	C(41)-B(1)-C(25)	106.3(2)

C(41)-B(1)-C(33)	112.2(2)	C(41)-B(1)-C(49)	111.3(2)
C(49)-B(1)-C(25)	112.3(2)	C(49)-B(1)-C(33)	104.8(2)
F(19A)-C(55A)-C(51)	109.6(5)	F(19A)-C(55A)-F(21A)	102.5(5)
F(20A)-C(55A)-C(51)	116.6(5)	F(20A)-C(55A)-F(19A)	112.4(6)
F(20A)-C(55A)-F(21A)	108.7(6)	F(21A)-C(55A)-C(51)	106.1(5)
F(22A)-C(56A)-C(53)	110.9(6)	F(22A)-C(56A)-F(23A)	103.1(8)
F(23A)-C(56A)-C(53)	113.1(6)	F(24A)-C(56A)-C(53)	113.6(8)
F(24A)-C(56A)-F(22A)	105.7(7)	F(24A)-C(56A)-F(23A)	109.6(7)
C(51)-C(55B)-F(19B)	106.2(8)	F(20B)-C(55B)-C(51)	112.8(9)
F(20B)-C(55B)-F(19B)	94.2(9)	F(21B)-C(55B)-C(51)	121.3(12)
F(21B)-C(55B)-F(19B)	106.5(11)	F(21B)-C(55B)-F(20B)	111.7(13)
F(22B)-C(56B)-C(53)	113.7(12)	F(22B)-C(56B)-F(24B)	102.9(12)
F(23B)-C(56B)-C(53)	110.8(14)	F(23B)-C(56B)-F(22B)	121.4(18)
F(23B)-C(56B)-F(24B)	101.9(14)	F(24B)-C(56B)-C(53)	103.3(13)
F(22C)-C(56C)-C(53)	118.5(15)	F(22C)-C(56C)-F(23C)	99.7(15)
F(22C)-C(56C)-F(24C)	109.4(16)	F(23C)-C(56C)-C(53)	103.8(15)
F(24C)-C(56C)-C(53)	118.1(16)	F(24C)-C(56C)-F(23C)	104.2(14)
9.3 Single crystal structure analysis of ((chloromesityl- λ^5 -bismuth)oxy)pyridinium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (13)

Figure S18: The solid state structure of 13. H atoms have been removed for clarity and disordered parts shown in grey.

X-ray Crystal Structure Analysis:

C₆₄ H₅₀BBiClF₂₄NO, $M_r = 1560.29$ g mol⁻¹, colourless prism, crystal size 0.284 x 0.122 x 0.119 mm³, triclinic, space group *P*1 [1], a = 10.8125(4) Å, b = 12.0526(4) Å, c = 13.0336(5) Å, $\alpha = 91.274(2)^{\circ}$, $\beta = 104.828(2)^{\circ}$, $\gamma = 99.677(2)$, V = 1614.80(10) Å³, T = 150(2) K, Z = 1, $D_{calc} = 1.604$ g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 2.882$ mm⁻¹, Gaussian correction ($T_{min} = 0.52512$, $T_{max} = 0.83538$), Bruker-AXS Kappa Mach3 with APEX-II detector and IµS micro focus Mo-anode X-ray source, $1.620 < \theta < 30.032^{\circ}$, 45758 measured reflections, 17115 independent reflections, 15711 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0352$. The structure was solved by *SHELXT* and refined by full-matrix least-squares (*SHELXL*) against F^2 to $R_I = 0.0371$ [$I > 2\sigma(I)$], $wR_2 = 0.0806$ [all data] with 1007 parameters, 148 restraints and an absolute structure parameter x = 0.003(3).

Figure S19: Crystal faces and unit cell determination/refinement of 13.

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.79 2.79 - 1.86 1.86 - 1.48 1.48 - 1.29 1.29 - 1.17 1.17 - 1.09 1.09 - 1.02 1.02 - 0.97 0.97 - 0.93 0.93 - 0.89 0.89 - 0.86 0.86 - 0.84 0.84 - 0.81 0.81 - 0.79 0.79 - 0.77 0.77 - 0.75 0.75 - 0.74 0.74 - 0.72	155 364 519 536 532 490 592 503 493 624 489 418 642 498 531 621 346 689	156 366 520 537 532 490 592 503 494 624 489 418 644 498 532 622 347 692	99.4 99.5 99.8 99.8 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 99.7 100.0 99.7 100.0 99.8 99.8 99.8 99.7 99.6	7.27 7.59 7.73 7.88 7.67 6.96 5.66 5.00 4.36 4.08 3.74 3.69 3.52 3.51 3.34 3.18 3.27 3.07	181.93 101.75 57.33 39.17 28.12 23.54 19.24 15.37 12.25 9.86 8.12 7.08 6.42 5.27 4.84 4.06 3.44 3.23	34.81 34.92 33.92 32.63 29.56 26.21 21.68 18.65 15.72 13.54 11.21 9.94 8.84 7.47 6.59 5.39 4.72 4.12	0.0564 0.0495 0.0468 0.0565 0.0660 0.0722 0.0754 0.0819 0.0894 0.0993 0.1150 0.1301 0.1336 0.1571 0.1715 0.1932 0.2190 0.2341	0.0294 0.0293 0.0301 0.0312 0.0382 0.0463 0.0526 0.0632 0.0725 0.0885 0.0986 0.1126 0.1334 0.1516 0.1873 0.2173 0.2470
0.72 - 0.71	387	391	99.0	2.93	2.64	3.36	0.2582	0.3070
0.71 - 0.70	414	418	99.0	2.93	2.57	3.14	0.2802	0.3260
0.70 - 0.69	488	538	90.7	2.46	2.27	2.65	0.2946	0.3931
0.79 - 0.69	3476	3540	98.2	3.02	3.37	4.38	0.2201	0.2364
Inf - 0.69	10331	10403	99.3	4.64	19.28	14.95		0.0522

Complete .cif-data of the compound are available under the CCDC number CCDC-2356070.

A resolution cut-off (SHEL 999 0.71) was applied to the data set to exclude the poorly determined reflections at high diffraction angles. The terminal $-CF_3$ groups show strong rotational disorders over two or more positions. They were partially described using the DSR tool plug-in in Olex2.^{9,10} For the minor parts of the disorders isotropic displacement parameters were used and atoms were refined with

fixed occupancy values. The ISOR instruction was applied to several F atoms in the main part of the - CF_3 rotational disorders. In addition, the DFIX instruction was used to fix the C...F distances.

 Table S6: Crystal data and structure refinement of 13.

Identification code	15552	15552			
Empirical formula	C ₆₄ H ₅₀ B Bi Cl F ₂₄ N	C ₆₄ H ₅₀ B Bi Cl F ₂₄ N O			
Color	colourless	colourless			
Formula weight	1560.29 g·mol ⁻¹				
Temperature	150(2) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	<i>P</i> 1, (no. 1)				
Unit cell dimensions	a = 10.8125(4) Å	$\alpha = 91.274(2)^{\circ}.$			
	b = 12.0526(4) Å	$\beta = 104.828(2)^{\circ}.$			
	c = 13.0336(5) Å	$\gamma = 99.677(2)^{\circ}.$			
Volume	1614.80(10) Å ³				
Z	1				
Density (calculated)	1.604 Mg·m ⁻³				
Absorption coefficient	2.882 mm ⁻¹				
F(000)	770 e	770 e			
Crystal size	0.284 x 0.122 x 0.119	0.284 x 0.122 x 0.119 mm ³			
θ range for data collection	1.620 to 30.032°.	1.620 to 30.032°.			
Index ranges	$-15 \le h \le 15, -16 \le k \le$	$16, -18 \le 1 \le 18$			
Reflections collected	45758	45758			
Independent reflections	17115 [R _{int} = 0.0352]	17115 [R _{int} = 0.0352]			
Reflections with $I > 2\sigma(I)$	15711	15711			
Completeness to $\theta = 25.242^{\circ}$	99.9 %				
Absorption correction	Gaussian	Gaussian			
Max. and min. transmission	0.81139 and 0.60986	0.81139 and 0.60986			
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²			
Data / restraints / parameters	17115 / 148 / 1007	17115 / 148 / 1007			
Goodness-of-fit on F ²	0.980				
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0371$	$wR^2 = 0.0777$			
R indices (all data)	$R_1 = 0.0437$	$wR^2 = 0.0806$			
Absolute structure parameter	0.003(3)				
Extinction coefficient	n/a				
Largest diff. peak and hole	$1.170 \text{ and } -0.797 \text{ e} \cdot \text{\AA}^{-1}$	1.170 and -0.797 e⋅Å ⁻³			

Bi(1)-Cl(1)	2.507(3)	Bi(1)-O(1)	2.404(6)
Bi(1)-C(1)	2.229(6)	Bi(1)-C(10)	2.226(5)
Bi(1)-C(19)	2.236(6)	O(1)-N(1)	1.334(8)
N(1)-C(28)	1.340(8)	N(1)-C(32)	1.337(9)
C(1)-C(2)	1.400(9)	C(1)-C(6)	1.399(11)
C(2)-C(3)	1.384(11)	C(2)-C(7)	1.497(14)
C(3)-H(3)	0.9500	C(3)-C(4)	1.386(13)
C(4)-C(5)	1.369(12)	C(4)-C(8)	1.512(12)
C(5)-H(5)	0.9500	C(5)-C(6)	1.388(9)
C(6)-C(9)	1.490(11)	C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800	C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800	C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800	C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800	C(9)-H(9C)	0.9800
C(10)-C(11)	1.396(9)	C(10)-C(15)	1.408(9)
C(11)-C(12)	1.392(9)	C(11)-C(16)	1.504(11)
C(12)-H(12)	0.9500	C(12)-C(13)	1.403(10)
C(13)-C(14)	1.363(11)	C(13)-C(17)	1.512(9)
C(14)-H(14)	0.9500	C(14)-C(15)	1.381(10)
C(15)-C(18)	1.507(11)	C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800	C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800	C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800	C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800	C(18)-H(18C)	0.9800
C(19)-C(20)	1.404(8)	C(19)-C(24)	1.396(9)
C(20)-C(21)	1.386(10)	C(20)-C(25)	1.506(10)
C(21)-H(21)	0.9500	C(21)-C(22)	1.377(11)
C(22)-C(23)	1.390(9)	C(22)-C(26)	1.501(11)
C(23)-H(23)	0.9500	C(23)-C(24)	1.388(10)
C(24)-C(27)	1.488(9)	C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800	C(25)-H(25C)	0.9800
C(26)-H(26A)	0.9800	C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800	C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800	C(27)-H(27C)	0.9800
C(28)-H(28)	0.9500	C(28)-C(29)	1.367(10)
C(29)-H(29)	0.9500	C(29)-C(30)	1.376(11)

 Table S7: Bond lengths [Å] and angles [°] of 13.

C(30)-H(30)	0.9500	C(30)-C(31)	1.342(13)
C(31)-H(31)	0.9500	C(31)-C(32)	1.386(13)
C(32)-H(32)	0.9500	C(33)-C(34)	1.398(7)
C(33)-C(38)	1.396(7)	C(33)-B(1)	1.636(8)
C(34)-H(34)	0.9500	C(34)-C(35)	1.384(10)
C(35)-C(36)	1.379(10)	C(35)-C(39)	1.526(12)
C(36)-H(36)	0.9500	C(36)-C(37)	1.375(9)
C(37)-C(38)	1.384(8)	C(37)-C(40)	1.490(9)
C(38)-H(38)	0.9500	C(39)-F(1A)	1.277(16)
C(39)-F(2A)	1.491(19)	C(39)-F(3A)	1.355(18)
C(39)-F(1B)	1.35(2)	C(39)-F(2B)	1.10(2)
C(39)-F(3B)	1.55(4)	C(39)-F(1C)	1.48(3)
C(39)-F(2C)	1.41(4)	C(39)-F(3C)	1.11(2)
C(40)-F(4A)	1.374(12)	C(40)-F(5A)	1.324(17)
C(40)-F(6A)	1.288(12)	C(40)-F(4B)	1.313(18)
C(40)-F(5B)	1.40(2)	C(40)-F(6B)	1.42(2)
C(40)-F(4C)	1.36(3)	C(40)-F(5C)	1.20(2)
C(40)-F(6C)	1.39(2)	C(41)-C(42)	1.402(7)
C(41)-C(46)	1.386(8)	C(41)-B(1)	1.650(7)
C(42)-H(42)	0.9500	C(42)-C(43)	1.405(8)
C(43)-C(44)	1.385(9)	C(43)-C(47)	1.484(8)
C(44)-H(44)	0.9500	C(44)-C(45)	1.318(12)
C(45)-C(46)	1.411(10)	C(45)-C(48)	1.501(10)
C(46)-H(46)	0.9500	C(47)-F(7A)	1.346(10)
C(47)-F(8A)	1.361(13)	C(47)-F(9A)	1.356(13)
C(47)-F(7B)	1.348(19)	C(47)-F(8B)	1.36(3)
C(47)-F(9B)	1.28(3)	C(47)-F(7C)	1.411(17)
C(47)-F(8C)	1.19(2)	C(47)-F(9C)	1.31(2)
C(48)-F(10A)	1.238(13)	C(48)-F(11A)	1.377(13)
C(48)-F(12A)	1.309(10)	C(48)-F(10B)	1.574(17)
C(48)-F(11B)	1.22(2)	C(48)-F(12B)	1.459(15)
C(49)-C(50)	1.397(10)	C(49)-C(54)	1.400(9)
C(49)-B(1)	1.635(7)	C(50)-H(50)	0.9500
C(50)-C(51)	1.402(10)	C(51)-C(52)	1.384(14)
C(51)-C(55)	1.497(10)	C(52)-H(52)	0.9500
C(52)-C(53)	1.375(13)	C(53)-C(54)	1.397(8)
C(53)-C(56)	1.472(11)	C(54)-H(54)	0.9500
C(55)-F(13A)	1.407(19)	C(55)-F(14A)	1.468(17)

C(55)-F(15A)	1.336(11)	C(55)-F(13B)	1.21(2)
C(55)-F(14B)	1.21(3)	C(55)-F(15B)	1.42(3)
C(55)-F(13C)	1.33(3)	C(55)-F(14C)	1.16(3)
C(55)-F(15C)	1.40(2)	C(56)-F(16A)	1.138(13)
C(56)-F(17A)	1.556(16)	C(56)-F(18A)	1.324(10)
C(56)-F(16B)	1.524(16)	C(56)-F(17B)	1.314(12)
C(56)-F(18B)	1.222(17)	C(57)-C(58)	1.392(7)
C(57)-C(62)	1.401(7)	C(57)-B(1)	1.639(8)
C(58)-H(58)	0.9500	C(58)-C(59)	1.401(9)
C(59)-C(60)	1.358(10)	C(59)-C(63A)	1.501(13)
C(59)-C(63B)	1.46(4)	C(60)-H(60)	0.9500
C(60)-C(61)	1.399(9)	C(61)-C(62)	1.379(9)
C(61)-C(64)	1.496(9)	C(62)-H(62)	0.9500
C(64)-F(22A)	1.381(18)	C(64)-F(23A)	1.300(13)
C(64)-F(24A)	1.287(17)	C(64)-F(22B)	1.336(17)
C(64)-F(23B)	1.355(17)	C(64)-F(24B)	1.406(18)
C(64)-F(22C)	1.34(2)	C(64)-F(23C)	1.19(2)
C(64)-F(24C)	1.31(2)	F(19A)-C(63A)	1.240(14)
F(20A)-C(63A)	1.38(2)	F(21A)-C(63A)	1.363(12)
F(19B)-C(63B)	1.32(2)	F(20B)-C(63B)	1.32(2)
F(21B)-C(63B)	1.35(2)		
O(1)-Bi(1)-Cl(1)	173.5(2)	C(1)-Bi(1)-Cl(1)	95.0(2)
C(1)-Bi(1)-O(1)	79.7(2)	C(1)-Bi(1)-C(19)	121.7(2)
C(10)-Bi(1)-Cl(1)	92.04(17)	C(10)-Bi(1)-O(1)	93.7(2)
C(10)-Bi(1)-C(1)	117.9(2)	C(10)-Bi(1)-C(19)	119.3(2)
C(19)-Bi(1)-Cl(1)	93.3(2)	C(19)-Bi(1)-O(1)	86.5(2)
N(1)-O(1)-Bi(1)	136.7(4)	O(1)-N(1)-C(28)	120.5(5)
O(1)-N(1)-C(32)	119.2(6)	C(32)-N(1)-C(28)	120.3(6)
C(2)-C(1)-Bi(1)	117.7(5)	C(6)-C(1)-Bi(1)	119.1(5)
C(6)-C(1)-C(2)	123.2(6)	C(1)-C(2)-C(7)	125.1(7)
C(3)-C(2)-C(1)	116.5(8)	C(3)-C(2)-C(7)	118.4(7)
C(2)-C(3)-H(3)	118.4	C(2)-C(3)-C(4)	123.2(7)
C(4)-C(3)-H(3)	118.4	C(3)-C(4)-C(8)	119.7(9)
C(5)-C(4)-C(3)	117.2(6)	C(5)-C(4)-C(8)	123.1(10)
C(4)-C(5)-H(5)	117.9	C(4)-C(5)-C(6)	124.2(8)
C(6)-C(5)-H(5)	117.9	C(1)-C(6)-C(9)	126.2(6)
C(5)-C(6)-C(1)	115.8(7)	C(5)-C(6)-C(9)	118.0(7)

C(2)-C(7)-H(7A)	109.5	C(2)-C(7)-H(7B)	109.5
C(2)-C(7)-H(7C)	109.5	H(7A)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7C)	109.5	H(7B)-C(7)-H(7C)	109.5
C(4)-C(8)-H(8A)	109.5	C(4)-C(8)-H(8B)	109.5
C(4)-C(8)-H(8C)	109.5	H(8A)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8C)	109.5	H(8B)-C(8)-H(8C)	109.5
C(6)-C(9)-H(9A)	109.5	C(6)-C(9)-H(9B)	109.5
C(6)-C(9)-H(9C)	109.5	H(9A)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9C)	109.5	H(9B)-C(9)-H(9C)	109.5
C(11)-C(10)-Bi(1)	117.7(4)	C(11)-C(10)-C(15)	122.0(6)
C(15)-C(10)-Bi(1)	120.1(5)	C(10)-C(11)-C(16)	125.7(6)
C(12)-C(11)-C(10)	117.4(6)	C(12)-C(11)-C(16)	116.9(6)
C(11)-C(12)-H(12)	119.1	C(11)-C(12)-C(13)	121.8(6)
C(13)-C(12)-H(12)	119.1	C(12)-C(13)-C(17)	118.9(7)
C(14)-C(13)-C(12)	118.4(5)	C(14)-C(13)-C(17)	122.7(7)
C(13)-C(14)-H(14)	118.5	C(13)-C(14)-C(15)	122.9(6)
C(15)-C(14)-H(14)	118.5	C(10)-C(15)-C(18)	123.8(6)
C(14)-C(15)-C(10)	117.5(6)	C(14)-C(15)-C(18)	118.7(6)
C(11)-C(16)-H(16A)	109.5	C(11)-C(16)-H(16B)	109.5
C(11)-C(16)-H(16C)	109.5	H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5	H(16B)-C(16)-H(16C)	109.5
C(13)-C(17)-H(17A)	109.5	C(13)-C(17)-H(17B)	109.5
C(13)-C(17)-H(17C)	109.5	H(17A)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17C)	109.5	H(17B)-C(17)-H(17C)	109.5
C(15)-C(18)-H(18A)	109.5	C(15)-C(18)-H(18B)	109.5
C(15)-C(18)-H(18C)	109.5	H(18A)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18C)	109.5	H(18B)-C(18)-H(18C)	109.5
C(20)-C(19)-Bi(1)	117.8(4)	C(24)-C(19)-Bi(1)	119.1(4)
C(24)-C(19)-C(20)	123.0(6)	C(19)-C(20)-C(25)	126.0(7)
C(21)-C(20)-C(19)	116.5(6)	C(21)-C(20)-C(25)	117.6(6)
C(20)-C(21)-H(21)	118.4	C(22)-C(21)-C(20)	123.2(6)
C(22)-C(21)-H(21)	118.4	C(21)-C(22)-C(23)	117.6(6)
C(21)-C(22)-C(26)	121.3(6)	C(23)-C(22)-C(26)	121.1(7)
C(22)-C(23)-H(23)	118.5	C(24)-C(23)-C(22)	122.9(6)
C(24)-C(23)-H(23)	118.5	C(19)-C(24)-C(27)	126.0(6)
C(23)-C(24)-C(19)	116.6(6)	C(23)-C(24)-C(27)	117.4(6)
C(20)-C(25)-H(25A)	109.5	C(20)-C(25)-H(25B)	109.5
C(20)-C(25)-H(25C)	109.5	H(25A)-C(25)-H(25B)	109.5

H(25A)-C(25)-H(25C)	109.5	H(25B)-C(25)-H(25C)	109.5
C(22)-C(26)-H(26A)	109.5	C(22)-C(26)-H(26B)	109.5
C(22)-C(26)-H(26C)	109.5	H(26A)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26C)	109.5	H(26B)-C(26)-H(26C)	109.5
C(24)-C(27)-H(27A)	109.5	C(24)-C(27)-H(27B)	109.5
C(24)-C(27)-H(27C)	109.5	H(27A)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27C)	109.5	H(27B)-C(27)-H(27C)	109.5
N(1)-C(28)-H(28)	119.7	N(1)-C(28)-C(29)	120.6(6)
C(29)-C(28)-H(28)	119.7	C(28)-C(29)-H(29)	120.1
C(28)-C(29)-C(30)	119.9(7)	C(30)-C(29)-H(29)	120.1
C(29)-C(30)-H(30)	120.6	C(31)-C(30)-C(29)	118.7(7)
C(31)-C(30)-H(30)	120.6	C(30)-C(31)-H(31)	119.7
C(30)-C(31)-C(32)	120.7(7)	C(32)-C(31)-H(31)	119.7
N(1)-C(32)-C(31)	119.8(7)	N(1)-C(32)-H(32)	120.1
C(31)-C(32)-H(32)	120.1	C(34)-C(33)-B(1)	123.9(5)
C(38)-C(33)-C(34)	114.8(5)	C(38)-C(33)-B(1)	121.3(4)
C(33)-C(34)-H(34)	118.9	C(35)-C(34)-C(33)	122.1(6)
C(35)-C(34)-H(34)	118.9	C(34)-C(35)-C(39)	118.7(7)
C(36)-C(35)-C(34)	121.5(6)	C(36)-C(35)-C(39)	119.7(7)
C(35)-C(36)-H(36)	121.1	C(37)-C(36)-C(35)	117.7(6)
C(37)-C(36)-H(36)	121.1	C(36)-C(37)-C(38)	120.6(5)
C(36)-C(37)-C(40)	120.2(5)	C(38)-C(37)-C(40)	119.2(5)
C(33)-C(38)-H(38)	118.4	C(37)-C(38)-C(33)	123.2(5)
C(37)-C(38)-H(38)	118.4	C(35)-C(39)-F(3B)	102.8(15)
F(1A)-C(39)-C(35)	112.9(12)	F(1A)-C(39)-F(2A)	110.8(12)
F(1A)-C(39)-F(3A)	112.2(13)	F(2A)-C(39)-C(35)	106.4(9)
F(3A)-C(39)-C(35)	112.8(9)	F(3A)-C(39)-F(2A)	100.9(14)
F(1B)-C(39)-C(35)	112.4(12)	F(1B)-C(39)-F(3B)	115(2)
F(2B)-C(39)-C(35)	121.8(16)	F(2B)-C(39)-F(1B)	105.9(17)
F(2B)-C(39)-F(3B)	99(2)	F(1C)-C(39)-C(35)	103.4(14)
F(2C)-C(39)-C(35)	107.2(16)	F(2C)-C(39)-F(1C)	108(2)
F(3C)-C(39)-C(35)	123.0(14)	F(3C)-C(39)-F(1C)	106.3(18)
F(3C)-C(39)-F(2C)	108(2)	F(4A)-C(40)-C(37)	113.0(6)
F(5A)-C(40)-C(37)	110.4(8)	F(5A)-C(40)-F(4A)	101.4(10)
F(6A)-C(40)-C(37)	116.2(8)	F(6A)-C(40)-F(4A)	106.0(9)
F(6A)-C(40)-F(5A)	108.8(9)	F(4B)-C(40)-C(37)	112.5(9)
F(4B)-C(40)-F(5B)	109.6(14)	F(4B)-C(40)-F(6B)	106.9(14)
F(5B)-C(40)-C(37)	113.2(9)	F(5B)-C(40)-F(6B)	106.8(13)

F(6B)-C(40)-C(37)	107.3(9)	F(4C)-C(40)-C(37)	107.6(12)
F(4C)-C(40)-F(6C)	96.7(16)	F(5C)-C(40)-C(37)	119.7(10)
F(5C)-C(40)-F(4C)	112.5(17)	F(5C)-C(40)-F(6C)	104.4(14)
F(6C)-C(40)-C(37)	113.5(10)	C(42)-C(41)-B(1)	123.1(4)
C(46)-C(41)-C(42)	115.2(5)	C(46)-C(41)-B(1)	121.6(5)
C(41)-C(42)-H(42)	118.7	C(41)-C(42)-C(43)	122.7(5)
C(43)-C(42)-H(42)	118.7	C(42)-C(43)-C(47)	118.5(5)
C(44)-C(43)-C(42)	119.1(6)	C(44)-C(43)-C(47)	122.3(6)
C(43)-C(44)-H(44)	120.4	C(45)-C(44)-C(43)	119.3(6)
C(45)-C(44)-H(44)	120.4	C(44)-C(45)-C(46)	122.5(6)
C(44)-C(45)-C(48)	121.0(7)	C(46)-C(45)-C(48)	116.5(7)
C(41)-C(46)-C(45)	121.1(5)	C(41)-C(46)-H(46)	119.4
C(45)-C(46)-H(46)	119.4	F(7A)-C(47)-C(43)	111.5(6)
F(7A)-C(47)-F(8A)	106.3(9)	F(7A)-C(47)-F(9A)	107.4(9)
F(8A)-C(47)-C(43)	110.7(7)	F(9A)-C(47)-C(43)	111.3(6)
F(9A)-C(47)-F(8A)	109.5(9)	F(7B)-C(47)-C(43)	115.5(9)
F(7B)-C(47)-F(8B)	99.9(14)	F(8B)-C(47)-C(43)	114.2(12)
F(9B)-C(47)-C(43)	116.6(12)	F(9B)-C(47)-F(7B)	107.8(15)
F(9B)-C(47)-F(8B)	100.7(16)	F(7C)-C(47)-C(43)	107.9(8)
F(8C)-C(47)-C(43)	115.0(12)	F(8C)-C(47)-F(7C)	108.2(13)
F(8C)-C(47)-F(9C)	102.4(15)	F(9C)-C(47)-C(43)	114.7(10)
F(9C)-C(47)-F(7C)	108.2(13)	C(45)-C(48)-F(10B)	107.4(8)
F(10A)-C(48)-C(45)	115.3(9)	F(10A)-C(48)-F(11A)	110.4(9)
F(10A)-C(48)-F(12A)	90.4(8)	F(11A)-C(48)-C(45)	110.7(7)
F(12A)-C(48)-C(45)	114.6(8)	F(12A)-C(48)-F(11A)	114.1(8)
F(11B)-C(48)-C(45)	124.2(11)	F(11B)-C(48)-F(10B)	83.6(11)
F(11B)-C(48)-F(12B)	100.5(12)	F(12B)-C(48)-C(45)	107.6(8)
F(12B)-C(48)-F(10B)	133.7(9)	C(50)-C(49)-C(54)	115.0(5)
C(50)-C(49)-B(1)	121.7(6)	C(54)-C(49)-B(1)	123.2(5)
C(49)-C(50)-H(50)	118.6	C(49)-C(50)-C(51)	122.7(7)
C(51)-C(50)-H(50)	118.6	C(50)-C(51)-C(55)	118.8(7)
C(52)-C(51)-C(50)	120.3(7)	C(52)-C(51)-C(55)	120.9(7)
C(51)-C(52)-H(52)	120.7	C(53)-C(52)-C(51)	118.6(7)
C(53)-C(52)-H(52)	120.7	C(52)-C(53)-C(54)	120.6(7)
C(52)-C(53)-C(56)	120.9(7)	C(54)-C(53)-C(56)	118.5(7)
C(49)-C(54)-H(54)	118.6	C(53)-C(54)-C(49)	122.8(6)
C(53)-C(54)-H(54)	118.6	F(13A)-C(55)-C(51)	111.5(8)
F(13A)-C(55)-F(14A)	106.8(13)	F(14A)-C(55)-C(51)	106.3(8)

F(15A)-C(55)-C(51)	113.2(8)	F(15A)-C(55)-F(13A)	109.9(11)
F(15A)-C(55)-F(14A)	108.9(11)	F(13B)-C(55)-C(51)	118.1(11)
F(13B)-C(55)-F(14B)	97.7(17)	F(13B)-C(55)-F(15B)	97.9(16)
F(14B)-C(55)-C(51)	113.7(16)	F(14B)-C(55)-F(15B)	114.6(15)
F(15B)-C(55)-C(51)	113.1(12)	F(13C)-C(55)-C(51)	109.4(12)
F(13C)-C(55)-F(15C)	111.0(15)	F(14C)-C(55)-C(51)	124.6(14)
F(14C)-C(55)-F(13C)	101.9(17)	F(14C)-C(55)-F(15C)	98.9(16)
F(15C)-C(55)-C(51)	110.3(12)	C(53)-C(56)-F(17A)	107.1(9)
C(53)-C(56)-F(16B)	107.7(8)	F(16A)-C(56)-C(53)	121.9(9)
F(16A)-C(56)-F(17A)	96.9(9)	F(16A)-C(56)-F(18A)	115.4(11)
F(18A)-C(56)-C(53)	116.3(6)	F(18A)-C(56)-F(17A)	90.8(8)
F(17B)-C(56)-C(53)	113.7(8)	F(17B)-C(56)-F(16B)	95.4(8)
F(18B)-C(56)-C(53)	112.6(10)	F(18B)-C(56)-F(16B)	112.8(11)
F(18B)-C(56)-F(17B)	113.4(11)	C(58)-C(57)-C(62)	115.2(5)
C(58)-C(57)-B(1)	122.5(4)	C(62)-C(57)-B(1)	122.0(5)
C(57)-C(58)-H(58)	118.8	C(57)-C(58)-C(59)	122.3(5)
C(59)-C(58)-H(58)	118.8	C(58)-C(59)-C(63A)	118.6(6)
C(58)-C(59)-C(63B)	117.6(9)	C(60)-C(59)-C(58)	121.3(6)
C(60)-C(59)-C(63A)	120.1(6)	C(60)-C(59)-C(63B)	120.8(9)
C(59)-C(60)-H(60)	121.1	C(59)-C(60)-C(61)	117.7(6)
C(61)-C(60)-H(60)	121.1	C(60)-C(61)-C(64)	118.1(6)
C(62)-C(61)-C(60)	120.9(5)	C(62)-C(61)-C(64)	121.0(6)
C(57)-C(62)-H(62)	118.7	C(61)-C(62)-C(57)	122.6(5)
C(61)-C(62)-H(62)	118.7	F(22A)-C(64)-C(61)	110.1(9)
F(23A)-C(64)-C(61)	114.1(8)	F(23A)-C(64)-F(22A)	103.1(12)
F(24A)-C(64)-C(61)	116.0(9)	F(24A)-C(64)-F(22A)	107.6(13)
F(24A)-C(64)-F(23A)	105.0(11)	F(22B)-C(64)-C(61)	113.9(8)
F(22B)-C(64)-F(23B)	108.6(12)	F(22B)-C(64)-F(24B)	106.5(13)
F(23B)-C(64)-C(61)	113.5(9)	F(23B)-C(64)-F(24B)	104.8(12)
F(24B)-C(64)-C(61)	109.0(9)	F(22C)-C(64)-C(61)	113.9(9)
F(23C)-C(64)-C(61)	114.6(13)	F(23C)-C(64)-F(22C)	114.9(17)
F(23C)-C(64)-F(24C)	99.6(19)	F(24C)-C(64)-C(61)	108.9(13)
F(24C)-C(64)-F(22C)	103.0(17)	C(33)-B(1)-C(41)	109.1(4)
C(33)-B(1)-C(57)	110.3(4)	C(49)-B(1)-C(33)	110.4(4)
C(49)-B(1)-C(41)	109.5(4)	C(49)-B(1)-C(57)	107.5(4)
C(57)-B(1)-C(41)	110.1(4)	F(19A)-C(63A)-C(59)	117.2(11)
F(19A)-C(63A)-F(20A)	101.4(10)	F(19A)-C(63A)-F(21A)	110.4(12)
F(20A)-C(63A)-C(59)	110.7(11)	F(21A)-C(63A)-C(59)	112.2(8)

F(21A)-C(63A)-F(20A)	103.5(11)	F(19B)-C(63B)-C(59)	115(2)
F(19B)-C(63B)-F(21B)	112(2)	F(20B)-C(63B)-C(59)	115(2)
F(20B)-C(63B)-F(19B)	99(2)	F(20B)-C(63B)-F(21B)	102(2)
F(21B)-C(63B)-C(59)	111.7(19)		

<u>NOTE:</u> The following X-ray data of structure **7**, **8**, **9a** and **11** presented here has been previously communicated in the thesis⁴. These structures were already uploaded at the CCDC prior to this communication.

9.4 Single crystal structure analysis of tris(3,5-di-t-butylphenyl)bismuth dichloride (7)

Figure S20: The solid state structure of 7. H atoms have been removed for clarity.

Figure S21: Crystal faces and unit cell determination/refinement of 7.

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.41	120	121	99.2	49.07	120.43	159.17	0.0484	0.0063
2.41 - 1.53	285	286	99.7	67.24	81.79	172.09	0.0422	0.0047
1.53 - 1.19	399	399	100.0	72.58	50.87	151.72	0.0402	0.0046
1.19 - 1.03	413	414	99.8	63.39	40.33	130.54	0.0455	0.0052
1.03 - 0.93	398	398	100.0	50.34	30.34	102.80	0.0468	0.0063
0.93 - 0.86	408	408	100.0	44.07	25.27	88.11	0.0470	0.0072
0.86 - 0.81	370	370	100.0	41.02	22.12	81.30	0.0523	0.0081
0.81 - 0.76	479	479	100.0	38.92	19.81	74.25	0.0549	0.0089
0.76 - 0.73	343	343	100.0	37.41	17.22	67.69	0.0665	0.0099
0.73 - 0.70	425	425	100.0	34.99	14.83	61.94	0.0663	0.0114
0.70 - 0.67	463	463	100.0	34.04	12.80	54.71	0.0773	0.0129
0.67 - 0.65	392	392	100.0	31.80	12.08	50.82	0.0761	0.0143
0.65 - 0.63	415	415	100.0	31.34	10.62	45.97	0.0836	0.0160
0.63 - 0.61	486	486	100.0	29.04	10.47	43.93	0.0883	0.0173
0.61 - 0.60	249	249	100.0	28.00	9.09	37.85	0.0988	0.0203
0.60 - 0.58	586	586	100.0	17.27	8.57	27.78	0.1030	0.0289
0.58 - 0.57	314	314	100.0	13.72	7.10	20.65	0.1143	0.0387
0.57 - 0.56	349	349	100.0	13.26	7.00	20.40	0.1188	0.0401
0.56 - 0.55	368	360	100.0	13.02	6.52	18.96	0.1288	0.0439
0.55 - 0.54	388	388	100.0	12.27	5.93	16.68	0.1363	0.0497
0.54 - 0.53	313	397	78.8	4.38	5.35	8.57	0.1592	0.1193
0.63 - 0.53	3045	3129	97.3	16.40	7.67	25.17	0.1044	0.0377
Inf - 0.53	7955	8042	98.9	33.88	20.80	64.82	0.0515	0.0115
0.63 - 0.53 Inf - 0.53	7955	5 3129 5 8042	97.3	16.40 33.88	20.80	64.82	0.1044	0.03//

INTENSITY STATISTICS FOR DATASET # 1 14327sadabs.raw

Complete .cif-data of the compound are available under the CCDC number CCDC-2289340.

Table S8. Crystal data and structure refinement.

Identification code	14327sadabs	
Empirical formula	C42 H63 Bi Cl2	
Color	colourless	
Formula weight	847.80 g·mol ⁻¹	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
Space group	P 3 ₁ 2 1, (no. 152)	
Unit cell dimensions	a = 10.7948(4) Å	<i>α</i> = 90°.
	b = 10.7948(4) Å	β= 90°.
	c = 30.6951(19) Å	$\gamma = 120^{\circ}$.
Volume	3097.6(3) Å ³	
Z	3	
Density (calculated)	1.363 Mg·m ⁻³	
Absorption coefficient	4.424 mm ⁻¹	
F(000)	1296 e	
Crystal size	0.172 x 0.118 x 0.10 mm ³	
θ range for data collection	1.990 to 38.567°.	
Index ranges	$-18 \le h \le 18, -18 \le k \le 18, -5$	$3 \le 1 \le 53$
Reflections collected	256310	
Independent reflections	11669 [R _{int} = 0.0338]	
Reflections with $I > 2\sigma(I)$	11488	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Gaussian	
Max. and min. transmission	0.73065 and 0.60834	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	11669 / 0 / 215	
Goodness-of-fit on F ²	1.006	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0241$	$wR^2 = 0.0475$
R indices (all data)	$R_1 = 0.0248$	$wR^2 = 0.0478$
Absolute structure parameter	0.045(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.913 and -1.628 e⋅Å ⁻³	

Bi(1)-Cl(1)	2.5954(5)	Bi(1)-Cl(1)#1	2.5953(5)
Bi(1)-C(1)#1	2.221(2)	Bi(1)-C(1)	2.221(2)
Bi(1)-C(15)	2.212(3)	C(1)-C(2)	1.383(3)
C(1)-C(6)	1.384(3)	C(2)-H(2)	0.9500
C(2)-C(3)	1.398(3)	C(3)-C(4)	1.397(4)
C(3)-C(7)	1.530(3)	C(4)-H(4)	0.9500
C(4)-C(5)	1.397(3)	C(5)-C(6)	1.397(3)
C(5)-C(11)	1.528(3)	C(6)-H(6)	0.9500
C(7)-C(8)	1.525(4)	C(7)-C(9)	1.538(4)
C(7)-C(10)	1.531(4)	C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800	C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800	C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800	C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800	C(10)-H(10C)	0.9800
C(11)-C(12)	1.535(4)	C(11)-C(13)	1.528(4)
C(11)-C(14)	1.529(4)	C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800	C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800	C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800	C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800	C(14)-H(14C)	0.9800
C(15)-C(16)	1.382(3)	C(15)-C(16)#1	1.382(3)
C(16)-H(16)	0.9500	C(16)-C(17)	1.396(3)
C(17)-C(18)	1.401(3)	C(17)-C(19)	1.531(3)
C(18)-H(18)	0.9500	C(19)-C(20)	1.532(4)
C(19)-C(21)	1.541(4)	C(19)-C(22)	1.537(4)
C(20)-H(20A)	0.9800	C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800	C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800	C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800	C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800		
Cl(1)#1-Bi(1)-Cl(1)	178.59(3)	C(1)-Bi(1)-Cl(1)	89.96(6)
C(1)#1-Bi(1)-Cl(1)#1	89.96(6)	C(1)#1-Bi(1)-Cl(1)	90.78(6)
C(1)-Bi(1)-Cl(1)#1	90.78(6)	C(1)#1-Bi(1)-C(1)	116.83(12)
C(15)-Bi(1)-Cl(1)#1	89.293(15)	C(15)-Bi(1)-Cl(1)	89.293(14)
C(15)-Bi(1)-C(1)	121.59(6)	C(15)-Bi(1)-C(1)#1	121.58(6)

Table S9. Bond lengths [Å] and angles [°].

C(2)-C(1)-Bi(1)	119.89(16)	C(2)-C(1)-C(6)	123.1(2)
C(6)-C(1)-Bi(1)	116.94(16)	C(1)-C(2)-H(2)	120.5
C(1)-C(2)-C(3)	119.0(2)	C(3)-C(2)-H(2)	120.5
C(2)-C(3)-C(7)	122.5(2)	C(4)-C(3)-C(2)	117.7(2)
C(4)-C(3)-C(7)	119.8(2)	C(3)-C(4)-H(4)	118.3
C(3)-C(4)-C(5)	123.4(2)	C(5)-C(4)-H(4)	118.3
C(4)-C(5)-C(11)	121.0(2)	C(6)-C(5)-C(4)	117.8(2)
C(6)-C(5)-C(11)	121.1(2)	C(1)-C(6)-C(5)	118.9(2)
C(1)-C(6)-H(6)	120.5	C(5)-C(6)-H(6)	120.5
C(3)-C(7)-C(9)	109.1(2)	C(3)-C(7)-C(10)	110.0(2)
C(8)-C(7)-C(3)	112.4(2)	C(8)-C(7)-C(9)	107.9(3)
C(8)-C(7)-C(10)	108.4(3)	C(10)-C(7)-C(9)	108.9(3)
C(7)-C(8)-H(8A)	109.5	C(7)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5	H(8A)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8C)	109.5	H(8B)-C(8)-H(8C)	109.5
C(7)-C(9)-H(9A)	109.5	C(7)-C(9)-H(9B)	109.5
C(7)-C(9)-H(9C)	109.5	H(9A)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9C)	109.5	H(9B)-C(9)-H(9C)	109.5
C(7)-C(10)-H(10A)	109.5	C(7)-C(10)-H(10B)	109.5
C(7)-C(10)-H(10C)	109.5	H(10A)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10C)	109.5	H(10B)-C(10)-H(10C)	109.5
C(5)-C(11)-C(12)	110.7(2)	C(5)-C(11)-C(14)	112.1(2)
C(13)-C(11)-C(5)	108.8(2)	C(13)-C(11)-C(12)	109.0(2)
C(13)-C(11)-C(14)	108.7(3)	C(14)-C(11)-C(12)	107.5(2)
C(11)-C(12)-H(12A)	109.5	C(11)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5	H(12A)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12C)	109.5	H(12B)-C(12)-H(12C)	109.5
C(11)-C(13)-H(13A)	109.5	C(11)-C(13)-H(13B)	109.5
C(11)-C(13)-H(13C)	109.5	H(13A)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13C)	109.5	H(13B)-C(13)-H(13C)	109.5
C(11)-C(14)-H(14A)	109.5	C(11)-C(14)-H(14B)	109.5
C(11)-C(14)-H(14C)	109.5	H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5	H(14B)-C(14)-H(14C)	109.5
C(16)#1-C(15)-Bi(1)	118.38(14)	C(16)-C(15)-Bi(1)	118.38(14)
C(16)#1-C(15)-C(16)	123.2(3)	C(15)-C(16)-H(16)	120.5
C(15)-C(16)-C(17)	118.9(2)	C(17)-C(16)-H(16)	120.5
C(16)-C(17)-C(18)	118.2(2)	C(16)-C(17)-C(19)	119.1(2)
C(18)-C(17)-C(19)	122.8(2)	C(17)#1-C(18)-C(17)	122.6(3)

C(17)-C(18)-H(18)	118.7	C(17)#1-C(18)-H(18)	118.7
C(17)-C(19)-C(20)	112.1(2)	C(17)-C(19)-C(21)	109.3(2)
C(17)-C(19)-C(22)	108.7(2)	C(20)-C(19)-C(21)	108.2(2)
C(20)-C(19)-C(22)	108.8(2)	C(22)-C(19)-C(21)	109.8(2)
C(19)-C(20)-H(20A)	109.5	C(19)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5	H(20A)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20C)	109.5	H(20B)-C(20)-H(20C)	109.5
C(19)-C(21)-H(21A)	109.5	C(19)-C(21)-H(21B)	109.5
C(19)-C(21)-H(21C)	109.5	H(21A)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21C)	109.5	H(21B)-C(21)-H(21C)	109.5
C(19)-C(22)-H(22A)	109.5	C(19)-C(22)-H(22B)	109.5
C(19)-C(22)-H(22C)	109.5	H(22A)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22C)	109.5	H(22B)-C(22)-H(22C)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 x-y+1,-y+2,-z+2/3

9.5 Single crystal structure analysis of tris(2,4,6-trimethylphenyl)- λ^5 -bismuth dichloride (8)

Figure S22: The solid state structure of 8. H atoms have been removed for clarity.

Figure S23: Crystal faces and unit cell determination/refinement of 8.

INTENSITY STATISTICS FOR DATASET # 1 15098sadabs.raw

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.47	356	357	99.7	8.68	130.57	44.48	0.0363	0.0208
2.47 - 1.65	848	848	100.0	8.94	91.06	41.96	0.0342	0.0209
1.65 - 1.31	1184	1184	100.0	8.92	60.26	38.84	0.0357	0.0214
1.31 - 1.15	1146	1146	100.0	8.64	44.02	34.93	0.0396	0.0226
1.15 - 1.04	1247	1247	100.0	7.08	37.16	30.13	0.0466	0.0269
1.04 - 0.96	1288	1288	100.0	5.16	28.03	22.16	0.0537	0.0347
0.96 - 0.91	1072	1072	100.0	4.35	23.18	18.74	0.0617	0.0406
0.91 - 0.86	1297	1297	100.0	3.89	20.33	16.39	0.0679	0.0456
0.86 - 0.82	1316	1316	100.0	3.69	17.83	14.49	0.0744	0.0525
0.82 - 0.79	1118	1118	100.0	3.53	16.02	13.36	0.0751	0.0579
0.79 - 0.77	909	909	100.0	3.39	14.32	12.40	0.0866	0.0649
0.77 - 0.74	1473	1475	99.9	3.35	12.38	11.37	0.0908	0.0731
0.74 - 0.72	1142	1143	99.9	3.17	10.95	10.22	0.1007	0.0863
0.72 - 0.70	1266	1266	100.0	3.04	9.90	9.29	0.1070	0.0967
0.70 - 0.68	1388	1401	99.1	2.97	8.73	8.59	0.1142	0.1071
0.68 - 0.67	783	791	99.0	2.91	8.65	8.34	0.1155	0.1164
0.67 - 0.65	1689	1712	98.7	2.76	7.05	6.87	0.1392	0.1449
0.65 - 0.64	918	932	98.5	2.73	6.98	6.86	0.1470	0.1384
0.64 - 0.63	973	988	98.5	2.63	6.39	6.20	0.1583	0.1668
0.63 - 0.62	1040	1066	97.6	2.58	5.77	5.69	0.1723	0.1810
0.62 - 0.61	1073	1374	78.1	1.77	5.28	4.89	0.1872	0.2171
0.71 - 0.61	8510	8910	95.5	2.64	7.22	6.98	0.1360	0.1410
Inf - 0.61	23526	23930	98.3	4.27	22.61	16.32	0.0491	0.0465

Complete .cif-data of the compound are available under the CCDC number CCDC-2296787.

Table S10. Crystal data and structure refinement.

Identification code	15098		
Empirical formula	C ₂₇ H ₃₃ Bi Cl ₂		
Color	colourless		
Formula weight	637.41 g·mol ⁻¹		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1, (no. 2)		
Unit cell dimensions	a = 8.7522(10) Å	α= 110.973(4)°.	
	b = 16.9260(19) Å	$\beta = 97.457(4)^{\circ}.$	
	c = 18.920(2) Å	$\gamma = 95.362(4)^{\circ}$.	
Volume	2565.2(5) Å ³		
Z	4		
Density (calculated)	1.650 Mg·m ⁻³		
Absorption coefficient	7.093 mm ⁻¹		
F(000)	1248 e		
Crystal size	0.197 x 0.11 x 0.052 mm ³		
θ range for data collection	1.303 to 30.505°.		
Index ranges	$-12 \le h \le 12, -24 \le k \le 24, -2$	$27 \le 1 \le 27$	
Reflections collected	80609		
Independent reflections	15659 [R _{int} = 0.0452]		
Reflections with I> $2\sigma(I)$	13657		
Completeness to $\theta = 25.242^{\circ}$	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	0.73960 and 0.37248		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	15659 / 0 / 559		
Goodness-of-fit on F^2	1.078		
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0269$	$wR^2 = 0.0664$	
R indices (all data)	$R_1 = 0.0341$	$wR^2 = 0.0689$	
Extinction coefficient	n/a		
Largest diff. peak and hole	2.351 and -1.569 e⋅Å ⁻³		

Bi(1)-Cl(1)	2.6029(7)	Bi(1)-Cl(2)	2.6037(7)
Bi(1)-C(1)	2.233(3)	Bi(1)-C(10)	2.237(3)
Bi(1)-C(19)	2.233(3)	C(1)-C(2)	1.394(4)
C(1)-C(6)	1.395(4)	C(2)-C(3)	1.388(4)
C(2)-C(7)	1.505(4)	C(3)-H(3)	0.9500
C(3)-C(4)	1.387(5)	C(4)-C(5)	1.377(5)
C(4)-C(8)	1.509(4)	C(5)-H(5)	0.9500
C(5)-C(6)	1.399(4)	C(6)-C(9)	1.503(4)
C(7)-H(7A)	0.9800	C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800	C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800	C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800	C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800	C(10)-C(11)	1.396(4)
C(10)-C(15)	1.403(4)	C(11)-C(12)	1.395(5)
C(11)-C(16)	1.509(5)	C(12)-H(12)	0.9500
C(12)-C(13)	1.386(5)	C(13)-C(14)	1.380(5)
C(13)-C(17)	1.512(5)	C(14)-H(14)	0.9500
C(14)-C(15)	1.392(4)	C(15)-C(18)	1.514(4)
C(16)-H(16A)	0.9800	C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800	C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800	C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800	C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800	C(19)-C(20)	1.401(4)
C(19)-C(24)	1.389(4)	C(20)-C(21)	1.393(4)
C(20)-C(25)	1.504(4)	C(21)-H(21)	0.9500
C(21)-C(22)	1.382(4)	C(22)-C(23)	1.383(4)
C(22)-C(26)	1.509(4)	C(23)-H(23)	0.9500
C(23)-C(24)	1.397(4)	C(24)-C(27)	1.501(4)
C(25)-H(25A)	0.9800	C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800	C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800	C(26)-H(26C)	0.9800
C(27)-H(27A)	0.9800	C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800	Bi(2)-Cl(3)	2.5925(8)
Bi(2)-Cl(4)	2.6283(8)	Bi(2)-C(31)	2.245(3)
Bi(2)-C(40)	2.226(3)	Bi(2)-C(49)	2.237(3)
C(31)-C(32)	1.392(4)	C(31)-C(36)	1.403(4)

Table S11. Bond lengths [Å] and angles [°].

C(32)-C(33)	1.397(5)	C(32)-C(37)	1.498(5)
C(33)-H(33)	0.9500	C(33)-C(34)	1.383(5)
C(34)-C(35)	1.385(5)	C(34)-C(38)	1.500(5)
C(35)-H(35)	0.9500	C(35)-C(36)	1.390(4)
C(36)-C(39)	1.504(4)	C(37)-H(37A)	0.9800
C(37)-H(37B)	0.9800	C(37)-H(37C)	0.9800
C(38)-H(38A)	0.9800	C(38)-H(38B)	0.9800
C(38)-H(38C)	0.9800	C(39)-H(39A)	0.9800
C(39)-H(39B)	0.9800	C(39)-H(39C)	0.9800
C(40)-C(41)	1.406(5)	C(40)-C(45)	1.398(4)
C(41)-C(42)	1.397(5)	C(41)-C(46)	1.505(5)
C(42)-H(42)	0.9500	C(42)-C(43)	1.372(6)
C(43)-C(44)	1.374(6)	C(43)-C(47)	1.507(5)
C(44)-H(44)	0.9500	C(44)-C(45)	1.400(5)
C(45)-C(48)	1.492(5)	C(46)-H(46A)	0.9800
C(46)-H(46B)	0.9800	C(46)-H(46C)	0.9800
C(47)-H(47A)	0.9800	C(47)-H(47B)	0.9800
C(47)-H(47C)	0.9800	C(48)-H(48A)	0.9800
C(48)-H(48B)	0.9800	C(48)-H(48C)	0.9800
C(49)-C(50)	1.400(4)	C(49)-C(54)	1.396(4)
C(50)-C(51)	1.398(4)	C(50)-C(55)	1.506(4)
C(51)-H(51)	0.9500	C(51)-C(52)	1.380(5)
C(52)-C(53)	1.380(5)	C(52)-C(56)	1.510(5)
C(53)-H(53)	0.9500	C(53)-C(54)	1.393(5)
C(54)-C(57)	1.502(5)	C(55)-H(55A)	0.9800
C(55)-H(55B)	0.9800	C(55)-H(55C)	0.9800
C(56)-H(56A)	0.9800	C(56)-H(56B)	0.9800
C(56)-H(56C)	0.9800	C(57)-H(57A)	0.9800
C(57)-H(57B)	0.9800	C(57)-H(57C)	0.9800
Cl(1)-Bi(1)-Cl(2)	175.65(2)	C(1)-Bi(1)-Cl(1)	87.72(7)
C(1)-Bi(1)-Cl(2)	87.95(7)	C(1)-Bi(1)-C(10)	123.31(11)
C(10)-Bi(1)-Cl(1)	92.46(8)	C(10)-Bi(1)-Cl(2)	90.26(8)
C(19)-Bi(1)-Cl(1)	90.54(7)	C(19)-Bi(1)-Cl(2)	91.43(7)
C(19)-Bi(1)-C(1)	122.32(10)	C(19)-Bi(1)-C(10)	114.36(10)
C(2)-C(1)-Bi(1)	118.9(2)	C(2)-C(1)-C(6)	122.9(3)
C(6)-C(1)-Bi(1)	118.1(2)	C(1)-C(2)-C(7)	125.7(3)
C(3)-C(2)-C(1)	117.2(3)	C(3)-C(2)-C(7)	117.1(3)

C(2)-C(3)-H(3)	119.0	C(4)-C(3)-C(2)	122.0(3)
C(4)-C(3)-H(3)	119.0	C(3)-C(4)-C(8)	119.9(3)
C(5)-C(4)-C(3)	118.9(3)	C(5)-C(4)-C(8)	121.2(3)
C(4)-C(5)-H(5)	119.0	C(4)-C(5)-C(6)	122.0(3)
C(6)-C(5)-H(5)	119.0	C(1)-C(6)-C(5)	116.9(3)
C(1)-C(6)-C(9)	126.0(3)	C(5)-C(6)-C(9)	117.1(3)
C(2)-C(7)-H(7A)	109.5	C(2)-C(7)-H(7B)	109.5
C(2)-C(7)-H(7C)	109.5	H(7A)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7C)	109.5	H(7B)-C(7)-H(7C)	109.5
C(4)-C(8)-H(8A)	109.5	C(4)-C(8)-H(8B)	109.5
C(4)-C(8)-H(8C)	109.5	H(8A)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8C)	109.5	H(8B)-C(8)-H(8C)	109.5
C(6)-C(9)-H(9A)	109.5	C(6)-C(9)-H(9B)	109.5
C(6)-C(9)-H(9C)	109.5	H(9A)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9C)	109.5	H(9B)-C(9)-H(9C)	109.5
C(11)-C(10)-Bi(1)	119.4(2)	C(11)-C(10)-C(15)	122.2(3)
C(15)-C(10)-Bi(1)	118.1(2)	C(10)-C(11)-C(16)	125.4(3)
C(12)-C(11)-C(10)	117.0(3)	C(12)-C(11)-C(16)	117.5(3)
C(11)-C(12)-H(12)	118.7	C(13)-C(12)-C(11)	122.6(3)
C(13)-C(12)-H(12)	118.7	C(12)-C(13)-C(17)	121.0(4)
C(14)-C(13)-C(12)	118.3(3)	C(14)-C(13)-C(17)	120.7(4)
C(13)-C(14)-H(14)	118.9	C(13)-C(14)-C(15)	122.1(3)
C(15)-C(14)-H(14)	118.9	C(10)-C(15)-C(18)	125.6(3)
C(14)-C(15)-C(10)	117.6(3)	C(14)-C(15)-C(18)	116.9(3)
C(11)-C(16)-H(16A)	109.5	C(11)-C(16)-H(16B)	109.5
C(11)-C(16)-H(16C)	109.5	H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5	H(16B)-C(16)-H(16C)	109.5
C(13)-C(17)-H(17A)	109.5	C(13)-C(17)-H(17B)	109.5
C(13)-C(17)-H(17C)	109.5	H(17A)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17C)	109.5	H(17B)-C(17)-H(17C)	109.5
C(15)-C(18)-H(18A)	109.5	C(15)-C(18)-H(18B)	109.5
C(15)-C(18)-H(18C)	109.5	H(18A)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18C)	109.5	H(18B)-C(18)-H(18C)	109.5
C(20)-C(19)-Bi(1)	118.4(2)	C(24)-C(19)-Bi(1)	118.81(19)
C(24)-C(19)-C(20)	122.4(3)	C(19)-C(20)-C(25)	126.0(3)
C(21)-C(20)-C(19)	117.0(3)	C(21)-C(20)-C(25)	116.9(2)
C(20)-C(21)-H(21)	118.7	C(22)-C(21)-C(20)	122.6(3)
C(22)-C(21)-H(21)	118.7	C(21)-C(22)-C(23)	118.2(3)

C(21)-C(22)-C(26)	120.3(3)	C(23)-C(22)-C(26)	121.5(3)
C(22)-C(23)-H(23)	119.0	C(22)-C(23)-C(24)	122.1(3)
C(24)-C(23)-H(23)	119.0	C(19)-C(24)-C(23)	117.6(3)
C(19)-C(24)-C(27)	125.8(2)	C(23)-C(24)-C(27)	116.6(3)
C(20)-C(25)-H(25A)	109.5	C(20)-C(25)-H(25B)	109.5
C(20)-C(25)-H(25C)	109.5	H(25A)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25C)	109.5	H(25B)-C(25)-H(25C)	109.5
C(22)-C(26)-H(26A)	109.5	C(22)-C(26)-H(26B)	109.5
C(22)-C(26)-H(26C)	109.5	H(26A)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26C)	109.5	H(26B)-C(26)-H(26C)	109.5
C(24)-C(27)-H(27A)	109.5	C(24)-C(27)-H(27B)	109.5
C(24)-C(27)-H(27C)	109.5	H(27A)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27C)	109.5	H(27B)-C(27)-H(27C)	109.5
Cl(3)-Bi(2)-Cl(4)	176.23(3)	C(31)-Bi(2)-Cl(3)	90.16(8)
C(31)-Bi(2)-Cl(4)	89.62(8)	C(40)-Bi(2)-Cl(3)	90.10(8)
C(40)-Bi(2)-Cl(4)	93.38(8)	C(40)-Bi(2)-C(31)	116.00(11)
C(40)-Bi(2)-C(49)	119.05(11)	C(49)-Bi(2)-Cl(3)	89.59(8)
C(49)-Bi(2)-Cl(4)	87.44(8)	C(49)-Bi(2)-C(31)	124.95(11)
C(32)-C(31)-Bi(2)	119.2(2)	C(32)-C(31)-C(36)	122.3(3)
C(36)-C(31)-Bi(2)	118.4(2)	C(31)-C(32)-C(33)	117.4(3)
C(31)-C(32)-C(37)	125.2(3)	C(33)-C(32)-C(37)	117.4(3)
C(32)-C(33)-H(33)	118.8	C(34)-C(33)-C(32)	122.5(3)
C(34)-C(33)-H(33)	118.8	C(33)-C(34)-C(35)	117.8(3)
C(33)-C(34)-C(38)	121.8(3)	C(35)-C(34)-C(38)	120.4(3)
C(34)-C(35)-H(35)	118.6	C(34)-C(35)-C(36)	122.8(3)
C(36)-C(35)-H(35)	118.6	C(31)-C(36)-C(39)	125.9(3)
C(35)-C(36)-C(31)	117.1(3)	C(35)-C(36)-C(39)	117.0(3)
C(32)-C(37)-H(37A)	109.5	C(32)-C(37)-H(37B)	109.5
C(32)-C(37)-H(37C)	109.5	H(37A)-C(37)-H(37B)	109.5
H(37A)-C(37)-H(37C)	109.5	H(37B)-C(37)-H(37C)	109.5
C(34)-C(38)-H(38A)	109.5	C(34)-C(38)-H(38B)	109.5
C(34)-C(38)-H(38C)	109.5	H(38A)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38C)	109.5	H(38B)-C(38)-H(38C)	109.5
C(36)-C(39)-H(39A)	109.5	C(36)-C(39)-H(39B)	109.5
C(36)-C(39)-H(39C)	109.5	H(39A)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39C)	109.5	H(39B)-C(39)-H(39C)	109.5
C(41)-C(40)-Bi(2)	117.4(2)	C(45)-C(40)-Bi(2)	119.7(2)
C(45)-C(40)-C(41)	122.8(3)	C(40)-C(41)-C(46)	125.3(3)

C(42)-C(41)-C(40)	116.9(3)	C(42)-C(41)-C(46)	117.7(3)
C(41)-C(42)-H(42)	118.9	C(43)-C(42)-C(41)	122.2(4)
C(43)-C(42)-H(42)	118.9	C(42)-C(43)-C(44)	119.0(3)
C(42)-C(43)-C(47)	121.0(4)	C(44)-C(43)-C(47)	120.0(4)
C(43)-C(44)-H(44)	118.6	C(43)-C(44)-C(45)	122.8(3)
C(45)-C(44)-H(44)	118.6	C(40)-C(45)-C(44)	116.4(3)
C(40)-C(45)-C(48)	126.2(3)	C(44)-C(45)-C(48)	117.4(3)
C(41)-C(46)-H(46A)	109.5	C(41)-C(46)-H(46B)	109.5
C(41)-C(46)-H(46C)	109.5	H(46A)-C(46)-H(46B)	109.5
H(46A)-C(46)-H(46C)	109.5	H(46B)-C(46)-H(46C)	109.5
C(43)-C(47)-H(47A)	109.5	C(43)-C(47)-H(47B)	109.5
C(43)-C(47)-H(47C)	109.5	H(47A)-C(47)-H(47B)	109.5
H(47A)-C(47)-H(47C)	109.5	H(47B)-C(47)-H(47C)	109.5
C(45)-C(48)-H(48A)	109.5	C(45)-C(48)-H(48B)	109.5
C(45)-C(48)-H(48C)	109.5	H(48A)-C(48)-H(48B)	109.5
H(48A)-C(48)-H(48C)	109.5	H(48B)-C(48)-H(48C)	109.5
C(50)-C(49)-Bi(2)	118.1(2)	C(54)-C(49)-Bi(2)	119.2(2)
C(54)-C(49)-C(50)	122.7(3)	C(49)-C(50)-C(55)	125.6(3)
C(51)-C(50)-C(49)	116.9(3)	C(51)-C(50)-C(55)	117.5(3)
C(50)-C(51)-H(51)	118.8	C(52)-C(51)-C(50)	122.3(3)
C(52)-C(51)-H(51)	118.8	C(51)-C(52)-C(56)	120.8(3)
C(53)-C(52)-C(51)	118.5(3)	C(53)-C(52)-C(56)	120.7(4)
C(52)-C(53)-H(53)	118.7	C(52)-C(53)-C(54)	122.5(3)
C(54)-C(53)-H(53)	118.7	C(49)-C(54)-C(57)	125.8(3)
C(53)-C(54)-C(49)	117.1(3)	C(53)-C(54)-C(57)	117.1(3)
C(50)-C(55)-H(55A)	109.5	C(50)-C(55)-H(55B)	109.5
C(50)-C(55)-H(55C)	109.5	H(55A)-C(55)-H(55B)	109.5
H(55A)-C(55)-H(55C)	109.5	H(55B)-C(55)-H(55C)	109.5
C(52)-C(56)-H(56A)	109.5	C(52)-C(56)-H(56B)	109.5
C(52)-C(56)-H(56C)	109.5	H(56A)-C(56)-H(56B)	109.5
H(56A)-C(56)-H(56C)	109.5	H(56B)-C(56)-H(56C)	109.5
C(54)-C(57)-H(57A)	109.5	C(54)-C(57)-H(57B)	109.5
C(54)-C(57)-H(57C)	109.5	H(57A)-C(57)-H(57B)	109.5
H(57A)-C(57)-H(57C)	109.5	H(57B)-C(57)-H(57C)	109.5

9.6 Single crystal structure analysis of (μ -chloro)-dichloro-hexaphenyl-di-bismuth tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (9a)

Figure S24: The solid state structure of 9a. H atoms have been removed for clarity and disordered parts shown in grey.

Figure S25: Crystal faces and unit cell determination/refinement of 9a.

INTENSITY STATISTICS FOR DATASET # 1 14943sadabs.raw

Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.62	412	418	98.6	26.70	145.34	60.26	0.0378	0.0380
2.62 - 1.76	955	957	99.8	28.28	111.01	63.09	0.0411	0.0276
1.76 - 1.40	1360	1360	100.0	29.95	70.61	62.09	0.0431	0.0169
1 40 - 1 22	1391	1391	100.0	31 11	51 99	59 28	0 0466	0 0132
1 22 - 1 11	1349	1349	100.0	30.06	42 87	53.47	0.0400	0 0135
1 11 - 1 03	1388	1388	100.0	29 14	34 69	47 08	0.0507	0 0148
1 03 - 0 97	13/0	13/0	100.0	29.14	28 19	/1 79	0.0501	0.0140
0.97 - 0.92	1384	1384	100.0	27.98	25 38	38 49	0 0737	0.0105
0.97 - 0.92	1/03	1403	100.0	26.92	19 68	32.96	0.0757	0.0177
0.92 - 0.00	1655	1655	100.0	25.52	17 71	30.06	0.0000	0.0207
0.00 - 0.04	1437	1437	100.0	25.20	15 67	27 38	0.1000	0.0255
0.04 - 0.01	11/18	11/18	100.0	24.69	1/ 00	25.45	0.1110	0.0250
0.01 - 0.75	1140	1140	100.0	24.05	12 26	22.45	0.1230	a a319
0.75 - 0.77	1358	1358	100.0	24.10	10 82	22.55	0.1333	0.0315
0.77 - 0.73	1/87	1/87	100.0	22.45	10.02	10.00	0.1400	0.0395
0.75 - 0.75	1700	1700	100.0	22.37	9 31	17.40	0.1515	0.0505
0.75 - 0.71	1/00	200	100.0	22.17	9.51	16 15	0.1390	0.0427
0.71 - 0.70	1079	1079	100.0	21.50	7 20	14.05	0.1/1/	0.0475
0.70 - 0.00	1102	1102	100.0	10 04	6 90	12.05	0.1035	0.0557
0.00 - 0.07	1105	1105	100.0	19.94	0.00	12.07	0.1920	0.0004
0.07 - 0.00	1100	1254	100.0	19.00	5.00	11.02	0.2049	0.0007
0.00 - 0.65	1188	1254	94.7	17.42	5.22	9.61	0.2288	0.0897
0.75 0.65	0109	0564	00.3	20.95	7 90	11 69	0 1762	0 0525
0.75 - 0.05	3490	27220	99.5	20.00	26 12	24.00	0.1/05	0.0020
101 - 0.05	2/240	27520	99.7	25.04	20.12	51.47	0.0/59	0.0240

Complete .cif-data of the compound are available under the CCDC number CCDC-2289343.

Table S12. Crystal data and structure refinement.

Identification code	14943sadabs	
Empirical formula	C68 H42 B Bi2 Cl3 F24	
Color	colourless	
Formula weight	1850.13 g·mol ⁻¹	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1, (no. 2)	
Unit cell dimensions	a = 12.9043(18) Å	$\alpha = 108.297(6)^{\circ}.$
	b = 14.639(2) Å	$\beta = 98.848(7)^{\circ}$.
	c = 20.359(3) Å	$\gamma = 94.297(7)^{\circ}.$
Volume	3576.9(9) Å ³	
Z	2	
Density (calculated)	1.718 Mg·m ⁻³	
Absorption coefficient	5.126 mm ⁻¹	
F(000)	1776 e	
Crystal size	$0.202 \ x \ 0.185 \ x \ 0.173 \ mm^3$	
θ range for data collection	1.760 to 27.500°.	
Index ranges	$-16 \le h \le 16, -19 \le k \le 19, -2$	$6 \le l \le 26$
Reflections collected	453473	
Independent reflections	16412 [$R_{int} = 0.0637$]	
Reflections with $I > 2\sigma(I)$	15218	
Completeness to $\theta = 25.242^{\circ}$	99.9 %	
Absorption correction	Gaussian	
Max. and min. transmission	0.9604 and 0.4447	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	16412 / 90 / 1087	
Goodness-of-fit on F ²	1.028	
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0217$	$wR^2 = 0.0505$
R indices (all data)	$R_1 = 0.0244$	$wR^2 = 0.0522$
Extinction coefficient	n/a	
Largest diff. peak and hole	1.331 and -1.677 e⋅Å ⁻³	

Bi(1)-Cl(1)	2.4856(7)	Bi(1)-Cl(3)	2.7995(7)
Bi(1)-C(1)	2.212(3)	Bi(1)-C(7)	2.204(2)
Bi(1)-C(13)	2.211(3)	Bi(2)-Cl(2)	2.4996(8)
Bi(2)-Cl(3)	2.8274(7)	Bi(2)-C(19)	2.187(3)
Bi(2)-C(25)	2.189(3)	Bi(2)-C(31)	2.185(3)
F(1A)-C(47)	1.290(6)	F(1B)-C(47)	1.318(12)
F(1C)-C(47)	1.544(10)	F(2A)-C(47)	1.351(11)
F(2B)-C(47)	1.27(2)	F(2C)-C(47)	1.28(3)
F(3A)-C(47)	1.384(5)	F(3B)-C(47)	1.417(9)
F(3C)-C(47)	1.293(9)	F(4)-C(48)	1.335(5)
F(5)-C(48)	1.257(5)	F(6)-C(48)	1.392(6)
F(7A)-C(55)	1.341(7)	F(7B)-C(55)	1.41(2)
F(7C)-C(55)	1.301(12)	F(8A)-C(55)	1.392(7)
F(8B)-C(55)	1.192(17)	F(8C)-C(55)	1.323(16)
F(9A)-C(55)	1.339(5)	F(9B)-C(55)	1.343(13)
F(9C)-C(55)	1.393(14)	F(10A)-C(56)	1.341(6)
F(10B)-C(56)	1.455(16)	F(10C)-C(56)	1.252(11)
F(11A)-C(56)	1.369(6)	F(11B)-C(56)	1.307(11)
F(11C)-C(56)	1.337(14)	F(12A)-C(56)	1.329(5)
F(12B)-C(56)	1.320(10)	F(12C)-C(56)	1.435(10)
F(13A)-C(63)	1.331(5)	F(13B)-C(63)	1.469(11)
F(13C)-C(63)	1.329(9)	F(14A)-C(63)	1.352(5)
F(14C)-C(63)	1.271(10)	F(15A)-C(63)	1.371(5)
F(15B)-C(63)	1.299(16)	F(15C)-C(63)	1.352(9)
F(16A)-C(64)	1.422(10)	F(16B)-C(64)	1.21(2)
F(16C)-C(64)	1.28(2)	F(17A)-C(64)	1.356(6)
F(17B)-C(64)	1.335(16)	F(17C)-C(64)	1.359(16)
F(18A)-C(64)	1.328(7)	F(18B)-C(64)	1.402(18)
F(18C)-C(64)	1.343(18)	F(19A)-C(71)	1.354(5)
F(19B)-C(71)	1.3792(11)	F(19C)-C(71)	1.3796(11)
F(20A)-C(71)	1.329(4)	F(20B)-C(71)	1.3798(10)
F(20C)-C(71)	1.3796(10)	F(21A)-C(71)	1.350(6)
F(21B)-C(71)	1.3787(10)	F(21C)-C(71)	1.3799(10)
F(22A)-C(72)	1.231(8)	F(22B)-C(72)	1.720(11)
F(22C)-C(72)	1.314(15)	F(23A)-C(72)	1.382(6)
F(23B)-C(72)	1.322(9)	F(23C)-C(72)	1.391(12)

Tabla S13	Rond	longthe	[Å] ond	onglos	roı
Table S13.	Bona	lengths	[A] and	angles	[]

1.333(6)	F(24B)-C(72)	1.472(12)
1.247(13)	F(40)-C(63)	1.383(12)
1.386(4)	C(1)-C(6)	1.384(4)
0.9500	C(2)-C(3)	1.386(4)
0.9500	C(3)-C(4)	1.384(5)
0.9500	C(4)-C(5)	1.383(5)
0.9500	C(5)-C(6)	1.387(4)
0.9500	C(7)-C(8)	1.378(4)
1.378(4)	C(8)-H(8)	0.9500
1.389(4)	C(9)-H(9)	0.9500
1.374(5)	C(10)-H(10)	0.9500
1.369(5)	C(11)-H(11)	0.9500
1.391(4)	C(12)-H(12)	0.9500
1.381(4)	C(13)-C(18)	1.387(4)
0.9500	C(14)-C(15)	1.394(4)
0.9500	C(15)-C(16)	1.386(5)
0.9500	C(16)-C(17)	1.386(5)
0.9500	C(17)-C(18)	1.391(4)
0.9500	C(19)-C(20A)	1.343(5)
1.343(11)	C(19)-C(24A)	1.383(5)
1.558(11)	C(20A)-H(20A)	0.9500
1.394(6)	C(20B)-H(20B)	0.9500
1.392(15)	C(21A)-H(21A)	0.9500
1.343(7)	C(21B)-H(21B)	0.9500
1.182(13)	C(22)-H(22)	0.9500
0.9500	C(22)-C(23A)	1.455(7)
1.504(13)	C(23A)-H(23A)	0.9500
1.389(6)	C(23B)-H(23B)	0.9500
1.387(15)	C(24A)-H(24A)	0.9500
0.9500	C(25)-C(26)	1.378(4)
1.384(4)	C(26)-H(26)	0.9500
1.389(5)	C(27)-H(27)	0.9500
1.380(5)	C(28)-H(28)	0.9500
1.379(5)	C(29)-H(29)	0.9500
1.386(4)	C(30)-H(30)	0.9500
1.383(4)	C(31)-C(36)	1.390(4)
0.9500	C(32)-C(33)	1.390(4)
0.9500	C(33)-C(34)	1.383(4)
	1.333(6) 1.247(13) 1.386(4) 0.9500 0.9500 0.9500 0.9500 1.378(4) 1.378(4) 1.374(5) 1.369(5) 1.391(4) 1.381(4) 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 1.343(11) 1.558(11) 1.394(6) 1.392(15) 1.343(7) 1.182(13) 0.9500 1.504(13) 1.389(6) 1.387(15) 0.9500 1.384(4) 1.389(5) 1.380(5) 1.380(5) 1.383(4) 0.9500 0.9500 0.9500	1.333(6) F(24B)-C(72) 1.247(13) F(40)-C(63) 1.386(4) C(1)-C(6) 0.9500 C(2)-C(3) 0.9500 C(3)-C(4) 0.9500 C(4)-C(5) 0.9500 C(5)-C(6) 0.9500 C(7)-C(8) 1.378(4) C(8)-H(8) 1.389(4) C(9)-H(9) 1.374(5) C(10)-H(10) 1.369(5) C(11)-H(11) 1.391(4) C(12)-H(12) 1.381(4) C(13)-C(18) 0.9500 C(16)-C(17) 0.9500 C(16)-C(17) 0.9500 C(16)-C(17) 0.9500 C(10)-C(18) 0.9500 C(19)-C(20A) 1.343(11) C(120A)-H(20A) 1.394(6) C(20B)-H(20B) 1.394(6) C(20B)-H(20B) 1.392(15) C(21A)-H(21A) 1.343(7) C(21B)-H(21B) 1.182(13) C(22)-C(23A) 1.504(13) C(23A)-H(23A) 1.389(6) C(23B)-H(23B) 1.389(6) C(23B)-H(23B) 1.389(5) C(27)-H(27)

C(34)-H(34)	0.9500	C(34)-C(35)	1.384(4)
C(35)-H(35)	0.9500	C(35)-C(36)	1.383(4)
C(36)-H(36)	0.9500	C(41)-C(42)	1.404(3)
C(41)-C(46)	1.410(4)	C(41)-B(1)	1.639(4)
C(42)-H(42)	0.9500	C(42)-C(43)	1.398(4)
C(43)-C(44)	1.373(4)	C(43)-C(47)	1.495(4)
C(44)-H(44)	0.9500	C(44)-C(45)	1.391(4)
C(45)-C(46)	1.386(4)	C(45)-C(48)	1.509(5)
C(46)-H(46)	0.9500	C(49)-C(50)	1.400(4)
C(49)-C(54)	1.410(3)	C(49)-B(1)	1.653(4)
C(50)-H(50)	0.9500	C(50)-C(51)	1.397(4)
C(51)-C(52)	1.382(4)	C(51)-C(55)	1.496(4)
C(52)-H(52)	0.9500	C(52)-C(53)	1.387(4)
C(53)-C(54)	1.389(4)	C(53)-C(56)	1.497(4)
C(54)-H(54)	0.9500	C(57)-C(58)	1.399(4)
C(57)-C(62)	1.404(4)	C(57)-B(1)	1.657(4)
C(58)-H(58)	0.9500	C(58)-C(59)	1.395(4)
C(59)-C(60)	1.386(4)	C(59)-C(63)	1.493(4)
C(60)-H(60)	0.9500	C(60)-C(61)	1.381(4)
C(61)-C(62)	1.391(4)	C(61)-C(64)	1.493(4)
C(62)-H(62)	0.9500	C(65)-C(66)	1.404(3)
C(65)-C(70)	1.396(4)	C(65)-B(1)	1.640(4)
C(66)-H(66)	0.9500	C(66)-C(67)	1.390(3)
C(67)-C(68)	1.388(4)	C(67)-C(71)	1.488(4)
C(68)-H(68)	0.9500	C(68)-C(69)	1.377(4)
C(69)-C(70)	1.398(4)	C(69)-C(72)	1.494(4)
C(70)-H(70)	0.9500		
Cl(1)-Bi(1)-Cl(3)	179.25(2)	C(1)-Bi(1)-Cl(1)	93.53(7)
C(1)-Bi(1)-Cl(3)	87.09(7)	C(7)-Bi(1)-Cl(1)	94.22(7)
C(7)-Bi(1)-Cl(3)	85.90(7)	C(7)-Bi(1)-C(1)	115.63(10)
C(7)-Bi(1)-C(13)	123.94(10)	C(13)-Bi(1)-Cl(1)	92.44(7)
C(13)-Bi(1)-Cl(3)	86.88(7)	C(13)-Bi(1)-C(1)	119.38(9)
Cl(2)-Bi(2)-Cl(3)	177.70(2)	C(19)-Bi(2)-Cl(2)	95.06(8)
C(19)-Bi(2)-Cl(3)	83.90(8)	C(19)-Bi(2)-C(25)	115.09(10)
C(25)-Bi(2)-Cl(2)	93.91(8)	C(25)-Bi(2)-Cl(3)	88.39(7)
C(31)-Bi(2)-Cl(2)	92.99(7)	C(31)-Bi(2)-Cl(3)	85.84(7)
C(31)-Bi(2)-C(19)	122.14(11)	C(31)-Bi(2)-C(25)	121.35(10)

Bi(1)-Cl(3)-Bi(2)	128.10(2)	C(2)-C(1)-Bi(1)	117.84(19)
C(6)-C(1)-Bi(1)	119.68(19)	C(6)-C(1)-C(2)	122.3(3)
C(1)-C(2)-H(2)	120.9	C(1)-C(2)-C(3)	118.1(3)
C(3)-C(2)-H(2)	120.9	C(2)-C(3)-H(3)	119.8
C(4)-C(3)-C(2)	120.5(3)	C(4)-C(3)-H(3)	119.8
C(3)-C(4)-H(4)	119.8	C(5)-C(4)-C(3)	120.4(3)
C(5)-C(4)-H(4)	119.8	C(4)-C(5)-H(5)	119.9
C(4)-C(5)-C(6)	120.1(3)	C(6)-C(5)-H(5)	119.9
C(1)-C(6)-C(5)	118.5(3)	C(1)-C(6)-H(6)	120.8
C(5)-C(6)-H(6)	120.8	C(8)-C(7)-Bi(1)	119.0(2)
C(12)-C(7)-Bi(1)	118.6(2)	C(12)-C(7)-C(8)	122.3(3)
C(7)-C(8)-H(8)	121.0	C(7)-C(8)-C(9)	118.0(3)
C(9)-C(8)-H(8)	121.0	C(8)-C(9)-H(9)	119.7
C(10)-C(9)-C(8)	120.7(3)	C(10)-C(9)-H(9)	119.7
C(9)-C(10)-H(10)	119.9	C(11)-C(10)-C(9)	120.3(3)
C(11)-C(10)-H(10)	119.9	C(10)-C(11)-H(11)	119.7
C(10)-C(11)-C(12)	120.5(3)	C(12)-C(11)-H(11)	119.7
C(7)-C(12)-C(11)	118.2(3)	C(7)-C(12)-H(12)	120.9
C(11)-C(12)-H(12)	120.9	C(14)-C(13)-Bi(1)	120.26(19)
C(14)-C(13)-C(18)	122.8(3)	C(18)-C(13)-Bi(1)	116.9(2)
C(13)-C(14)-H(14)	121.0	C(13)-C(14)-C(15)	118.1(3)
C(15)-C(14)-H(14)	121.0	C(14)-C(15)-H(15)	119.8
C(16)-C(15)-C(14)	120.3(3)	C(16)-C(15)-H(15)	119.8
C(15)-C(16)-H(16)	119.8	C(15)-C(16)-C(17)	120.3(3)
C(17)-C(16)-H(16)	119.8	C(16)-C(17)-H(17)	119.8
C(16)-C(17)-C(18)	120.4(3)	C(18)-C(17)-H(17)	119.8
C(13)-C(18)-C(17)	118.0(3)	C(13)-C(18)-H(18)	121.0
C(17)-C(18)-H(18)	121.0	C(20A)-C(19)-Bi(2)	120.1(2)
C(20A)-C(19)-C(24A)	125.7(3)	C(20B)-C(19)-Bi(2)	125.0(5)
C(20B)-C(19)-C(24B)	113.2(7)	C(24A)-C(19)-Bi(2)	113.8(3)
C(24B)-C(19)-Bi(2)	121.0(4)	C(19)-C(20A)-H(20A)	121.6
C(19)-C(20A)-C(21A)	116.8(4)	C(21A)-C(20A)-H(20A)	121.6
C(19)-C(20B)-H(20B)	117.4	C(19)-C(20B)-C(21B)	125.1(10)
C(21B)-C(20B)-H(20B)	117.4	C(20A)-C(21A)-H(21A)	118.6
C(22)-C(21A)-C(20A)	122.9(5)	C(22)-C(21A)-H(21A)	118.6
C(20B)-C(21B)-H(21B)	120.9	C(22)-C(21B)-C(20B)	118.2(10)
C(22)-C(21B)-H(21B)	120.9	C(21A)-C(22)-H(22)	121.0
C(21A)-C(22)-C(23A)	117.9(4)	C(21B)-C(22)-H(22A)	117.3

C(21B)-C(22)-C(23B)	125.4(8)	C(23A)-C(22)-H(22)	121.0
C(23B)-C(22)-H(22A)	117.3	C(22)-C(23A)-H(23A)	120.0
C(24A)-C(23A)-C(22)	120.0(4)	C(24A)-C(23A)-H(23A)	120.0
C(22)-C(23B)-H(23B)	123.8	C(24B)-C(23B)-C(22)	112.4(9)
C(24B)-C(23B)-H(23B)	123.8	C(19)-C(24A)-C(23A)	116.3(4)
C(19)-C(24A)-H(24A)	121.8	C(23A)-C(24A)-H(24A)	121.8
C(19)-C(24B)-H(24B)	120.2	C(23B)-C(24B)-C(19)	119.6(9)
C(23B)-C(24B)-H(24B)	120.2	C(26)-C(25)-Bi(2)	118.8(2)
C(26)-C(25)-C(30)	122.6(3)	C(30)-C(25)-Bi(2)	118.5(2)
C(25)-C(26)-H(26)	120.9	C(25)-C(26)-C(27)	118.2(3)
C(27)-C(26)-H(26)	120.9	C(26)-C(27)-H(27)	119.9
C(28)-C(27)-C(26)	120.3(3)	C(28)-C(27)-H(27)	119.9
C(27)-C(28)-H(28)	119.8	C(29)-C(28)-C(27)	120.4(3)
C(29)-C(28)-H(28)	119.8	C(28)-C(29)-H(29)	119.8
C(28)-C(29)-C(30)	120.5(3)	C(30)-C(29)-H(29)	119.8
C(25)-C(30)-C(29)	118.0(3)	C(25)-C(30)-H(30)	121.0
C(29)-C(30)-H(30)	121.0	C(32)-C(31)-Bi(2)	118.63(19)
C(32)-C(31)-C(36)	122.4(2)	C(36)-C(31)-Bi(2)	118.96(19)
C(31)-C(32)-H(32)	120.9	C(31)-C(32)-C(33)	118.1(3)
C(33)-C(32)-H(32)	120.9	C(32)-C(33)-H(33)	119.8
C(34)-C(33)-C(32)	120.5(3)	C(34)-C(33)-H(33)	119.8
C(33)-C(34)-H(34)	119.8	C(33)-C(34)-C(35)	120.3(3)
C(35)-C(34)-H(34)	119.8	C(34)-C(35)-H(35)	119.8
C(36)-C(35)-C(34)	120.4(3)	C(36)-C(35)-H(35)	119.8
C(31)-C(36)-H(36)	120.8	C(35)-C(36)-C(31)	118.3(3)
C(35)-C(36)-H(36)	120.8	C(42)-C(41)-C(46)	114.9(2)
C(42)-C(41)-B(1)	123.1(2)	C(46)-C(41)-B(1)	121.7(2)
C(41)-C(42)-H(42)	118.9	C(43)-C(42)-C(41)	122.3(3)
C(43)-C(42)-H(42)	118.9	C(42)-C(43)-C(47)	119.5(3)
C(44)-C(43)-C(42)	121.2(3)	C(44)-C(43)-C(47)	119.3(3)
C(43)-C(44)-H(44)	121.0	C(43)-C(44)-C(45)	118.1(3)
C(45)-C(44)-H(44)	121.0	C(44)-C(45)-C(48)	119.5(3)
C(46)-C(45)-C(44)	120.8(3)	C(46)-C(45)-C(48)	119.6(3)
C(41)-C(46)-H(46)	118.7	C(45)-C(46)-C(41)	122.6(3)
C(45)-C(46)-H(46)	118.7	F(1A)-C(47)-F(2A)	107.2(7)
F(1A)-C(47)-F(3A)	106.1(4)	F(1A)-C(47)-C(43)	114.2(3)
F(1B)-C(47)-F(3B)	108.4(6)	F(1B)-C(47)-C(43)	112.3(6)
F(2A)-C(47)-F(3A)	106.7(8)	F(2A)-C(47)-C(43)	111.2(6)

F(2B)-C(47)-F(1B)	112.7(13)	F(2B)-C(47)-F(3B)	100.4(12)
F(2B)-C(47)-C(43)	112.4(12)	F(2C)-C(47)-F(1C)	97.3(12)
F(2C)-C(47)-F(3C)	115.9(14)	F(2C)-C(47)-C(43)	116.6(13)
F(3A)-C(47)-C(43)	111.1(3)	F(3B)-C(47)-C(43)	109.9(4)
F(3C)-C(47)-F(1C)	98.8(6)	F(3C)-C(47)-C(43)	114.1(5)
C(43)-C(47)-F(1C)	110.9(4)	F(4)-C(48)-F(6)	106.8(4)
F(4)-C(48)-C(45)	111.6(3)	F(5)-C(48)-F(4)	110.3(4)
F(5)-C(48)-F(6)	101.2(4)	F(5)-C(48)-C(45)	115.1(3)
F(6)-C(48)-C(45)	111.1(4)	C(50)-C(49)-C(54)	115.4(2)
C(50)-C(49)-B(1)	123.8(2)	C(54)-C(49)-B(1)	120.8(2)
C(49)-C(50)-H(50)	118.8	C(51)-C(50)-C(49)	122.4(2)
C(51)-C(50)-H(50)	118.8	C(50)-C(51)-C(55)	120.2(3)
C(52)-C(51)-C(50)	120.8(2)	C(52)-C(51)-C(55)	119.0(2)
C(51)-C(52)-H(52)	120.9	C(51)-C(52)-C(53)	118.2(2)
C(53)-C(52)-H(52)	120.9	C(52)-C(53)-C(54)	120.9(2)
C(52)-C(53)-C(56)	118.3(2)	C(54)-C(53)-C(56)	120.8(3)
C(49)-C(54)-H(54)	118.9	C(53)-C(54)-C(49)	122.2(2)
C(53)-C(54)-H(54)	118.9	F(7A)-C(55)-F(8A)	105.0(6)
F(7A)-C(55)-C(51)	112.4(4)	F(7B)-C(55)-C(51)	107.5(8)
F(7C)-C(55)-F(8C)	108.3(8)	F(7C)-C(55)-F(9C)	103.5(7)
F(7C)-C(55)-C(51)	114.8(6)	F(8A)-C(55)-C(51)	111.8(3)
F(8B)-C(55)-F(7B)	106.6(11)	F(8B)-C(55)-F(9B)	112.6(9)
F(8B)-C(55)-C(51)	114.2(9)	F(8C)-C(55)-F(9C)	101.0(8)
F(8C)-C(55)-C(51)	117.0(7)	F(9A)-C(55)-F(7A)	108.5(5)
F(9A)-C(55)-F(8A)	105.7(5)	F(9A)-C(55)-C(51)	113.0(3)
F(9B)-C(55)-F(7B)	103.9(8)	F(9B)-C(55)-C(51)	111.2(6)
F(9C)-C(55)-C(51)	110.5(6)	F(10A)-C(56)-F(11A)	103.5(5)
F(10A)-C(56)-C(53)	113.1(4)	F(10B)-C(56)-C(53)	107.3(6)
F(10C)-C(56)-F(11C)	108.9(8)	F(10C)-C(56)-F(12C)	104.0(7)
F(10C)-C(56)-C(53)	116.7(5)	F(11A)-C(56)-C(53)	110.6(3)
F(11B)-C(56)-F(10B)	109.9(8)	F(11B)-C(56)-F(12B)	109.4(6)
F(11B)-C(56)-C(53)	115.3(5)	F(11C)-C(56)-F(12C)	104.2(7)
F(11C)-C(56)-C(53)	110.7(6)	F(12A)-C(56)-F(10A)	107.4(5)
F(12A)-C(56)-F(11A)	107.4(4)	F(12A)-C(56)-C(53)	114.2(3)
F(12B)-C(56)-F(10B)	101.5(7)	F(12B)-C(56)-C(53)	112.6(5)
F(12C)-C(56)-C(53)	111.4(5)	C(58)-C(57)-C(62)	114.9(2)
C(58)-C(57)-B(1)	124.2(2)	C(62)-C(57)-B(1)	120.6(2)
C(57)-C(58)-H(58)	118.8	C(59)-C(58)-C(57)	122.3(3)

C(59)-C(58)-H(58)	118.8	C(58)-C(59)-C(63)	119.0(3)	
C(60)-C(59)-C(58)	121.4(3)	C(60)-C(59)-C(63)	119.6(3)	
C(59)-C(60)-H(60)	121.3	C(61)-C(60)-C(59)	117.3(3)	
C(61)-C(60)-H(60)	121.3	C(60)-C(61)-C(62)	121.2(3)	
C(60)-C(61)-C(64)	120.2(3)	C(62)-C(61)-C(64)	118.5(3)	
C(57)-C(62)-H(62)	118.7	C(61)-C(62)-C(57)	122.7(2)	
C(61)-C(62)-H(62)	118.7	F(13A)-C(63)-F(14A)	106.6(4)	
F(13A)-C(63)-F(15A)	105.5(4)	F(13A)-C(63)-C(59)	112.4(3)	
F(13B)-C(63)-C(59)	112.4(5)	F(13C)-C(63)-F(15C)	104.8(6)	
F(13C)-C(63)-F(40)	109.4(7)	F(13C)-C(63)-C(59)	111.5(4)	
F(14A)-C(63)-F(15A)	108.8(4)	F(14A)-C(63)-C(59)	111.7(3)	
F(14C)-C(63)-F(13B)	102.2(6)	F(14C)-C(63)-F(15B)	107.8(9)	
F(14C)-C(63)-C(59)	114.9(5)	F(15A)-C(63)-C(59)	111.6(3)	
F(15B)-C(63)-F(13B)	103.2(8)	F(15B)-C(63)-C(59)	114.9(7)	
F(15C)-C(63)-F(40)	104.3(6)	F(15C)-C(63)-C(59)	114.3(5)	
F(40)-C(63)-C(59)	112.1(5)	F(16A)-C(64)-C(61)	110.2(4)	
F(16B)-C(64)-F(17B)	114.1(10)	F(16B)-C(64)-F(18B)	102.3(11)	
F(16B)-C(64)-C(61)	114.3(10)	F(16C)-C(64)-F(17C)	100.3(10)	
F(16C)-C(64)-F(18C)	109.3(10)	F(16C)-C(64)-C(61)	115.2(9)	
F(17A)-C(64)-F(16A)	106.9(7)	F(17A)-C(64)-C(61)	113.3(4)	
F(17B)-C(64)-F(18B)	103.8(9)	F(17B)-C(64)-C(61)	108.8(7)	
F(17C)-C(64)-C(61)	113.4(7)	F(18A)-C(64)-F(16A)	106.3(7)	
F(18A)-C(64)-F(17A)	106.0(5)	F(18A)-C(64)-C(61)	113.7(4)	
F(18B)-C(64)-C(61)	112.9(8)	F(18C)-C(64)-F(17C)	109.7(9)	
F(18C)-C(64)-C(61)	108.6(8)	C(66)-C(65)-B(1)	121.2(2)	
C(70)-C(65)-C(66)	115.6(2)	C(70)-C(65)-B(1)	122.9(2)	
C(65)-C(66)-H(66)	118.9	C(67)-C(66)-C(65)	122.2(2)	
C(67)-C(66)-H(66)	118.9	C(66)-C(67)-C(71)	119.9(2)	
C(68)-C(67)-C(66)	121.0(2)	C(68)-C(67)-C(71)	119.0(2)	
C(67)-C(68)-H(68)	121.1	C(69)-C(68)-C(67)	117.8(2)	
C(69)-C(68)-H(68)	121.1	C(68)-C(69)-C(70)	121.2(3)	
C(68)-C(69)-C(72)	118.4(3)	C(70)-C(69)-C(72)	120.4(3)	
C(65)-C(70)-C(69)	122.1(3)	C(65)-C(70)-H(70)	118.9	
C(69)-C(70)-H(70)	118.9	F(19A)-C(71)-C(67)	113.3(3)	
F(19B)-C(71)-F(20B)	105.4(7)	F(19B)-C(71)-C(67)	115.5(7)	
F(19C)-C(71)-F(20C)	112.4(6)	F(19C)-C(71)-F(21C)	110.0(9)	
F(19C)-C(71)-C(67)	112.3(6)	F(20A)-C(71)-F(19A)	107.9(4)	
F(20A)-C(71)-F(21A)	98.7(4)	F(20A)-C(71)-C(67)	113.7(3)	
F(20B)-C(71)-C(67)	112.7(4)	F(20C)-C(71)-F(21C)	101.1(7)	
---------------------	------------	---------------------	----------	
F(20C)-C(71)-C(67)	111.9(4)	F(21A)-C(71)-F(19A)	113.0(4)	
F(21A)-C(71)-C(67)	109.4(4)	F(21B)-C(71)-F(19B)	80.6(9)	
F(21B)-C(71)-F(20B)	120.3(8)	F(21B)-C(71)-C(67)	117.3(5)	
F(21C)-C(71)-C(67)	108.6(7)	F(22A)-C(72)-F(23A)	108.6(5)	
F(22A)-C(72)-F(24A)	100.6(5)	F(22A)-C(72)-C(69)	114.3(4)	
F(22C)-C(72)-F(23C)	107.8(7)	F(22C)-C(72)-C(69)	110.8(6)	
F(23A)-C(72)-C(69)	109.8(4)	F(23B)-C(72)-F(22B)	87.9(6)	
F(23B)-C(72)-F(24B)	117.0(7)	F(23B)-C(72)-C(69)	122.7(5)	
F(23C)-C(72)-C(69)	107.7(6)	F(24A)-C(72)-F(23A)	107.6(4)	
F(24A)-C(72)-C(69)	115.3(3)	F(24B)-C(72)-F(22B)	112.4(6)	
F(24B)-C(72)-C(69)	107.3(5)	F(24C)-C(72)-F(22C)	102.9(8)	
F(24C)-C(72)-F(23C)	109.4(7)	F(24C)-C(72)-C(69)	117.9(6)	
C(69)-C(72)-F(22B)	107.4(5)	C(41)-B(1)-C(49)	111.4(2)	
C(41)-B(1)-C(57)	109.4(2)	C(41)-B(1)-C(65)	108.8(2)	
C(49)-B(1)-C(57)	106.48(19)	C(65)-B(1)-C(49)	110.9(2)	
C(65)-B(1)-C(57)	109.7(2)			

9.7 Single crystal structure analysis of (μ -chloro)-hexakis(3,5-di-t-butylphenyl)-dichloro-di-bismuth tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (11)

Figure S26: The solid state structure of 11. H atoms have been removed for clarity and disordered parts shown in grey.

Figure S27: Crystal faces and unit cell determination/refinement of 11.

Resolution	#Data #	Theory	%Complete	Redundancy	Mean I	Mean 1/s	Kmerge	Ksigma
Inf - 2.86	283	289	97.9	35.33	95.42	64.49	0.0405	0.0249
2.86 - 1.90	661	661	100.0	45.06	73.96	72.13	0.0380	0.0173
1.90 - 1.50	948	948	100.0	49.22	45.64	66.60	0.0442	0.0109
1.50 - 1.31	929	929	100.0	47.68	34.73	58.43	0.0562	0.0119
1.31 - 1.19	934	934	100.0	42.46	28.99	49.97	0.0657	0.0139
1.19 - 1.10	981	981	100.0	36.54	23.18	41.91	0.0761	0.0165
1.10 - 1.03	1006	1006	100.0	33.86	21.42	37.76	0.0831	0.0184
1.03 - 0.98	912	912	100.0	31.20	16.74	32.12	0.0987	0.0219
0.98 - 0.94	888	888	100.0	30.42	15.36	29.55	0.1071	0.0237
0.94 - 0.90	1029	1029	100.0	29.28	13.68	27.09	0.1172	0.0264
0.90 - 0.87	896	896	100.0	27.41	11.85	23.31	0.1321	0.0304
0.87 - 0.84	1033	1033	100.0	27.55	10.27	21.33	0.1467	0.0338
0.84 - 0.82	810	810	100.0	27.22	9.45	19.99	0.1585	0.0367
0.82 - 0.79	1313	1313	100.0	26.12	8.53	17.78	0.1726	0.0414
0.79 - 0.77	994	994	100.0	23.78	8.13	15.90	0.1828	0.0475
0.77 - 0.76	542	542	100.0	23.57	6.64	13.64	0.2097	0.0558
0.76 - 0.74	1155	1155	100.0	23.11	6.80	13.41	0.2101	0.0567
0.74 - 0.73	634	634	100.0	22.74	6.39	12.56	0.2257	0.0618
0.73 - 0.71	1367	1367	100.0	22.00	5.62	10.85	0.2477	0.0713
0.71 - 0.70	752	752	100.0	19.91	5.38	9.61	0.2647	0.0810
0.70 - 0.69	691	717	96.4	17.22	4.91	8.12	0.2945	0.1101
0.79 - 0.69	6135	6161	99.6	21.90	6.31	12.12	0.2241	0.0653
Inf - 0.69	18758	18790	99.8	30.36	18.37	29.28	0.0818	0.0247

INTENSITY STATISTICS FOR DATASET # 1 14974sadabs.raw

Complete .cif-data of the compound are available under the CCDC number CCDC-2296786.

Table S14. Crystal data and structure refinement.

Identification code	14974					
Empirical formula	$C_{116}H_{138}BBi_2Cl_3F_{24}$					
Color	colourless					
Formula weight						
Temperature	100(2) K					
Wavelength	velength 0.71073 Å					
Crystal system	Monoclinic					
Space group	<i>C</i> 2/ <i>c</i> , (no. 15)					
Unit cell dimensions	a = 34.1234(13) Å	α= 90°.				
	b = 18.2693(7) Å	$\beta = 108.812(2)^{\circ}.$				
	c = 19.4972(8) Å	$\gamma = 90^{\circ}$.				
Volume	11505.5(8) Å ³					
Z	4					
Density (calculated)	1.457 Mg·m ⁻³					
Absorption coefficient	3.209 mm ⁻¹					
F(000)	5088 e					
Crystal size	0.288 x 0.140 x 0.050 mm ³					
θ range for data collection	2.160 to 30.508°.					
Index ranges	$-48 \le h \le 48, -26 \le k \le 26, -2$	$27 \le 1 \le 27$				
Reflections collected	549469					
Independent reflections	17558 [R _{int} = 0.0832]					
Reflections with $I > 2\sigma(I)$	15018					
Completeness to $\theta = 25.242^{\circ}$	100.0 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.8626 and 0.6094	626 and 0.6094				
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	17558 / 71 / 754					
Goodness-of-fit on F^2	1.043					
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0301$	$wR^2 = 0.0739$				
R indices (all data)	$R_1 = 0.0394$	$wR^2 = 0.0796$				
Extinction coefficient	n/a					
Largest diff. peak and hole	1.741 and -1.087 e⋅Å ⁻³					

Bi(1)-Cl(1)	2.4857(7)	Bi(1)-Cl(2)	2.80068(13)
Bi(1)-C(1)	2.194(2)	Bi(1)-C(15)	2.195(2)
Bi(1)-C(29)	2.188(2)	C(1)-C(2)	1.377(4)
C(1)-C(6)	1.388(4)	C(2)-H(2)	0.9500
C(2)-C(3)	1.403(4)	C(3)-C(4)	1.390(4)
C(3)-C(7)	1.534(4)	C(4)-H(4)	0.9500
C(4)-C(5)	1.409(4)	C(5)-C(6)	1.392(4)
C(5)-C(11)	1.546(4)	C(6)-H(6)	0.9500
C(7)-C(8)	1.533(4)	C(7)-C(9)	1.536(5)
C(7)-C(10)	1.536(4)	C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800	C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800	C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800	C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800	C(10)-H(10C)	0.9800
C(11)-C(12)	1.530(4)	C(11)-C(13)	1.529(4)
C(11)-C(14)	1.537(4)	C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800	C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800	C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800	C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800	C(14)-H(14C)	0.9800
C(15)-C(16)	1.398(3)	C(15)-C(20)	1.375(4)
C(16)-H(16)	0.9500	C(16)-C(17)	1.395(3)
C(17)-C(18)	1.400(4)	C(17)-C(21)	1.532(3)
C(18)-H(18)	0.9500	C(18)-C(19)	1.391(3)
C(19)-C(20)	1.405(3)	C(19)-C(25)	1.530(4)
C(20)-H(20)	0.9500	C(21)-C(22)	1.524(4)
C(21)-C(23)	1.534(4)	C(21)-C(24)	1.528(4)
C(22)-H(22A)	0.9800	C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800	C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800	C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800	C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800	C(25)-C(26)	1.536(4)
C(25)-C(27)	1.533(4)	C(25)-C(28)	1.530(4)
C(26)-H(26A)	0.9800	C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800	C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800	C(27)-H(27C)	0.9800

Table S15. Bond lengths [Å] and angles [°].

C(28)-H(28A)	0.9800	C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800	C(29)-C(30)	1.377(4)
C(29)-C(34)	1.385(3)	C(30)-H(30)	0.9500
C(30)-C(31)	1.399(4)	C(31)-C(32)	1.394(3)
C(31)-C(35)	1.534(4)	C(32)-H(32)	0.9500
C(32)-C(33)	1.400(3)	C(33)-C(34)	1.393(3)
C(33)-C(39)	1.536(3)	C(34)-H(34)	0.9500
C(35)-C(36)	1.522(4)	C(35)-C(37)	1.518(5)
C(35)-C(38)	1.536(5)	C(36)-H(36A)	0.9800
C(36)-H(36B)	0.9800	C(36)-H(36C)	0.9800
C(37)-H(37A)	0.9800	C(37)-H(37B)	0.9800
C(37)-H(37C)	0.9800	C(38)-H(38A)	0.9800
C(38)-H(38B)	0.9800	C(38)-H(38C)	0.9800
C(39)-C(40)	1.538(4)	C(39)-C(41)	1.533(4)
C(39)-C(42)	1.527(4)	C(40)-H(40A)	0.9800
C(40)-H(40B)	0.9800	C(40)-H(40C)	0.9800
C(41)-H(41A)	0.9800	C(41)-H(41B)	0.9800
C(41)-H(41C)	0.9800	C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800	C(42)-H(42C)	0.9800
C(43)-C(44)	1.401(4)	C(43)-C(48)	1.402(4)
C(43)-B(1)	1.646(3)	C(44)-H(44)	0.9500
C(44)-C(45)	1.392(4)	C(45)-C(46)	1.381(5)
C(45)-C(49A)	1.557(8)	C(45)-C(49B)	1.425(16)
C(46)-H(46)	0.9500	C(46)-C(47)	1.380(4)
C(47)-C(48)	1.391(4)	C(47)-C(50)	1.500(4)
C(48)-H(48)	0.9500	C(50)-F(4A)	1.334(6)
C(50)-F(5A)	1.372(6)	C(50)-F(6A)	1.330(5)
C(50)-F(4B)	1.395(13)	C(50)-F(5B)	1.297(12)
C(50)-F(6B)	1.306(13)	C(50)-F(4C)	1.270(12)
C(50)-F(5C)	1.318(15)	C(50)-F(6C)	1.323(13)
C(51)-C(52)	1.403(4)	C(51)-C(56)	1.400(3)
C(51)-B(1)	1.638(3)	C(52)-H(52)	0.9500
C(52)-C(53)	1.399(3)	C(53)-C(54)	1.379(4)
C(53)-C(58)	1.494(4)	C(54)-H(54)	0.9500
C(54)-C(55)	1.384(4)	C(55)-C(56)	1.386(4)
C(55)-C(57)	1.491(4)	C(56)-H(56)	0.9500
C(57)-F(7A)	1.266(4)	C(57)-F(8A)	1.319(4)
C(57)-F(9A)	1.423(4)	C(57)-F(7B)	

1.3825(10)	C(57)-F(8B)	1.3790(10)	C(57)-
F(9B)	1.3786(10)	C(58)-F(10A)	1.315(5)
C(58)-F(11A)	1.405(6)	C(58)-F(12A)	1.284(5)
C(58)-F(10B)	1.3789(10)	C(58)-F(11B)	1.3821(10)
C(58)-F(12B)	1.3791(10)	C(58)-F(10C)	1.3824(10)
C(58)-F(11C)	1.3778(10)	C(58)-F(12C)	1.3795(10)
F(1A)-C(49A)	1.297(11)	F(2A)-C(49A)	1.296(9)
F(3A)-C(49A)	1.313(8)	F(1B)-C(49B)	1.261(16)
F(2B)-C(49B)	1.391(16)	F(3B)-C(49B)	1.409(16)
Cl(1)-Bi(1)-Cl(2)	173.722(17)	C(1)-Bi(1)-Cl(1)	93.38(7)
C(1)-Bi(1)-Cl(2)	87.21(7)	C(1)-Bi(1)-C(15)	123.32(9)
C(15)-Bi(1)-Cl(1)	96.00(7)	C(15)-Bi(1)-Cl(2)	88.88(7)
C(29)-Bi(1)-Cl(1)	91.23(7)	C(29)-Bi(1)-Cl(2)	82.95(7)
C(29)-Bi(1)-C(1)	116.80(9)	C(29)-Bi(1)-C(15)	118.71(9)
Bi(1)#1-Cl(2)-Bi(1)	180.0	C(2)-C(1)-Bi(1)	114.50(19)
C(2)-C(1)-C(6)	123.7(2)	C(6)-C(1)-Bi(1)	121.76(18)
C(1)-C(2)-H(2)	120.5	C(1)-C(2)-C(3)	119.1(2)
C(3)-C(2)-H(2)	120.5	C(2)-C(3)-C(7)	118.1(2)
C(4)-C(3)-C(2)	117.5(2)	C(4)-C(3)-C(7)	124.3(2)
C(3)-C(4)-H(4)	118.4	C(3)-C(4)-C(5)	123.3(2)
C(5)-C(4)-H(4)	118.4	C(4)-C(5)-C(11)	119.8(2)
C(6)-C(5)-C(4)	118.2(2)	C(6)-C(5)-C(11)	122.0(2)
C(1)-C(6)-C(5)	118.3(2)	C(1)-C(6)-H(6)	120.9
C(5)-C(6)-H(6)	120.9	C(3)-C(7)-C(9)	108.7(2)
C(3)-C(7)-C(10)	111.9(2)	C(8)-C(7)-C(3)	109.9(2)
C(8)-C(7)-C(9)	109.1(3)	C(8)-C(7)-C(10)	108.6(3)
C(10)-C(7)-C(9)	108.7(3)	C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5	C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8B)	109.5	H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5	C(7)-C(9)-H(9A)	109.5
C(7)-C(9)-H(9B)	109.5	C(7)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9B)	109.5	H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5	C(7)-C(10)-H(10A)	109.5
C(7)-C(10)-H(10B)	109.5	C(7)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10B)	109.5	H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5	C(12)-C(11)-C(5)	110.5(2)
C(12)-C(11)-C(14)	108.8(3)	C(13)-C(11)-C(5)	111.8(2)

C(13)-C(11)-C(12)	108.2(2)	C(13)-C(11)-C(14)	109.2(3)
C(14)-C(11)-C(5)	108.3(2)	C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5	C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12B)	109.5	H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5	C(11)-C(13)-H(13A)	109.5
C(11)-C(13)-H(13B)	109.5	C(11)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13B)	109.5	H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5	C(11)-C(14)-H(14A)	109.5
C(11)-C(14)-H(14B)	109.5	C(11)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14B)	109.5	H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5	C(16)-C(15)-Bi(1)	119.42(18)
C(20)-C(15)-Bi(1)	116.55(17)	C(20)-C(15)-C(16)	123.9(2)
C(15)-C(16)-H(16)	121.0	C(17)-C(16)-C(15)	118.0(2)
C(17)-C(16)-H(16)	121.0	C(16)-C(17)-C(18)	118.1(2)
C(16)-C(17)-C(21)	122.3(2)	C(18)-C(17)-C(21)	119.6(2)
C(17)-C(18)-H(18)	118.2	C(19)-C(18)-C(17)	123.6(2)
C(19)-C(18)-H(18)	118.2	C(18)-C(19)-C(20)	117.8(2)
C(18)-C(19)-C(25)	123.0(2)	C(20)-C(19)-C(25)	119.2(2)
C(15)-C(20)-C(19)	118.6(2)	C(15)-C(20)-H(20)	120.7
C(19)-C(20)-H(20)	120.7	C(17)-C(21)-C(23)	110.3(2)
C(22)-C(21)-C(17)	112.1(2)	C(22)-C(21)-C(23)	108.4(2)
C(22)-C(21)-C(24)	108.8(3)	C(24)-C(21)-C(17)	108.8(2)
C(24)-C(21)-C(23)	108.3(2)	C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5	C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22B)	109.5	H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5	C(21)-C(23)-H(23A)	109.5
C(21)-C(23)-H(23B)	109.5	C(21)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23B)	109.5	H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5	C(21)-C(24)-H(24A)	109.5
C(21)-C(24)-H(24B)	109.5	C(21)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24B)	109.5	H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5	C(19)-C(25)-C(26)	111.7(2)
C(19)-C(25)-C(27)	109.8(2)	C(19)-C(25)-C(28)	108.9(2)
C(27)-C(25)-C(26)	107.2(3)	C(28)-C(25)-C(26)	109.3(3)
C(28)-C(25)-C(27)	109.9(2)	C(25)-C(26)-H(26A)	109.5
C(25)-C(26)-H(26B)	109.5	C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26B)	109.5	H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5	C(25)-C(27)-H(27A)	109.5

C(25)-C(27)-H(27B)	109.5	C(25)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27B)	109.5	H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5	C(25)-C(28)-H(28A)	109.5
C(25)-C(28)-H(28B)	109.5	C(25)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28B)	109.5	H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5	C(30)-C(29)-Bi(1)	118.90(18)
C(30)-C(29)-C(34)	123.9(2)	C(34)-C(29)-Bi(1)	117.07(18)
C(29)-C(30)-H(30)	120.6	C(29)-C(30)-C(31)	118.7(2)
C(31)-C(30)-H(30)	120.6	C(30)-C(31)-C(35)	120.3(2)
C(32)-C(31)-C(30)	117.5(2)	C(32)-C(31)-C(35)	122.1(2)
C(31)-C(32)-H(32)	118.2	C(31)-C(32)-C(33)	123.6(2)
C(33)-C(32)-H(32)	118.2	C(32)-C(33)-C(39)	120.3(2)
C(34)-C(33)-C(32)	117.9(2)	C(34)-C(33)-C(39)	121.8(2)
C(29)-C(34)-C(33)	118.3(2)	C(29)-C(34)-H(34)	120.8
C(33)-C(34)-H(34)	120.8	C(31)-C(35)-C(38)	108.3(2)
C(36)-C(35)-C(31)	110.8(3)	C(36)-C(35)-C(38)	108.1(3)
C(37)-C(35)-C(31)	112.5(2)	C(37)-C(35)-C(36)	108.5(3)
C(37)-C(35)-C(38)	108.5(3)	C(35)-C(36)-H(36A)	109.5
C(35)-C(36)-H(36B)	109.5	C(35)-C(36)-H(36C)	109.5
H(36A)-C(36)-H(36B)	109.5	H(36A)-C(36)-H(36C)	109.5
H(36B)-C(36)-H(36C)	109.5	C(35)-C(37)-H(37A)	109.5
C(35)-C(37)-H(37B)	109.5	C(35)-C(37)-H(37C)	109.5
H(37A)-C(37)-H(37B)	109.5	H(37A)-C(37)-H(37C)	109.5
H(37B)-C(37)-H(37C)	109.5	C(35)-C(38)-H(38A)	109.5
C(35)-C(38)-H(38B)	109.5	C(35)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38B)	109.5	H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5	C(33)-C(39)-C(40)	108.1(2)
C(41)-C(39)-C(33)	109.4(2)	C(41)-C(39)-C(40)	110.2(2)
C(42)-C(39)-C(33)	112.0(2)	C(42)-C(39)-C(40)	109.0(2)
C(42)-C(39)-C(41)	108.2(2)	C(39)-C(40)-H(40A)	109.5
C(39)-C(40)-H(40B)	109.5	C(39)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40B)	109.5	H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5	C(39)-C(41)-H(41A)	109.5
C(39)-C(41)-H(41B)	109.5	C(39)-C(41)-H(41C)	109.5
H(41A)-C(41)-H(41B)	109.5	H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5	C(39)-C(42)-H(42A)	109.5
C(39)-C(42)-H(42B)	109.5	C(39)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42B)	109.5	H(42A)-C(42)-H(42C)	109.5

H(42B)-C(42)-H(42C)	109.5	C(44)-C(43)-C(48)	115.1(2)
C(44)-C(43)-B(1)	123.1(2)	C(48)-C(43)-B(1)	121.7(2)
C(43)-C(44)-H(44)	118.8	C(45)-C(44)-C(43)	122.3(3)
C(45)-C(44)-H(44)	118.8	C(44)-C(45)-C(49A)	116.6(4)
C(44)-C(45)-C(49B)	125.0(7)	C(46)-C(45)-C(44)	121.1(3)
C(46)-C(45)-C(49A)	121.9(4)	C(46)-C(45)-C(49B)	113.3(6)
C(45)-C(46)-H(46)	121.0	C(47)-C(46)-C(45)	117.9(3)
C(47)-C(46)-H(46)	121.0	C(46)-C(47)-C(48)	120.9(3)
C(46)-C(47)-C(50)	119.9(3)	C(48)-C(47)-C(50)	119.2(3)
C(43)-C(48)-H(48)	118.7	C(47)-C(48)-C(43)	122.6(3)
C(47)-C(48)-H(48)	118.7	F(4A)-C(50)-C(47)	112.6(3)
F(4A)-C(50)-F(5A)	107.6(5)	F(5A)-C(50)-C(47)	111.7(4)
F(6A)-C(50)-C(47)	111.9(3)	F(6A)-C(50)-F(4A)	108.1(5)
F(6A)-C(50)-F(5A)	104.5(5)	F(4B)-C(50)-C(47)	114.7(6)
F(5B)-C(50)-C(47)	115.6(6)	F(5B)-C(50)-F(4B)	103.3(8)
F(5B)-C(50)-F(6B)	105.5(8)	F(6B)-C(50)-C(47)	115.0(6)
F(6B)-C(50)-F(4B)	101.1(8)	F(4C)-C(50)-C(47)	111.9(6)
F(4C)-C(50)-F(5C)	104.7(8)	F(4C)-C(50)-F(6C)	108.8(8)
F(5C)-C(50)-C(47)	111.5(7)	F(5C)-C(50)-F(6C)	107.0(8)
F(6C)-C(50)-C(47)	112.5(6)	C(52)-C(51)-B(1)	123.0(2)
C(56)-C(51)-C(52)	115.4(2)	C(56)-C(51)-B(1)	121.6(2)
C(51)-C(52)-H(52)	118.8	C(53)-C(52)-C(51)	122.3(2)
C(53)-C(52)-H(52)	118.8	C(52)-C(53)-C(58)	119.5(2)
C(54)-C(53)-C(52)	120.7(3)	C(54)-C(53)-C(58)	119.6(2)
C(53)-C(54)-H(54)	121.0	C(53)-C(54)-C(55)	118.0(2)
C(55)-C(54)-H(54)	121.0	C(54)-C(55)-C(56)	121.3(2)
C(54)-C(55)-C(57)	119.5(3)	C(56)-C(55)-C(57)	119.1(3)
C(51)-C(56)-H(56)	118.9	C(55)-C(56)-C(51)	122.2(2)
C(55)-C(56)-H(56)	118.9	F(7A)-C(57)-C(55)	114.8(3)
F(7A)-C(57)-F(8A)	116.3(4)	F(7A)-C(57)-F(9A)	102.5(3)
F(8A)-C(57)-C(55)	111.9(3)	F(8A)-C(57)-F(9A)	101.1(3)
F(9A)-C(57)-C(55)	108.5(3)	F(7B)-C(57)-C(55)	108.1(5)
F(8B)-C(57)-C(55)	123.2(7)	F(8B)-C(57)-F(7B)	91.5(7)
F(9B)-C(57)-C(55)	122.7(6)	F(9B)-C(57)-F(7B)	93.2(7)
F(9B)-C(57)-F(8B)	108.1(8)	F(10A)-C(58)-C(53)	116.5(3)
F(10A)-C(58)-F(11A)	102.4(4)	F(11A)-C(58)-C(53)	111.0(3)
F(12A)-C(58)-C(53)	115.6(3)	F(12A)-C(58)-F(10A)	106.6(4)
F(12A)-C(58)-F(11A)	103.1(4)	F(10B)-C(58)-C(53)	113.0(4)

F(10B)-C(58)-F(11B)	96.7(6)	F(10B)-C(58)-F(12B)	118.5(7)
F(11B)-C(58)-C(53)	108.8(4)	F(12B)-C(58)-C(53)	113.0(7)
F(12B)-C(58)-F(11B)	104.6(7)	F(10C)-C(58)-C(53)	103.6(4)
F(11C)-C(58)-C(53)	111.9(5)	F(11C)-C(58)-F(10C)	100.5(6)
F(11C)-C(58)-F(12C)	119.9(7)	F(12C)-C(58)-C(53)	115.1(6)
F(12C)-C(58)-F(10C)	102.6(6)	C(43)#2-B(1)-C(43)	111.9(3)
C(51)#2-B(1)-C(43)	111.27(12)	C(51)#2-B(1)-C(43)#2	105.96(12)
C(51)-B(1)-C(43)#2	111.27(12)	C(51)-B(1)-C(43)	105.96(12)
C(51)-B(1)-C(51)#2	110.6(3)	F(1A)-C(49A)-C(45)	115.1(6)
F(1A)-C(49A)-F(3A)	105.5(7)	F(2A)-C(49A)-C(45)	110.6(5)
F(2A)-C(49A)-F(1A)	102.2(7)	F(2A)-C(49A)-F(3A)	112.3(7)
F(3A)-C(49A)-C(45)	110.9(6)	F(1B)-C(49B)-C(45)	123.4(11)
F(1B)-C(49B)-F(2B)	107.3(12)	F(1B)-C(49B)-F(3B)	104.5(12)
F(2B)-C(49B)-C(45)	110.9(11)	F(2B)-C(49B)-F(3B)	95.1(9)
F(3B)-C(49B)-C(45)	111.8(11)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,-y+1/2,-z+1 #2 -x+1,y,-z+3/2

10. References

- (1) Kuziola, J.; Magre, M.; Nöthling, N.; Cornella, J., Organometallics 2022, 41, 1754.
- (2) Yakubenko, A. A.; Puzyk, A. M.; Korostelev, V. O.; Mulloyarova, V. V.; Tupikina, E. Yu.; Tolstoy, P. M.; Antonov, A. S., *Phys. Chem. Chem. Phys.* 2022, 24, 7882.
- (3) Wenger, J. S.; Getahun, A.; Johnstone, T. C., Polyhedron 2024, 247, 116730.
- (4) Kuziola, J. Dissertation: Synthesis and Characterization of Mono-and Bimetallic Organobismuth(V) Compounds, Ruhr-Universität Bochum, Max-Planck Institut für Kohlenforschung, 2024.
- (5) Martin, G. J.; Martin, M. L.; Gouesnard, J.-P.; Diehl, P.; Fluck, E.; Kosfeld, R.; Series Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1981, **18**. (Please see page 129)
- (6) Wagner, J. P.; Schreiner, P. R., Angew. Chem. Int. Ed. 2015, 54, 12274.
- (7) Rösel, S.; Becker, J.; Allen, W. D.; Schreiner, P. R. J. Am. Chem. Soc. 2018, 140, 14421–14432.
- (8) Grimme, S.; Schreiner, P. R., Angew. Chem. Int. Ed. 2011, 50, 12639–12642.
- (9) Kratzert, D.; Holstein, J. J.; Krossing, I., J. Appl. Crystallogr. 2015, 48, 933.
- (10) Kratzert, D.; Krossing, I., J. Appl. Crystallogr. 2018, 51, 928.

R (75 MIL, CDCI3) 0

¹³C NMR (101 MHz, CDCl₃)

¹⁹F NMR (282 MHz, CDCl₃)

140	100	60	20	-20	-60	-100	-140	-180	-220	-260	-300	-340
110	100	00	20	20	00	100	110	100		200	000	0.0
						10 [(10 10 10 1)						
						ier (ppm))					
						07 /						
						97						

¹⁹F NMR (565 MHz, CDCl₃)

110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 ¹⁹F (ppm)

180 170 160 150 140 130 120 110 100 -10 13C (ppm)

¹⁹F NMR (564 MHz, CDCl₃)

130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 ¹⁹F (ppm)

Т

¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ¹³C (µppm) ¹⁹F NMR (282 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃) 1.0 equiv.

Ò 13C (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 19F (ppm) 109

13C (ppm)

¹⁹F NMR (564 MHz, CDCl₃)

130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -¹⁹F (ppm)

¹⁹F NMR (282 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹³C (ppm)

¹H NMR (300 MHz, CD₂Cl₂)

³¹P NMR (121.5 MHz, CD₂Cl₂)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 ³¹P (ppm) 124

³¹P NMR (121.5 MHz, CD₂Cl₂)

