Supporting Information

Engaging Vinylene Carbonate in Ruthenium-Catalyzed Regioselective C-4 Methylenation and C-8 Formylmethylation of Isoquinolinones.

Dolly David Thalakottukara^a and Thirumanavelan Gandhi*^a

^aDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India. E-mail: <u>velan.g@vit.ac.in</u>

Table of Contents

1	General experimental methods and materials and X-Ray Crystallography	S 3
2	Experimental procedure	S4
	2.1. Synthesis of starting material	S 4
	2.2. Experimental procedure for methylenation	S5
	2.3. Experimetal procedure for formylmethylation.	S5
3	Optimization table	S6
4	Reluctant substrates	S 7
5	Crystallographic data.	S 8
	5.1. Crystallographic data of 3c	S 8
	5.2. Crystallographic data of 3m	S 11
6	Mechanistic studies	S15
7	Detection of CO ₂	S20
8	Mass spectrometry studies for determining intermediates	S22
9	Characterisation data	S25
	9.1. NMR data	S34
10	References	S 58

1. General experimental methods and materials.

Unless otherwise mentioned all the reactions were carried out in Schlenk tube (15 mL). Chemicals were purchased from Sigma-Aldrich, Alfa Aesar, TCI, AVRA and Carbanio and used without further purification. Vinylene carbonate was purchased from TCI chemicals and used as such for the transformations. Anhydrous DCE, MeOH, TFE and HFIP were purchased from commercial sources and used without further purification. Thin layer chromatography was carried out on 250 mm diameter aluminium supported silica gel TLC plates (MERCK TLC Plates) and with narrow tip capillary. The products were purified by column chromatography using 100-200 mesh silica gel. ¹H NMR spectra were recorded on Bruker spectrometer (400 MHz) and reported in units *ppm* (parts per million) relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent. ¹³C{¹H} NMR spectra were recorded on Bruker spectrometer (100 MHz) and are reported in ppm relative to deuterated chloroform (77.23 ppm) with tetramethyl silane as an internal standard. ¹⁹F NMR spectra were recorded on Bruker spectrometer (376 MHz) and are reported in *ppm.* Peaks at $\delta = 1.56 - 1.61$ ppm in ¹H NMR spectra of compounds recorded in CDCl₃ correspond to water present, if any. Additional peaks at $\delta = 0.86-0.88$ ppm and $\delta = 1.25-1.28$ ppm in ¹H NMR spectra and $\delta = 29.7-29.8$ ppm in ¹³C{¹H}-NMR spectra of compounds recorded in CDCl₃ correspond to grease present, if any. Coupling constants (J) are reported in Hz; splitting patterns are assigned s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, td = triplet of doublet, br = broad signal. High-resolution mass spectra (HRMS) were performed on TOF-Q analyser.

1.1 X-ray crystallography of compounds 3c and 3n.

Single crystal X-ray structural data of the compounds **3c** and **3n** were collected on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with a INCOATEC microfocus source with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) operating at 50 kV and 30mA. The SAINT¹ program was used for the integration of diffraction profiles and absorption correction was applied with the SADABS² program. Both the structures were initially solved by SIR 92³ and refined by the full matrix least squares method using SHELXL-2013⁴ WinGX system, Ver2013.3.⁵ The non-hydrogen atoms in all the structures were located using the difference Fourier map and refined anisotropically. The hydrogen atoms were fixed by HFIX and placed in ideal positions and included in the refinement process using a riding model with isotropic thermal parameters. All the crystallographic and structure refinement data of the compounds are summarized in section 5.

2. Experimental procedure

2. 1. Synthesis of *N*-substituted Isoquinolones.

Table 1. N-substituted Isoquinolones

Scheme S1. Synthesis of N-substituted Isoquinolones

N-substituted isoquinolinones were synthesized using reported procedure.⁶ Derivatives of isoquinolinones were synthesised by charging 1-Hydroxy isoquinoline (1 equiv) in an oven dried tube followed by aryl or alkyl halides (1.2 equiv). To this copper iodide (5 mol%) and cesium carbonate (2.5 Equiv.) added along with 1 mL of DMF as solvent. The reaction is allowed to stir for 24 h at 120 °C. After completion of the reaction, the mixture was cooled to room temperature and diluted with DCM. This was extracted with water and dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on 100-200 mesh silica gel using hexane and ethyl acetate to afford the desired products of *N*-substituted isoquinolinone derivatives (Scheme S1).

2. 2. Regioselective C4-methylenation of isoquinolinones

Scheme S2. Regioselective C4-methylenation of isoquinolinones

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with 1mL of HFIP and isoquinolinone **1a** (2 equiv) and vinylene carbonate **2** (0.58 mmol, 1 equiv). To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (50 mol%). The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 120 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield the title compound (Scheme S2).

2.3. Regioselective C8-formylmethylation of isoquinolinones.

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with 1mL of HFIP isoquinolinone **1a** (0.22 mmol, 1 equiv) and vinylene carbonate **2** (2 equiv) added. To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%), 1-Ad-COOH (20 mol%) and PivOH (0.44 mmol, 2 equiv). The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 12 h. After the indicated time, the reaction mixture

was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield the title compound (Scheme S3).

Scheme S3. Regioselective C8-formylmethylation of isoquinolinones

3. Optimization table

Sl. No	Catalyst	Additive	Solve nt	Additive	Tempe rature	Yield of 3	Yield of 4
•						(%)	(%)
1	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH/1-Ad-COOH	HFIP	AgSbF ₆	120 °C	ND	34
2	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH/1-Ad-COOH	HFIP	AgOTf	120 °C	ND	ND
3	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH/1-Ad-COOH	HFIP	AgOAc	120 °C	ND	ND
4	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH/1-Ad-COOH	DCE	AgSbF ₆	90 °C	ND	ND
5	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH/1-Ad-COOH	Isopro panol	AgSbF ₆	90 °C	ND	ND
6	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH/1-Ad-COOH	HFIP	AgSbF ₆	90 °C	ND	43
7	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PivOH/1-Ad-COOH	HFIP	AgSbF ₆	90 °C	ND	61
8	[Ru(p-cymene)Cl ₂] ₂	Cu(OAc) ₂ /1-Ad-COOH	HFIP	AgSbF ₆	120 °C	81	ND

9	[Ru(p-cymene)Cl ₂] ₂	Cu(OAc) ₂ (2 Equiv.)	HFIP	AgSbF ₆	120 °C	81	ND
10	[Ru(<i>p</i> -cymene)Cl ₂] ₂	CuI	HFIP	AgSbF ₆	120 °C	ND	ND
11	[Ru(<i>p</i> -cymene)Cl ₂] ₂	NaOAc	HFIP	AgSbF ₆	120 °C	ND	ND
12	[Ru(<i>p</i> -cymene)Cl ₂] ₂	K_2CO_3	HFIP	AgSbF ₆	120 °C	ND	ND
13	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OAc) ₂ (1 Equiv.)	HFIP	AgSbF ₆	120 °C	79	ND
14	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OAc) ₂ (0.5 Equiv.)	HFIP	AgSbF ₆	120 °C	78	ND
15	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OAc) ₂ (0.5 Equiv.)	DCE	AgSbF ₆	120 °C	ND	ND
16	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OAc) ₂ (0.5 Equiv.)	Isopro panol	AgSbF ₆	120 °C	ND	ND
17	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OAc) ₂ (0.5 Equiv.)	HFIP	AgSbF ₆	140 °C	56	ND
18	[Ru(p-cymene)Cl ₂] ₂	-	HFIP		120 °C	ND	ND
19	-	Cu(OAc) ₂ (0.2 Equiv.)	HFIP	AgSbF ₆	120 °C	ND	ND
20		Cu(OAc) ₂ / Bipyridyl	HFIP	AgSbF ₆	120 °C	ND	ND

4. Reluctant substrates

 Table 2. Reluctant substrates

5. Crystallographic data

5.1. Crystallographic data for 3c

Fig 1. Perspective view of the X-ray structure of 3c. Hydrogen atoms are omitted for clarity.

Compound	3c
CCDC No.	2351517
Formula	$C_{35}H_{30}N_2O_2$
<i>Dcalc.</i> / g cm-3	1.237
μ/mm-1	0.077
Formula Weight	510.61
Colour	metallic light
Colour	colourless
Shape	block-shaped
Size/mm3	$0.14 \times 0.08 \times 0.02$
T/K	298
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	10.4851(5)
b/Å	11.5807(5)
$c/{ m \AA}$	13.2811(7)
$\alpha/^{\circ}$	66.245(2)
β/°	74.285(2)
$\gamma/^{\circ}$	70.005(2)
V/Å3	1370.34(12)
Ζ	2
Z'	1
Wavelength/Å	0.71073

Radiation type	ΜοΚα
$\Theta min/^{\circ}$	1.992
$\Theta max/^{\circ}$	26.730
Measured Refl's.	42356
Indep't Refl's	5817
Refl's I≥2 σ(I)	2495
Rint	0.1295
Parameters	395
Restraints	78
Largest Peak	0.347
Deepest Hole	-0.285
GooF	1.019
wR2 (all data)	0.2278
wR2	0.1716
<i>R1</i> (all data)	0.1771
<i>R1</i>	0.0691

5.1.1. Bond distances of 3c

Atom	Atom	Distance Å	Atom	Atom	Distance Å
01	C17	1.225(3)	C2	C3	1.376(6)
O2	C24	1.228(4)	C2	C34	1.369(5)
N1	C5	1.439(4)	C2	C1A	1.556(11)
N1	C6	1.394(4)	C3	C4	1.376(6)
N1	C17	1.380(4)	C4	C5	1.362(5)
N2	C10	1.397(4)	C5	C33	1.380(5)
N2	C11	1.444(4)	C6	C7	1.335(4)
N2	C24	1.386(4)	C7	C8	1.500(4)
C1	C2	1.525(10)	C7	C23	1.449(4)
C1	C35	1.377(11)	C8	C9	1.513(4)
C9	C10	1.342(4)	C13	C14	1.370(5)
C9	C30	1.442(4)	C14	C15	1.547(18)

C11	C12	1.385(4)	C14	C31	1.375(5)
C11	C32	1.365(4)	C14	C15A	1.515(6)
C12	C13	1.371(4)	C15	C16	1.42(2)
C9	C10	1.342(4)	C17	C18	1.461(4)
C9	C30	1.442(4)			
C11	C12	1.385(4)			

5.1.2. Bond angles of 3c

Atom	Atom	Atom	Angle [°]	Atom	Atom	Atom	Angle [°]
C14	N1	C4	119.19(17)	C27	C8		122.56(18)
C14	N1	C4	118.16(17)	C8	C9		123.47(19)
C9	N1	C5	122.61(18)	N2	C10		111.92(18)
C21	N2	C10	118.21(17)	C12	C11		112.3(2)
C21	N2	C9	122.63(17)	C13	C12		112.8(2)
C1	N2	C10	119.06(17)	O2	C14		120.9(2)
C2	C2	C3	117.7(4)	O2	C14		123.4(2)
N1	C3	C4	113.8(3)	N1	C14		115.67(18)
C6	C4	C3	112.0(2)	C16	C15		120.97(18)
C5	C5	N1	123.34(18)	C20	C15		119.0(2)
C5	C6	C7	122.82(17)	C20	C15		120.0(2)
C16	C6	C16	118.06(17)	C15	C16		119.16(19)
C8	C6	C7	119.10(17)	C15	C16		117.57(18)
C9	C7	C6	117.08(17)	C17	C16		123.25(19)

C9	C8	C7	119.21(18)	C18	C17		121.2(2)
C20	C8	C27	118.17(18)	C17	C18		120.5(2)
C19	C19	C18	119.9(2)	C24	C22	C21	121.08(18)
O1	C20	C15	120.7(2)	C23	C23	C22	120.3(2)
01	C21	N2	121.19(19)	C26	C24	C25	119.6(2)
N1	C21	C22	123.3(2)	C25	C25	C24	121.2(2)
C23	C21	C22	115.53(17)	C22	C26	C27	120.5(2)
C23	C22	C21	118.49(18)	C22	C27	C8	119.09(17)
C27	C22	C27	120.41(19)	C26	C27	C26	117.96(19)
					C27	C8	122.95(18)

5.2. Crystallographic data for 3m

Fig 2. Perspective view of the X-ray structure of 3m. Hydrogen atoms are omitted for clarity.

Compound	3m		
CCDC No.	2351516		
Empirical formula	$C_{27}H_{30}N_2O_2$		
Formula weight	414.53		
Temperature/K	298		
Crystal system	Monoclinic		
Wavelength	0.71073 Å		
Space group	P 21/n		
a/Å	10.0243(4)		
b/Å	12.5308(5)		
c/Å	18.4588(8)		
α /°	90		
β/°	97.5810(10)		
$\gamma/^{\circ}$	90		
Volume	2318.54(16)		
Z	4		
Calculated density g/cm ³	1.188		
Absorption coefficient (μ /mm ⁻¹)	0.83		
F(000)	888		
	-16 <h<17< td=""></h<17<>		
Index ranges	-18 <k<18< td=""></k<18<>		
	-11<1<11		
Reflections collected	32117		
Independent reflections	5118		
Data/restraint/parameters	3969/0/210		
Goodness of fit on F ²	1.032		
Final R indices[I>2o(I)]	$R_1 = 0.0590$		
	wR ₂ =0.1564		
Final R indices [all data]	$R_1 = 0.0947$		
	wR ₂ =0.1808		

_	Atom	Atom	Distance Å	Atom	Atom	Distance Å
_	O(1)	C(21)	1.233(2)	C(11)	C(12)	1.507(3)
	O(2)	C(14)	1.226(3)	C(12)	C(13)	1.505(4)
	N(1)	C(4)	1.470(3)	C(14)	C(15)	1.464(3)
	N(1)	C(5)	1.382(2)	C(15)	C(16)	1.406(3)
	N(1)	C(14)	1.375(3)	C(15)	C(20)	1.401(3)
	N(2)	C(9)	1.380(2)	C(16)	C(17)	1.407(3)
	N(2)	C(10)	1.468(3)	C(17)	C(18)	1.370(3)
	N(2)	C(21)	1.373(3)	C(18)	C(19)	1.385(4)
	C(1)	C(2)	1.375(5)	C(19)	C(20)	1.360(4)
	C(2)	C(3)	1.476(4)	C(21)	C(22)	1.464(3)
	C(3)	C(4)	1.507(3)	C(22)	C(23)	1.397(3)
	C(5)	C(6)	1.342(3)	C(22)	C(27)	1.404(3)
	C(6)	C(7)	1.513(3)	C(23)	C(24)	1.369(3)
	C(6)	C(16)	1.442(3)	C(24)	C(25)	1.386(3)
	C(7)	C(8)	1.509(3)	C(25)	C(26)	1.367(3)
	C(8)	C(9)	1.339(3)	C(26)	C(27)	1.405(3)
	C(8)	C(9)	1.438(3)			
	C(10)	C(11)	1.509(3)			

5.2.1. Bond distances of 3n

5.2.2. Bond angles of 3n

Atom	Atom	Atom	Angle [°]	Atom	Atom	Atom	Angle [°]
C5	N1	C4	119.19(17)	C24	C23	C22	120.3(2)
C14	N1	C4	118.16(17)	C23	C24	C25	119.6(2)
C14	N1	C5	122.61(18)	C26	C25	C24	121.2(2)
C9	N2	C10	118.21(17)	C25	C26	C27	120.5(2)
C21	N2	C9	122.63(17)	C22	C27	C8	119.09(17)
C21	N2	C10	119.06(17)	C22	C27	C26	117.96(19)
C1	C2	C3	117.7(4)	C26	C27	C8	122.95(18)
C2	C3	C4	113.8(3)	C27	C8		122.56(18)
N1	C4	C3	112.0(2)	C8	C9		123.47(19)
C6	C5	N1	123.34(18)	N2	C10		111.92(18)
C5	C6	C7	122.82(17)	C12	C11		112.3(2)
C5	C6	C16	118.06(17)	C13	C12		112.8(2)
C16	C6	C7	119.10(17)	02	C14		120.9(2)
C8	C7	C6	117.08(17)	02	C14		123.4(2)
C9	C8	C7	119.21(18)	N1	C14		115.67(18)
C9	C8	C27	118.17(18)	C16	C15		120.97(18)
C20	C19	C18	119.9(2)	C20	C15		119.0(2)
C19	C20	C15	120.7(2)	C20	C15		120.0(2)
O1	C21	N2	121.19(19)	C15	C16		119.16(19)
01	C21	C22	123.3(2)	C15	C16		117.57(18)
N1	C21	C22	115.53(17)	C17	C16		123.25(19)

C23	C22	C21	118.49(18)	C18	C17	121.2(2)
C23	C22	C27	120.41(19)	C17	C18	120.5(2)
C27	C22	C21	121.08(18)			

6. Mechanistic studies

6. 1. H/D exchange experiment without vinylene carbonate:

Scheme S4. H/D exchange experiment without vinylene carbonate

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar, 1 mL of HFIP and isoquinolinone **1a** (0.22 mmol, 1 equiv) were added. To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%), 1-Ad-COOH (20 mol%), PivOH (0.44 mmol, 2 equiv) and D₂O (10 equiv). The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 12 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield the title compound (Scheme S4).

Scheme S5. H/D exchange experiment without vinylene carbonate

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar, 1 mL of HFIP and isoquinolinone **1a** (0.22 mmol, 1 equiv) were added. To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (50 mol%) and D₂O (10 equiv). The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 120 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield the title compound (Scheme S5).

6.2 Radical inhibition experiment

Scheme S6. Radical inhibition experiment

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar, 1 mL of HFIP and isoquinolinone **1a** (2 equiv) were added. To this reaction mixture, vinylene carbonate **2** (0.58 mmol, 1 equiv.), $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (50 mol%) and TEMPO (5 equiv) were added. The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 120 °C for 30 min. This reaction mixture was subjected to mass spectrometry analysis (ESI-HRMS) (Scheme S6).

6.3 Reaction with 4,5-Dimethyl-1,3-dioxol-2-one.

Scheme S7. Reaction of isoquinolinone with derivative of vinylene carbonate.

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar, 1 mL of HFIP, **1a** (0.25 mmol, 1 equiv) and 4,5-Dimethyl-1,3-dioxol-2-one **6** (0.58 mmol, 1 equiv.) were added. To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (50 mol%) were added. The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 120 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. (Scheme S7).

6.4. Experimental proof for conversion of formyl group to methylene group

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar, 1 mL of HFIP and diphenyl acetaldehyde **8** (0.25 mmol, 1 equiv) were added. To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (50 mol%) were added. The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 120 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield the title compound (Scheme S8).

Scheme S8. Conversion of formyl group to methylene group

6.5. Experimental proof for conversion of carboxylic acid to methylene group

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar, 1 mL of HFIP and diphenyl acetic acid **10** (0.23 mmol, 1 equiv) were added. To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (50 mol%) were added. The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 120 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield the title compound (Scheme S9).

Scheme S9. Conversion of acid group to methylene group

7. Detection of CO₂ by GC-MS

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar, 1 mL of HFIP, **1a** (0.25 mmol, 1 equiv) and vinylene carbonate **2** (0.58 mmol, 1 equiv.) were added. To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (50 mol%) were added. The tube was flushed with nitrogen and closed with septum, then placed in a preheated oil bath at 120 °C for 4 h. After the indicated time, the reaction mixture was cooled and gas inside the reaction tube was monitored with GC-MS.

At the first the air blank was loaded with atmospheric air to monitor the presence of carbon dioxide and then the sample air was loaded in which shown much higher peak of CO_2 as compared to the blank one. Hereby, in the attached chromatogram peak in orange colour shows airblank and other one in blue colour shows the sample peak.

Fig 3. Mass spectrum for sample

Fig 4. Chromatogram with mass filter from 42-47

8. Mass spectrometry studies for determining intermediates

Scheme S10. Formyl methylation of isoquinolones

To an oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with 1mL of HFIP and isoquinolinone **1a** (0.22 mmol, 2 equiv) and Vinylene carbonate **2** (1 equiv.) To this reaction mixture, $[Ru(p-cymene)Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (50 mol%) .The tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 120 °C for 30 min. This reaction mixture was subjected to mass spectrometry analysis (ESI-HRMS) (Scheme S10).

Scheme S11. Methylenation of isoquinolones

9. Characterization Data:

4,4'-methylenebis(2-phenylisoquinolin-1(2H)-one) (3a)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 80/20)

Yield: 38 mg, 78%, off-white coloured solid

Gram scale: 141 mg, 67%

¹**H NMR (400 MHz, CDCl₃) δ:** 8.46 (d, *J* = 8.04 Hz, 2H), 7.64 (dt, *J* = 7.96 Hz, 2H), 7.60 (d, *J* = 7.88 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 4H), 7.26 (t, *J* = 7.08 Hz, 2H), 7.2 (d, J = 7.9 Hz, 4H), 6.84 (s, 2H), 4.05 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.6, 141.1, 136.4, 132.7, 131.5, 129.2, 129.0, 128.0, 127.4, 126.7, 126.6, 122.8, 112.6, 29.3.

HR-MS: $[M+H]^+$ calculated for $C_{31}H_{22}N_2O_2$, 477.1573 found, 477.1563.

4,4'-methylenebis(2-(p-tolyl)isoquinolin-1(2H)-one) (3b)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 27 mg, 54%, off-white coloured solid

¹H NMR (400 MHz, CDCl₃) δ : 8.47 (d, J = 8.04 Hz, 2H), 7.67 (dt, J = 8.0 Hz, 2H), 7.61 (d, J = 7.48 Hz, 2H), 7.50 (t, J = 7.0 Hz, 2H), 7.15 (d, J = 8.32 Hz, 4H), 7.09 (d, J = 8.32 Hz, 4H), 6.83 (s, 2H), 4.06 (s, 2H), 2.29 (s, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.7, 138.5, 138.0, 136.4, 132.6, 131.7, 129.8, 129.0, 127.3, 126.6, 126.4, 122.84, 112.5, 29.3, 21.1.

HR-MS: $[M+H]^+$ calculated for $C_{33}H_{26}N_2NaO_2^+$, 505.1886; found, 505.1886.

4,4'-methylenebis(2-(4-ethylphenyl)isoquinolin-1(2H)-one) (3c)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 80/20)

Yield: 36 mg, 71%, off-white coloured solid

¹**H** NMR (400 MHz, CDCl₃) δ : 8.46 (d, *J* = 8.0 Hz, 2H), 7.65 (t, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 5.64, 2H), 7.47 (t, *J* = 6.8 Hz, 2H), 7.16 (d, *J* = 8.32 Hz, 4H), 7.11 (d, *J* = 8.36 Hz, 4H), 6.83 (s, 2H), 4.04 (s, 2H), 2.61-2.55 (m, 4H), 1.15 (t, *J* = 7.52 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.7, 144.2, 138.7, 136.4, 132.6, 131.7, 129.0, 128.7, 127.3, 126.6, 126.4, 122.8, 112.5, 29.3, 28.5, 15.4.
HR-MS: [M+Na]⁺ calculated for C₃₅H₃₀N₂O₂Na, 534.2272; found, 534.2233.

4,4'-methylenebis(2-(4-methoxyphenyl)isoquinolin-1(2H)-one) (3d)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 28 mg, 56%, off-white coloured solid

¹H NMR (400 MHz, CDCl₃) δ : 8.44 (d, J = 7.64 Hz, 2H), 7.65 (td, J = 8.08 Hz, 2H), 7.61 (d, J = 7.2, 2H), 7.46 (td, J = 7.96 Hz, 2H), 7.11 (d, J = 8.8 Hz, 4H), 6.83 (s, 2H), 6.81 (d, J = 2.88, 4H), 4.03 (s, 2H), 3.70 (s, 6H)

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.9, 159.1, 136.4, 133.9, 132.6, 131.9, 128.9, 127.7, 127.3, 126.5, 122.8, 114.4, 112.5, 55.5, 29.3

HR-MS: [M+H]⁺ calculated for C₃₃H₂₆N₂O₄Na, 537.1785; found, 537.1772.

4,4'-methylenebis(2-(4-(tert-butyl)phenyl)isoquinolin-1(2H)-one) (3e)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 24 mg, 48%, off-white coloured solid

¹**H NMR (400 MHz, CDCl₃) δ:** 8.49 (d, *J* = 7.88 Hz, 2H), 7.66 (td, *J* = 8.08 Hz, 2H), 7.61 (d, *J* = 7.24, 2H), 7.50 (td, *J* = 8.04 Hz, 2H), 7.37 (d, *J* = 8.56 Hz, 2H), 7.15 (d, *J* = 8.56 Hz, 2H), 6.86 (s, 2H), 4.06 (s, 2H), 1.25 (s, 18H)

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.6, 141.0, 136.4, 132.7, 131.5, 129.2, 129.0, 128.1, 126.6, 126.6, 122.8, 112.6, 30.0, 29.7, 29.3.

HR-MS: [M+H]⁺ calculated for C₃₉H39N₂O₂, 567.3006; found, 567.3007.

4,4'-methylenebis(2-([1,1'-biphenyl]-4-yl)isoquinolin-1(2H)-one) (3f)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 12 mg, 36%, off-white coloured solid

¹H NMR (400 MHz, CDCl₃) δ : 8.52 (d, *J* = 7.92 Hz, 2H), 7.69 (td, *J* = 6.84 Hz, 2H), 7.65 (d, *J* = 7.2, 2H), 7.56 (d, *J* = 8.52 Hz, 4H), 7.51 (d, *J* = 7.12 Hz, 6H), 7.37 (t, *J* = 7.24, 4H), 7.31 (d, *J* = 8.44, 6H), 6.9 (s, 2H), 4.11 (s, 2H)

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.7, 141.1, 140.1, 140.1, 136.4, 132.8, 131.4, 129.0, 128.8, 128.0, 127.7, 127.5, 127.2, 126.9, 126.5, 122.9, 112.8, 29.4

HR-MS: [M+H]⁺ calculated for C₄₃H₃₁N₂O₂, 607.2380; found, 607.2374.

4,4'-methylenebis(2-(4-chlorophenyl)isoquinolin-1(2H)-one) (3g)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 80/20)

Yield: 37 mg, 73%, off-white coloured solid

¹H NMR (400 MHz, CDCl₃) δ : 8.45 (d, *J* = 7.96 Hz, 2H), 7.67 (dt, *J* = 8.12 Hz, 2H), 7.60 (d, *J* = 7.68, 2H), 7.50 (td, *J* = 7.12 Hz, 2H), 7.30 (d, *J* = 4.68 Hz, 2H), 7.15 (d, *J* = 8.68 Hz, 2H), 6.7 (s, 2H), 4.03 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.5, 139.4, 133.9, 132.9, 131.0, 129.0, 129.0, 128.0, 127.6, 122.9, 112.9, 29.3.

HR-MS: [M+Na]⁺ calculated for C₃₁H₂₁Cl₂N₂O₂, 523.0975; found, 523.0975.

4,4'-methylenebis(2-(3-(trifluoromethyl)phenyl)isoquinolin-1(2H)-one) (3h)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 30 mg, 60%, off-white coloured solid

¹H NMR (400 MHz, CDCl₃) δ : 8.44 (d, *J* = 7.52 Hz, 2H), 7.70 (td, *J* = 8.16 Hz, 2H), 7.62 (d, *J* = 7.64, 2H), 7.52 (d, *J* = 7.08 Hz, 4H), 7.52 (t, *J* = 6.84 Hz, 4H), 7.43 (d, *J* = 7.88 Hz, 2H), 6.81 (s, 2H), 4.09 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.5, 141.3, 136.3, 133.1, 132.2, 131.9, 131.6, 131.3, 130.8, 130.2, 129.9, 129.0, 127.8, 126.4, 124.9, 124.8, 124.8, 124.8, 123.8, 123.8, 123.7, 123.0, 122.1, 113.2, 29.3.

HR-MS: [M+H]⁺ calculated for C₃₃H₂₁F₆N₂O₂, 591.1502; found, 591.1506.

4,4'-methylenebis(2-(4-(trifluoromethyl)phenyl)isoquinolin-1(2H)-one) (3i)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 32 mg, 64%, off-white coloured solid

¹**H NMR (400 MHz, CDCl₃) δ:** 8.45 (d, *J* = 8.0 Hz, 2H), 7.70 (td, *J* = 8.16 Hz, 2H), 7.62 (d, *J* = 7.84, 2H), 7.58 (d, *J* = 8.44 Hz, 4H), 7.52 (td, *J* = 7.08 Hz, 2H), 7.34 (d, *J* = 8.28 Hz, 4H), 6.81 (s, 2H), 4.08 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.4, 143.8, 136.2, 133.1, 130.6, 130.3, 129.9, 129.6, 127.8, 127.7, 126.5, 126.4, 126.4, 126.4, 125.0, 123.0, 122.3, 113.2, 29.4.

HR-MS: $[M+H]^+$ calculated for $C_{33}H_{21}F_6N_2O_2$, 591.1502; found, 591.1506.

4,4'-(methylenebis(1-oxoisoquinoline-4,2(1*H*)-diyl))dibenzaldehyde) (3j)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 17 mg, 36%, off-white coloured solid

¹**H NMR (400 MHz, CDCl₃)** δ : 9.96 (s, 2H), 8.48 (d, *J* = 8.0 Hz, 2H), 7.89(d, *J* = 8.48 Hz, 4H), 7.74 (td, *J* = 6.92 Hz, 2H), 7.65 (d, *J* = 7.52 Hz, 2H), 7.55 (td, *J* = 7.0 Hz, 2H), 7.43 (d, *J* = 8.36 Hz, 4H), 6.85 (s,

2H), 4.1 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 199.09, 162.4, 141.4, 139.1, 136.4, 132.3, 132.2, 131.5, 129.4, 128.2, 126.9, 126.3, 124.3, 106.7, 50.4.
HR-MS: [M+H]⁺ calculated for C₃₃H₂₃N₂O₄, 511.1652; found, 511.1654.

4,4'-methylenebis(2-(naphthalen-1-yl)isoquinolin-1(2H)-one) (3k)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 27 mg, 54%, off-white coloured solid

¹H NMR (400 MHz, CDCl3) δ : 8.45 (d, J = 7.92 Hz, 2H), 7.83 (d, J = 8.0, 2H), 7.81 (d, J = 7.28 Hz, 2H), 7.70 (s, 2H), 7.53 – 7.48 (m, 3H), 7.44 (d, J = 8.12, 2H), 7.40 – 7.37 (m, 2H), 7.34 (t, J = 6.44 Hz, 2H), 7.26 (t, J = 7.12 Hz, 1H), 7.21 (d, J = 4.92 Hz, 2H), 7.18 (s, 1H), 7.05

(td, *J* = 7.28 Hz, 1H), 6.8 (s, 2H), 4.1 (s, 2H).

¹³C{1H} NMR (100 MHz, CDCl3) δ: 162.0, 162.0, 137.7, 137.5, 136.6, 134.4, 134.4, 132.8, 132.8, 132.5, 132.4, 129.5, 129.5, 129.3, 129.1, 128.5, 128.4, 127.4, 127.2, 127.2, 126.6, 126.6, 126.5, 126.5, 125.5, 125.4, 125.4, 122.9, 122.9, 122.2, 122.1, 112.6, 112.5, 29.3.

HR-MS: [M+H]+ calculated for C₃₉H₂₇N₂O₂, 555.2067; found, 555.2066.

4,4'-methylenebis(2-(naphthalen-2-yl)isoquinolin-1(2H)-one) (3l)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 24mg, 48%, off-white coloured solid

¹**H** NMR (400 MHz, CDCl₃) δ : 8.45 (d, J = 7.84 Hz, 2H), 7.80 (d, J = 8.8, 2H), 7.77 (d, J = 3.56 Hz, 2H), 7.70 (d, J = 1.08, 2H), 7.68 – 7.66 (m, 4H), 7.61 (s, 2H), 7.55 (t, J = 1.2 Hz, 3H), 7.44 – 7.40 (m, 3H), 7.39 (d, J = 2 Hz, 1H), 7.37 (d, J = 2 Hz, 1H), 6.9 (s, 2H), 4.1 (s, 2H)

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.8, 138.7, 136.5, 133.3, 132.8, 132.5, 131.8, 129.0, 128.0, 127.7, 127.4, 126.7, 126.7, 126.6, 125.0, 124.7, 122.9, 112.8, 29.4.

HR-MS: [M+H]+ calculated for C₃₉H₂₇N₂O₂, 555.2067; found, 555.2066.

4,4'-methylenebis(2-butylisoquinolin-1(2H)-one (3m)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 85/15)

Yield: 42 mg, 82%, off-white coloured solid

¹**H NMR (400 MHz, CDCl₃) δ:** 8.46 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 7.0 Hz, 2H), 7.53 (d, *J* = 7.76 Hz, 2H), 7.44 (t, *J* = 7.0 Hz, 2H), 6.62 (s, 2H), 3.99 (s, 2H), 3.81 (t, *J* = 7.2 Hz, 4H), 1.15 (m, 4H), 1.17 (m, 4H), 0.76 (t, *J* = 7.36, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 160.7, 135.2, 131.1, 130.2, 127.4, 125.8, 125.2, 121.6, 111.4, 47.9, 30.1, 28.2, 18.7, 12.6.

HR-MS: $[M+H]^+$ calculated for $C_{27}H_{31}N_2O_2$, 415.2380; found, 415.2389.

4,4'-methylenebis(2-isobutylisoquinolin-1(2H)-one) (3n)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 35 mg, 68%, off-white coloured solid

¹**H NMR (400 MHz, CDCl₃) δ:** 8.44 (d, *J* = 7.96 Hz, 2H), 7.58 (td, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 7.36 Hz, 2H), 7.43 (td, *J* = 6.8 Hz, 2H), 6.5 (s, 2H), 3.9 (s, 2H), 3.5 (d, *J* = 7.4 Hz, 4H), 2.05-1.9 (m, 2H),

0.7 (d, *J* = 6.7 Hz, 12H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.9, 136.2, 132.2, 131.8, 128.5, 126.9, 126.2, 122.7, 112.1, 56.1, 29.1, 28.0, 19.8.

HR-MS: $[M+H]^+$ calculated for $C_{27}H_{31}N_2O_2$, 415.2380; found, 415.2385.

4,4'-methylenebis(2-(cyclopropylmethyl)isoquinolin-1(2*H*)-one) (30)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 34 mg, 67%, off-white coloured solid

¹H NMR (400 MHz, CDCl₃) δ : 8.45 (d, *J* = 8.08 Hz, 2H), 7.58 (td, *J* = 7.92 Hz, 2H), 7.56 (d, *J* = 7.32 Hz, 2H), 7.47 (td, *J* = 6.8 Hz, 2H), 6.75 (s, 2H), 4.04 (s, 2H), 3.7 (d, *J* = 7.08 Hz, 4H), 1.18 (s,

2H), 0.36-0.34 (m, 4H), 0.15-0.11 (m, 4H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.9, 136.3, 132.2, 130.9, 128.5, 126.9, 126.2, 122.7, 112.4, 53.0, 29.4, 10.6, 3.6.

HR-MS: $[M+H]^+$ calculated for $C_{27}H_{26}N_2O_2$, 411.2067; found, 411.2069.

4-((1-oxo-2-(p-tolyl)-1,2-dihydroisoquinolin-4-yl)methyl)-2-phenylisoquinolin-1(2*H*)-one (3p)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 12 mg, 23%, off-white coloured solid

¹**H** NMR (400 MHz, CDCl₃) δ : 8.48 (d, *J* = 7.76 Hz, 2H), 7.66 (dt, *J* = 6.92 Hz, 2H), 7.62 (d, *J* = 8.16 Hz, 2H), 7.50 (td, *J* = 6.88 Hz, 2H), 7.37 (t, *J* = 7.04 Hz, 2H), 7.29 (t, *J* = 7.56 Hz, 1H), 7.15 (d, *J* = 7.44 Hz, 2H), 7.15 (d, *J* = 8.28 Hz, 2H), 7.09 (d, *J* = 8.32 Hz, 2H), 07 (c, 2H), 2.20 (c, 2H).

6.86 (s, 1H), 6.83 (s, 1H), 4.07 (s, 2H), 2.29 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 16179, 136.3, 136.3, 132.1,132.1, 131.2, 131.2, 128.5, 1226.9, 126.3, 122.7, 122.6, 112.5, 112.4, 49.3, 49.0, 31.9, 31.2, 29.6, 29.5, 29.4, 29.3, 29.2, 29.2, 26.6, 22.6, 19.8, 19.1, 14.1, 13.6.

HR-MS: $[M+H]^+$ calculated for $C_{32}H_{25}N_2O_2$, 469.1911; found, 469.1911.

2-butyl-4-((2-decyl-1-oxo-1,2-dihydroisoquinolin-4-yl)methyl)isoquinolin-1(2H)-one (3q)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 13 mg, 23%, off-white coloured solid

¹**H** NMR (400 MHz, CDCl₃) δ : 8.45 (d, *J* = 7.88 Hz, 2H), 7.58 (td, *J* = 6.96 Hz, 2H), 7.54 (d, *J* = 4.8 Hz, 2H), 7.47 (td, *J* = 7.92 Hz, 2H), 6.62 (d, *J* = 8.4, 2H), 4.0 (s, 2H), 3.8-3.7 (m, 4H), 1.56-1.53 (m, 4H), 1.15 (d, *J* = 8.04, 16H), 0.81-0.75 (m, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 16179, 136.3, 136.3, 132.1,132.1, 131.2, 131.2, 128.5, 1226.9, 126.3, 122.7, 122.6, 112.5, 112.4, 49.3, 49.0, 31.9, 31.2, 29.6, 29.5, 29.4, 29.3, 29.2, 29.2, 26.6, 22.6, 19.8, 19.1, 14.1, 13.6.

HR-MS: $[M+H]^+$ calculated for $C_{17}H_{15}N_2O_2$, 279.1128; found, 279.1129.

2-(1-oxo-2-phenyl-1,2-dihydroisoquinolin-8-yl)acetaldehyde (4a)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 36 mg, 61%, off-white coloured solid

¹**H** NMR (400 MHz, CDCl₃) δ : 9.80 (br, 1H), 7.53 (t, *J* = 7.84 Hz, 1H), 7.44 (td, *J* = 8.16 Hz, 2H), 7.41 (d, *J* = 1.52 Hz, 1H), 7.35 (td, *J* = 7.48 Hz, 1H), 7.32-7.30 (m, 1H), 7.22-7.29 (m, 1H), 7.16 (d, *J* = 7.16 Hz, 1H), 7.10 (d, *J* = 7.32 Hz, 1H), 6.49 (d, *J* = 7.76 Hz, 1H), 4.25 (s, 2H).s

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 199.0, 162.4, 141.4, 139.1, 136.4, 132.3 (d, *J* = 21.2 Hz), 131.5, 129.4, 128.2, 126.9, 126.3, 124.3, 106.7, 50.4.

HR-MS: [M+H]⁺ calculated for C₁₇H₁₄NO₂, 264.1019; found, 264.1060

2-(2-(4-methoxyphenyl)-1-oxo-1,2-dihydroisoquinolin-8-yl)acetaldehyde (4b)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 36 mg, 63%, off-white coloured solid

¹H NMR (400 MHz, CDCl3) δ: 9.79 (br, 1H), 7.53 (t, J = 7.52 Hz, 1H), 7.42 (dd, J = 6.92 Hz, 1H), 7.20 (d, J = 8.96 Hz, 2H), 7.15 (d, J = 7.04 Hz, 1H), 7.07 (d, J = 7.32 Hz, 1H), 6.92-6.90 (m, 2H), 6.46 (d, J = 7.36 Hz, 1H), 4.23 (s, 2H), 3.76 (s, 3H).

¹³C{1H} NMR (100 MHz, CDCl3) δ: 199.1, 162.6, 159.2, 139.1, 136.4, 134.2, 132.6, 132.1, 131.4, 128.0, 126.2, 124.3, 114., 106.5, 55.5, 50.4.

HR-MS: [M+H]⁺ calculated for C₁₈H₁₆NO₃, 294.1125; found, 294.1149.

2-(2-(4-chlorophenyl)-1-oxo-1,2-dihydroisoquinolin-8-yl)acetaldehyde (4c)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 32 mg, 54%, off-white coloured solid

¹**H NMR (400 MHz, CDCl₃)** δ: 9.80 (br, 1H), 7.56 (t, *J* = 8.12 Hz, 1H), 7.53 (d, *J* = 7.72 Hz, 1H), 7.44 (d, *J* = 7.92 Hz, 1H), 7.39 (d, *J* = 8.48

Hz, 2H), 7.25 (d, *J* = 8.44 Hz, 2H), 7.05 (d, *J* = 7.36 Hz, 1H), 6.50 (d, *J* = 7.4 Hz, 1H), 4.24 (s, 2H).

¹³C{1H} NMR (100 MHz, CDCl3) δ: 198.9, 162.3, 139.0, 136.4, 134.1, 132.4, 131.7, 131.7, 129.6, 128.3, 126.3, 107.1, 50.4.

HR-MS: [M+H]⁺ calculated for C₁₇H₁₃ClNO₂, 298.0629; found, 298.0623.

2-(1-oxo-2-(p-tolyl)-1,2-dihydroisoquinolin-8-yl)acetaldehyde (4d)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 30 mg, 51%, off-white coloured solid

¹**H** NMR (400 MHz, CDCl₃) δ : 9.68 (br, 1H), 7.54 (t, J = 7.76 Hz, 1H), 7.44 (d, J = 7.24 Hz, 1H), 7.23 (d, J = 8.32 Hz, 3H), 7.18 (d, J = 3.0 Hz, 2H), 7.10 (d, J = 7.32 Hz, 1H), 6.51 (d, J = 7.32Hz, 1H), 4.22 (s, 2H), 2.3 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 198.1, 161.4, 137.9, 137.2, 135.3, 131.4, 131.1, 130.4, 128.9, 127.9, 125.6, 125.2, 105.5, 49.4,

20.1.

HR-MS: [M+H]⁺ calculated for C₁₇H₁₄NO₂, 264.1019; found, 264.1060

2-(1-oxo-2-phenyl-1,2-dihydroisoquinolin-8-yl)acetaldehyde (4e)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 17 mg, 34%, off-white coloured solid

¹**H** NMR (400 MHz, CDCl₃) δ : 9.81 (br, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 4.24 Hz,1H), (t, J = 7.6 Hz, 2H), 7.39(d, J = 7.92

Hz, 2H), 7.13 (d, *J* = 7.32 Hz, 1H), 7.0 (d, J = 7.2 Hz, 1H), 4.2 (s, 3H), 3.4 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 193.7, 172.3, 146.5, 139.4, 135.5, 132.6, 132.5, 132.0, 131.8, 131.6, 131.4, 131.1, 129.9, 126.5, 126.1, 109.8, 108.69, 106.2, 86.51, 39.01, 37.3.

HR-MS: [M+H]⁺ calculated for C₁₈H₁₆NNaO₃²⁺, 317.1017; found, 317.1086.

2-(2-(naphthalen-2-yl)-1-oxo-1,2-dihydroisoquinolin-8-yl)acetaldehyde (4f)

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 84/16)

Yield: 30 mg, 53%, off-white coloured solid

¹**H NMR (400 MHz, CDCl₃)** δ: 9.80 (br, 1H), 7.87 (d, *J* = 8.64 Hz, 1H), 7.81-7.76 (m, 3H), 7.73 (br, 1H), 7.53 (t, *J* = 7.72 Hz, 1H), 7.46 (s, 1H),

7.44-7.42 (m, 2H), 7.40 (d, *J* = 1.92 Hz, 1H), 7.17 (d, *J* = 6.8 Hz, 1H), 6.53 (d, *J* = 7.32 Hz, 1H), 4.25 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 199.1, 162.6, 139.2, 139.0, 136.4, 133.5, 132.7, 132.4, 132.3, 131.5, 129.2, 128.0, 127.8, 126.8, 126.7, 126.3, 125.2, 125.0, 124.3, 106.9, 50.4.

HR-MS: [M+H]⁺ calculated for C₂₁H₁₆NO₂, 314.1176; found, 314.1205.

9.1. NMR data

10. References

[1] SMART (V 5.628), SAINT (V 6.45a), XPREP, SHELXTL; Bruker AXS Inc., Madison, Wisconsin, USA, **2004**.

[2] G. M. Sheldrick, Siemens Area Detector Absorption Correction Program. University of Göttingen, Göttingen, Germany **2004**.

[3] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 1993, 26, 343.

[4] G. M. Sheldrick, SHELXL-2014, Program for Crystal Structure Solution and Refinement; University of Göttingen, Göttingen, Germany, **2014**.

[5] L. J. Farrugia, WinGX-A Windows Program for Crystal Structure Analysis, J. Appl. Crystallogr. 2012, 45, 849.

[6] I. P. Beletskaya, A. V. Cheprakov, Organometallics, 2012, 31, 7753-7808.