Supporting Information

One-pot synthesis of functionalized dihydropyridin-2-ones via carbene-

catalyzed base-controlled [3+3] annulation reaction

Zhan-Yong Wang,^a Guoyang Ma,^b Yaoyao Xu,^a Qingqing Wang,^a Mengru Zhang,^a

Xueji Ma,^a Chenyang Ma,^c Aili Sun,^d Ran Xia*^a and Hongxin Liu*^{e,f}

^aSchool of Pharmacy, Xinxiang University, Xinxiang 453003, China

^bSchool of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China

^cHenan Run Catalysts Co., Ltd., Xinxiang 453003, China

^dPuyang Institute of Technology, Henan University, Puyang 457000, China

^eCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

^fInstitute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China

Table of contents

1. General Information	2
2. Optimization of the reaction conditions	3
3. Experimental Section	5
4. Control experiments	7
5. The data of the products 2a', 3, 5, 6a, 7a, 8a	7
6. The NMR of 2a', 3, 5, 6a, 7a, 8a	23
7 The HPLC Spectra	69
8 The data of crystal structure	75

1. General Information

Unless otherwise stated, all commercially available reagents were used as received. NMR spectra were obtained in CDCl₃ using TMS as the internal standard on the Bruker AVANCE spectrometer at 400 MHz (for ¹H NMR) or 100 MHz (for ¹³C NMR), respectively. ¹H NMR coupling constants were reported in Hz. HRMS (m/z) were recorded on Thermo ScientificTM Q Exactive. Flash column chromatography was performed with Huanghai silica gel (300-400) in a mixture of petroleum ether (PE, b.p. 60-90°C) and ethyl acetate (EA) at increased pressure. The 2-bromoenals **1** were synthesized from the corresponding cinnamaldehydes and Br₂ according to the literatures.¹⁻² Vicinal haloamines **2** and **4** were prepared from chalcones according to known literatures.³⁻⁵ The NHC precursors were synthesized by using known methods.⁶⁻⁹

1. Song, H., Li, Y., Yao, Q.J., Jin, L., Liu, L., Liu, Y.H., and Shi, B.F. Synthesis of Axially Chiral Styrenes through Pd-Catalyzed Asymmetric C-H Olefination Enabled by an Amino Amide Transient Directing Group. *Angew. Chem., Int. Ed.* **2020**, *132*, 6638-6642.

2. Gilley, C.B., Buller, M.J., and Kobayashi, Y. New entry to convertible isocyanides for the ugi reaction and its application to the stereocontrolled formal total synthesis of the proteasome inhibitor Omuralide. *Org. Lett.* **2007**, *9*, 3631-3634.

3. Wu, X.-L.; Wang, G.-W., Aminohalogenation of Electron-Deficient Olefins Promoted by Hypervalent Iodine Compounds. *Eur. J. Org. Chem.*, **2008**, *2008*, 6239-6246.

 Cai, Y.; Liu, X.; Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Lin, L.; Feng, X., Catalytic Asymmetric Bromoamination of Chalcones: Highly Efficient Synthesis of Chiral α-Bromo-β-Amino Ketone Derivatives. *Angew. Chem., Int. Ed.* 2010, *49*, 6160-6164.

5. Chen, Z.-G.; Wei, J.-F.; Li, R.-T.; Shi, X.-Y.; Zhao, P.-F., Copper Powder-Catalyzed Regioand Stereoselective Aminobromination of α , β -Unsaturated Ketones with TsNH2 and NBS as Nitrogen and Halogen Sources. *J. Org. Chem.* **2009**, *74*, 1371-1373.

6. Kyan, R., Sato, K., Mase, N., Watanabe, N., and Narumi, T. Tuning the Catalyst Reactivity of Imidazolylidene Catalysts through Substituent Effects on the N-Aryl Groups. *Org. Lett.* **2017**, *19*, 2750-2753.

7. Enders, D., Breuer, K., Kallfass, U., and Balensiefer, T. Preparation and application of 1, 3, 4triphenyl-4, 5-dihydro-1H-1, 2, 4-triazol-5-ylidene, a stable carbene. *Synthesis* **2003**, *8*, 1292-1295. 8. Vlahakis, J.Z., Lazar, C., Crandall, I.E., and Szarek, W.A. Anti-Plasmodium activity of imidazolium and triazolium salts. *Bioorg Med Chem.* **2010**, *18*, 6184-6196.

9. Romanov-Michailidis, F., Besnard, C., and Alexakis, A. N-Heterocyclic carbene-catalyzed annulation of α -cyano-1, 4-diketones with ynals. *Org. Lett.* **2012**, *14*, 4906-4909.

2. Optimization of the reaction conditions

Entry	Catalyst	base	solvent	Yield (%) ^b
1	А	DABCO	CH ₃ CN	53
2	В	DABCO	CH ₃ CN	50
3	С	DABCO	CH ₃ CN	NR
4	D	DABCO	CH ₃ CN	Trace
5	Е	DABCO	CH ₃ CN	Trace
6	F	DABCO	CH ₃ CN	26
7	G	DABCO	CH ₃ CN	60
8	G	Cs ₂ CO ₃	CH ₃ CN	ND
9	G	Et ₃ N	CH ₃ CN	Trace
10	G	DBU	CH ₃ CN	Trace
11	G	DIPEA	CH ₃ CN	Trace
12	G	Pyridine	CH ₃ CN	NR
13	G	DMAP	CH ₃ CN	72
14	G	DMAP	Toluene	93
15	G	DMAP	DCM	60
16	G	DMAP	EA	85
17	G	DMAP	THF	72
18	G	DMAP	DMF	42
19	G	DMAP	MTBE	34

^{*a*} Reaction conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), Cat (0.02 mmol), Base (0.3 mmol), Solvent (1.5 ml), 48 h at room temperature. ^b Isolated yields.

At the outset of this study, the feasibility of this protocol was focused on evaluate the reaction by

using 2-bromoenal 1a and α -amino- β -bromo ketone derivative 2a as the model reaction substrates in the presence of NHC produced from triazoli um salt A as a catalyst, DABCO as the base in acetonitrile. Under these reaction conditions, the reaction furnished the desired product of dihydropy-ridin-2-ones 3a in 53% yield (entry 1). In contrast to the NHC precatalyst A, other NHC precursors B-F were found to be ineffective in facilitating this aza-[3+3] annulation reaction (entries 2-6). Notably, when the NHC precursor \mathbf{G} was used in this procedure, a promising yield of the target product **3a** was observed (entry 7). Then, with **G** as the ideal precatalyst, several different bases were carried out for further screen. These results showed that the base has significant influence on the reaction yield of the desired product and reaction pathways. As shown in the table below, different types of bases investigations were employed and these results identified that both nucleophilicity and basicity of the base exerted a significant direct impact on the reaction process. As anticipated, Cs₂CO₃ acting as a Brønsted base can only be allowed to release the NHC as an efficient catalyst and Promote the nucleophilic substitution reaction for debromination of vicinal haloamine 2a to deliver 2- benzoyl-3-phenyl-1-tosylaziridine product. However, it has no effect to further promote intermolecular cyclization reaction for the efficient synthesis of target product. The results of this study also indicate that the nucleophilicity of the base plays an essential role in the transformation process (entry 7 vs entry 8). Accordingly, other canonical organic bases including Et₃N, DBU and DIPEA were then investigated, and all of them only provided a very small amount of the desired reaction product (entries 9-11). Then, we tried to use pyridine which has been successfully applied to the formation of pyridinium salts as an organic base to promote the reaction, but no desired product was detected. These results suggested that DMAP is a proper base for further the optimization of reaction conditions (entry 13). And hence various solvents optimization studies were performed in DMAP and these results suggested that toluene was the best choice affording the desired **3a** in 93% yield (entry 14 vs entries 13-19). Finally, the best result could be achieved by using the NHC precursor G (20 mmol%), DMAP (3.0 equiv) in toluene at rt.

3. Experimental Section

General procedure for the preparation of 2a'.

Under N_2 atmosphere, α -amino- β -bromo ketone derivative **2a** (0.1 mmol) and DMAP (0.1 mmol) were successively added into a 10 ml reaction tube, then toluene (1.5 ml) was added with stirring. The resulting mixture was continuously stirred at room temperature. After completion, the solid **2a'** were obtained by suction filtration and was washed with a small amount of toluene.

General procedure for the synthesis of 3 and 5.

Under N_2 atmosphere, 2-bromoenals 1 (0.12 mmol), Vicinal haloamines 2 or 4 (0.1 mmol), NHC precursor G (0.02 mmol), and DMAP (0.3 mmol) were successively added into a 10 ml reaction tube, then toluene (1.5 ml) was added with stirring. The resulting mixture was continuously stirred at room temperature. After completion, the products 3 or 5 were obtained by flash column chromatography on a short packed silica gel column eluting with petroleum ether/EtOAc (3:1).

A typical procedure for the preparation of 6a.

Under N₂ atmosphere, a dry reaction tube was charged with **3a** (51 mg, 0.1 mmol) and CH₃OH (1.5 ml). Then Cs₂CO₃ (49 mg, 0.15 mmol) was added with stirring, the mixture was stirred for 12 h at room temperature. After completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on a short packed silica gel column eluting with petroleum ether/EtOAc (3:1).

A typical procedure for the preparation of 7a.

A dry reaction tube was charged with 3a (51 mg, 0.1 mmol) and toluene (1.5 ml). Then DBU (23 μ l, 0.15 mmol) was added with stirring, the mixture was stirred for 24 h at room temperature in open-air atmosphere. After completion, the product 7a was obtained by flash column chromatography on a short packed silica gel column eluting with petroleum ether/EtOAc (1:1).

A typical procedure for the preparation of 8a.

A dry reaction tube was charged with 3a (51 mg, 0.1 mmol), Pd/C (10 mol %), Na₂CO₃ (400 mol %) and MeOH (2 mL) at room temperature under argon. Then the vial was placed under vacuum and back-filled with argon three times. After removal of the argon atmosphere with vacuum, a hydrogen balloon was placed in the vial and the mixture was stirred for 48 h. After completion, the product **8a** was obtained by flash column chromatography on a short packed silica gel column eluting with petroleum ether/EtOAc (3:1).

Scope Limitation:

 \cap

The preliminary investigation of enantioselectivity of this protocol.

	Br O Ph Ph + N NHTs 2a DMAP	<u>toluene</u> rt, 24 h → 2a'+Ph → Br 1a	2a'+Ph Br 1a H NTs NTs Ph Ph O Ph O Sa'+Ph Ta Sa		
	H	Bn N N Ph		N N+ BF4 Ph	
Entry	Base	Catalyst	Yield (%) ^[b]	ee ^[c]	
1	DMAP	н	90	78	
2	DMAP	I	81	-32	
3	DMAP	J	92	73	
4	K ₂ CO ₃	Н	78	83	
5	DABCO	Н	84	92	
6	DIPEA	Н	80	85	

^[a] Reaction conditions: **2a** (0.1 mmol), DMAP (0.1 mmol), toluene (1.5 ml), room temperature, 24 h. Then, **1a** (0.12 mmol), NHC (0.02 mmol), Base (0.2 mmol) was added with stirring at room temperature for 24 h under an N₂ atmosphere. ^[b] Isolated yields. ^[c] Ee was determined via HPLC on chiral stationary phase.

4. Control experiments

To investigate whether the salt was a possible reaction intermediate, dimethylaminopyridinium

salt **2a'** was isolated in a yield of 90% and subjected to the reaction. The reaction smoothly performed under standard conditions, and the desired product **3a** was isolated in 95% yield (Scheme 7a). These results indicated that DMAP plays a crucial role in this transformation.

5. The data of the products 2a', 3, 5, 6a, 7a, 8a

4-(dimethylamino)-1-(2-((4-methylphenyl)sulfonamido)-3-oxo-1,3-diphenylpropyl)pyridin-1ium bromide 2a': white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 2H), 7.74 (d, *J* = 5.2 Hz, 2H), 7.69 (d, *J* = 7.8 Hz, 2H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.34 (s, 3H), 7.21 – 7.10 (m, 3H), 7.03 (s, 1H), 6.82 (d, *J* = 6.4 Hz, 2H), 3.22 (d, *J* = 10.5 Hz, 7H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 157.4, 144.1, 139.1, 138.5, 136.4, 136.3, 132.7, 132.4, 131.4, 130.7, 130.4, 129.5, 129.1, 128.5, 128.4, 127.4, 106.9, 40.4, 21.5. HRMS (FTMS-ESI): [M + H]+ calcd for C29H31BrN3O3S+: 580.1264; found: 580.1102.

6-benzoyl-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**a: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.9 Hz, 2H), 7.84 (d, J = 7.7 Hz, 2H), 7.53 – 7.43 (m, 4H), 7.37 (t, J = 7.0 Hz, 1H), 7.30 (dd, J = 12.7, 7.7 Hz, 3H), 7.19 (t, J = 7.5 Hz, 2H), 6.95 (d, J = 4.8 Hz, 3H), 6.88 (d, J = 4.7 Hz, 2H), 3.93 (d, J = 5.3 Hz, 1H), 3.18 (dd, J = 16.4, 6.4 Hz, 1H), 2.85 (d, J = 16.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 169.3, 145.4, 138.3, 137.6, 136.8, 135.3, 133.7, 132.9, 132.7, 129.9, 129.7, 129.5, 129.2, 128.2, 128.1, 128.0, 127.9, 127. 8, 127.7, 45.0, 41.8, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H26NO4S+: 508.1577; found: 508.1581.

6-benzoyl-4-(4-chlorophenyl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3b: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d,** *J* **= 7.8 Hz, 2H), 7.81 (d,** *J* **= 7.7 Hz, 2H), 7.42 (s, 4H), 7.30 (t,** *J* = 8.0 Hz, 3H), 7.19 (t, J = 7.4 Hz, 2H), 6.96 (d, J = 4.9 Hz, 3H), 6.87 (d, J = 4.8 Hz, 2H), 3.89 (d, J = 5.5 Hz, 1H), 3.16 (dd, J = 16.5, 6.3 Hz, 1H), 2.81 (d, J = 16.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 169.0, 145.5, 137.3, 136.8, 136.7, 135.1, 134.0, 133.9, 132.8, 132.6, 129.8, 129.7, 129.2, 129.0, 128.3, 127.9, 127.7, 44.4, 41.6, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25CINO4S+: 542.1187; found: 542.1189.

6-benzoyl-4-(4-bromophenyl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3c: white solid, ¹H NMR (400 MHz, CDCl₃) \delta 7.94 (d,** *J* **= 8.1 Hz, 2H), 7.81 (d,** *J* **= 7.6 Hz, 2H), 7.57 (d,** *J* **= 8.0 Hz, 2H), 7.36 (d,** *J* **= 8.0 Hz, 2H), 7.30 (t,** *J* **= 8.3 Hz, 3H), 7.19 (t,** *J* **= 7.5 Hz, 2H), 6.96 (d,** *J* **= 4.3 Hz, 3H), 6.87 (d,** *J* **= 4.2 Hz, 2H), 3.87 (d,** *J* **= 3.9 Hz, 1H), 3.16 (dd,** *J* **= 16.5, 6.3 Hz, 1H), 2.81 (d,** *J* **= 16.4 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 191.3, 168.9, 145.5, 137.4, 137.3, 136.6, 135.1, 134.0, 132.8, 132.7, 132.5, 129.8, 129.7, 129.3, 129.2, 128.3, 127.9, 127.7, 122.1, 44.4, 41.5, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25BrNO4S+: 586.0682; found: 586.0684.**

6-benzoyl-4-(4-nitrophenyl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3d: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d,** *J* **= 8.4 Hz, 2H), 7.82 (d,** *J* **= 7.9 Hz, 2H), 7.55 (d,** *J* **= 7.7 Hz, 2H), 7.41 (t,** *J* **= 7.3 Hz, 1H), 7.28 (d,** *J* **= 8.0 Hz, 2H), 7.17 (dd,** *J* **= 15.5, 7.6 Hz, 3H), 7.10 (t,** *J* **= 7.2 Hz, 2H), 7.05 (d,** *J* **= 8.2 Hz, 3H), 6.89 (d,** *J* **= 7.2 Hz, 2H), 4.01 (d,** *J* **= 19.8 Hz, 1H), 3.26 (d,** *J* **= 19.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 167.9, 146.8, 145.5, 144.9, 136.4, 134.5, 134.4, 134.0, 133.1, 132.6, 129.6, 129.5, 129.22, 129.18, 129.1, 129.0, 128.6, 128.4, 123.4, 66.1, 40.3, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25N2O6S+: 553.1428; found: 553.1431.**

6-benzoyl-5-phenyl-4-(p-tolyl)-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**e: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.7 Hz, 2H), 7.84 (d, J = 7.5 Hz, 2H), 7.39 (d, J = 7.3 Hz, 2H), 7.28 (dd, J = 13.9, 7.7 Hz, 5H), 7.18 (t, J = 7.3 Hz, 2H), 6.97 – 6.86 (m, 5H), 3.87 (d, J = 4.6 Hz, 1H), 3.14 (dd, J = 16.3, 6.1 Hz, 1H), 2.81 (d, J = 16.3 Hz, 1H), 2.40 (d, J = 13.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 169.4, 145.3, 137.7, 136.8, 135.4, 135.2, 133.6, 133.1, 132.7, 130.2, 129.9, 129.7, 129.1, 128.2, 128.1, 127.9, 127.7, 127.5, 44.7, 41.9, 21.7, 21.2. HRMS (FTMS-APCI): [M + H]+ calcd for C32H28NO4S+: 522.1734; found: 522.1736.

6-benzoyl-4-(4-(dimethylamino)phenyl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3f**: brown solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 2H), 7.84 (d, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.28 (dd, *J* = 16.2, 8.0 Hz, 3H), 7.17 (t, *J* = 7.5 Hz, 2H), 6.93 (s, 5H), 6.80 (d, *J* = 8.4 Hz, 2H), 3.79 (d, *J* = 4.3 Hz, 1H), 3.12 (dd, *J* = 16.4, 6.4 Hz, 1H), 2.98 (s, 6H), 2.79 (d, *J* = 16.4 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 169.7, 150.2, 145.2, 138.0, 136.9, 135.5, 133.6, 133.1, 132.6, 129.9, 129.7, 129.1, 128.3, 128.1, 128.0, 127.8, 127.7, 125.4, 113.3, 44.3, 41.9, 40.5, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C33H31N2O4S+: 551.1999; found: 551.2004.

6-benzoyl-4-(furan-2-yl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**g: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.9 Hz, 2H), 7.77 (d, J = 7.8 Hz, 2H), 7.49 (s, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 (s, 1H), 7.17 (t, J = 7.5 Hz, 2H), 7.09 (d, J = 5.2 Hz, 2H), 7.01 (d, J = 5.4 Hz, 3H), 6.47 (d, J = 20.6 Hz, 2H), 3.92 (s, 1H), 3.06 (dd, J = 16.7, 5.5 Hz, 1H), 2.96 (d, J = 16.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ 191.6, 169.3, 151.7, 145.2, 143.0, 137.2, 136.6, 135.4, 133.4, 132.7, 131.7, 129.9, 129.7, 129.1, 128.33, 128.28, 128.0, 127.8, 110.9, 107.7, 38.8, 38.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C29H24NO5S+: 498.1370; found: 498.1373.

6-benzoyl-4-(naphthalen-2-yl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**h: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.89 (dd, *J* = 15.5, 8.1 Hz, 7H), 7.59 – 7.46 (m, 3H), 7.29 (t, *J* = 6.8 Hz, 1H), 7.19 (t, *J* = 7.9 Hz, 4H), 6.94 (s, 5H), 4.06 (d, *J* = 3.9 Hz, 1H), 3.23 (dd, *J* = 16.4, 6.2 Hz, 1H), 2.94 (d, *J* = 16.5 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 169.2, 145.3, 137.6, 136.8, 135.7, 135.2, 133.8, 133.7, 133.0, 132.7, 129.9, 129.6, 129.5, 129.1, 128.3, 128.23, 128.20, 127.9, 127.8, 127.7, 126.7, 126.6, 126.4, 125.5, 45.1, 41.5, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C35H28NO4S+: 558.1734; found: 558.1738.

6-benzoyl-4-(3-chlorophenyl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1H)-one 3i: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 2H), 7.83 (d, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 7.5 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.31 (dd, *J* = 17.7, 10.0 Hz, 4H), 7.20 (t, *J* = 7.5 Hz, 2H), 6.97 (d, *J* = 4.3 Hz, 3H), 6.88 (d, *J* = 4.4 Hz, 2H), 3.90 (d, *J* = 4.1 Hz, 1H), 3.16 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.83 (d, *J* = 16.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 168.8, 145.5, 140.4, 137.2, 136.7, 135.3, 135.2, 134.1, 132.8, 132.2, 130.9, 129.8, 129.7, 129.2, 128.30, 128.29, 128.2, 127.9, 127.7, 125.6, 44.6, 41.5, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25CINO4S+: 542.1187; found: 542.1194.

6-benzoyl-4-(2-chlorophenyl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3***j*: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 2H), 7.91 (d, *J* = 7.6 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.51 – 7.44 (m, 2H), 7.31 (dd, *J* = 13.7, 7.6 Hz, 4H), 7.20 (t, *J* = 7.3 Hz, 2H), 6.94 (d, *J* = 5.2 Hz, 3H), 6.84 (d, *J* = 5.1 Hz, 2H), 4.42 (d, *J* = 5.9 Hz, 1H), 3.13 (dd, *J* = 16.7, 6.5 Hz, 1H), 2.98 (d, *J* = 16.6 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 169.1, 145.5, 137.4, 136.6, 135.3, 135.0, 134.8, 133.9, 132.8, 131.9, 130.7, 129.8, 129.7, 129.5, 129.2, 128.7, 128.3, 128.0, 127.9, 127.5, 41.8, 39.6, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25CINO4S+: 542.1187; found: 542.1191.

6-benzoyl-4-(2-methoxyphenyl)-5-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**k: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 2H), 7.87 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 7.3 Hz, 1H), 7.37 – 7.26 (m, 4H), 7.19 (t, J = 7.3 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.96 – 6.81 (m, 6H), 4.32 (s, 1H), 3.75 (s, 3H), 3.11 – 2.92 (m, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 170.1, 156.9, 145.2, 137.7, 136.9, 135.6, 134.5, 133.1, 132.6, 129.9, 129.7, 129.3, 129.1, 128.2, 128.0, 127.94, 127.86, 127.7, 125.3, 121.1, 110.9, 55.2, 39.6, 39.3, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H28NO5S+: 538.1683; found: 538.1685.

6-benzoyl-5-(4-nitrophenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**I: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 2H), 7.81 (dd, *J* = 13.0, 8.2 Hz, 4H), 7.43 (d, *J* = 5.9 Hz, 4H), 7.34 (dd, *J* = 15.4, 6.2 Hz, 4H), 7.22 (t, *J* = 7.6 Hz, 2H), 7.03 (d, *J* = 8.5 Hz, 2H), 3.91 (s, 1H), 3.18 (dd, *J* = 16.5, 6.5 Hz, 1H), 2.88 (dd, *J* = 16.5, 3.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 168.6, 147.0, 145.7, 144.2, 137.6, 136.4, 135.2, 134.9, 133.4, 129.8, 129.7, 129.3, 128.8, 128.4, 128.3, 127.5, 123.3, 44.6, 41.6, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25N2O6S+: 553.1428; found: 553.1430.

4-(2-benzoyl-6-oxo-4-phenyl-1-tosyl-1,4,5,6-tetrahydropyridin-3-yl)benzonitrile 3m: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.1 Hz, 2H), 7.81 (d, J = 7.7 Hz, 2H), 7.47 – 7.40 (m, 4H), 7.34 (dd, J = 18.3, 7.3 Hz, 4H), 7.22 (t, J = 7.3 Hz, 4H), 6.96 (d, J = 8.0 Hz, 2H), 3.89 (d, J = 2.7 Hz, 1H), 3.16 (dd, J = 16.5, 6.5 Hz, 1H), 2.86 (dd, J = 16.5, 2.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 168.7, 145.7, 142.3, 137.7, 136.4, 135.04, 134.97, 133.4, 131.9, 130.4, 129.8, 129.7, 129.3, 128.6, 128.4, 128.2, 127.5, 118.1, 111.7, 44.6, 41.6, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C32H25N2O4S+: 533.1530; found: 533.1532.

6-benzoyl-5-(4-chlorophenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3n**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.83 (d, *J* = 7.7 Hz, 2H), 7.45 (d, *J* = 3.9 Hz, 4H), 7.34 (dd, *J* = 20.2, 8.0 Hz, 4H), 7.22 (d, *J* = 7.6 Hz, 2H), 6.92 (d, *J* = 8.2 Hz, 2H), 6.80 (d, *J* = 8.2 Hz, 2H), 3.87 (d, J = 3.6 Hz, 1H), 3.16 (dd, J = 16.5, 6.5 Hz, 1H), 2.85 (d, J = 16.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 169.0, 145.4, 138.0, 136.6, 136.0, 135.2, 134.2, 134.1, 133.0, 131.4, 129.8, 129.7, 129.6, 129.19, 129.17, 128.4, 128.2, 128.1, 127.6, 44.9, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25CINO4S+: 542.1187; found: 542.1190.

6-benzoyl-4-phenyl-1-tosyl-5-(4-(trifluoromethyl)phenyl)-3,4-dihydropyridin-2(1*H***)-one 30**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 2H), 7.80 (d, *J* = 7.4 Hz, 2H), 7.45 (d, *J* = 4.1 Hz, 4H), 7.41 – 7.36 (m, 1H), 7.31 (t, *J* = 6.6 Hz, 3H), 7.20 (t, *J* = 7.4 Hz, 4H), 6.97 (d, *J* = 8.0 Hz, 2H), 3.89 (d, *J* = 3.7 Hz, 1H), 3.18 (dd, *J* = 16.5, 6.6 Hz, 1H), 2.87 (dd, *J* = 16.5, 2.5 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 168.9, 145.6, 141.2, 137.8, 136.6, 135.1, 134.8, 133.1, 131.1, 129.8, 129.73, 129.67, 129.2, 128.3, 128.2, 128.1, 127.6, 125.1 (q, *J* = 3.5 Hz), 123.6 (d, *J* = 270.0 Hz), 122.4 (d, *J* = 580.0 Hz), 44.7, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H25F3NO4S+: 576.1451; found: 576.1454.

6-benzoyl-5-(3-bromophenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**p: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.8 Hz, 2H), 7.83 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 3.0 Hz, 4H), 7.38 – 7.29 (m, 4H), 7.23 (t, *J* = 7.3 Hz, 2H), 7.06 (d, *J* = 5.7 Hz, 1H), 7.01 (s, 1H), 6.84 – 6.74 (m, 2H), 3.94 – 3.84 (m, 1H), 3.14 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.84 (d, *J* = 16.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 169.0, 145.5, 139.4, 137.9, 136.7, 135.2, 134.6, 132.9, 131.1, 131.01, 130.99, 129.7, 129.6, 129.2, 128.2, 128.0, 127.6, 126.2, 122.1, 44.7, 41.7, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25BrNO4S+: 586.0682; found: 586.0684.

6-benzoyl-5-(naphthalen-2-yl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**q: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 7.5 Hz, 2H), 7.53 (d, *J* = 7.5 Hz, 4H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.41 – 7.28 (m, 7H), 7.05 (dt, *J* = 22.2, 7.1 Hz, 3H), 6.92 (d, *J* = 8.5 Hz, 1H), 3.99 (d, *J* = 3.5 Hz, 1H), 3.19 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.87 (d, *J* = 16.5 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 169.3, 145.4, 138.3, 136.9, 135.4, 134.8, 134.1, 133.0, 132.5, 132.4, 129.7, 129.6, 129.4, 129.2, 128.3, 128.08, 128.05, 127.8, 127.7, 127.4, 126.6, 126.5, 124.6, 44.9, 41.8, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C35H28NO4S+: 558.1734; found: 558.1737.

6-(4-chlorobenzoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3r**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.8 Hz, 2H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.51 – 7.42 (m, 4H), 7.38 (d, *J* = 6.3 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 6.99 (p, *J* = 6.8 Hz, 3H), 6.86 (d, *J* = 7.2 Hz, 2H), 3.93 (d, *J* = 5.1 Hz, 1H), 3.16 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.85 (d, *J* = 16.4 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 169.1, 145.5, 138.9, 138.2, 137.3, 135.2, 133.4, 133.1, 131.1, 129.7, 129.6, 129.2, 128.4, 128.3, 128.2, 128.1, 127.7, 127.6, 45.0, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25CINO4S+: 542.1191; found: 542.1191.

6-(4-nitrobenzoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**s: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 6.1 Hz, 4H), 7.46 (d, J = 3.9 Hz, 4H), 7.41 – 7.36 (m, 1H), 7.35 (d, J = 8.1 Hz, 2H), 6.98 (t, J = 9.3 Hz, 3H), 6.84 (d, J = 6.8 Hz, 2H), 3.96 (d, J = 3.1 Hz, 1H), 3.17 (dd, J = 16.6, 6.4 Hz, 1H), 2.88 (d, J = 16.6 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 169.0, 149.5, 145.7, 141.5, 138.0, 136.9, 135.0, 134.2, 133.0, 130.6, 129.6, 129.3, 128.8, 128.5, 128.2, 127.8, 127.6, 123.0, 44.9, 41.7, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25N2O6S+: 553.1428; found: 553.1430.

6-(4-methoxybenzoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**t: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.1 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 7.3 Hz, 2H), 7.45 (t, J = 7.4 Hz, 2H), 7.36 (t, J = 7.1 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 6.96 (t, J = 7.1 Hz, 3H), 6.91 (d, J = 4.8 Hz, 2H), 6.68 (d, J = 8.5 Hz, 2H), 3.91 (d, J = 4.1 Hz, 1H), 3.73 (s, 3H), 3.16 (dd, J = 16.5, 6.5 Hz, 1H), 2.83 (d, J = 16.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 169.3,

163.1, 145.2, 138.4, 137.9, 135.4, 133.8, 132.2, 132.0, 129.9, 129.7, 129.5, 129.1, 128.2, 128.1, 128.0, 127.7, 127.6, 113.3, 55.4, 45.0, 41.8, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H28NO5S+: 538.1683; found: 538.1687.

6-(3-bromobenzoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3u**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.92 (m, 3H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.42 (m, 4H), 7.38 (d, *J* = 7.7 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.04 (t, *J* = 7.9 Hz, 1H), 6.98 (d, *J* = 4.4 Hz, 3H), 6.86 (d, *J* = 4.3 Hz, 2H), 3.95 (d, *J* = 3.1 Hz, 1H), 3.15 (dd, *J* = 16.5, 6.4 Hz, 1H), 2.86 (dd, *J* = 16.5, 2.2 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 169.1, 145.5, 138.4, 138.1, 137.3, 135.4, 135.2, 133.6, 133.3, 132.7, 129.7, 129.6, 129.4, 129.2, 128.42, 128.37, 128.3, 128.1, 127.7, 127.6, 122.0, 44.9, 41.7, 21.8. HRMS (FTMS-APCI): [M + H]+ calcd for C31H25BrNO4S+: 586.0682; found: 586.0685.

6-(3-methoxybenzoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**v: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.45 (t, J = 7.9 Hz, 3H), 7.39 – 7.34 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.09 (t, J = 7.9 Hz, 1H), 6.97 (d, J = 6.0 Hz, 3H), 6.89 (d, J = 6.6 Hz, 2H), 6.85 (d, J = 8.2 Hz, 1H), 3.93 (d, J = 5.7 Hz, 1H), 3.74 (s, 3H), 3.18 (dd, J = 16.5, 6.4 Hz, 1H), 2.86 (d, J = 16.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 169.2, 159.0, 145.3, 138.3, 138.0, 137.7, 135.3, 133.7, 132.8, 129.7, 129.5, 129.2, 128.9, 128.2, 128.0, 127.7, 127.6, 122.8, 119.7, 113.7, 55.3, 45.0, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H28NO5S+: 538.1683; found: 538.1685.

6-(2-methylbenzoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3**w: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 7.7 Hz, 1H), 7.41 (d, J = 12.6 Hz, 4H), 7.34 (d, J = 3.8 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 7.3 Hz, 4H), 6.84 (s, 2H), 3.86 (d, J = 3.9 Hz, 1H), 3.15 (dd, J = 16.5, 6.5 Hz, 1H), 2.91 – 2.79 (m, 1H), 2.46 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 169.5, 145.2, 139.9, 138.0, 137.8, 136.0, 135.5, 134.4, 131.9, 131.7, 131.3, 129.8, 129.4, 129.1, 128.0, 127.9, 127.7, 127.4, 125.0, 45.1, 41.5, 21.7, 21.0. HRMS (FTMS-APCI): [M + H]+ calcd for C32H28NO4S+: 522.1734; found: 522.1738.

6-(2-naphthoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3x**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.98 (d, *J* = 7.9 Hz, 2H), 7.89 (d, *J* = 8.6 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 3H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 7.6 Hz, 2H), 6.81 (dt, *J* = 13.6, 7.1 Hz, 3H), 3.96 (d, *J* = 4.1 Hz, 1H), 3.20 (dd, *J* = 16.5, 6.4 Hz, 1H), 2.88 (d, *J* = 16.5 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 169.3, 145.3, 138.4, 137.7, 135.4, 135.3, 134.1, 133.8, 132.9, 132.1, 132.0, 129.7, 129.6, 129.2, 128.3, 128.2, 128.1, 127.8, 127.7, 127.6, 126.4, 125.2, 45.0, 41.8, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C35H28NO4S+: 558.1734; found: 558.1736.

6-(1-naphthoyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3y**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 8.6 Hz, 1H), 8.16 (d, J = 7.2 Hz, 1H), 8.00 (d, J = 7.9 Hz, 2H), 7.72 (dd, J = 14.8, 8.2 Hz, 2H), 7.57 (t, J = 7.7 Hz, 1H), 7.52 – 7.41 (m, 5H), 7.36 (t, J = 6.9 Hz, 1H), 7.29 (t, J = 6.4 Hz, 3H), 6.79 (s, 2H), 6.64 (s, 3H), 3.91 (d, J = 3.1 Hz, 1H), 3.20 (dd, J = 16.6, 6.4 Hz, 1H), 2.91 (d, J = 16.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 169.6, 145.3, 138.0, 137.7, 136.2, 135.8, 135.5, 133.8, 133.4, 133.2, 131.8, 130.9, 129.9, 129.4, 129.1, 128.2, 128.0, 127.8, 127.74, 127.71, 127.3, 126.1, 125.5, 123.9, 45.2, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C35H28NO4S+: 558.1734; found: 558.1736.

6-(benzo[d][1,3]dioxole-5-carbonyl)-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3z**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.9 Hz, 2H), 7.46 (dd, J = 18.3, 7.9 Hz, 5H), 7.33 (dd, J = 21.7, 7.3 Hz, 4H), 7.01 (d, J = 4.8 Hz, 3H), 6.91 (s, 2H), 6.58 (d, J = 8.1 Hz, 1H), 5.90 (d, J = 8.0 Hz, 2H), 3.91 (d, J = 4.3 Hz, 1H), 3.15 (dd, J = 16.4, 6.4 Hz, 1H), 2.82 (d, J = 16.4 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.50, 169.20, 151.4, 147.4, 145.3, 138.4, 137.9, 135.4, 133.6, 132.3, 131.5, 129.7, 129.5, 129.1, 128.2, 128.1, 128.0, 127.6, 109.2, 107.6, 101.7, 45.0, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H26NO6S+: 552.1475; found: 552.1476.

4,5-diphenyl-6-(thiophene-2-carbonyl)-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3a**a: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 3.1 Hz, 1H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.44 (dd, *J* = 12.7, 5.8 Hz, 3H), 7.37 (d, *J* = 7.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 6.7 Hz, 5H), 6.81 (t, *J* = 3.9 Hz, 1H), 3.96 (d, *J* = 4.8 Hz, 1H), 3.16 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.85 (d, *J* = 16.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 169.1, 145.3, 143.7, 138.12, 138.05, 135.3, 134.7, 133.9, 133.8, 132.8, 129.6, 129.5, 129.2, 128.4, 128.2, 128.0, 127.63, 127.57, 44.9, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C29H24NO4S2+: 514.1141; found: 514.1147.

6-acetyl-4,5-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 3ab**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 2H), 7.34 (dt, J = 10.8, 8.6 Hz, 10H), 7.09 (d, J = 6.9 Hz, 2H), 3.86 (d, J = 3.2 Hz, 1H), 3.06 (dd, J = 16.5, 6.3 Hz, 1H), 2.81 (dd, J = 16.5, 1.9 Hz, 1H), 2.42 (s, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 169.2, 145.4, 137.7, 137.6, 136.1, 135.4, 131.5, 129.6, 129.3, 129.2, 128.93, 128.90, 127.9, 127.64, 127.62, 44.5, 41.6, 30.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C26H24NO4S+: 446.1421; found: 446.1422.

methyl 6-oxo-3,4-diphenyl-1-tosyl-1,4,5,6-tetrahydropyridine-2-carboxylate 3ac: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 2H), 7.38 – 7.26 (m, 10H), 7.13 (s, 2H), 3.87 (d, J = 5.5 Hz, 1H), 3.60 (s, 3H), 3.10 (dd, J = 16.4, 6.3 Hz, 1H), 2.83 (d, J = 16.4 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 164.4, 145.3, 138.1, 137.5, 135.4, 134.2, 129.7, 129.2, 129.1, 128.8, 128.3, 127.8, 127.5, 127.1, 52.4, 44.3, 41.1, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C26H24NO5S+: 462.1370; found: 462.1372.

6-benzoyl-4,5-diphenyl-1-(phenylsulfonyl)-3,4-dihydropyridin-2(1*H***)-one 3ad**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.9 Hz, 2H), 7.85 (d, J = 7.7 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.53 – 7.42 (m, 6H), 7.35 (t, J = 7.0 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.18 (t, J = 7.5 Hz, 2H), 6.98 – 6.84 (m, 5H), 3.92 (d, J = 4.8 Hz, 1H), 3.16 (dd, J = 16.5, 6.4 Hz, 1H), 2.85 (d, J = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 169.3, 138.4, 138.2, 137.6, 136.8, 134.2, 133.7, 133.1, 132.8, 129.9, 129.63, 129.55, 128.5, 128.20, 128.18, 128.1, 127.9, 127.8, 127.7, 45.0, 41.7. HRMS (FTMS-APCI): [M + H]+ calcd for C30H24NO4S+: 494.1421; found: 494.1425.

6-benzoyl-1-((4-chlorophenyl)sulfonyl)-4,5-diphenyl-3,4-dihydropyridin-2(1*H***)-one 3ae**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.5 Hz, 2H), 7.83 (d, *J* = 7.6 Hz, 2H), 7.53 – 7.44 (m, 6H), 7.38 (t, *J* = 6.8 Hz, 1H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 2H), 6.96 (d, *J* = 4.9 Hz, 3H), 6.89 (d, *J* = 4.1 Hz, 2H), 3.95 (d, *J* = 3.7 Hz, 1H), 3.18 (dd, *J* = 16.6, 6.4 Hz, 1H), 2.89 (dd, *J* = 16.6, 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 169.4, 140.9, 138.1, 137.4, 136.7, 136.6, 133.6, 133.5, 132.8, 131.2, 129.8, 129.6, 128.8, 128.3, 128.2, 128.1, 127.9, 127.7, 127.6, 45.0, 41.7. HRMS (FTMS-APCI): [M + H]+ calcd for C30H23CINO4S+: 528.1031; found: 528.1033.

6-benzoyl-1-((3-bromophenyl)sulfonyl)-4,5-diphenyl-3,4-dihydropyridin-2(1*H***)-one 3af white solid, ¹H NMR (400 MHz, CDCl₃) \delta 8.25 (s, 1H), 8.01 (d,** *J* **= 8.0 Hz, 1H), 7.84 (d,** *J* **= 7.8 Hz, 2H), 7.73 (d,** *J* **= 7.9 Hz, 1H), 7.48 (q,** *J* **= 7.8 Hz, 4H), 7.37 (t,** *J* **= 7.7 Hz, 2H), 7.30 (t,** *J* **= 7.2 Hz, 1H), 7.19 (t,** *J* **= 7.5 Hz, 2H), 7.00 – 6.86 (m, 5H), 3.96 (d,** *J* **= 4.3 Hz, 1H), 3.19 (dd,** *J* **= 16.6, 6.3 Hz, 1H), 2.94 – 2.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 191.5, 169.4, 140.0, 138.0, 137.4, 137.2, 136.6, 133.6, 133.4, 132.9, 132.4, 130.0, 129.8, 129.6, 128.3, 128.24, 128.20, 128.18, 128.0, 127.7, 127.6, 122.3, 45.0, 41.7. HRMS (FTMS-APCI): [M + H]+ calcd for C30H23BrNO4S+: 572.0526; found: 572.0527.**

6-benzoyl-1-(methylsulfonyl)-4,5-diphenyl-3,4-dihydropyridin-2(1*H***)-one 3ag**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.52 – 7.42 (m, 4H), 7.35 (t, *J* = 7.0 Hz, 1H), 7.25

(t, J = 7.2 Hz, 1H), 7.13 (t, J = 7.4 Hz, 2H), 6.94 (d, J = 5.3 Hz, 3H), 6.88 (s, 2H), 4.00 (s, 1H), 3.39 (s, 3H), 3.25 (dd, J = 17.3, 6.0 Hz, 1H), 2.99 (d, J = 17.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 170.6, 137.9, 137.2, 136.5, 134.5, 133.4, 132.9, 129.7, 129.6, 128.3, 128.2, 128.1, 127.9, 127.8, 127.6, 44.9, 43.1, 41.9. HRMS (FTMS-APCI): [M + H]+ calcd for C25H22NO4S+: 432.1264; found: 432.1268.

6-benzoyl-1-(benzylsulfonyl)-4,5-diphenyl-3,4-dihydropyridin-2(1*H***)-one 3ah**: white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 6.6 Hz, 2H), 7.33 (d, *J* = 9.9 Hz, 4H), 7.25 (s, 1H), 7.13 (t, *J* = 7.5 Hz, 2H), 6.94 (d, *J* = 4.9 Hz, 3H), 6.88 (s, 2H), 5.03 (d, *J* = 13.2 Hz, 1H), 4.77 (d, *J* = 13.1 Hz, 1H), 4.01 (s, 1H), 3.27 (dd, *J* = 17.1, 6.1 Hz, 1H), 3.04 (d, *J* = 17.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 170.9, 137.9, 137.3, 136.7, 134.9, 133.6, 132.8, 131.6, 129.8, 129.5, 129.2, 128.8, 128.3, 128.2, 128.1, 127.9, 127.7, 126.2, 62.3, 44.9, 42.1. HRMS (FTMS-APCI): [M + H]+ calcd for C31H26NO4S+: 508.1577; found: 508.1578.

6-benzoyl-1-(naphthalen-2-ylsulfonyl)-4,5-diphenyl-3,4-dihydropyridin-2(1*H***)-one 3a**i: white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.90 (dd, *J* = 17.4, 9.4 Hz, 4H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.49 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.31 (dd, *J* = 16.1, 7.5 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 6.93 (dd, *J* = 16.8, 4.3 Hz, 5H), 3.91 (d, *J* = 4.1 Hz, 1H), 3.16 (dd, *J* = 16.5, 6.4 Hz, 1H), 2.84 (dd, *J* = 16.4, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 169.3, 138.2, 137.6, 136.8, 135.6, 135.2, 133.7, 133.1, 132.8, 132.1, 131.8, 129.93, 129.89, 129.5, 128.6, 128.21, 128.19, 128.1, 128.0, 127.9, 127.8, 127.6, 127.3, 123.9, 45.0, 41.7. HRMS (FTMS-APCI): [M + H]+ calcd for C34H26NO4S+: 544.1577; found: 544.1580.

6-benzoyl-4,5-diphenyl-1-(thiophen-2-ylsulfonyl)-3,4-dihydropyridin-2(1*H***)-one 3aj**, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 3.3 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 2H), 7.69 (d, *J* = 4.9 Hz, 1H), 7.45 (dt, *J* = 14.9, 7.4 Hz, 4H), 7.34 (t, *J* = 7.0 Hz, 1H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 2H), 7.07 (t, *J* = 4.1 Hz, 1H), 6.99 – 6.92 (m, 3H), 6.89 (d, *J* = 4.7 Hz, 2H), 3.95 (d, *J* = 5.4 Hz, 1Hz, 1Hz), 6.99 – 6.92 (m, 3Hz), 6.89 (d, *J* = 4.7 Hz, 2Hz), 3.95 (d, *J* = 5.4 Hz), 7.67 (t, *J* = 4.1 Hz, 1Hz), 6.99 – 6.92 (m, 3Hz), 6.89 (d, *J* = 4.7 Hz, 2Hz), 7.97 (t, *J* = 4.1 Hz), 7.97

1H), 3.22 (dd, J = 16.6, 6.3 Hz, 1H), 2.91 (d, J = 16.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.0,

169.4, 138.3, 138.1, 137.4, 136.7, 136.5, 135.1, 133.6, 133.4, 132.8, 129.8, 129.5, 128.2, 128.0, 127.9, 127.7, 127.6, 126.9, 44.9, 41.8. HRMS (FTMS-APCI): [M + H]+ calcd for C28H22NO4S2+: 500.0985; found: 500.0987.

5-benzoyl-6-(4-methoxyphenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 5a**, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 2H), 7.85 (d, *J* = 7.5 Hz, 2H), 7.53 – 7.42 (m, 4H), 7.36 (d, *J* = 7.0 Hz, 1H), 7.31 (t, *J* = 7.9 Hz, 3H), 7.21 (t, *J* = 7.4 Hz, 2H), 6.82 (d, *J* = 8.0 Hz, 2H), 6.47 (d, *J* = 8.1 Hz, 2H), 3.90 (d, *J* = 5.2 Hz, 1H), 3.60 (s, 3H), 3.16 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.85 (d, *J* = 16.4 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 169.3, 159.3, 145.2, 138.4, 136.9, 135.4, 133.2, 132.8, 132.7, 129.9, 129.8, 129.7, 129.5, 129.2, 129.1, 128.0, 127.9, 127.6, 113.6, 55.2, 45.1, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H28NO5S+: 538.1683; found: 538.1684.

5-(4-chlorobenzoyl)-6-(4-methoxyphenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 5b**, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.7 Hz, 2H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.50 – 7.42 (m, 4H), 7.36 (d, *J* = 5.8 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 6.80 (d, *J* = 7.8 Hz, 2H), 6.51 (d, *J* = 7.8 Hz, 2H), 3.93 – 3.88 (m, 1H), 3.63 (s, 3H), 3.15 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.84 (d, *J* = 16.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 169.2, 159.5, 145.4, 138.9, 138.3, 135.30, 135.25, 133.0, 132.8, 131.0, 129.6, 129.5, 129.2, 128.3, 128.0, 127.6, 113.8, 55.2, 45.1, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H27ClNO5S+: 572.1293; found: 572.1297.

6-(4-methoxyphenyl)-5-(4-nitrobenzoyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 5**c, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.7 Hz, 2H), 7.78 (d, J = 7.7 Hz, 2H), 7.50 – 7.42 (m, 4H), 7.36 (d, J = 5.8 Hz, 1H), 7.30 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 6.80 (d, J = 7.8 Hz, 2H), 6.51 (d, J = 7.8 Hz, 2H), 3.93 – 3.88 (m, 1H), 3.63 (s, 3H), 3.15 (dd, J = 16.5, 6.3 Hz, 1H), 2.84 (d, J = 16.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 169.2, 159.5, 145.4, 138.9, 138.3, 135.30, 135.25, 133.0, 132.8, 131.0, 129.6, 129.5, 129.2, 128.3, 128.0, 127.6, 113.8, 55.2, 45.1, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C32H27N2O7S+: 583.1533; found: 583.1534.

5-(4-methoxybenzoyl)-6-(4-methoxyphenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1H)-one

5d, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.9 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 7.4 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.86 (d, *J* = 8.2 Hz, 2H), 6.70 (d, *J* = 8.3 Hz, 2H), 6.50 (d, *J* = 8.2 Hz, 2H), 3.88 (d, *J* = 4.9 Hz, 1H), 3.74 (s, 3H), 3.61 (s, 3H), 3.15 (dd, *J* = 16.5, 6.4 Hz, 1H), 2.83 (d, *J* = 16.4 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 169.4, 163.1, 159.2, 145.2, 138.5, 135.5, 133.2, 132.1, 132.0, 130.2, 129.9, 129.6, 129.5, 129.1, 127.9, 127.6, 113.6, 113.3, 55.4, 55.2, 45.1, 41.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C33H30NO6S+: 568.1788; found: 568.1791.

5-benzoyl-4,6-diphenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 5e**, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.8 Hz, 2H), 7.84 (d, J = 7.7 Hz, 2H), 7.53 – 7.43 (m, 4H), 7.36 (t, J = 7.3 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.19 (t, J = 7.5 Hz, 2H), 6.95 (d, J = 4.8 Hz, 3H), 6.89 (s, 2H), 3.93 (d, J = 5.4 Hz, 1H), 3.17 (dd, J = 16.4, 6.4 Hz, 1H), 2.85 (d, J = 16.4 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 169.2, 145.3, 138.3, 137.6, 136.8, 135.3, 133.8, 132.9, 132.7, 129.9, 129.7,

129.5, 129.2, 128.2, 128.1, 128.0, 127.9, 127.74, 127.65, 45.0, 41.8, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C31H26NO4S+: 508.1577; found: 508.1579.

5-acetyl-6-(4-methoxyphenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2(1*H***)-one 5f, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d,** *J* **= 7.9 Hz, 2H), 7.40 – 7.27 (m, 7H), 7.02 (d,** *J* **= 8.0 Hz, 2H), 6.83 (d,** *J* **= 8.0 Hz, 2H), 3.84 (s, 1H), 3.79 (s, 3H), 3.05 (dd,** *J* **= 16.5, 6.2 Hz, 1H), 2.81 (d,** *J* **= 16.5 Hz, 1H), 2.42 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 169.3, 160.1, 145.3, 137.8, 135.6, 135.4, 131.5, 129.6, 129.5, 129.3, 129.2, 129.1, 127.9, 127.6, 114.3, 55.3, 44.6, 41.6, 30.7, 21.7. HRMS (FTMS-APCI): [M + H]+ calcd for C27H26NO5S+: 476.1526; found: 476.1528.**

6-benzoyl-4,5-diphenylpyridin-2(1*H***)-one 6a**, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.7 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.20 (dq, J = 14.1, 7.1 Hz, 5H), 7.01 (d, J = 7.5 Hz, 2H), 6.94 – 6.86 (m, 3H), 6.84 – 6.76 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.9, 162.6, 155.0, 141.2, 137.7, 135.4, 134.2, 133.5, 131.3, 129.6, 128.9, 128.21, 128.15, 128.0, 127.8, 127.5, 122.6, 121.4. HRMS (FTMS-APCI): [M + H]+ calcd for C24H18NO2+: 352.1332; found: 352.1328.

methyl(*E***)-5-((4-methylphenyl)sulfonamido)-6-oxo-3,4,6-triphenylhex-4-enoate 7a**, white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.83 (d, *J* = 7.9 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.32 (dd, *J* = 14.6, 7.6 Hz, 3H), 7.21 (t, *J* = 7.2 Hz, 3H), 7.14 (t, *J* = 7.4 Hz, 2H), 6.97 (t, *J* = 7.3 Hz, 1H), 6.82 (t, *J* = 7.5 Hz, 2H), 6.55 (d, *J* = 7.5 Hz, 2H), 6.16 (d, *J* = 6.9 Hz, 2H), 4.77 (t, *J* = 7.5 Hz, 1H), 3.85 (s, 3H), 2.76 (d, *J* = 7.4 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 174.4, 143.7, 141.7, 138.3, 137.5, 137.4, 134.0, 132.2, 131.0, 130.5, 129.8, 129.2, 128.5, 128.2, 127.8, 127.7, 127.6, 127.3, 127.1, 52.7, 41.2, 35.4, 21.6. HRMS (FTMS-APCI): [M + H]+ calcd for C32H30NO5S+: 540.1839; found: 540.1833.

6-benzoyl-4,5-diphenyl-1-tosylpiperidin-2-one 8a, white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 3H), 7.24 (s, 2H), 7.17 (t, *J* = 7.0 Hz, 2H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.85 (t, *J* = 7.3 Hz, 2H), 6.57 (d, *J* = 7.4 Hz, 2H), 6.20 (d, *J* = 6.5 Hz, 2H), 4.78 (t, *J* = 7.4 Hz, 1H), 4.44 – 4.29 (m, 2H), 2.78 (d, *J* = 7.1 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 173.9, 143.6, 141.7, 138.4, 137.5, 134.0, 132.2, 131.0, 130.5, 129.7, 129.2, 128.5, 128.1, 127.8, 127.6, 127.3, 127.0, 61.7, 41.2, 35.7, 21.6. HRMS (FTMS-APCI): [M + H]+ calcd for C31H28NO4S+: 510.1734; found: 510.1731.

6. The NMR of 2a', 3, 5, 6a, 7a, 8a

7 The HPLC Spectra

HPLC data of compound **3e**: AD-H column, 70:30 hexane:IPA, flow rate 1 mL/min, 254 nm, 25 °C.

HPLC data of compound 3g: AD-H column, 70:30 hexane:IPA, flow rate 1 mL/min,

254 nm, 25 °C.

HPLC data of compound **3j**: AD-H column, 70:30 hexane:IPA, flow rate 1 mL/min, 254 nm, 25 °C.

HPLC data of compound 3k: OD-H column, 70:30 hexane:IPA, flow rate 1 mL/min,

Peak#	Ret. Time	e Area	Area%	
1	8.308	1187.785	2.863	
2	10.580	40297.930	97.137	

HPLC data of compound 3p: AD-H column, 70:30 hexane:IPA, flow rate 1 mL/min,

254 nm, 25 °C.

HPLC data of compound **3ad**: AD-H column, 70:30 hexane:IPA, flow rate 1 mL/min, 254 nm, 25 °C.

HPLC data of compound **3ag**: AD-H column, 70:30 hexane:IPA, flow rate 1 mL/min, 254 nm, 25 °C.

HPLC data of compound 5c: AD-H column, 70:30 hexane:IPA, flow rate 1 mL/min,

Peak#	Ret. Time	Area	Area%
1	14.013	12115.592	49.509
2	34.328	12355.706	50.491
MD1A	13, Sig-250, 4 Bot-off 于性中中440	00%.da	
4 5 6	7 8 9 10	11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 低間时间 (ala)
Peak#	Ret. Time	Area	Area%
1	13.839	11619.161	96.659
2	33.598	401.629 3.34	41

HPLC data of compound 5d: OD-H column, 70:30 hexane:IPA, flow rate 1 mL/min,

254 nm, 25 °C.

HPLC data of compound 8a: OD-H column, 70:30 hexane:IPA, flow rate 1 mL/min, 254 nm, 25 °C.

8 The data of crystal structure

ond precision: C-C = 0.0034 A		Wavelength=0.71073		
Cell:	a=8.671(2)	b=10.576(2)	c=14.370(3)	
	alpha=91.730(4)	beta=99.279(4)	gamma=92.540(3)	
Temperature:	296 K			
	Calculated	Report	ed	
Volume	1298.3(5)	1298.3(5)		
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	C31 H25 N 04 S	C31 H2	5 N 04 S	
Sum formula	C31 H25 N 04 S	C31 H2	5 N 04 S	
Mr	507.58	507.58	507.58	
Dx,g cm-3	1.298	1.298		
Z	2	2	2	
Mu (mm-1)	0.162	0.162		
F000	532.0	532.0		
F000'	532.48			
h,k,lmax	11,13,18	11,13,18		
Nref	5934	5627		
Tmin, Tmax	0.959,0.965	0.703,0.746		
Tmin'	0.959			
Correction meth	od= # Reported T L	imits: Tmin=0.703	Tmax=0.746	
AbsCorr = ?				
Data completene	ess= 0.948	Theta(max) = 27	. 447	
R(reflections)=	0.0486(4216)		wR2(reflections)=	
c = 1 042	No.se-	225	0.1352(5627)	
5 - 1.042	apar= :	555		