Supplementary Information

Electrochemical promoted three-component reaction to unsymmetric thiosulfonates

Hong-Min Lin, Sai-Yan Ren, Fei-Hu Cui,* Ying-Ming Pan and Hai-Tao Tang*

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.

E-mail: cuifeihuhao@163.com, httang@gxnu.edu.cn

Table of Contents

1. General methods	3
2. Chemical experiment procedure	4
2.1 Synthesis of products	4
2.2 Synthesis of Phenyl isothiocyanate derivatives	4
2.3 Optimization of the reaction conditions	5
2.4 Cyclic Voltammetry Experiments	6
3. the HRMS spectra of Molecules	7
4. ¹ H, ¹³ C NMR, ¹⁹ F and MS data of all products	9
4.Copies of ¹³ C and ¹ H NMR spectra for all product	17

1. General methods

Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. Column chromatography on silica gel (300-400 mesh) was carried out using technical grade 60-90 °C petroleum ether and analytical grade EtOAc (without further purification). ¹H and ¹³C spectra were recorded with Bruker Avance III HD (400 MHz) or Bruker Avance NEO (600 MHz) spectrometer with tetramethylsilane as an internal standard. Chemical shifts were reported in ppm. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) or DMSO (2.5 ppm), and ¹³C-NMR spectra were referenced to CDCl₃ (77.0 ppm) or DMSO (39.5 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. LC-MS spectra were recorded on Agilent 6545 Q-TOF LC/MS using electron spray ionization (ESI) source. Cyclic voltammograms were recorded on a CHI 660E potentiostat.

2. Chemical experiment procedure

2.1 Synthesis of products

Add phenyl isothiocyanate **1a** (0.3 mmol, 1.0 equiv.), sodium benzenesulfinate **2a** (0.6 mmol, 2.0 equiv.), methanol **3a** (0.6 mmol, 2.0 equiv.), and ^{*n*}Bu₄NI (0.3 mmol, 1.0 equiv.) into a 10 ml three-neck round-bottomed flask. The flask is equipped with a graphite rod (Φ 8 mm) anode and a graphite rod (Φ 8 mm) cathode. Add CH₃CN (5 mL) and H₂O (0.5 mL) as solvents, and add sodium acetate (0.3 mmol, 1.0 equiv.). Pass a current of 10 mA at room temperature for approximately 6 hours until the substrate is completely consumed (monitored by TLC). Concentrate under reduced pressure and purify by silica gel column chromatography to obtain the product **4a**.

Figure S1. Undivided cell for current controlled electrolysis

2.2 Synthesis of Phenyl isothiocyanate derivatives

Add aniline (5 mmol, 1equiv.), DMF (10 mL), H₂O (15 mL), and potassium carbonate

(5.5 mmol) into a dried 100 mL round-bottom flask and stir for 10 minutes at room temperature. Then, add CS_2 (1.5 mL) and stir at room temperature for 24 hours. After cooling the mixture to 0 °C, add cyanuric chloride (5 mmol) and stir the mixture at 0 °C for 2 hours. Adjust the pH of the mixture to 10 by adding an aqueous solution of sodium hydroxide (10% in H₂O) and stir at 0 °C for 30 minutes. Add DCM (30 mL), wash the resulting solution with H₂O (50 mL), and extract with DCM (20 mL×3). Dry the organic layer with Na₂SO₄, concentrate under reduced pressure, and purify by column chromatography.

2.3 Optimization of the reaction conditions

Entry	Variation from standard conditions	Yield ^b
1	None	82%
2	CH ₂ Cl ₂ /H ₂ O (5/1)	Trace
3	DMSO/H ₂ O (5/1)	32%
4	DMF/H ₂ O (5/1)	27%
5	Acetone/H ₂ O (5/1)	Trace
6	CH ₃ CN/H ₂ O (5/1)	78%
7	CH ₃ CN/H ₂ O (5/0.2)	74%
8	^{<i>n</i>} Bu ₄ NBF ₄ instead of ^{<i>n</i>} Bu ₄ NI	N.R.
9	ⁿ Bu ₄ NClO ₄ instead of ⁿ Bu ₄ NI	N.R.
10	ⁿ Bu ₄ NOAc instead of ⁿ Bu ₄ NI	N.R.
11	ⁿ Bu ₄ NBr instead of ⁿ Bu ₄ NI	Trace
12	Et ₄ NI instead of ⁿ Bu ₄ NI	35%
13	NH ₄ I instead of "Bu ₄ NI	40%
14	NaI instead of "Bu ₄ NI	10%
15	C(+) - Pt(-)	40%
16	C(+) - SS(-)	15%
17	C(+) – Ni(-)	Trace
18	C(+) - Zn(-)	Trace
19	Na ₂ CO ₃ as additive	43%
20	Cs ₂ CO ₃ as additive	27%
21	NaOH as additive	25%
22	DBU as additive	Trace
23	NaOMe as additive	40%
24	'BuONa as additive	Trace

Table S2 Optimization study for electrochemical synthesis of unsymmetric thiosulfonates ^a

25	LiOAc as additive	44%
26	KOAc as additive	21%
27	0.5 equiv. NaOAc instead of 1 equiv.	65%
28	2 equiv. NaOAc instead of 1 equiv.	55%
29	5 mA instead of 10 mA	67%
30	15 mA instead of 10 mA	72%
31	Constant potential: 1.5 V vs. Ag/AgCl	73%
32	50 °C instead of room temperature	76%
33	Reaction under N ₂	75%
34	No electricity	N.R.

2.4 Cyclic Voltammetry Experiments

Scheme S1. cyclic voltammetry experiments. Cyclic voltammograms in an electrolyte solution of ${}^{n}Bu_{4}NI$ (0.1 M) in CH₃CN/H₂O (v/v = 5/0.5) using a glassy carbon disk working electrode (diameter, 3.0 mm), Pt disk and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate: (Blank) ${}^{n}Bu_{4}NI$ (0.1 M) in CH₃CN/H₂O (v/v = 5/0.5); (a) zzThiocarbamate (0.3 mmol); (b) Sodium benzenesulfite (0.3 mmol).

3. the HRMS spectra of Molecules

Figure S2. the HRMS spectra of the TEMPO-trapped product (4-1)

Figure S3. the HRMS spectra of the controls E

Figure S4. the HRMS spectra of the controls D

Figure S5. the HRMS spectra of 4b

4. ¹H, ¹³C NMR, ¹⁹F and MS data of all products

(*Z*)-Benzenesulfonic (methyl (*E*)-phenylcarbonimidic) thioanhydride (**4a**). White solid; Yield = 80%, 73.7 mg (PE/EA = 10:1); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 – 7.95 (m, 2H), 7.70 – 7.66 (m, 1H), 7.60 – 7.56 (m, 2H), 7.30 – 7.26 (m, 2H), 7.15 – 7.10 (m, 1H), 6.77 – 6.74 (m, 2H), 3.93 (s, 3H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 150.7, 145.5, 144.9, 134.3, 129.3, 129.2, 127.9, 125.1, 121.4, 57.3; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₄H₁₄NO₃S₂]⁺ 308.0410, found 308.0411.

(*Z*)-(Methyl (*E*)-phenylcarbonimidic) 4-methylbenzenesulfonic thioanhydride (**4b**). White solid; Yield = 82%, 78.9 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.37 – 7.35 (m, 2H), 7.30 – 7.27 (m, 2H), 7.13 – 7.09 (m, 1H), 6.76 – 6.74 (m, 2H), 3.94 (s, 3H), 2.48 (s, 3H); ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 150.9, 145.6, 144.9, 142.6, 129.7, 129.2, 129.1, 128.0, 125.0, 121.4, 57.22, 21.89; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₆NO₃S₂]⁺ 322.0566, found 322.0565.

(*Z*)-4-Methoxybenzenesulfonic (methyl (*E*)-phenylcarbonimidic) thioanhydride (**4c**). White solid; Yield = 80%, 80.9 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.88 (m, 2H), 7.30 – 7.26 (m, 2H), 7.14 – 7.09 (m, 1H), 7.03 – 6.99 (m, 2H), 6.77 – 6.75 (m, 2H), 3.96 (s, 3H), 3.91 (s, 3H); ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 164.2, 151.1, 145.0, 137.1, 130.4, 129.3, 125.0, 121.4, 114.2, 57.2, 56.0; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₆NO₄S₂]⁺ 338.0515, found 338.0510.

(*Z*)-(Methyl (*E*)-phenylcarbonimidic) 3-methylbenzenesulfonic thioanhydride (**4d**). White solid; Yield = 76%, 73.2 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.37 – 7.35 (m, 2H), 7.31 – 7.28 (m, 2H), 7.12 – 7.05(m, 1H), 6.76 – 6.74 (m, 2H), 3.94 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 151.0, 145.6, 145.0, 142.7, 129.7, 129.3, 129.2, 128.0, 125.0, 121.4, 57.2, 21.9; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₆NO₃S₂]⁺ 322.0566, found 322.0559.

(*Z*)-(Methyl (*E*)-phenylcarbonimidic) 2-methylbenzenesulfonic thioanhydride (**4e**). White solid; Yield = 75%, 72.2 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.98 (m , 2H), 7.67 (m, 1H), 7.58 (m, 2H), 7.16 (m, 1H), 7.10 (m, 1H), 7.04 (m, 1H), 6.60 (m, 1H), 3.96 (s, 3H), 2.07 (s, 3H). ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 150.3, 145.5, 143.5, 134.3, 130.8, 129.5, 129.2, 127.9, 126.6, 125.2, 120.9, 57.2, 17.7; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₆NO₃S₂]⁺ 322.0566, found 322.0563.

(*Z*)-(Methyl (*E*)-phenylcarbonimidic) naphthalene-2-sulfonic thioanhydride (**4f**). White solid; Yield = 71%, 76.1 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.49 – 8.48 (m, 1H), 7.96 – 7.93 (m, 2H), 7.90 – 7.86 (m, 2H), 7.67 – 7.57 (m, 2H), 7.23 – 7.19 (m, 2H), 7.07 – 7.03 (m, 1H), 6.70 – 6.67 (m, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 144.9, 142.2, 135.5, 131.9, 129.9, 129.8, 129.7, 129.4, 129.3, 129.1, 128.2, 128.1, 125.0, 122.5, 121.4, 57.3; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₈H₁₆NO₃S₂]⁺ 358.0566, found 358.0570.

(*Z*)-Cyclopropanesulfonic (methyl (*E*)-phenylcarbonimidic) thioanhydride (**4g**). Yellow oil; Yield =73%, 59.3 mg (PE/EA = 10:1); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.33 – 7.30(m, 2H), 7.16 – 7.12 (m, 1H), 6.85 – 6.82 (m, 2H), 4.11 (s, 3H), 1.48 – 1.44 (m, 2H), 1.23 – 1.19 (m, 2H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 150.9, 145.3, 129.3, 125.1, 121.5, 57.5, 42.1, 8.4; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₁H₁₄NO₃S₂]⁺ 272.0410, found 272.0416.

(*Z*)-(Methyl (*E*)-p-tolylcarbonimidic) 4-methylbenzenesulfonic thioanhydride (**4h**). Yellow oil; Yield = 76%, 76.4 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.37 – 7.34 (m, 2H), 7.12 – 7.07 (m, 3H), 6.66 – 6.64 (m, 2H), 3.93 (s, 3H), 2.47 (s, 3H), 2.31 (s, 3H); ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 150.8, 145.5, 142.7, 142.4, 134.6, 129.9, 129.7, 128.0, 121.2, 57.2, 21.9, 21.0; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₆H₁₈NO₃S₂]⁺ 336.0723, found 336.0720.

(*Z*)-(Methyl (*E*)-(4-methoxyphenyl)carbonimidic) 4-methylbenzenesulfonic thioanhydride (4i). Yellow oil; Yield = 75%, 78.9 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform*d*) δ 7.85 – 7.83 (d, *J* = 8.4 Hz, 2H), 7.36 – 7.34 (m, 2H), 6.83 – 6.79 (m, 2H), 6.71 – 6.67 (m, 2H), 3.92 (s, 3H), 3.77 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.1, 150.9, 145.5, 142.7, 138.1, 129.7, 128.0, 122.5, 114.5, 57.2, 55.5, 21.9; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₆H₁₈NO₄S₂]⁺ 352.0672, found 352.0674.

(*Z*)-(Methyl (*E*)-(4-bromophenyl)carbonimidic) 4-methylbenzenesulfonic thioanhydride (**4j**). Yellow oil; Yield = 71%, 84.8 mg (PE/EA = 10:1); ¹**H NMR** (400 MHz, Chloroform*d*) δ 7.86 – 7.82 (m, 2H), 7.39 – 7.37 (m, 3H), 7.36 – 7.34 (m, 1H), 6.65 – 6.62 (m, 2H), 3.93 (s, 3H), 2.48 (s, 3H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 151.5, 145.8, 144.1, 142.6, 132.3, 129.8, 128.0, 123.2, 118.2, 57.4, 21.9; **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd. for [C₁₅H₁₅BrNO₃S₂]⁺ 399.9671, found 399.9665.

(*Z*)-(Methyl (*E*)-(4-chlorophenyl)carbonimidic) 4-methylbenzenesulfonic thioanhydride (4k). Yellow oil; Yield = 76%, 80.9 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.82 (m, 2H), 7.37 – 7.35 (m, 2H), 7.25 – 7.22 (m, 2H), 6.71 – 6.67 (m, 2H), 3.93 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 151.5, 145.7, 143.5, 142.5, 130.3, 129.7, 129.3, 127.9, 122.7, 57.3, 21.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₅CINO₃S₂]⁺ 356.0176, found 356.0169.

(*Z*)-(Methyl (*E*)-(4-fluorophenyl)carbonimidic) 4-methylbenzenesulfonic thioanhydride (4I). Yellow oil; Yield = 71%, 72.2 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform*d*) δ 7.85 – 7.83 (m, 2H), 7.37 – 7.35 (m, 2H), 6.99 – 6.94 (m, 2H), 6.73 – 6.69 (m, 2H), 3.93 (s, 3H), 2.47(s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.3 (d, *J* = 242), 151.5, 145.7, 142.6, 141.10, 141.07, 129.9, 128.0, 123.0, 122.8, 115.5 (d, *J* = 21.0), 57.3, 21.9; ¹⁹F NMR (376 MHz, DPBP) δ -116.05; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₅FNO₃S₂]⁺ 340.0472, found 340.0473.

(*Z*)-(Methyl (*E*)-(4-(trifluoromethyl)phenyl)carbonimidic) 4-methylbenzenesulfonic thioanhydride (**4m**). Yellow oil; Yield = 72%, 84.0 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.83 (m, 2H), 7.54 –7.52 (m, 2H), 7.38 – 7.36 (m, 2H), 6.86 – 6.84 (m, 2H), 3.96 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 151.8, 148.3, 145.9, 142.5, 129.9, 128.0, 126.5 (d, *J* = 4), 121.8, 57.5, 21.9; ¹⁹F NMR (376 MHz, DPBP) δ -61.90; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₆H₁₅F₃NO₃S₂]⁺ 390.0440, found 390.0440.

(*Z*)-(Methyl (*E*)-o-tolylcarbonimidic) 4-methylbenzenesulfonic thioanhydride (**4n**). Yellow oil; Yield = 74%, 74.4 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.85 (m, 2H), 7.37 – 7.35 (m, 2H), 7.17 – 7.15 (m, 1H), 7.12 – 7.08 (m, 1H), 7.07 – 7.02 (m, 1H), 6.63 – 6.60 (m, 1H), 3.98 (s, 3H), 2.47 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.5, 145.6, 143.5, 142.6, 130.7, 129.7, 129.4, 127.9, 126.6, 125.1, 120.8, 57.2, 21.8, 17.8.; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₆H₁₈NO₃S₂]⁺ 336.0723, found 336.0715.

(*Z*)-(Methyl (*E*)-(2-chlorophenyl)carbonimidic) 4-methylbenzenesulfonic thioanhydride (40). Yellow oil; Yield = 76%, 80.9 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform*d*) δ 7.86 – 7.84 (m, 2H), 7.37 – 7.34 (m, 3H), 7.20 – 7.15 (m, 1H), 7.07 – 7.03 (m, 1H), 6.79 – 6.77 (m, 1H), 3.99 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.7, 145.7, 142.5, 142.2, 130.1, 129.8, 128.0, 127.5, 126.1, 125.9, 122.7, 57.6, 21.9; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₅CINO₃S₂]⁺ 356.0176, found 356.0179.

(*Z*)-(Methyl (*E*)-m-tolylcarbonimidic) 4-methylbenzenesulfonic thioanhydride(**4p**). Yellow oil; Yield = 72%, 72.4 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.37 – 7.35 (m, 2H), 7.17 – 7.14 (m, 1H), 6.94 – 6.92 (m, 1H), 6.57 – 6.53 (m, 2H), 3.93 (s, 3H), 2.48 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.7, 145.5, 144.8, 142.6, 139.2, 129.6, 129.0, 127.9, 125.7, 121.9, 118.3, 57.1, 21.8, 21.4; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₆H₁₈NO₃S₂]⁺ 336.0723, found 336.0717.

(*Z*)-(Methyl (*E*)-(3-chlorophenyl)carbonimidic) 4-methylbenzenesulfonic thioanhydride (4q). Yellow oil; Yield = 77%, 82.0 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.37 – 7.33 (m, 3H), 7.20 – 7.16 (m, 1H), 7.07 – 7.03 (m, 1H), 6.79 – 6.77 (m, 1H), 3.99 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.7, 145.7, 142.5, 142.2, 130.0, 129.7, 128.0, 127.5, 126.1, 125.8, 122.7, 57.6, 21.8.; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₅H₁₅CINO₃S₂]⁺ 356.0176, found 356.0174.

(*Z*)-(Methyl (*E*)-naphthalen-1-ylcarbonimidic) 4-methylbenzenesulfonic thioanhydride (**4r**). Yellow oil; Yield = 73%, 81.2 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.81 (m, 3H), 7.77 – 7.75 (m, 1H), 7.65 – 7.63 (m, 1H), 7.53 – 7.48 (m, 1H), 7.47 – 7.43 (m, 1H), 7.38 – 7.31 (m, 3H), 6.81 – 6.78 (m, 1H), 4.12 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.5, 142.5, 141.3, 134.2, 129.7, 128.1, 127.9, 127.0, 126.6, 126.0, 125.6, 125.3, 123.3, 116.6, 57.5, 21. 9; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₉H₁₈NO₃S₂]⁺ 372.0723, found 372.0724.

(*Z*)-(Ethyl (*E*)-phenylcarbonimidic) 4-methylbenzenesulfonic thioanhydride (**4s**). Yellow oil; Yield = 78%, 78.4 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.86 (m, 2H), 7.36 – 7.34 (m, 2H), 7.29 – 7.26 (m, 2H), 7.13 – 7.10 (m, 1H), 6.79 – 6.75 (m, 2H), 4.41 – 4.37 (m, 2H), 2.47 (s, 3H), 1.37 – 1.34 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.2, 145.5, 145.1, 142.6, 129.6, 129.2, 128.0, 124.9, 121.4, 66.8, 21.9, 14.0; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₆H₁₈NO₃S₂]⁺ 336.0723, found 336.0720.

(*Z*)-(Benzyl (*E*)-phenylcarbonimidic) 4-methylbenzenesulfonic thioanhydride (**4t**). Yellow oil; Yield = 72%, 85.8 mg (PE/EA = 10:1); ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.53(m, 2H), 7.45 – 7.42 (m, 5H), 7.32 – 7.29 (m, 2H), 7.16 – 7.12 (m, 1H), 7.03 – 7.01 (m, 2H), 6.81 – 6.80 (m, 2H), 5.33 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.2, 145.1, 144.9, 142.4, 134.7, 129.6, 129.4, 129.3, 128.9, 128.7, 127.9, 125.05, 121.44, 77.41, 76.91, 72.55, 21.81; **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₂₁H₂₀NO₃S₂]⁺ 398.0879, found 398.0880.

(*Z*)-benzenesulfonic (propyl (*E*)-phenylcarbonimidic) thioanhydride (**4u**). Yellow oil; Yield = 74%, 74.4 mg (PE/EA = 10:1); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.00 – 7.97 (m, 2H), 7.70 – 7.62 (m, 1H), 7.56 (dd, 2H), 7.31 – 7.26 (m, 2H), 7.16 – 7.08 (m, 1H), 6.82 – 6.72 (m, 2H), 4.28 (t, 2H), 1.72 (q, 2H), 0.94 (t, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 150.1, 145.5, 145.1, 134.2, 129.3, 129.2, 127.8, 125.0, 121.5, 72.6, 21.8, 10.5. **HRMS** (ESI-TOF) *m/z*: [M + Na]⁺ Calcd. for [C₁₆H₁₇NO₃S₂Na]⁺ 358.0542, found 358.0524.

(*Z*)-4-chlorobenzenesulfonic (methyl (*E*)-phenylcarbonimidic) thioanhydride. Yellow oil; Yield = 68%, 69.6 mg (PE/EA = 10:1);¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 – 7.95 (m, 2H), 7.70 – 7.65 (m, 1H), 7.58 (m, *m* 2H), 7.35 (m, 1H), 7.18 (m, 1H), 7.08 – 7.03 (m, 1H), 6.77 (m, 1H), 3.98 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 152.4, 145.3, 142.2, 134.4, 130.05, 129.2, 127.9, 127.6, 126.1, 125.9, 122.7, 57.6. **HRMS** (ESI-TOF) *m/z*: [M + Na]⁺ Calcd. for [C₁₄H₁₂ClNO₃S₂Na]⁺ 363.9839, found 363.9831.

(*Z*)-4-bromobenzenesulfonic (methyl (*E*)-phenylcarbonimidic) thioanhydride. Yellow oil; Yield = 68%, 75.1 mg (PE/EA = 10:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.95 (m, 2H), 7.70-7.66 (m, 1H), 7.60-7.56 (m, 2H), 7.36-7.34 (m, 1H), 7.20-7.16 (m, 1H), 7.07-7.03 (m, 1H), 6.78-6.76 (m, 1H), 3.98 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.4, 145.3, 142.15, 134.4, 130.0, 129.2, 127.9, 127.5, 126.1, 125.9, 122.7, 57.6. **HRMS** (ESI-TOF) *m/z*: [M + H]⁺ Calcd. for [C₁₄H₁₂BrNO₃S₂]⁺ 385.9442, found 385.9440.

4.Copies of ¹³C and ¹H NMR spectra for all product

¹H and ¹³C NMR Spectrum of **4a** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4b** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4c** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4d** (400 MHz, Chloroform-d).

¹H and ¹³C NMR Spectrum of **4e** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of 4g (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4h** (400 MHz, Chloroform-*d*).

S25

¹H and ¹³C NMR Spectrum of **4**k (500 MHz, Chloroform-*d*).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H, ¹³C and ¹⁹F NMR Spectrum of **4m** (500 MHz, Chloroform-*d*).

S31

¹H and ¹³C NMR Spectrum of 4n (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **40** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4p** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4q** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4r** (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of 4u (400 MHz, Chloroform-*d*).

¹H and ¹³C NMR Spectrum of **4v** (400 MHz, Chloroform-*d*).

S41