Supporting Information

Selenium Dioxide Promoted Selenylation/Cyclization of

Leucosceptrane Sesterterpenoids

Hao Geng,^a Ran Fu,^{ac} Ting-Ting Zhou,^a Man Li,^a Yan-Chun Liu,^{ac} Xiao-Nian Li,^a Yan Liu,^b Yu Zheng^{*a}, Sheng-Hong Li^{*ab}

^aKey Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China

^bInnovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

Table of Contents

1. General Information	- S2
2. Synthetic Procedures and Characterization Data	- S3
3. X-ray Crystallographic Data	S11
4. Immunosuppressive Activity Analysis	S16
5. Copies of ¹ H and ¹³ C NMR Spectra	S17

1. General Information

Unless otherwise stated, all oxygen or moisture sensitive reactions were conducted in flame-dried glassware under an atmosphere of nitrogen. All solvents were purified and dried according to standard methods prior to use. All reagents were purchased from commercial sources and were used without further purification.

Chromatographic purification of products was accomplished using forced-flow chromatography on 200-300 mesh silica gel. The TLC glass plates were performed on 0.20 mm or 1.0 mm (preparative) silica gel GF254 plates. Visualization was performed using ultraviolet light (254 nm), potassium permanganate (KMnO₄) in EtOH.

¹H and ¹³C NMR spectra were acquired on Bruker Avance III-500, 600, or 800 spectrometers (Bruker Corp., Germany), and TMS was used as internal standard. Chemical shifts were given in parts per million (ppm) with reference to residual solvent signals [¹H NMR: CD_3COCD_3 (2.05); ¹³C NMR: CD_3COCD_3 (206.26, 29.84)]. Peak multiplicities were recorded as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, brs = broad singlet. High resolution mass spectral (HRMS) data were obtained at the mass spectrometry service operated on a Shimadzu UPLC-IT-TOF (Shimadzu Corp., Japan) equipment with electrospray ionization (ESI) and were reported as m/z. Melting points were measured on a WRX-5Amelting point apparatus.

2. Synthetic Procedures and Characterization Data

2.1 Syntheses of compounds 10-13

To a solution of leucosceptroid A (10.0 mg, 0.024 mmol, 1.0 equiv) in 1,4-dioxane (2 mL) was added selenium dioxide (8.0 mg, 0.072 mmol, 3.0 equiv) at room temperature. The resulting solution was stirred at 40 °C for 12 h. Upon complete consumption of the starting material, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The crude residue was purified by reversed-phase semi-preparative HPLC using acetonitrile/water (75/25, v/v) as eluent (flow rate: 3.0 mL/min; column: Aglient SB-C18, 10 × 250 mm; detection: 238 nm) to give compounds **10** (3.0 mg, 24.6% yield, retention times: 17.3 min) as a pale yellow needle crystal, **11** (1.3 mg, 10.3% yield, retention times: 18.8 min) as a pale yellow oil, **12** (1.3 mg, 12.6% yield, retention times: 15.2 min) as a colorless oil, and **13** (1.3 mg, 12.1% yield, retention times: 9.1 min) as a colorless oil.

Compound 10

¹**H NMR** (600 MHz, CD₃COCD₃) δ 9.78 (s, 1H, H-1), 7.21 (d, J = 1.9 Hz, 1H, H-20), 6.12 (d, J = 1.9 Hz, 1H, H-19), 5.74 (s, 1H, H-4), 4.21 (s, 1H, 11-OH), 2.93 (s, H-13, 1H), 2.60 – 2.49

(m, 2H, H-16), 2.46 (s, 3H, Me-21), 2.29 (m, 1H, H-10), 2.19 (m, 1H, H-7), 2.10 (m, 1H, H-6), 2.03 (m, 1H, H-9a), 1.95 (m, 1H, H-15a), 1.92 (m, 1H, H-8a), 1.90 (m, 1H, H-15b), 1.80 (s, 3H, Me-25), 1.78 (m, 1H, H-8b), 1.51 (m, 1H, H-9b), 1.35 (s, 3H, Me-24), 0.91 (d, 3H, *J* = 6.8 Hz, Me-22), 0.88 (d, 3H, *J* = 7.3 Hz, Me-23);

¹³C NMR (151 MHz, CD₃COCD₃) δ 210.7 (s, C-12), 188.9 (d, C-1), 176.4 (s, C-3), 151.4 (s, C-17), 140.8 (d, C-20), 126.0 (s, C-2), 114.3 (s, C-18), 113.6 (d, C-19), 97.2 (s, C-5), 88.8 (s, C-14), 85.6 (s, C-11), 85.2 (d, C-4), 70.9 (d, C-13), 50.6 (d, C-7), 46.7 (d, C-10), 42.4 (d, C-6), 42.3 (t, C-15), 31.6 (t, C-9), 30.7 (t, C-8), 23.5 (q, C-24), 21.6 (t, C-16), 16.6 (q, C-23), 15.2 (q, C-22), 13.6 (q, C-21), 9.7 (q, C-25);

HRMS (ESI): *m/z* calcd for C₂₅H₃₂O₆SeNa [M+Na]⁺ 531.1262, found 531.1260;

Melting point 154 - 156 °C.

Compound 11

¹**H NMR** (600 MHz, CD₃COCD₃) δ 9.79 (s, 1H, H-1), 6.01 (s, 1H, H-19), 5.73 (s, 1H, H-4), 5.40 (t, *J* = 7.6 Hz, 1H, H-16), 4.25 (s, 1H, 11-OH), 2.99 (s, 1H, H-13), 2.84 (m, 1H, H-15a), 2.71 (dd, *J* = 15.1, 7.3 Hz, 1H, H-15b), 2.45 (s, 3H, Me-21), 2.26 (m, 1H, H-10), 2.23 (m, 1H, H-7), 2.16 (s, 3H, Me-25), 1.97 (m, 1H, H-9a), 1.96 (m, 1H, H-6), 1.94 (m, 1H, H-8a), 1.84 (m, 1H, H-8b), 1.51 (m, 1H, H-9b), 1.39 (s, 3H, Me-24), 0.91 (d, *J* = 6.8 Hz, 3H, Me-22), 0.84 (d, *J* = 7.3 Hz, 3H, Me-23);

¹³C NMR (151 MHz, CD₃COCD₃) δ 211.0 (s, C-12), 189.3 (d, C-1), 175.5 (s, C-3), 169.3 (s, C-20), 156.1 (s, C-18), 153.0 (s, C-17), 126.0 (s, C-2), 116.9 (d, C-19), 108.3 (d, C-16), 97.6 (s, C-5), 88.3 (s, C-14), 85.8 (s, C-11), 84.9 (d, C-3), 69.4 (d, C-13), 51.4 (d, C-7), 47.1 (d, C-10), 41.5 (d, C-6), 40.2 (t, C-15), 31.8 (t, C-9), 30.5 (t, C-8), 24.3 (q, C-24), 16.4 (q, C-23), 15.8 (q, C-22), 13.7 (q, C-21), 11.8 (q, C-25);

HRMS (ESI): *m/z* calcd for C₂₅H₃₀O₇SeNa [M+Na]⁺ 545.1054, found 545.1052.

Compound 12

¹**H NMR** (800 MHz, CD₃COCD₃) δ 9.53 (s, 1H, H-1), 7.29 (s, 1H, H-20), 6.88 (d, J = 8.4 Hz, 1H, H-3), 6.18 (s, 1H, H-19), 5.00 (d, J = 8.5 Hz, 1H, H-4), 4.29 (s, 1H, 5-OH), 4.28 (s, 1H, 11-OH), 2.87 (s, 1H, H-13), 2.77 (m, 1H, H-16a), 2.73 (m, 1H, H-16b), 2.31 (m, 1H, H-10), 2.11 (m, 1H, H-7), 2.07 (overlap, 1H, H-15a), 1.97 (m, 1H, H-15b), 1.95 (s, 3H, Me-25), 1.87 (m, 1H, H-6), 1.85 (s, 3H, Me-21), 1.74 – 1.72 (m, 2H, H-8), 1.45 – 1.42 (m, 2H, H-9), 1.28 (s, 3H, Me-24), 0.96 (d, J = 6.8 Hz, 3H, Me-22), 0.85 (d, J = 7.4 Hz, 3H, Me-23);

¹³C NMR (201 MHz, CD₃COCD₃) δ 212.1 (s, C-12), 195.8 (d, C-1), 151.7 (s, C-17), 149.0 (d, C-3), 141.7 (s, C-2), 140.8 (d, C-20), 114.3 (s, C-18), 113.7 (d, C-19), 85.9 (s, C-5), 85.8 (s, C-14), 85.6 (s, C-11), 76.7 (d, C-4), 72.2 (d, C-13), 50.4 (d, C-7), 46.3 (d, C-10), 43.6 (t, C-15), 42.3 (d, C-6), 31.1 (t, C-9), 30.3 (t, C-8), 23.6 (q, C-24), 21.7 (t, C-16), 17.2 (q, C-23), 14.3 (q, C-22), 10.3 (q, C-21), 9.9 (q, C-25);

HRMS (ESI): *m/z* calcd for C₂₆H₃₄O₆Na [M+Na]⁺ 453.2253, found 453.2246.

Compound 13

¹**H NMR** (500 MHz, CD₃COCD₃) δ 9.55 (s, 1H, H-1), 7.29 (d, J = 1.8 Hz, 1H, H-20), 6.95 (d, J = 7.7 Hz, 1H, H-3), 6.18 (d, J = 1.8 Hz, 1H, H-19), 5.25 (d, J = 7.7 Hz, 1H, H-4), 4.51 (s, 1H, 5-OH), 4.44 (dd, J = 12.1, 5.2 Hz, 1H, H-21a), 4.38 (dd, J = 12.1, 6.0 Hz, 1H, H-21b), 4.22 (s, 1H, 11-OH), 3.99 (t, J = 5.7 Hz, 1H, 21-OH), 2.86 (s, 1H, H-13), 2.77 (m, 1H, H-16a), 2.72 (m, 1H, H-16b), 2.30 (dd, J = 10.8, 4.9 Hz, 1H, H-10), 2.21 (m, 1H, H-7), 2.08 (m, 2H, H-15), 2.06 (m, 1H, H-9a), 2.05 (m, 1H, H-8a), 1.95 (s, 3H, Me-25), 1.90 (m, 1H, H-6), 1.74 (m, 1H, H-8b), 1.44 (m, 1H, H-9b), 1.29 (s, 3H, Me-24), 1.05 (d, J = 6.8 Hz, 3H, Me-22), 0.85 (d, J = 7.3 Hz, 3H, Me-23);

¹³C NMR (126 MHz, CD₃COCD₃) δ 212.3 (s, C-12), 195.3 (d, C-1), 151.7 (s, C-17), 150.8 (d, C-3), 144.8 (s, C-2), 140.8 (d, C-20), 114.3 (s, C-18), 113.7 (d, C-19), 86.0 (s, C-5), 85.9 (s, C-11), 85.7 (s, C-14), 77.2 (d, C-4), 72.3 (d, C-13), 55.0 (t, C-21), 50.1 (d, C-7), 46.5 (d, C-10),

43.6 (t, C-15), 42.1 (d, C-6), 31.1 (t, C-9), 30.7 (t, C-8), 23.5 (q, C-24), 21.8 (t, C-16), 17.3 (q, C-23), 14.6 (q, C-22), 9.9 (q, C-25);

HRMS (ESI): *m/z* calcd for C₂₆H₃₄O₆Na [M+Na]⁺ 469.2202, found 469.2207.

2.2 Syntheses of compounds 14-16

To a solution of leucosceptroid G (10.0 mg, 0.023 mmol, 1.0 equiv) in 1,4-dioxane (2 mL) was added selenium dioxide (7.7 mg, 0.069 mmol, 3.0 equiv) at room temperature. The resulting solution was stirred at 40 °C for 12 h. Upon complete consumption of the starting material, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The crude residue was purified by reversed-phase semi-preparative HPLC using acetonitrile/water (60/40, v/v) as eluent (flow rate: 3.0 mL/min; column: Aglient SB-C18, 10 × 250 mm; detection: 238 nm) to give compounds **14** (4.1 mg, 33.8% yield, retention times: 23.6 min) as a pale yellow oil, **15** (1.7 mg, 16.8% yield, retention times: 11.5 min) as a colorless oil, and **16** (2.0 mg, 18.4% yield, retention times: 5.7 min) as a colorless oil.

Compound 14

¹**H NMR** (600 MHz, CD₃COCD₃) δ 9.77 (s, 1H, H-1), 5.78 (s, 1H, H-19), 5.69 (s, 1H, H-4), 4.89 (s, 1H, H-17), 4.23 (s, 1H, 11-OH), 2.91 (s, 1H, H-13), 2.42 (s, 3H, Me-21), 2.28 (m, 1H, H-10), 2.18 (m, 1H, H-7), 2.08 (m, 1H, H-8a), 2.04 (m, 1H, H-16a), 2.01 (m, 1H, H-9a), 1.97 (s, 3H, Me-25), 1.93 (m, 1H, H-6), 1.81 (m, 1H, H-8b), 1.80 (m, 1H, H-15a), 1.67 (m, 1H H-15b), 1.54 (m, 1H, H-16b), 1.52 (m, 1H, H-9b), 1.31 (s, 3H, Me-24), 0.90 (d, *J* = 6.7 Hz, 3H, Me-22), 0.88 (d, *J* = 7.2 Hz, 3H, Me-23);

¹³C NMR (151 MHz, CD₃COCD₃) δ 211.2 (s, C-12), 189.2 (d, C-1), 175.8 (s, C-3), 173.1 (s, C-20), 170.1 (s, C-18), 125.8 (s, C-2), 117.3 (d, C-19), 97.2 (s, C-5), 88.5 (s, C-14), 85.7 (s, C-11), 84.9 (d, C-17), 84.6 (d, C-4), 70.3 (d, C-13), 50.9 (d, C-7), 46.9 (d, C-10), 41.8 (d, C-6), 37.9 (t, C-15), 31.7 (t, C-9), 30.6 (t, C-8), 27.5 (t, C-16), 23.8 (q, C-24), 16.7 (q, C-23), 15.5 (q, C-22), 13.8 (q, C-25), 13.6 (q, C-21);

HRMS (ESI): *m/z* calcd for C₂₅H₃₂O₇SeNa [M+Na]⁺ 547.1211, found 547.1209.

Compound 15

¹**H NMR** (600 MHz, CD₃COCD₃) δ 9.52 (s, 1H, H-1), 6.85 (dd, J = 8.5, 1.5 Hz, 1H, H-19), 5.83 (s, 1H, H-3), 5.03 (brs, 1H, H-17), 4.97 (d, J = 8.6 Hz, 1H, H-4), 4.31 (s, 1H, 5-OH), 4.26 (s, 1H, 11-OH), 2.80 (s, 1H, H-13), 2.30 (m, 1H, H-10), 2.23 (m, 1H, H-16a), 2.15 (overlap, 1H, H-9a), 2.15 (overlap, 1H, H-8a), 2.12 (s, 3H, Me-25), 2.09 (m, 1H, H-7), 1.87 (m, 1H, H-6), 1.86 – 1.84 (m, 2H, H-15), 1.83 (s, 3H, Me-21), 1.72 (m, 1H, H-8b), 1.68 (m, 1H, H-16b), 1.42 (m, 1H, H-9b), 1.24 (s, 3H, Me-24), 0.96 (d, J = 6.7 Hz, 3H, Me-22), 0.84 (d, J = 7.4 Hz, 3H, Me-23);

¹³C NMR (151 MHz, CD₃COCD₃) δ 212.1 (s, C-12), 195.8 (s, C-1), 173.3 (s, C-20), 170.4 (s, C-18), 148.9 (d, C-3), 141.7 (s, C-2), 117.3 (d, C-19), 85.7 (s, C-14), 85.7 (s, C-5), 85.6 (s, C-11), 85.0 (d, C-17), 76.5 (d, C-4), 72.2 (d, C-13), 50.3 (d, C-7), 46.2 (d, C-10), 42.3 (d, C-6), 39.2 (t, C-15), 31.0 (t, C-9), 30.6 (t, C-8), 27.6 (t, C-16), 23.7 (q, C-24), 17.2 (q, C-23), 14.2 (q, C-22), 13.9 (q, C-25), 10.3 (q, C-21);

HRMS (ESI): *m/z* calcd for C₂₅H₃₄O₇Na [M+Na]⁺ 469.2202, found 469.2204.

Compound 16

¹**H NMR** (600 MHz, CD₃COCD₃) δ 9.53 (s, 1H, H-1), 6.93 (d, J = 7.8 Hz, 1H, H-3), 5.83 (t, J = 1.6 Hz, 1H, H-19), 5.22 (d, J = 7.8 Hz, 1H, H-4), 5.03 (dd, J = 7.9, 3.6 Hz, 1H, H-17), 4.51 (s, 1H, 5-OH), 4.41 (dd, J = 12.2, 5.2 Hz, 1H, H-21a), 4.36 (dd, J = 12.2, 6.1 Hz, 1H, H-21b), 4.23 (s, 1H, 11-OH), 3.98 (t, J = 5.7 Hz, 1H, 21-OH), 2.80 (s, 1H, H-13), 2.30 (m, 1H, H-10), 2.27 (m, 1H, H-16a), 2.21 (m, 1H, H-7), 2.12 (s, 3H, Me-25), 2.09 (m, 1H, H-9a), 2.07 (m, 1H, H-8a), 1.88 (m, 1H, H-6), 1.86 – 1.83 (m, 2H, H-15), 1.73 (m, 1H, H-8b), 1.69 (m, 1H, H-16b), 1.43 (m, 1H, H-9b), 1.25 (s, 3H, Me-24), 1.03 (d, J = 7.0 Hz, 3H, Me-22), 0.84 (d, J = 7.5 Hz, 3H, Me-23);

¹³C NMR (151 MHz, CD₃COCD₃) δ 212.3 (s, C-12), 195.3 (d, C-1), 173.3 (s, C-20), 170.4 (s, C-18), 150.6 (d, C-3), 144.7 (s, C-2), 117.3 (d, C-19), 85.8 (s, C-14), 85.7 (s, C-5), 85.6 (s, C-11), 85.0 (d, C-17), 76.9 (d, C-4), 72.2 (d, C-13), 54.9 (t, C-21), 49.9 (d, C-7), 46.4 (d, C-10), 42.0 (d, C-6), 39.2 (t, C-15), 31.0 (t, C-9), 30.6 (t, C-8), 27.6 (t, C-16), 23.7 (q, C-24), 17.3 (q, C-23), 14.4 (q, C-22), 13.9 (q, C-25);

HRMS (ESI): *m/z* calcd for C₂₅H₃₄O₈Na [M+Na]⁺ 485.2151, found 485.2149.

2.3 Syntheses of compounds 17 and 18

To a solution of leucosceptroid N (10.0 mg, 0.023 mmol, 1.0 equiv) in 1,4-dioxane (2 mL) was added selenium dioxide (7.7 mg, 0.069 mmol, 3.0 equiv) at room temperature. The resulting solution was stirred at 40 °C for 12 h. Upon complete consumption of the starting material, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The crude residue was purified by reversed-phase semi-preparative HPLC using acetonitrile/water (80/20, v/v) as eluent (flow rate: 3.0 mL/min; column: Aglient SB-C18, 10 × 250 mm; detection: 238 nm) to give compounds **17** (3.4 mg, 27.2% yield, retention times: 10.4 min) as a yellow needle crystal and **18** (3.7 mg, 45.2% yield, retention times: 18.1 min) as a colorless oil.

Compound 17

¹**H NMR** (800 MHz, CD₃COCD₃) δ 8.57 (s, 1H, H-1), 7.01 (s, 1H, 4-OH), 5.82 (s, 1H, H-19), 4.87 (brs, 1H, H-17), 3.26 (m, 1H, H-6), 3.12 (q, *J* = 7.0 Hz, 1H, H-14), 3.07 (t, *J* = 7.7 Hz, 1H, H-11), 2.75 (m, 1H, H-7), 2.45 (s, 3H, Me-21), 2.08 (s, 3H, Me-25), 2.00 (m, 1H, H-8a), 1.92 (m, 1H, H-10), 1.83 (m, 1H, H-9a), 1.81 (m, 1H, H-16a), 1.65 (m, 1H, H-8b), 1.49 (m, 1H, H-15a), 1.38 (m, 1H, H-9b), 1.25 (m, 1H, H-15b), 1.19 (m, 1H, H-16b), 1.16 (d, *J* = 6.8 Hz, 3H, Me-22), 1.00 (d, *J* = 7.2 Hz, 3H, Me-24), 0.93 (d, *J* = 6.7 Hz, 3H, Me-23);

¹³C NMR (201 MHz, CD₃COCD₃) δ 202.1 (s, C-13), 200.2 (s, C-12), 181.4 (s, C-5), 173.3 (s, C-20), 170.3 (d, C-1), 170.2 (s, C-18), 166.9 (s, C-3), 136.5 (s, C-4), 117.3 (d, C-19), 114.7 (s, C-2), 84.9 (d, C-17), 56.2 (d, C-11), 48.1 (d, C-7), 42.3 (d, C-10), 41.0 (d, C-6), 39.1 (d, C-14), 35.0 (t, C-9), 30.7 (t, C-8), 30.4 (t, C-16), 27.2 (t, C-15), 20.5 (q, C-23), 17.3 (q, C-22), 16.9 (q, C-24), 13.9 (q, C-25), 12.1 (q, C-21);

HRMS (ESI): *m/z* calcd for C₂₅H₃₂O₇SeNa [M+Na]⁺ 547.1211, found 547.1210;

Melting point 72 - 74 °C.

Compound 18

¹**H NMR** (600 MHz, CD₃COCD₃) δ 5.82 (s, 1H, H-19), 4.94 (brs, 1H, H-17), 3.49 (t, *J* = 8.1 Hz, 1H, H-11), 3.36 (m, 1H, H-14), 3.32 (m, 1H, H-7), 2.14 (overlap, 1H, H-10), 2.13 (s, 3H, Me-22), 2.10 (s, 3H, Me-25), 2.09 (m, 1H, H-8a), 1.98 (1H, m, H-16a), 1.89 (m, 1H, H-9a),

1.85 (m, 1H, H-8b), 1.73 (m, 1H, H-15a), 1.49 (m, 1H, H-16b) 1.42 (m, 1H, H-15b), 1.36 (m, 1H, H-9b), 1.09 (d, *J* = 7.1 Hz, 3H, Me-24), 1.01 (d, *J* = 6.7 Hz, 3H, Me-23);

¹³C NMR (151 MHz, CD₃COCD₃) δ 208.7 (s, C-6), 203.4 (s, C-13), 201.5 (s, C-12), 173.2 (s, C-20), 170.2 (s, C-18), 117.3 (d, C-19), 84.7 (d, C-17), 57.1 (d, C-7), 53.6 (d, C-11), 39.5 (d, C-10), 39.3 (d, C-14), 34.6 (t, C-9), 30.0 (t, C-16), 28.9 (t, C-8), 28.5 (q, C-22), 27.4 (t, C-15), 19.9 (q, C-23), 16.3 (q, C-24), 13.8 (q, C-25);

HRMS (ESI): *m/z* calcd for C₁₉H₂₆O₅Na [M+Na]⁺ 357.1678, found 357.1672.

3. X-ray Crystallographic Data

3.1 X-ray crystallographic data of compound 10

Crystal data for **10**: C₂₅H₃₂O₆Se, M = 507.46, a = 11.3051(3) Å, b = 6.2777(2) Å, c = 16.4774(4) Å, $a = 90^{\circ}$, $\beta = 97.2010(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 1160.18(6) Å³, T = 100.(2) K, space group *P*1211, Z = 2, μ (Cu K α) = 2.516 mm⁻¹, 21368 reflections measured, 4464 independent reflections ($R_{int} = 0.0321$). The final R_I values were 0.0398 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1087 ($I > 2\sigma(I)$). The final R_I values were 0.0404 (all data). The final $wR(F^2)$ values were 0.1094 (all data). The goodness of fit on F^2 was 1.050. Flack parameter = 0.031(6).

View of a molecule of **10** with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of **10**. Hydrogen-bonds are shown as dashed lines.

Table S1. Crystal data and structure refinement for 10.

Identification code	global	
Empirical formula	C25 H32 O6 Se	
Formula weight	507.46	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 11.3051(3) Å	<i>α</i> = 90°.
	b = 6.2777(2) Å	$\beta = 97.2010(10)^{\circ}.$
	c = 16.4774(4) Å	$\gamma = 90^{\circ}.$
Volume	1160.18(6) Å ³	
Z	2	
Density (calculated)	1.453 Mg/m ³	
Absorption coefficient	2.516 mm ⁻¹	
F(000)	528	
Crystal size	$0.480 \text{ x } 0.050 \text{ x } 0.030 \text{ mm}^3$	

Theta range for data collection	2.70 to 72.29°.	
Index ranges	-13<=h<=13, -7<=k<=7, -20<=l<=20	
Reflections collected	21368	
Independent reflections	4464 [R(int) = 0.0321]	
Completeness to theta = 72.29°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.93 and 0.34	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4464 / 1 / 296	
Goodness-of-fit on F ²	1.050	
Final R indices [I>2sigma(I)]	R1 = 0.0398, wR2 = 0.1087	
R indices (all data)	R1 = 0.0404, wR2 = 0.1094	
Absolute structure parameter	0.031(6)	
Largest diff. peak and hole	1.177 and -0.305 e.Å ⁻³	

3.2 X-ray crystallographic data of compound 17

Crystal data for 17: C₂₅H₃₂O₇Se, M = 523.46, a = 6.4438(2) Å, b = 9.1435(2) Å, c = 40.8405(11) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2406.28(11) Å³, T = 100.(2) K, space group P212121, Z = 4, μ (Cu Ka) = 2.476 mm⁻¹, 21277 reflections measured, 4724 independent reflections ($R_{int} = 0.0234$). The final R_I values were 0.0190 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0514 ($I > 2\sigma(I)$). The final R_I values were 0.0191 (all data). The final $wR(F^2)$ values were 0.0515 (all data). The goodness of fit on F^2 was 1.075. Flack parameter = 0.039(4).

View of a molecule of **17** with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of 17.

Hydrogen-bonds are shown as dashed lines.

Table S2.	Crystal	data and	structure	refinement	for	17.
-----------	---------	----------	-----------	------------	-----	-----

Identification code	global	
Empirical formula	C25 H32 O7 Se	
Formula weight	523.46	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 6.4438(2) Å	$\alpha = 90^{\circ}$.
	b = 9.1435(2) Å	β= 90°.
	c = 40.8405(11) Å	$\gamma = 90^{\circ}.$
Volume	2406.28(11) Å ³	
Z	4	
Density (calculated)	1.445 Mg/m ³	
Absorption coefficient	2.476 mm ⁻¹	
F(000)	1088	
Crystal size	0.350 x 0.120 x 0.070 mm ³	
Theta range for data collection	2.16 to 72.37°.	
Index ranges	-7<=h<=7, -11<=k<=10, -50<=l<=50	
Reflections collected	21277	
Independent reflections	4724 [R(int) = 0.0234]	
Completeness to theta = 72.37°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.85 and 0.51	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4724 / 0 / 305	
Goodness-of-fit on F ²	1.075	
Final R indices [I>2sigma(I)]	R1 = 0.0190, wR2 = 0.0514	
R indices (all data)	R1 = 0.0191, $wR2 = 0.0515$	
Absolute structure parameter	0.039(4)	
Largest diff. peak and hole	0.257 and -0.222 e.Å ⁻³	

4. Immunosuppressive Activity Analysis

Splenocytes were purified from the spleens of female C57BL/6 mice (6–8 weeks old, sacrificed by cervical dislocation) and cultured in RPMI 1640 medium containing 10% FBS, penicillin (100 U/mL), and streptomycin (100 µg/mL) at 37 °C with 5% CO₂. T cells (4×10^5 cells/well) were cultured in 96-well plates in the presence of anti-CD3 mAb (5 µg/mL) and anti-CD4 mAb (2 µg/mL) for 48 hours with the indicated concentrations (40, 20, 10, 5, and 2.5 µM) of each tested compound. Cyclosporin A (CsA) was used as the positive control. Absorbance values at 450 nm were measured using a micro-plate reader (Molecular Devices). Inhibitory rates were calculated according to the following formula: inhibitory rate = [1 – (Asample – Ablank)/(Asolvent – Ablank)] × 100%. IC₅₀ values were analyzed by log(inhibitor) *vs.* normalized response – Variable slope using Prism 8.0 software.

Compound	Inhibition rate $(\%)^a$	IC ₅₀ (µM)
10	55.63 ± 5.86	5.29
11	77.27 ± 3.39	17.60
14	< 10	-
17	28.09 ± 5.41	-
Leucosceptroid A	17.69 ± 6.58	-
Leucosceptroid G	16.63 ± 4.94	-
Leucosceptroid N	54.32 ± 6.05	9.94
CsA^b	67.31 ± 1.38	2.45 nM

Table S3. Inhibitory Effects of Se-containing Compounds and Leucosceptroids on IFN-γ Secretion of Mouse Splenocytes Induced by Anti-CD3/CD4 Monoclonal Antibodies.

^{*a*}Inhibitory rate was performed at the concentration of 20 μ M. ^{*b*}Cyclosporine A (CsA) was coassayed as a positive control of T cells at the test concentration of 4 nM.

S22

S23

S33

S41

