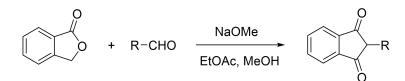
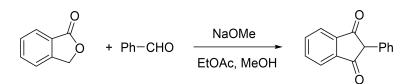
Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

> Construction of Quaternary Alkyl Motifs through Palladium-Catalyzed Oxidative Coupling of 1,3-Dicarbonyl Compounds with Alkenes Followed by C-C Bond Cleavage


Table of Contents

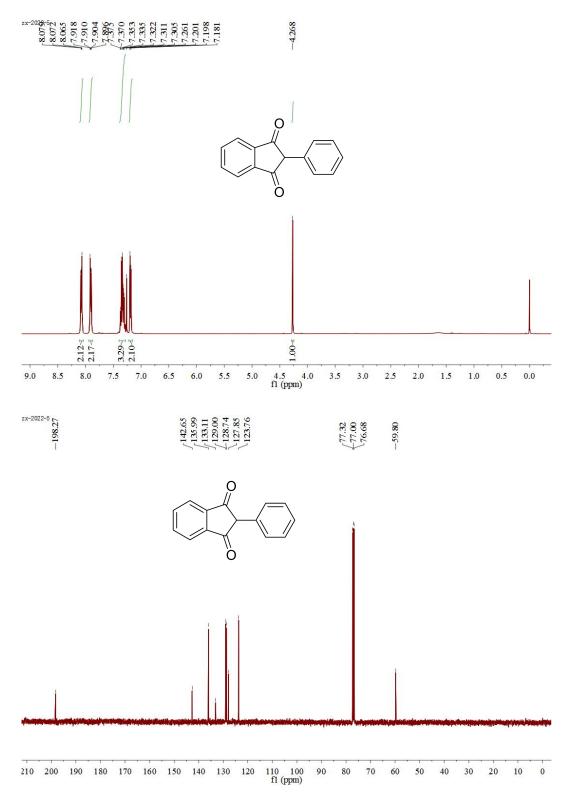
General Methods and Materials2
General Procedure for Preparation of Compounds 2-Aryl-1,3-indandiones 13-5
Screening of Reaction Conditions
General Procedure for Palladium-Catalyzed Oxidative Coupling of 1,3-Dicarbonyl Compounds with Alkenes7
Control Experiments
References16
Characterization data for the products17-26
Copies of ¹ H and ¹³ C NMR spectra of products

General Methods and Materials


Pd(OAc)₂, Cu(OAc)₂, Cu(OAc)₂·H₂O, CuBr, CuBr, SMe₂, CuCl₂, CuCl, CuI, CuI, Cu(acac)₂, Cu(OTf)₂, CuOTf, Cu(TFA)₂, K₂CO₃, K₃PO₄, Cs₂CO₃, Na₂CO₃, NaOMe, NaO'Bu and LiO'Bu were purchased from Energy Chemical and used without further purification. Other chemicals were purchased from commercial suppliers, further dried and purified if necessary. The water used was re-distillated and ion-free. ¹H and ¹³C NMR spectra were achieved on a Bruker AVANCE 400 MHz spectrometer (¹H 400 MHz; ¹³C 100 MHz) in CDCl₃. Abbreviations for data quoted are *s*-singlet; *brs*-broad singlet; *d*-doublet; *t*-triplet; *dd*-doublet of doublets; m-multiplet. High-resolution mass spectra were measured on a Waters Micromass GCT facility. Thin-layer chromatographies were done on pre-coated silica gel 60F254 plates (Merck). Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography.

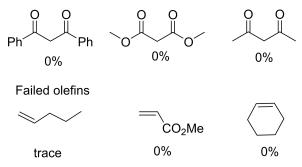
General Procedure for Preparation of Compounds 2-Aryl-1,3-indandiones 1.^[1]

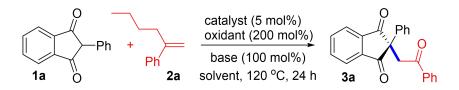
EtOAc (1.8 mL) was added to a suspension of the aldehyde (7.5 mmol, 1.0 equiv.) and the phthalide (7.5 mmol, 1.0 equiv.) in anhydrous MeOH (10 mL), followed by the addition of NaOMe (25% wt in MeOH, 4.0 mL) at room temperature. The mixture was heated under reflux for 3 h and then cooled to room temperature. After concentration *in vacuo*, water (5.0 mL) was added to the residue and the solution was acidified with conc. HCl to pH 1.0. The 2-substituted indanedione was collected by filtration and dried *in vacuo* to give a yellow powder, which was used for the next step without further purification.


The Procedure for the Preparation of 2-Phenyl-1,3-indandione 1a

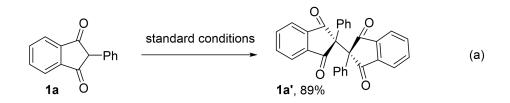
EtOAc (1.8 mL) was added to a suspension of the benzaldehyde (7.5 mmol, 795.0 mg, 1.0 equiv.) and the phthalide (7.5 mmol, 1005.0 mg, 1.0 equiv.) in anhydrous MeOH (10 mL), followed by the addition of NaOMe (25% wt in MeOH, 4.0 mL) at room temperature. The mixture was heated under reflux for 3 h and then cooled to room temperature. After concentration *in vacuo*, water (5.0 mL) was added to the residue and the solution was acidified with conc. HCl to pH 1.0. The 2-substituted indanedione was collected by filtration and dried *in vacuo* to give a yellow powder, which was used for the next step without further purification.


2-Phenyl-1H-indene-1,3(2H)-dione (**1a**)^[1]: Obtained as a yellow solid (1581.8 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.09 - 8.06 (q, 2H), 7.92 - 7.90 (q, 2H), 7.38 - 7.31 (m, 3H), 7.20 - 7.18 (m, 2H), 4.27 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 142.7, 136.0, 133.1, 129.0, 128.7, 127.9, 123.8, 59.8.

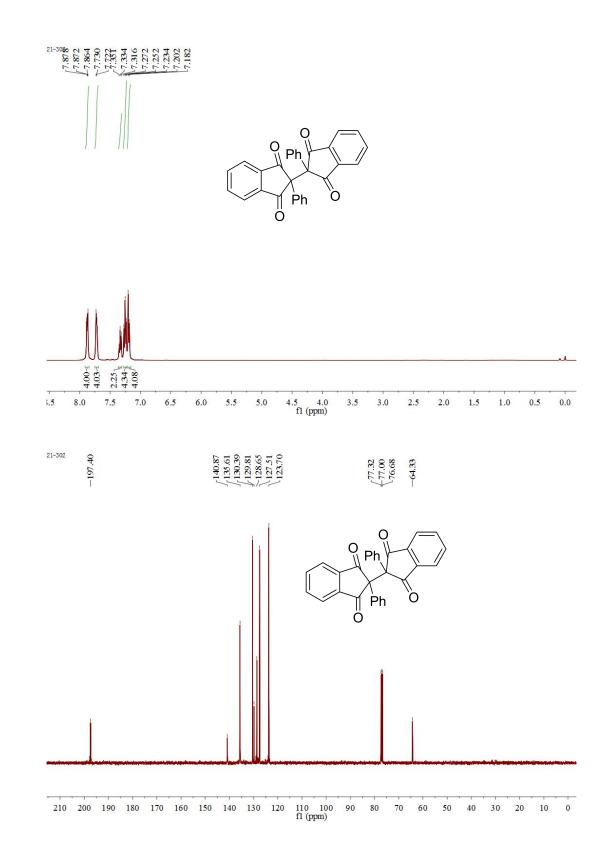

¹H NMR and ¹³C NMR of 1a

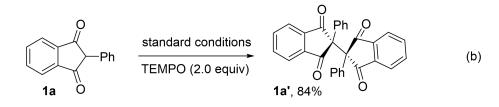

0 + - catalyst (5 mol%) 0 Ph 0 Ph + - - - - Ph - - - Ph - - - Ph -						
entry	catalyst	oxidant	base	solvent	yield (%) ^b	
1	Pd(OAc) ₂	BQ	NaO ^t Bu	toluene	trace	
2	Pd(OAc) ₂	H_2O_2	NaO ^t Bu	toluene	0	
3	Pd(OAc) ₂	TBHP	NaO ^t Bu	toluene	0	
4	Pd(OAc) ₂	O ₂	NaO ^t Bu	toluene	trace	
5	Pd(OAc) ₂	Ag ₂ CO ₃	NaO ^t Bu	toluene	trace	
6	Pd(OAc) ₂	AgOTf	NaO ^t Bu	toluene	17	
7	Pd(OAc) ₂	AgNTf	NaO ^t Bu	toluene	21	
8	PdCl ₂	Cu(OAc) ₂	NaO ^t Bu	toluene	41	
9	Pd ₂ dba ₃	Cu(OAc) ₂	NaO ^t Bu	toluene	trace	
10	Pd(PPh ₃) ₄	Cu(OAc) ₂	NaO ^t Bu	toluene	0	
11	$Pd(acac)_2$	Cu(OAc) ₂	NaO ^t Bu	toluene	28	
12	Pd(TFA) ₂	Cu(OAc) ₂	NaO ^t Bu	toluene	56	

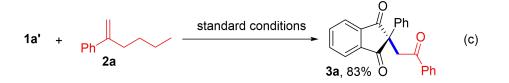
Screening of Reaction Conditions



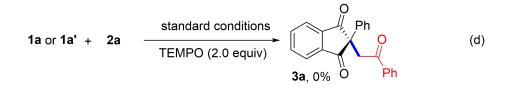
General Procedure for Palladium-Catalyzed Oxidative Coupling of 1,3-Dicarbonyl Compounds with Alkenes

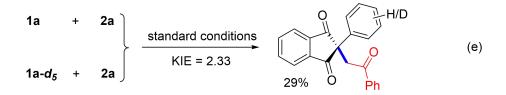

To a dry thick walled pressure resistant tube (25 mL) was charged with 2-phenyl-1,3-indandione **1a** (0.2 mmol), α -n-butylstyrene **2a** (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (2.3 mg, 5.0 mol%), Cu(OAc)₂ (0.4 mmol, 72.4 mg, 2.0 equiv), toluene (2 mL), then the NaO'Bu (0.2 mmol) was added. The tube was closed with a PTFE thread sealing cap. The mixture was stirred at 120 °C in oil bath for 24 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20 : 1) to yield product.

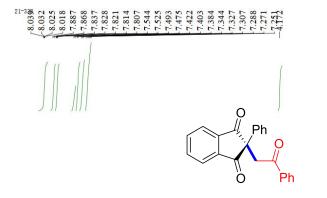

Control Experiments

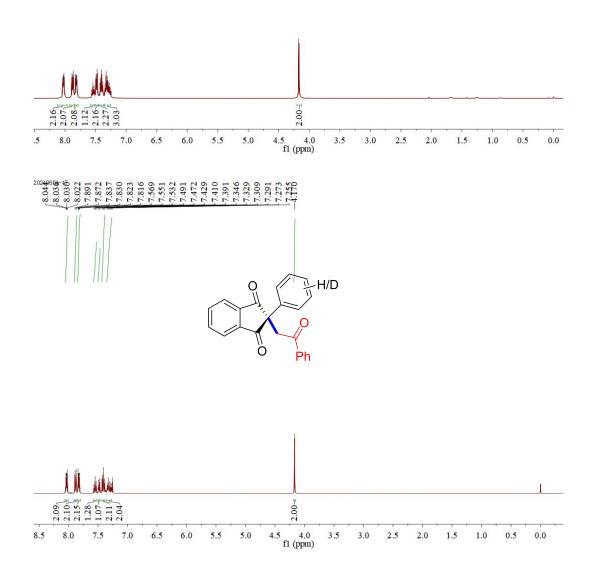

A reaction flask (25 mL) was charged with 2-phenyl-1,3-indandione **1a** (0.2 mmol, 1.0 equiv), Pd(OAc)₂ (2.3 mg, 5.0 mol%), Cu(OAc)₂ (0.4 mmol, 72.4 mg, 2.0 equiv), toluene (2 mL), then the NaO'Bu (0.2 mmol) was added. The mixture was stirred at 120 °C for 8 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 3 : 1) to yield product **1a**' 78.7 mg.

2,2'-Diphenyl-1H,1'H-[2,2'-biindene]-1,1',3,3'(2H,2'H)-tetraone (**1a**'): Obtained as a pale yellow solid (84.0 mg, 76% yield), eluting with 20% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.86 - 7.89 (m, 4H), 7.71 - 7.73 (m, 4H), 7.32 - 7.35 (t, J = 6.8 Hz, 2H), 7.23 - 7.27 (t, J = 8.0 Hz, 4H), 7.18 - 7.20 (d, J = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 197.4, 140.90, 135.6, 130.4, 129.8, 128.7, 127.5, 123.7, 64.3; HRMS (ESI-TOF) m/z calcd for C₃₀H₁₉O₄ [M + H] ⁺ 443.1278, found 443.1275.



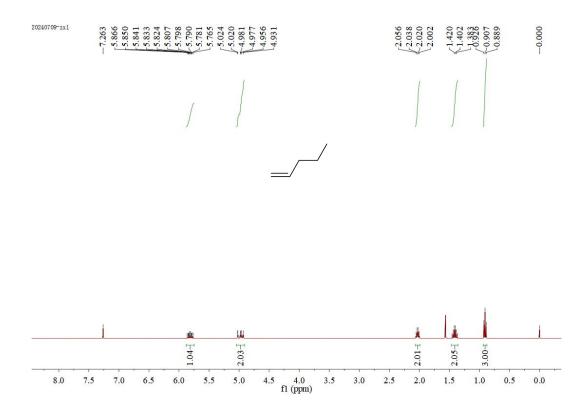

A reaction flask (25 mL) was charged with 2-phenyl-1,3-indandione **1a** (0.2 mmol, 1.0 equiv), Pd(OAc)₂ (2.3 mg, 5.0 mol%), Cu(OAc)₂ (0.4 mmol, 72.4 mg, 2.0 equiv), TEMPO (0.4 mmol, 2.0 equiv), toluene (2 mL), then the NaO'Bu (0.2 mmol) was added. The mixture was stirred at 120 °C for 8 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 3 : 1) to yield product.

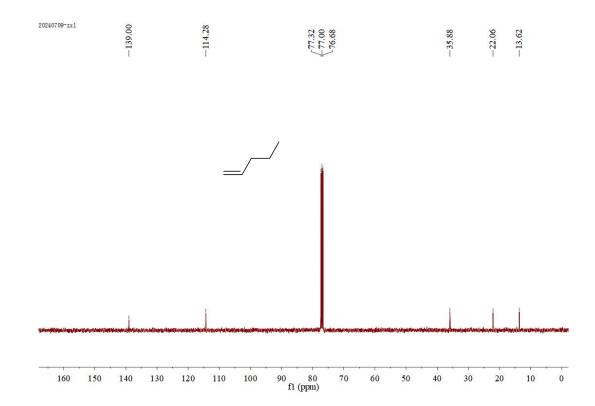

A reaction flask (25 mL) was charged with **1a'** (0.2 mmol, 1.0 equiv), α -n-butylstyrene **2a** (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (2.3 mg, 5.0 mol%), Cu(OAc)₂ (0.4 mmol, 72.4 mg, 2.0 equiv), toluene (2 mL), then the NaO'Bu (0.2 mmol) was added. The tube was closed with a PTFE thread sealing cap. The mixture was stirred at 120 °C in oil bath for 24 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20 : 1) to yield product **3a**.



A reaction flask (25 mL) was charged with **1a'** (0.2 mmol, 1.0 equiv), or 2-phenyl-1,3-indandione **1a** (0.2 mmol, 1.0 equiv), α -*n*-butylstyrene **2a** (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (2.3 mg, 5.0 mol%), Cu(OAc)₂ (0.4 mmol, 72.4 mg, 2.0 equiv), TEMPO (0.4 mmol, 2.0 equiv), toluene (2 mL), then the NaO'Bu (0.2 mmol) was added. The mixture was stirred at 120 °C for 8 hours under an atmosphere of air. After the reaction finished, no desired product of **3a** was detected.

A reaction flask (25 mL) was charged with 2-phenyl-1,3-indandione **1a** (0.1 mmol, 22.2 mg, 1.0 equiv), 2-phenyl- d_5 -1,3-indandione **1a**- d_5 (0.1 mmol, 22.7 mg, 1.0 equiv), α -n-butylstyrene **2a** (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (2.3 mg, 5.0 mol%), Cu(OAc)₂ (0.4 mmol, 72.4 mg, 2.0 equiv), toluene (2 mL), then the NaO'Bu (0.2 mmol) was added. The mixture was stirred at 120 °C in the oil bath for 20 minutes under an atmosphere of air. After the reaction finished, take one tenth of the resulted mixtures for treatment, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20 : 1) to yield product.

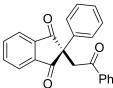


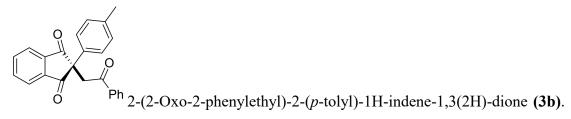

KIE = 1.07 + 2.11 + 2.04/2.16 + 2.27 + 3.03 - 1.07 - 2.11 - 2.04 = 5.22/2.24 = 2.33

1a + Ph
$$3a, 62\%$$
 + $4, 33\%$ (f)
2g $120 \,^{\circ}C, 24 \,^{\circ}h$

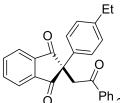
To a dry thick walled pressure resistant tube (25 mL) was charged with 2-phenyl-1,3-indandione **1a** (0.2 mmol), α -n-butylstyrene **2a** (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (2.3 mg, 5.0 mol%), Cu(OAc)₂ (0.4 mmol, 72.4 mg, 2.0 equiv), toluene (2 mL), then the NaO'Bu (0.2 mmol) was added. The tube was closed with a PTFE thread sealing cap. The mixture was stirred at 120 °C in oil bath for 24 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 100 : 1 ~ 20 : 1) to yield product.

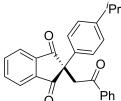
pent-1-ene: Obtained as a pale liquid (36.5 mg, 33% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 5.77 - 5.87 (m, 1H), 4.93 - 5.02 (m, 2H), 2.00 - 2.06 (m, 2H), 1.57 (s, 1H), 1.37 - 1.46 (m, 2H), 0.89 - 0.93 (t, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 114.3, 35.9, 22.1, 13.6.

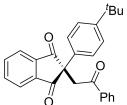


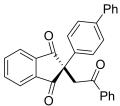

References:

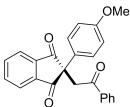
[1] (a) Inoue, K.; Urushibara, K.; Kanai, M.; Yura, K.; Fujii, S.; Ishigami, Y. M.; Hashimoto, M.; Mori, S.; Kawachi, E.; Matsumura, M.; Hirano, T.; Kagechika, H.; Tanatani, A. *Eur. J. Med. Chem.* 2015, *102*, 310 - 319. (b) Cai, L.; Zhang, K.; Chen, S.; Lepage, R. J.; Houk, K. N.; Krenske, E. H.; Kwon, O. *J. Am. Chem. Soc.* 2019, *141*, 9537 - 9542. (c) Zhang, X.; Wang, D.; Chang, M.; Wang, W.; Shen, Z.; Xu, X. *Chem Comm.* 2023, *59*, 12326 - 12329. (d) Shi, Y.; Wang, D.; Sun, R.; Chen, X.; Xu, X.; Xie, H.; Zhang, X. *Adv. Synth. Catal.* 2023, *365*, 741-746.

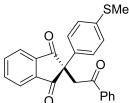

Characterization data for the products

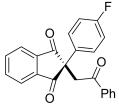

^{*II*} ^{*IPh*} 2-(2-Oxo-2-phenylethyl)-2-phenyl-1H-indene-1,3(2*H*)-dione (**3a**). Obtained as a yellow liquid (57.1 mg, 84% yield), eluting with 10% EtOAc in PE (elution gradient); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 8.02 - 8.04 (q, 2H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.81 - 7.84 (q, 2H), 7.53 - 7.56 (t, 1H), 7.48 (d, *J* = 7.2 Hz, 2H), 7.38 - 7.42 (t, 2H), 7.25 - 7.35 (m, 3H), 4.17 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 200.0, 196.7, 141.7, 135.3, 135.2, 135.0, 133.7, 129.1, 128.6, 128.3, 128.1, 126.9, 123.5, 59.6, 47.3. **HRMS** (ESI-TOF) m/z calcd for C₂₃H₁₇O₃ [M + H] + 341.1172, found 341.1172.

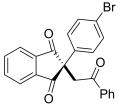

Obtained as a yellow liquid (61.6 mg, 87% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.02 - 8.04 (q, 2H), 7.81 - 7.83 (q, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.26 - 7.34 (m, 3H), 7.20 (d, J = 8.0 Hz, 2H), 4.15 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.1, 196.3, 144.7, 141.8, 135.4, 135.2, 132.7, 129.3, 129.1, 128.4, 128.0, 127.0, 123.5, 59.7, 47.3, 21.7. HRMS (ESI-TOF) m/z calcd for C₂₄H₁₉O₃ [M + H] ⁺ 355.1329, found 355.1332.

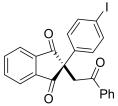

^o Pⁿ2-(4-Ethylphenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-dion e (3c). Obtained as a yellow liquid (63.3 mg, 86% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.01 - 8.03 (q, 2H), 7.87 (d, J = 8.0 Hz, 2H), 7.80 - 7.82 (m, 2H), 7.52 - 7.56 (t, 1H), 7.38 - 7.42 (t, 4H), 7.16 (d, J = 8.0 Hz, 2H), 4.15 (s, 2H), 2.56 - 2.61 (q, 2H), 1.16 - 1.20 (t, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.2, 196.7, 144.2, 141.7, 135.2, 135.0, 133.7, 132.4, 128.7, 128.6, 128.3, 126.8, 123.5, 59.4, 47.3, 28.3, 15.3; HRMS (ESI-TOF) m/z calcd for C₂₅H₂₁O₃ [M + H] ⁺ 369.1485, found 369.1482.

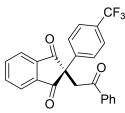

^O ^{Pn} 2-(4-Isopropylphenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H) -dione **(3d)**. Obtained as a yellow solid (67.2 mg, 88% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.01 - 8.04 (q, 2H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.80 - 7.83 (m, 2H), 7.53 - 7.56 (t, 1H), 7.38 - 7.42 (m, 4H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.15 (s, 2H), 2.81 - 2.88 (m, 1H), 1.20 (s, 3H), 1.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 196.8, 148.8, 141.8, 135.2, 133.7, 132.6, 128.6, 128.3, 127.2, 126.9, 123.5, 59.4, 47.3, 33.6, 23.8; **HRMS** (ESI-TOF) m/z calcd for C₂₆H₂₃O₃ [M + H] ⁺ 383.1642, found 383.1644.

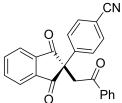

O 2-(4-(Tert-butyl)phenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2 H)-dione (3e). Obtained as a yellow solid (71.3 mg, 90% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.01 - 8.03 (q, 2H), 7.87 (d, J = 7.2 Hz, 2H), 7.79 - 7.81 (m, 2H), 7.51 - 7.55 (t, 1H), 7.37 - 7.41 (m, 4H), 7.33 (d, J = 8.4 Hz, 2H), 4.15 (s, 2H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.1, 196.7, 151.0, 141.8, 135.2, 133.7, 132.2, 128.6, 128.3, 126.6, 126.1, 123.5, 59.4, 47.2, 34.4, 31.1; HRMS (ESI-TOF) m/z calcd for C₂₇H₂₅O₃ [M + H] ⁺ 397.1798, found 397.1795.

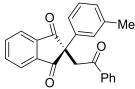

C $^{\text{Pn}}$ 2-([1,1'-Biphenyl]-4-yl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2 H)-dione **(3f)**. Obtained as a yellow solid (76.5 mg, 92% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.03 - 8.05 (q, 2H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.80 - 7.82 (q, 2H), 7.51 - 7.55 (m, 7H), 7.38 - 7.42 (t, 4H), 7.33 (d, *J* = 7.2 Hz, 1H), 4.20 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.0, 196.6, 141.7, 141.0, 140.0, 135.3, 135.0, 134.2, 133.7, 128.8, 128.6, 128.3, 127.8, 127.6, 127.3, 127.0, 123.5, 59.4, 47.3; HRMS (ESI-TOF) m/z calcd for C₂₉H₂₁O₃ [M + H] ⁺ 417.1485, found 417.1482.

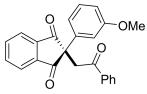

O 2-(4-methoxyphenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H) -dione (**3g**): Obtained as a yellow solid (57.7 mg, 78% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.82 - 7.85 (q, 2H), 7.66 - 7.70 (q, 2H), 7.43 - 7.45 (m, 2H), 7.00 - 7.11 (m, 5H), 6.85 - 6.88 (m, 2H), 3.77 (s, 2H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 201.4, 159.1, 142.1, 135.6, 130.4, 129.0, 128.1, 128.0, 126.7, 123.2, 114.2, 63.2, 55.2, 42.0; HRMS (ESI-TOF) m/z calcd for C₂₄H₁₉O₄ [M + H] ⁺ 371.1278, found 371.1276.

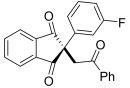

O 2-(4-(Methylthio)phenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3 (2H)-dione (**3h**). Obtained as a yellow liquid (61.0 mg, 79% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.93 - 7.95 (q, 2H), 7.79 (d, J = 7.2 Hz, 2H), 7.73 - 7.75 (m, 2H), 7.45 - 7.48 (t, 1H), 7.30 - 7.34 (m, 4H), 7.11 (d, J = 8.0 Hz, 2H), 4.05 (s, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 199.9, 196.6, 141.7, 139.0, 135.3, 135.0, 133.7, 131.8, 128.6, 128.3, 127.3, 126.9, 123.5, 59.2, 47.2, 15.5; **HRMS** (ESI-TOF) m/z calcd for C₂₄H₁₉O₃S [M + H] ⁺ 387.1049, found 387.1046.

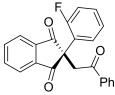

^O ^{Pn} 2-(4-Fluorophenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-di one **(3i)**. Obtained as a yellow liquid (51.6 mg, 72% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.01 - 8.04 (m, 2H), 7.81 - 7.88 (m, 4H), 7.52 - 7.56 (t, 1H), 7.45 - 7.49 (m, 2H), 7.38 - 7.42 (m, 2H), 6.99 - 7.03 (m, 2H), 4.14 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.0, 196.5, 162.4 (d, *J* = 246.7 Hz), 141.5, 135.4, 134.8, 133.8, 130.8 (d, *J* = 3.2 Hz), 128.7 (d, *J* = 8.2 Hz), 128.6, 128.3, 123.5, 116.0 (d, *J* = 21.3 Hz), 58.8, 47.4; ¹⁹F NMR (400 MHz, CDCl₃) δ -116.1; HRMS (ESI-TOF) m/z calcd for C₂₃H₁₆FO₃ [M + H] + 359.1078, found 359.1075.

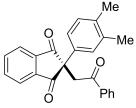

O Pⁿ 2-(4-Bromophenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-di one **(3j)**. Obtained as a yellow solid (61.9 mg, 74% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.03 - 8.05 (q, 2H), 7.84 -7.88 (m, 4H), 7.66 (s, 1H), 7.54 - 7.58 (t, 1H), 7.41 - 7.43 (m, 4H), 7.17 - 7.21 (t, 1H), 4.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.0, 196.7, 141.7, 135.3, 135.0, 133.8, 133.2, 132.6, 132.4, 129.0, 128.6, 128.3, 128.1, 127.5, 126.6, 126.5, 126.3, 124.2, 123.6, 59.8, 47.3. **HRMS** (ESI-TOF) m/z calcd for C₂₃H₁₆O₃Br [M + H] ⁺ 419.0277, found 419.0279.


^O ^{Ph} 2-(4-Iodophenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-dion e (**3k**): Obtained as a yellow liquid (72.7 mg, 78% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.01 - 8.03 (m, 2H), 7.81 -7.87 (m, 4H), 7.64 (d, J = 8.0 Hz, 2H), 7.52 - 7.56 (t, 1H), 7.38 - 7.42 (t, 2H), 7.23 (d, J = 8.0 Hz, 2H), 4.12 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 199.6, 196.4, 141.6, 138.2, 135.4, 135.0, 134.9, 133.8, 128.8, 128.6, 128.3, 123.5, 94.2, 59.1, 47.2; HRMS (ESI-TOF) m/z calcd for C₂₃H₁₆IO₃ [M + H] ⁺ 467.0139, found 467.0141.

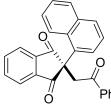

O Ph 2-(2-Oxo-2-phenylethyl)-2-(4-(trifluoromethyl)phenyl)-1H-indene -1,3(2H)-dione (**3I**): Obtained as a yellow solid (53.0 mg, 65% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.03 - 8.05 (q, 2H), 7.99 (d, J = 8.4 Hz, 2H), 7.83 - 7.85 (m, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 7.6 Hz, 2H), 7.26 - 7.36 (m, 3H), 4.16 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 199.8, 195.9, 141.6, 137.6, 135.5, 134.9 (J, t = 15.6 Hz), 129.3, 128.6, 128.2, 126.9, 125.7 (q, t = 3.6 Hz), 123.5 (q, t = 271.3 Hz), 123.4, 59.6, 47.2. ¹⁹F NMR (400 MHz, CDCl₃) δ -57.8; HRMS (ESI-TOF) m/z calcd for C₂₄H₁₆F₃O₃ [M + H] + 409.1046, found 409.1047.


 $^{\circ}$ ^{Ph} 4-(1,3-Dioxo-2-(2-oxo-2-phenylethyl)-2,3-dihydro-1H-inden-2-yl) benzonitrile (**3m**): Obtained as a yellow solid (46.7 mg, 64% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.03 - 8.07 (m, 2H), 7.86 - 7.90 (m, 4H), 7.56 - 7.66 (m, 5H), 7.41 - 7.45 (t, 2H), 4.14 (s, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm: 199.2, 196.0, 141.6, 140.5, 135.7, 134.7, 134.0, 132.8, 128.7, 128.3, 127.9, 123.7, 118.2, 112.2, 59.3, 47.4; **HRMS** (ESI-TOF) m/z calcd for C₂₄H₁₆NO₃ [M + H] ⁺ 366.1125, found 366.1123.

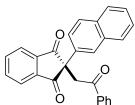

(3n). Obtained as a yellow solid (63.0 mg, 89% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.02 - 8.04 (q, 2H), 7.88 (d, J = 7.6 Hz, 2H), 7.81 - 7.83 (q, 2H), 7.53 - 7.56 (t, 1H), 7.39 - 7.42 (t, 2H), 7.25 - 7.29 (m, 2H), 7.19 - 7.22 (t, 1H), 7.08 (d, J = 7.6 Hz, 1H), 4.15 (s, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.1, 196.7, 141.8, 139.0, 135.2, 135.1, 133.7, 129.0, 128.8, 128.6, 128.3, 127.5, 124.0, 123.5, 59.7, 47.3, 21.5; HRMS (ESI-TOF) m/z calcd for C₂₄H₁₉O₃ [M + H] ⁺ 355.1329, found 355.1325.


^o Ph 2-(3-Methoxyphenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-dione (**3o**). Obtained as a yellow solid (61.4 mg, 83% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.93 - 7.96 (q, 2H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.73 - 7.75 (q, 2H), 7.45 - 7.49 (m, 1H), 7.31 - 7.35 (t, 2H), 7.13 - 7.18 (t, 1H), 6.95 - 6.97 (m, 2H), 6.72 - 6.74 (m, 1H), 4.08 (s, 2H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 199.9, 196.7, 160.1, 141.8, 136.7, 135.3, 135.1, 133.7, 130.1, 128.6, 128.3, 123.5, 119.1, 113.4, 112.9, 59.6, 55.3, 47.3; HRMS (ESI-TOF) m/z calcd for C₂₄H₁₉O₄ [M + H] + 371.1278, found 371.1276.

^O ^{Ph} 2-(3-Fluorophenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-d ione (**3p**). Obtained as a yellow solid (47.3 mg, 66% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.02 - 8.05 (m, 2H), 7.83 - 7.88 (m, 4H), 7.54 - 7.57 (t, 1H), 7.39 - 7.43 (t, 2H), 7.22 - 7.32 (m, 3H), 6.95 -7.00 (m, 1H), 4.15 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 199.5, 196.4, 163.0 (d, *J* = 246.0 Hz), 141.7, 137.6 (d, *J* = 7.3 Hz), 135.5, 135.0, 133.8, 130.6 (d, *J* = 8.2 Hz), 128.6, 128.3, 123.6, 122.6 (d, *J* = 3.0 Hz), 115.1 (d, *J* = 20.8 Hz), 114.4 (d, *J* = 23.2 Hz), 59.2, 47.3; ¹⁹F NMR (400 MHz, CDCl₃) δ -117.7; HRMS (ESI-TOF) m/z calcd for C₂₃H₁₆FO₃ [M + H] ⁺ 359.1078, found 359.1075.

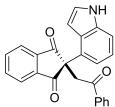


⁶ P^h 2-(2-Fluorophenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-dio ne **(3q)**. Obtained as a yellow solid (43.7 mg, 61% yield), eluting with 10% EtOAc in PE (elution gradient); mp 217-219 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.03 -8.07 (m, 2H), 7.89 - 7.91 (m, 2H), 7.83 - 7.87 (m, 2H), 7.54 - 7.58 (t, 1H), 7.40 - 7.44 (t, 2H), 7.34 - 7.39 (m, 1H), 7.23 - 7.29 (m, 1H), 7.09 - 7.13 (m, 1H), 6.98 - 7.03 (m, 1H), 4.38 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 199.2, 196.6, 160.7 (d, J =249.0 Hz), 142.0 (d, J = 1.7 Hz), 135.2, 135.1, 133.8, 130.0 (d, J = 8.8 Hz), 129.5 (d, J = 4.0 Hz), 128.6, 128.3, 124.8 (d, J = 3.2 Hz), 123.4, 123.0 (d, J = 12.4 Hz), 117.0 (d, J = 23.2 Hz), 57.8 (d, J = 3.9 Hz), 44.1 (d, J = 3.7 Hz); ¹⁹F NMR (400 MHz, CDCl₃) δ -105.5; HRMS (ESI-TOF) m/z calcd for C₂₃H₁₆FO₃ [M + H] + 359.1078, found 359.1077.



2-(3,4-Dimethylphenyl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(

2H)-dione (**3r**). Obtained as a yellow solid (66.2 mg, 90% yield), eluting with 10% EtOAc in PE (elution gradient); mp 221-223 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.99 - 8.02 (q, 2H), 7.87 (d, J = 7.2 Hz, 2H), 7.78 - 7.80 (q, 2H), 7.51 - 7.55 (t, 1H), 7.37 - 7.41 (t, 2H), 7.24 (d, J = 2.0 Hz, 1H), 7.18 - 7.20 (m, 1H), 7.08 (d, J = 8.0 Hz, 1H), 4.14 (s, 2H), 2.22 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.1, 196.8, 141.7, 137.6, 136.7, 135.2, 135.1, 133.7, 132.6, 130.3, 128.6, 128.3, 127.9, 124.3, 123.5, 59.4, 47.3, 19.9, 19.2; HRMS (ESI-TOF) m/z calcd for C₂₅H₂₁O₃ [M + H] ⁺ 369.1485, found 369.1482.



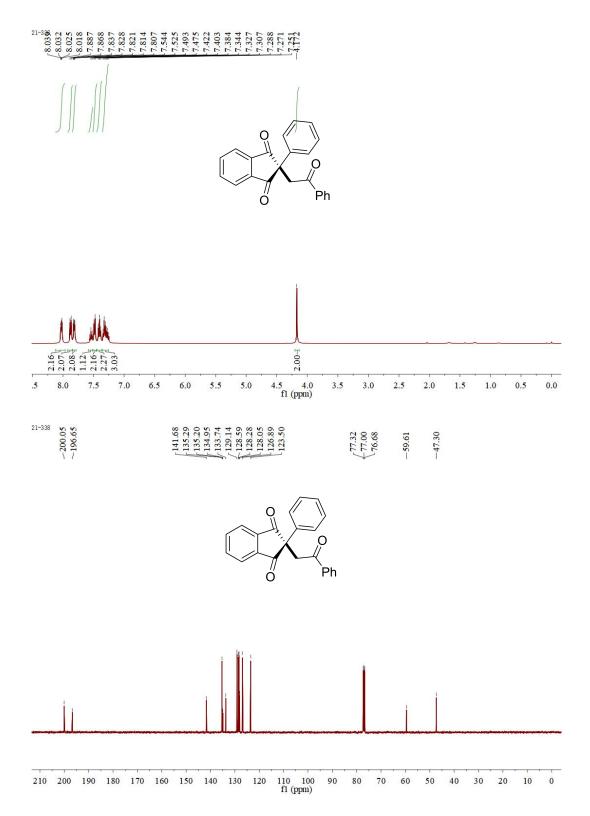
^o ^{Ph} 2-(Naphthalen-1-yl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-di one **(3s)**. Obtained as a yellow liquid (60.1 mg,77% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.05 - 8.07 (q, 2H), 7.77 - 7.79 (m, 8H), 7.69 (d, J = 8.4 Hz, 1H), 7.53 - 7.57 (t, 1H), 7.39 - 7.47 (m, 4H), 4.26 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.0, 196.7, 141.7, 135.3, 135.0, 133.8, 133.2, 132.6, 132.4, 129.0, 128.6, 128.3, 128.1, 127.5, 126.6, 126.5, 126.3, 124.2, 123.6, 59.8, 47.3; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₉O₃ [M + H] ⁺ 391.1329, found 391.1325.

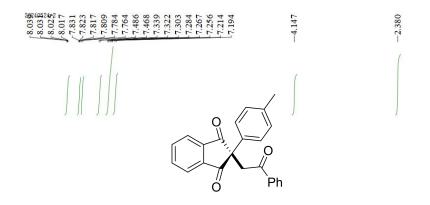
2-(Naphthalen-2-yl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)

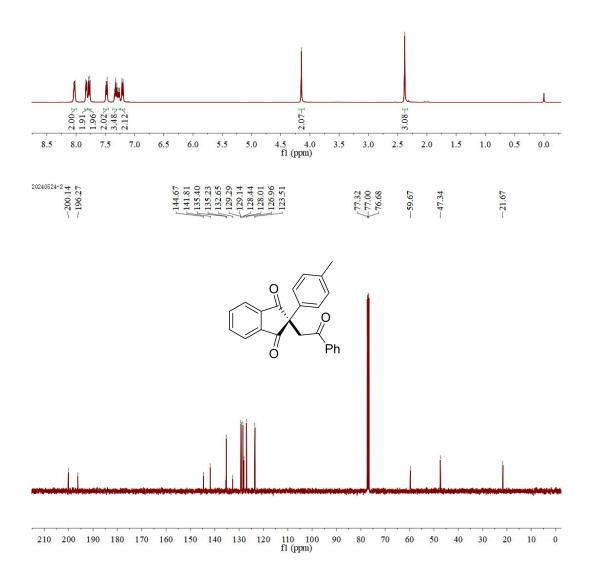
-dione **(3t)**. Obtained as a yellow solid (71.0 mg, 91% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.03 - 8.06 (q, 2H), 7.86 - 7.89 (m, 3H), 7.76 - 7.84 (m, 5H), 7.68 - 7.70 (q, 1H), 7.52 - 7.55 (t, 1H), 7.44 - 7.46 (m, 2H), 7.38 - 7.42 (t, 2H), 4.26 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 200.0, 196.6, 141.6, 135.3, 134.9, 133.8, 133.2, 132.6, 132.4, 129.0, 128.6, 128.3, 128.1, 127.4, 126.6, 126.5, 126.3, 124.2, 123.6, 59.8, 47.3. **HRMS** (ESI-TOF) m/z calcd for C₂₇H₁₉O₃ [M + H] ⁺ 391.1329, found 391.1326.

O ph 2-(1H-indol-4-yl)-2-(2-oxo-2-phenylethyl)-1H-indene-1,3(2H)-dion e (**3u**): Obtained as a yellow solid (66.7 mg, 88% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.46 (s, 1H), 7.99 - 8.01 (q, 2H), 7.89 (d, J = 7.2 Hz, 2H), 7.76 - 7.79 (q, 2H), 7.52 - 7.55 (t, 1H), 7.37 - 7.41 (t, 2H), 7.27 (d, J = 8.0 Hz, 1H), 7.22 - 7.25 (m, 2H), 7.01 - 7.05 (t, 1H), 6.92 (d, J = 7.2Hz, 1H), 4.50 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 199.9, 197.3, 141.7, 137.0, 135.3, 135.1, 133.6, 128.6, 128.3, 126.9, 125.7, 124.7, 123.5, 122.1, 119.4, 111.7, 103.3, 62.1, 44.1; HRMS (ESI-TOF) m/z calcd for C₂₅H₁₈NO₃ [M + H] ⁺ 380.1281, found 380.1283.

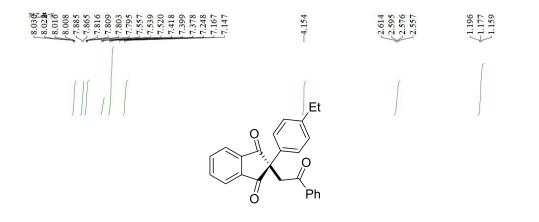
^{NO} 2-Methyl-2-(2-oxo-2-phenylethyl)cyclopentane-1,3-dione (**3v**): Obtained as a yellow solid (30.8 mg, 67% yield), eluting with 10% EtOAc in PE (elution gradient); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.80 (d, J = 7.6 Hz, 2H), 7.48 - 7.52 (t, 1H), 7.34 - 7.38 (t, 2H), 3.65 (s, 2H), 2.93 - 3.03 (m, 2H), 2.79 - 2.90 (m, 2H), 1.10 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 216.5, 197.4, 134.7, 133.9, 128.6, 128.3, 52.4, 47.6, 34.7, 19.5; **HRMS** (ESI-TOF) m/z calcd for C₁₄H₁₅O₃ [M + H] ⁺ 231.1016, found 231.1018.

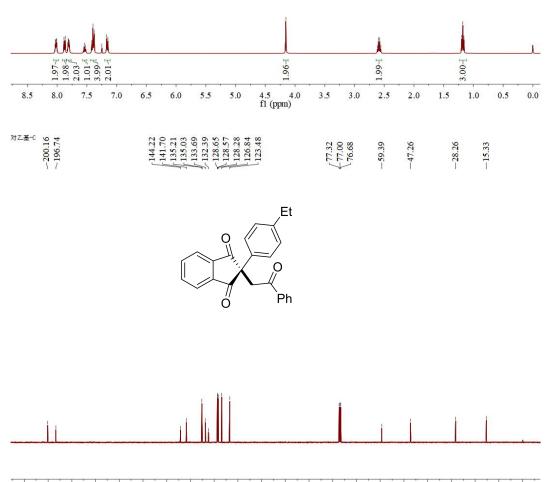

^O 2-Methyl-2-(2-oxo-2-phenylethyl)cyclohexane-1,3-dione (**3w**): Obtained as a yellow solid (34.6 mg, 71% yield), eluting with 10% EtOAc in PE (elution gradient); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.92 (d, J = 8.0 Hz, 2H), 7.54 - 7.57 (t, 1H), 7.42 - 7.46 (t, 2H), 3.81 (s, 2H), 2.70 - 2.84 (m, 4H), 2.31 - 2.42 (m, 1H), 2.11 - 2.18 (m, 1H), 1.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 210.7, 197.8, 135.6, 133.5, 128.5, 128.2, 60.0, 46.0, 37.7, 23.2, 17.5; HRMS (ESI-TOF) m/z calcd for C₁₅H₁₇O₃ [M + H] ⁺ 245.1172, found 245.1171.

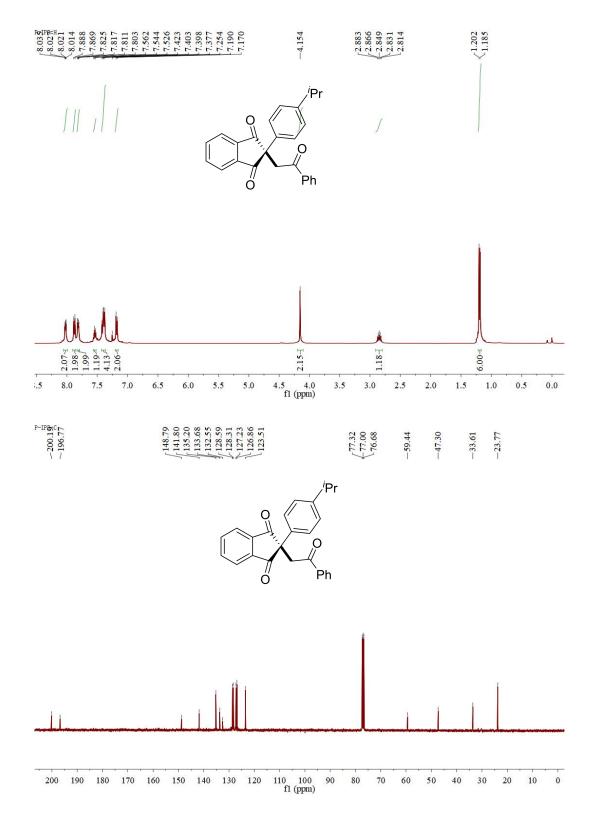

EtO₂C Ethyl-2-acetyl-2-ethyl-4-oxo-4-phenylbutanoate (**3x**): Obtained as a yellow solid (18.8 mg, 34% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.98 (d, *J* = 8.0 Hz, 2H), 7.56 - 7.59 (t, 1H), 7.45 - 7.48 (t, 2H), 4.18 - 4.23 (q, 2H), 3.61 - 3.74 (m, 2H), 2.38 (s, 3H), 2.04 - 2.22 (m, 2H), 1.21 - 1.25 (t, 3H), 0.82 - 0.86 (t, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 210.7, 197.8, 135.6, 133.5, 128.5, 128.2, 60.0, 46.0, 37.7, 23.2, 17.5; 13C NMR (101 MHz, CDCl₃) δ 205.8, 197.4, 171.9, 136.5, 133.3, 128.6, 128.0, 61.6, 61.4, 41.1, 27.3, 26.8, 14.0, 9.0; HRMS (ESI-TOF) m/z calcd for C₁₆H₂₁O₄ [M + H] + 277.1434, found 277.1433.

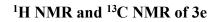

EtO₂C, Me O EtO₂C Ph Diethyl 2-methyl-2-(2-oxo-2-phenylethyl)malonate (**3y**): Obtained as a yellow solid (38.5 mg, 66% yield), eluting with 10% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.96 - 7.98 (t, 2H), 7.56 - 7.59 (t, 1H), 7.45 - 7.49 (t, 2H), 4.19 - 4.25 (q, 4H), 3.68 (s, 2H), 1.61 (s, 3H), 1.23 - 1.29 (t, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 196.4, 171.5, 136.6, 133.3, 128.6, 127.9, 61.5, 51.4, 44.2, 20.5, 13.9; HRMS (ESI-TOF) m/z calcd for C₁₆H₂₁O₅ [M + H] ⁺ 293.1384, found 293.1385.

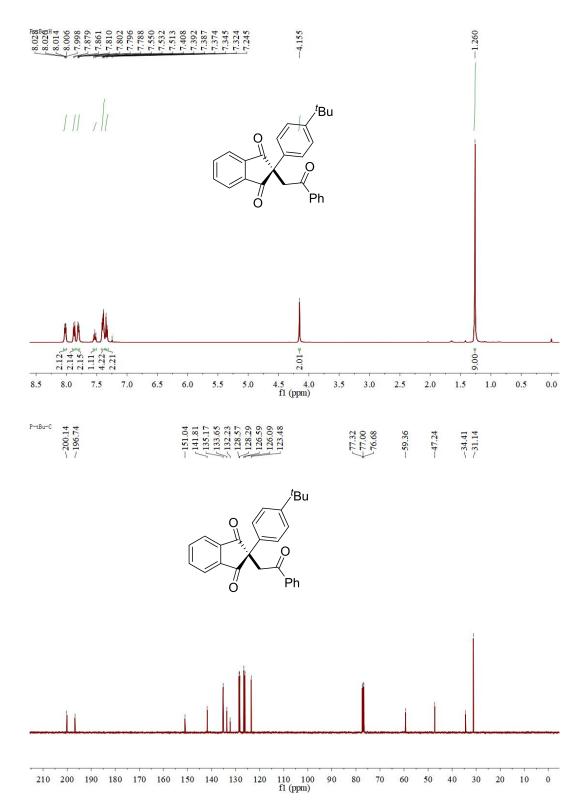
Copies of ¹H and ¹³C NMR spectra of products ¹H NMR and ¹³C NMR of 3a



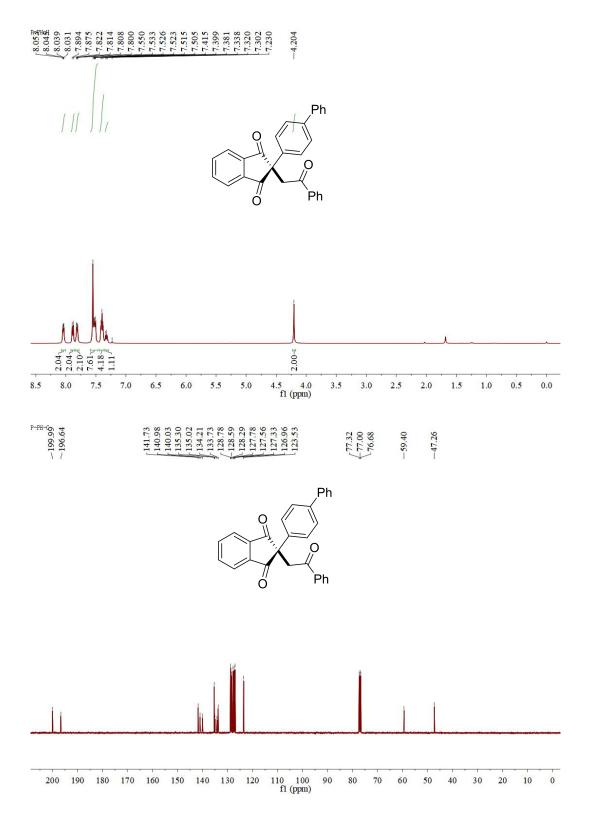

¹H NMR and ¹³C NMR of 3b

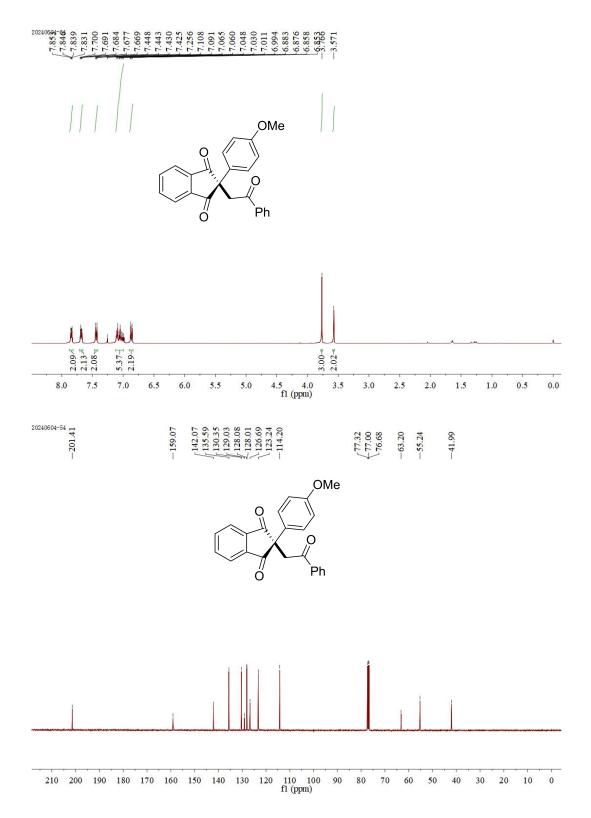

¹H NMR and ¹³C NMR of 3c

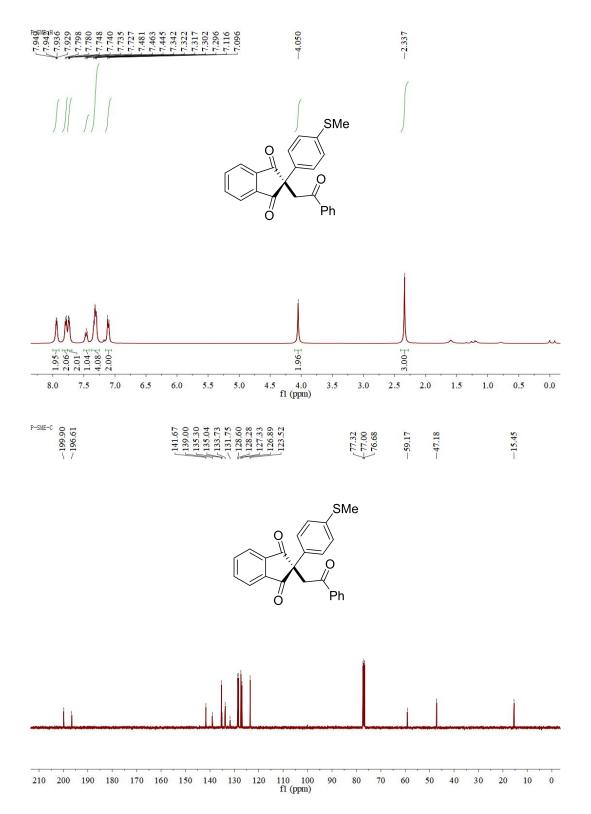


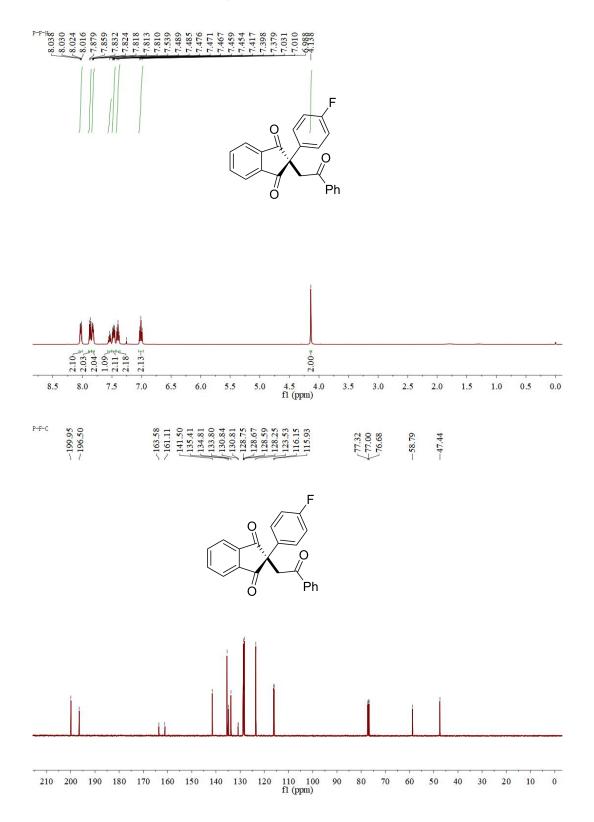


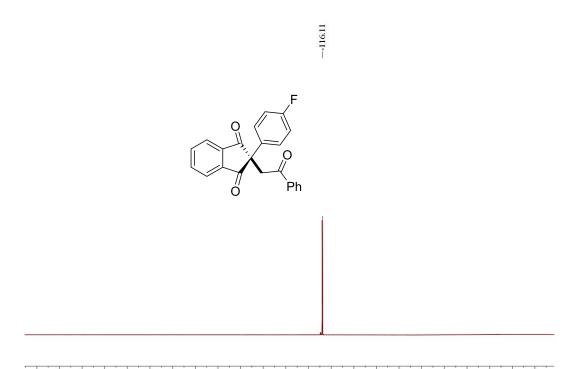
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

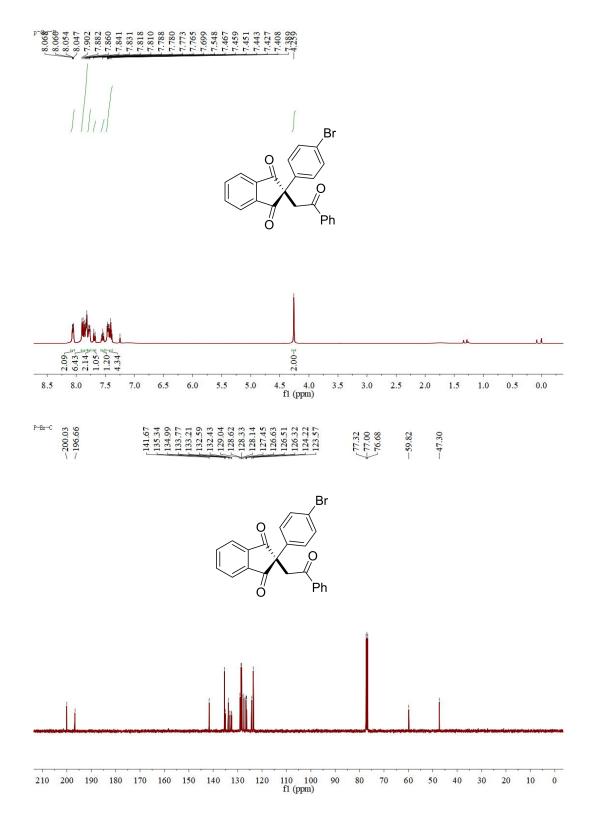

¹H NMR and ¹³C NMR of 3d

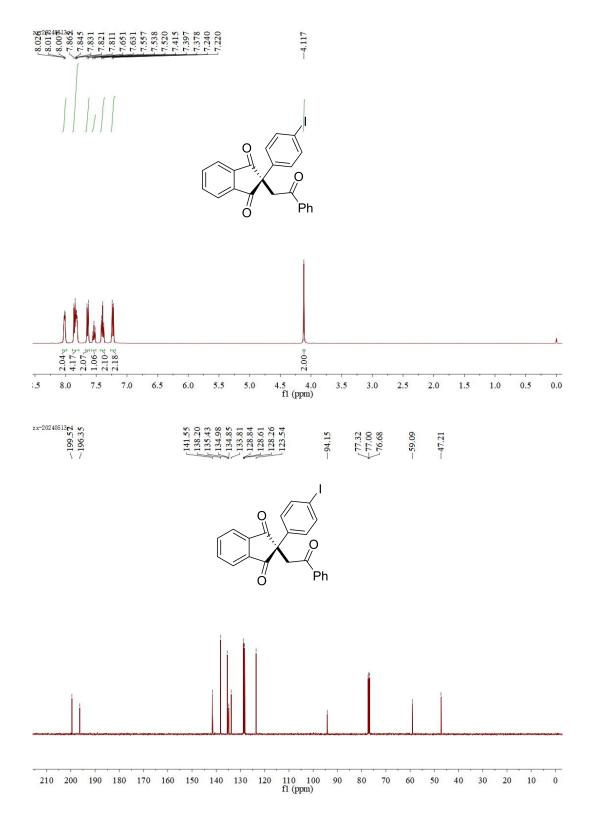


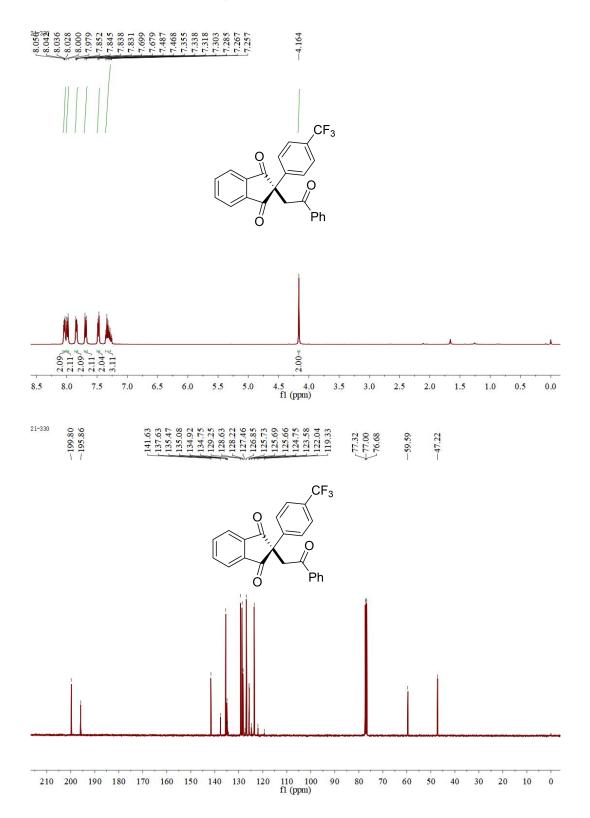


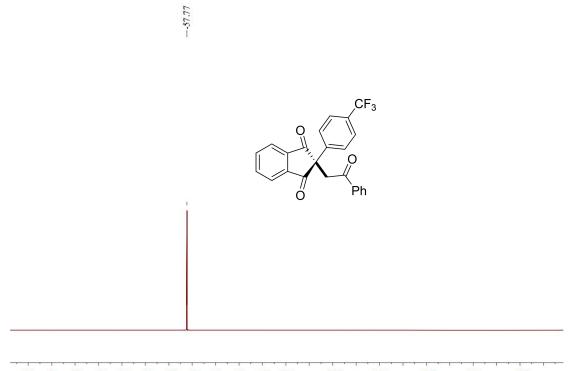

¹H NMR and ¹³C NMR of 3f



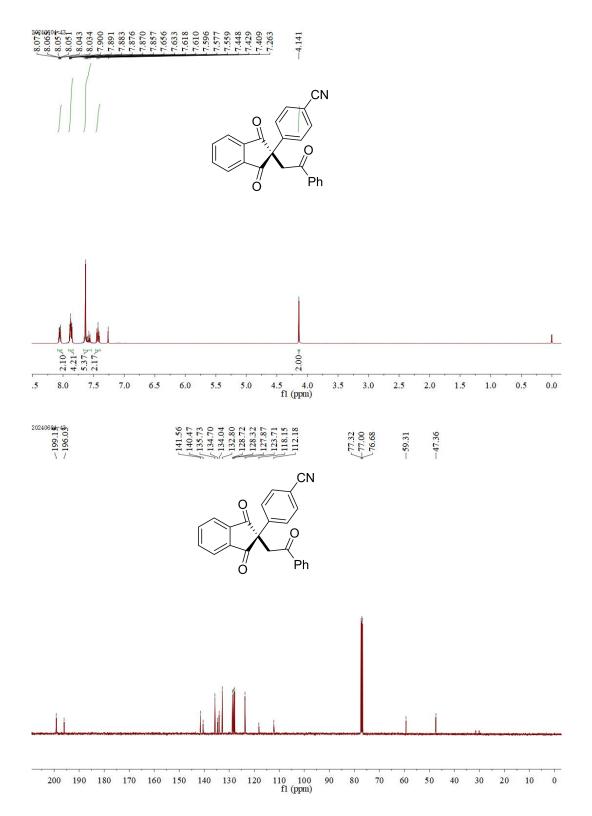

¹H NMR and ¹³C NMR of 3h

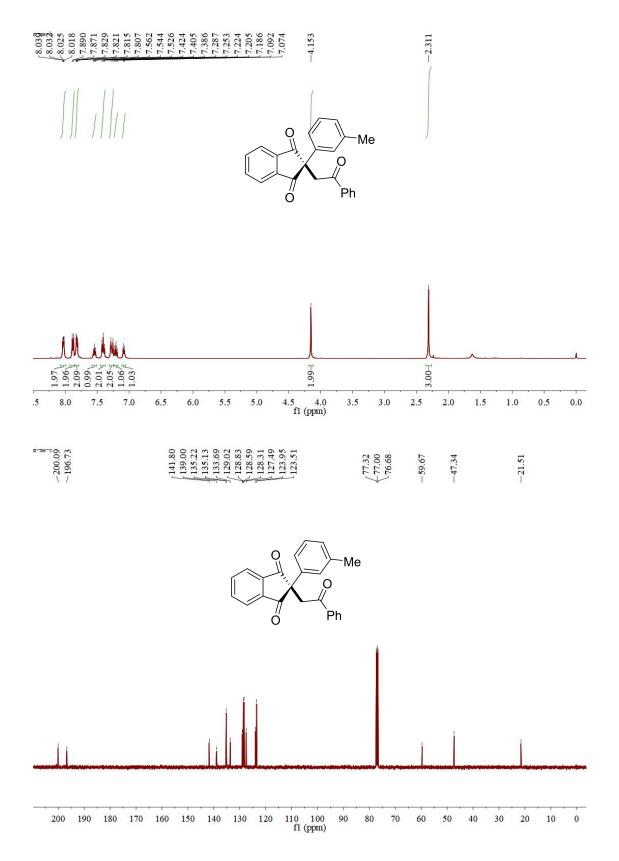


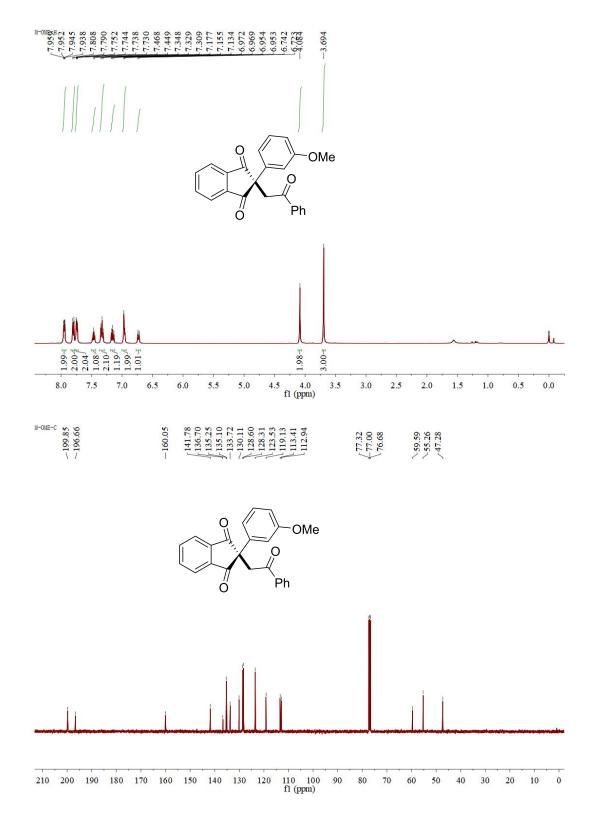


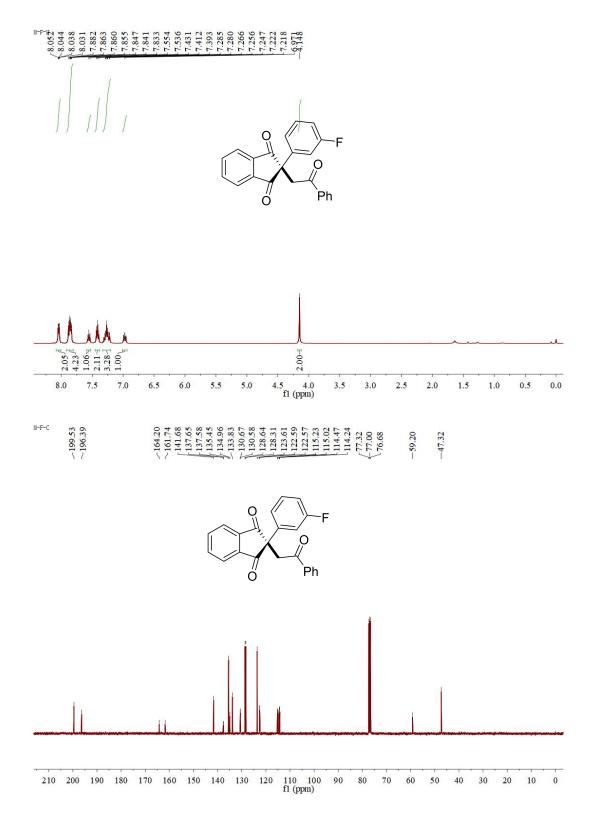


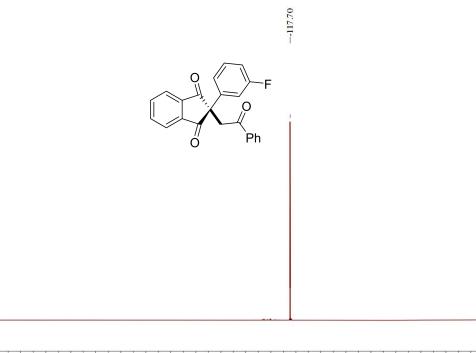
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)



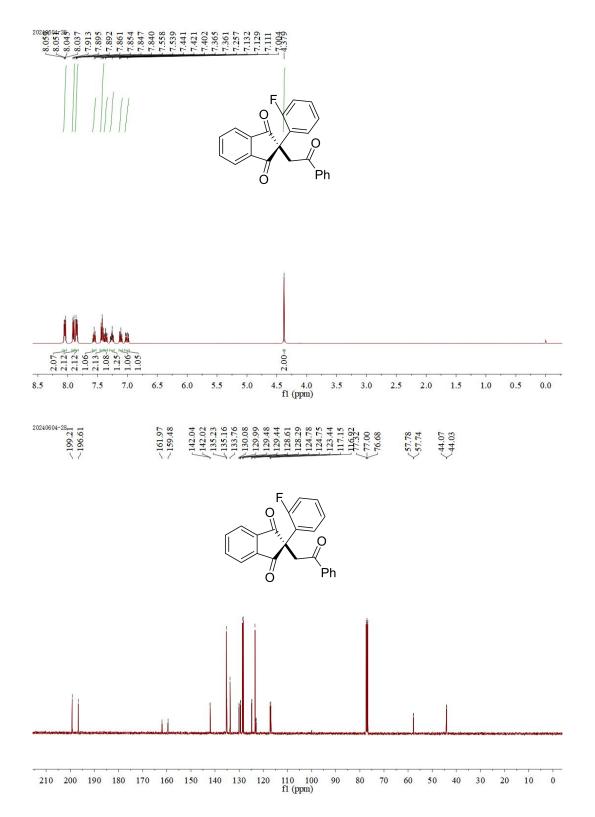




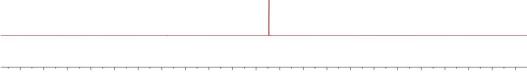

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)



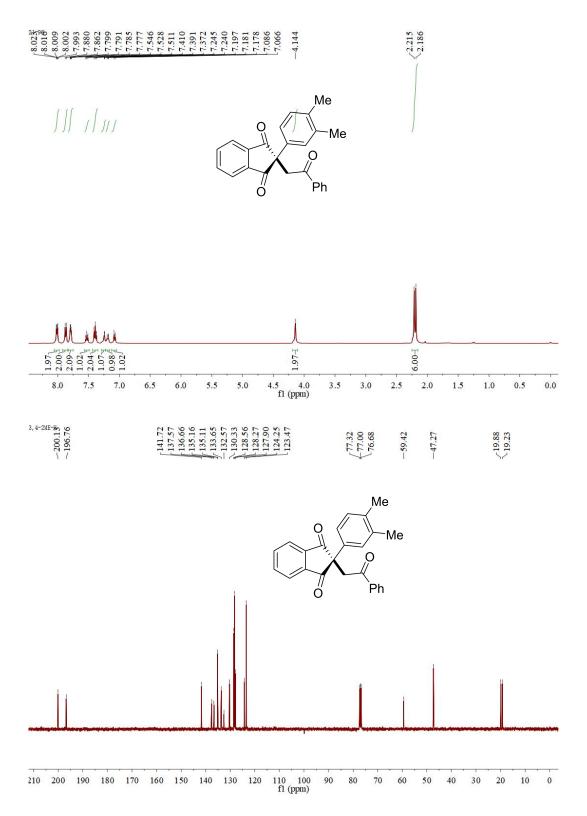
¹H NMR and ¹³C NMR of 30

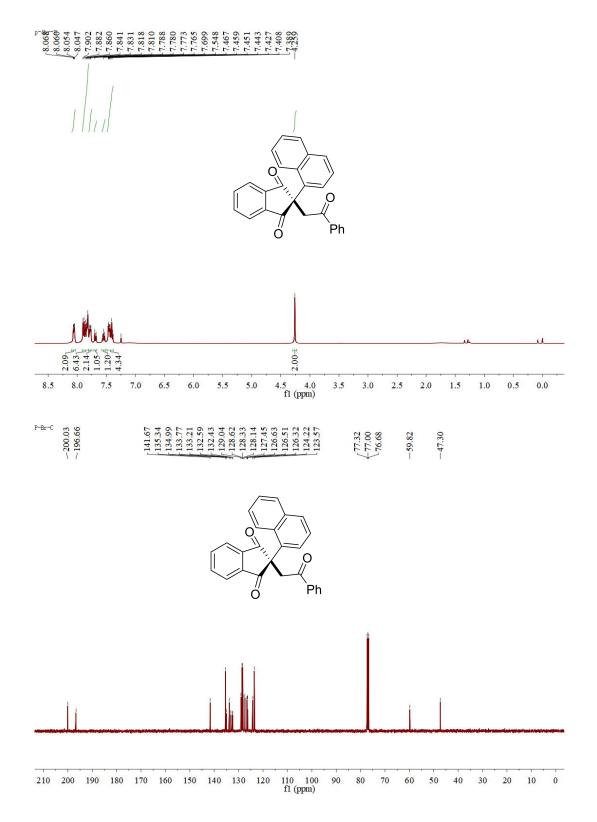


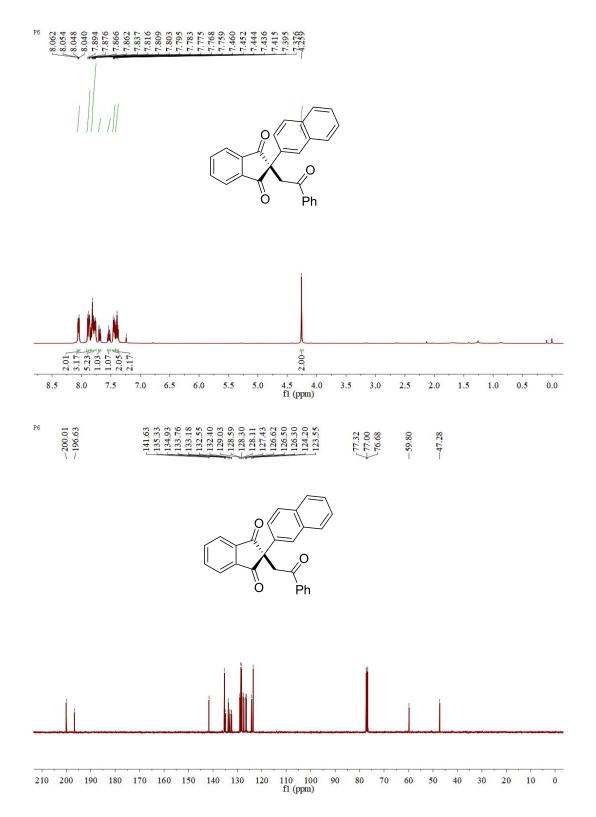
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 fl (ppm)

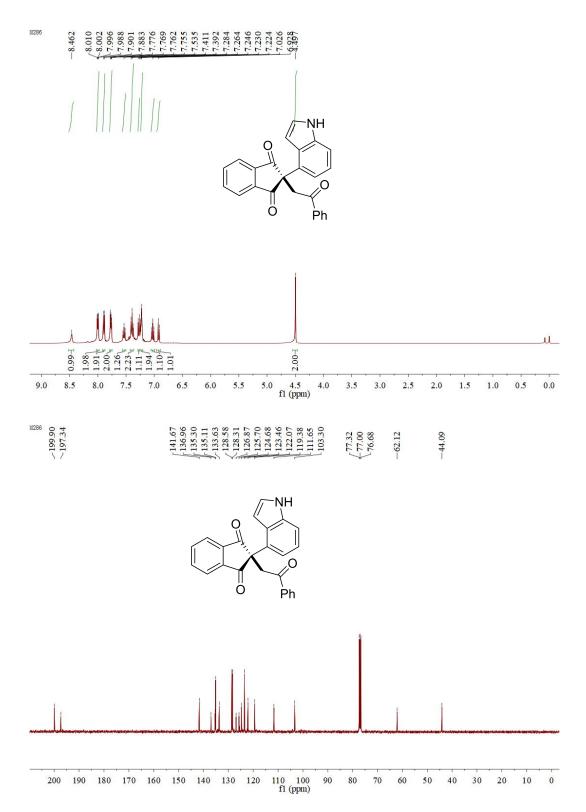


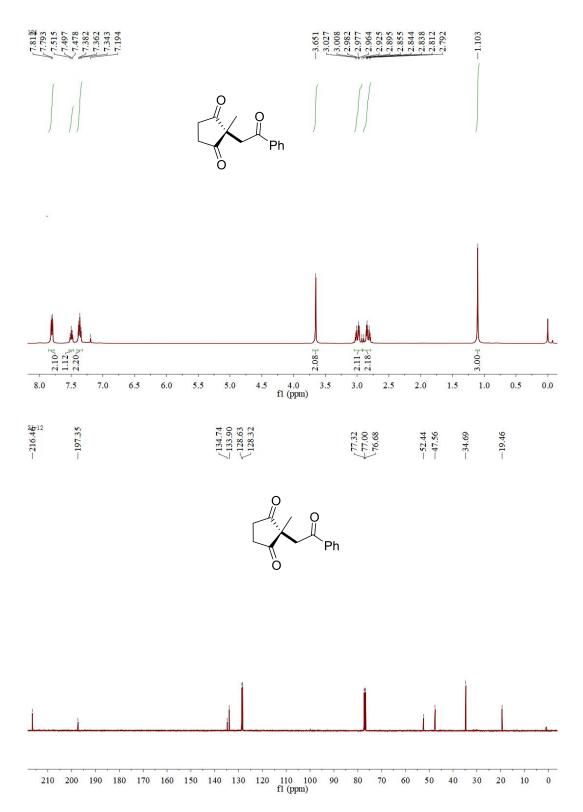
46

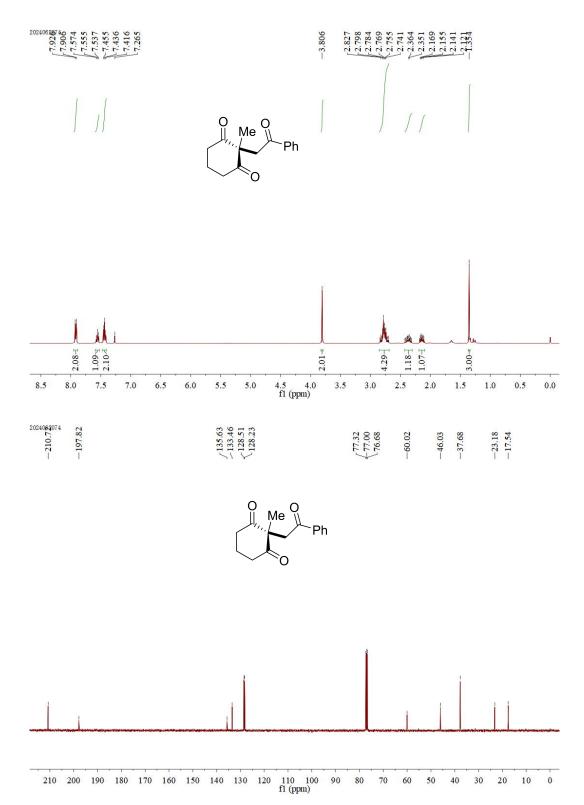

2024052328

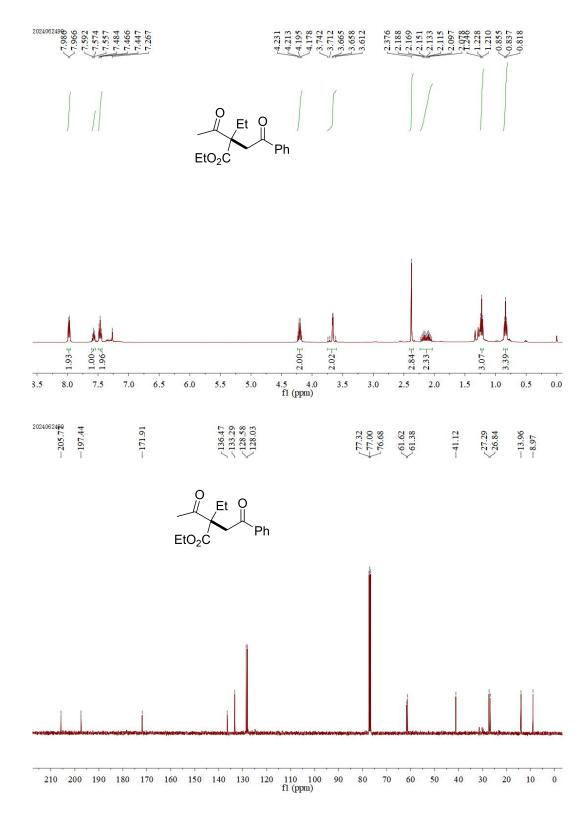


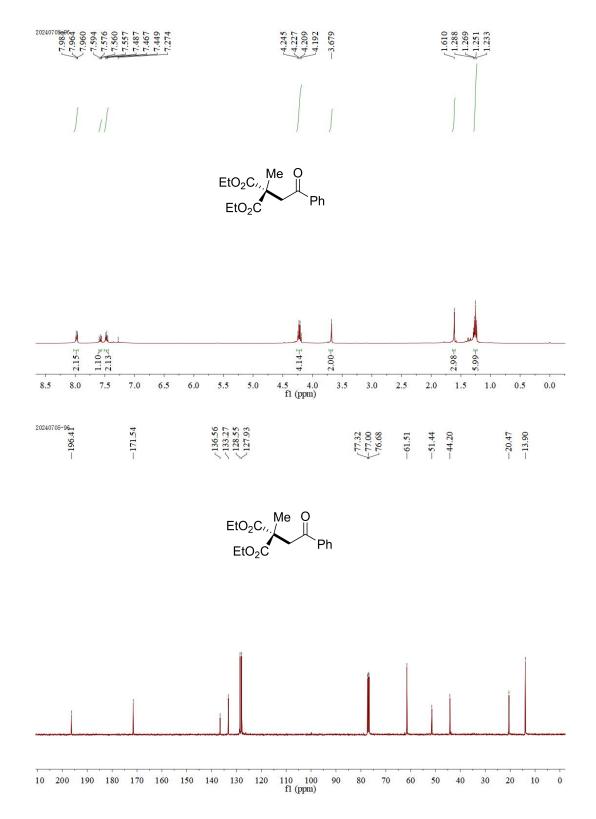



0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)


48




¹H NMR and ¹³C NMR of 4v



¹H NMR and ¹³C NMR of 3w

¹H NMR and ¹³C NMR of 3x

