Supporting Information

Efficient C(sp³)-P(V) Bond Cleavage and Reconstruction of Free

α-Aminophosphonates via Palladium Catalysis

Li-Na Yi, Jinghan Bu, Tao Zhao, Mengyi Huang, and Qiang Yang*

Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China

Email: yq09@swun.edu.cn

Table of Contents

1. General information	S1
2. General procedure for the preparation of primary diethyl α -aminophosphonates	S1
3. Optimization of the reaction conditions	S2
4. General procedure for Pd-catalyzed C-P bond arylation of α -aminophosphonates	S3
5. Characterization data of products	S3
6. Preliminary mechanistic studies	S 13
7. References	S15
8. Copies of NMR spectra	S 16

1. General information

¹H and ¹³C NMR spectra were recorded on Bruker advance III 600 MHz and Varian 400 MHz spectrometer in CDCl₃ with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta = 0$ for ¹H, or to chloroform $\delta = 77.0$ for ¹³C as internal tandard. ³¹P NMR spectra were recorded on a Bruker advance III 600 and 400 spectrometer. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants are reported in Hertz (Hz). High resolution mass spectroscopic (HRMS) and mass spectra were measured using Bruker micro TOF-Q mass spectrometer and Thermo Scientific DS II mass spectrometer. Analytical thin layer chromatography (TLC) was carried out using commercial silica-gel plates, spots were detected with UV light (254 nm) and revealed with phosphomolybdic acid solutions. Melting points were determined by the BÜCHI Melting Point B-540. The aminophosphonates were synthesized by reported methods, and the halides were purchased from Sigma-Aldrich, J&K Chemicals, bidepharm and Adamas, and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM).

2. General procedure for the preparation of free diethyl α -aminophosphonates

General procedure¹: A mixture of an aldehyde/ketone (2.0 mmol, 1.7 equiv), HMDS (249.6 μ L, 1.2 mmol, 1.0 equiv), diethyl phosphite (154.4 μ L, 1.2 mmol, 1.0 equiv), and Al(OTf)₃ (5.7 mg, 0.012 mmol, 1 mol %) was stirred in an oil bath at 80 °C overnight. The reaction mixture was then cooled and acidified to pH = 1 by HCl (aq). The solution was washed with EtOAc (2 × 10 mL). The aqueous phase was then made alkaline with NaOH (aq) and the product was extracted with EtOAc (2 × 10 mL). All the organic extracts were collected, combined in a vial and evaporated under reduced pressure and the resulting mixture was purified by silica gel chromatography (PE/EA = 1:3) to afford the diethyl α-aminophosphonates.

3. Optimization of the reaction conditions

Table S1. Optimization of conditions for Pd-catalyzed C-P bond arylation of α -aminophosphonate $1a^{a}$

			Pd-catalyst, Ag	g-salt		
	0,		Base, Solvent			0
\searrow	_/ P(OEt) ₂ + Ph-	-√)—ı –	Tomp, Time	──≻ Ph	$ \longrightarrow $	−P(OEt)₂
	NH ₂					()2
	1a	2a			3a	
Entry	Pd-catalyst (mol %)	Ag-salt (equiv)	Base (equiv)	Solvent	T (°C)	Yield (%)
1	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	TFE	130	35
2	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	HFIP	130	35
3	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	1,4-dioxane	130	48
4	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	CH ₃ CN	130	21
5	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	DCE	130	38
6	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	Toluene	130	36
7	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	DME	130	38
8	$Pd(OAc)_2(10)$	AgOTs (2)	$\mathrm{KHCO}_3(2)$	DMF	130	35
9	$Pd(OAc)_2(10)$	AgOAc (2)	KHCO ₃ (2)	1,4-dioxane	130	52
10	$Pd(OAc)_2(10)$	$Ag_2CO_3(2)$	KHCO ₃ (2)	1,4-dioxane	130	48
11	$Pd(OAc)_2(10)$	$Ag_3PO_4(2)$	KHCO ₃ (2)	1,4-dioxane	130	69
12	$Pd(OAc)_2(10)$	$AgNO_3(2)$	KHCO ₃ (2)	1,4-dioxane	130	38
13	$Pd(OAc)_2(10)$	AgTFA(2)	KHCO ₃ (2)	1,4-dioxane	130	45
14	$PdCl_{2}(10)$	$Ag_3PO_4(2)$	KHCO ₃ (2)	1,4-dioxane	130	59
15	$[PdCl(C_3H_5)]_2(10)$	$Ag_3PO_4(2)$	KHCO ₃ (2)	1,4-dioxane	130	52
16	$PdCl_2[P(Cy)_3]_2(10)$	$Ag_3PO_4(2)$	KHCO ₃ (2)	1,4-dioxane	130	93
17	$Pd_2(dba)_3(10)$	$Ag_3PO_4(2)$	KHCO ₃ (2)	1,4-dioxane	130	48
18	$Pd(TFA)_2(10)$	$Ag_3PO_4(2)$	KHCO ₃ (2)	1,4-dioxane	130	49
19	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_3PO_4(2)$	$NaHCO_3(2)$	1,4-dioxane	130	93
20	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_3PO_4(2)$	$Na_2CO_3(2)$	1,4-dioxane	130	97
21	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_3PO_4(2)$	KOAc (2)	1,4-dioxane	130	52
22	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_3PO_4(2)$	$K_2HPO_4(2)$	1,4-dioxane	130	69
23	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_3PO_4(2)$	$K_2CO_3(2)$	1,4-dioxane	130	93
24	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_3PO_4(2)$	$Na_2CO_3(2)$	1,4-dioxane	110	83
25	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_3PO_4(2)$	$Na_2CO_3(2)$	1,4-dioxane	90	55
26	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_{3}PO_{4}(0.3)$	$Na_2CO_3(2)$	1,4-dioxane	130	52
27	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_{3}PO_{4}(0.6)$	$Na_2CO_3(2)$	1,4-dioxane	130	79
28	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_{3}PO_{4}(0.9)$	$Na_2CO_3(2)$	1,4-dioxane	130	97
29	$PdCl_2[P(Cy)_3]_2(5)$	$Ag_{3}PO_{4}(0.9)$	$Na_2CO_3(2)$	1,4-dioxane	130	69
30	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_{3}PO_{4}(0.9)$	$Na_2CO_3(1)$	1,4-dioxane	130	69
31	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	Ag ₃ PO ₄ (0.9)	$Na_2CO_3(1.5)$	1,4-dioxane	130	86
32	$PdCl_{2}[P(Cy)_{3}]_{2}(10)$	$Ag_{3}PO_{4}(0.9)$	$Na_2CO_3(2)$	1,4-dioxane	130	76 ^b

^{*a*} **1a** (0.2 mmol), **2a** (0.4 mmol), Pd-catalyst, Ag-salt, Base, solvent (2 mL) at T °C under Ar; isolated yields; ^{*b*} In air.

4. General procedure for Pd-catalyzed C-P bond arylation of α -aminophosphonates

General procedure (3a as example)

In a 10 mL Schlenk tube containing a magnetic stir bar, **1a** (44.6 mg, 0.2 mmol, 1.0 equiv), **2a** (112.0 mg, 0.4 mmol, 2.0 equiv), $PdCl_2[P(Cy)_3]_2$ (14.8 mg, 0.02 mmol, 10 mol %), Ag_3PO_4 (75.3 mg, 0.18 mmol, 0.9 equiv), Na_2CO_3 (42.4 mg, 0.4 mmol, 2 equiv) were added. The tube was evacuated and backfilled with Ar for 3 times, then 1,4-dioxane (2 mL) was added with a syringe under Ar and stirred on a pie-block preheated to 130 °C for 8 h. Upon completion, the reaction mixture was cooled to room temperature and concentrated under vacuum, and the residue was purified by silica gel chromatography (PE/EA = 2/1) to afford the product **3a** (56.3 mg, 97%).

5. Characterization data of products

diethyl [1,1'-biphenyl]-4-ylphosphonate $(3a)^2$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (56.3 mg, 97%).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 13.0, 8.1 Hz, 2H), 7.72 – 7.66 (m, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 4.23 – 4.06 (m, 4H), 1.34 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (d, J = 3.3 Hz), 139.9 (d, J = 0.9 Hz), 132.3 (d, J = 10.2 Hz), 128.9, 128.1, 127.2, 127.1 (d, J = 15.3 Hz), 126.8 (d, J = 188.8 Hz), 62.1 (d, J = 5.6 Hz), 16.3 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.98. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₉O₃PNa, 313.0970; found, 313.0968.

diethyl [1,1':4',1"-terphenyl]-4-ylphosphonate (3b)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); colorless oil (70.3 mg, 96%).

¹H NMR (600 MHz, CDCl₃) δ 7.91 (dd, J = 13.0, 8.0 Hz, 2H), 7.81 (s, 1H), 7.74 (dd, J = 8.0, 3.7 Hz, 2H), 7.63 (dd, J = 12.0, 7.7 Hz, 3H), 7.59 (d, J = 7.7 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 4.23 – 4.09 (m, 4H), 1.36 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 145.1, 142.0, 140.8, 140.5, 132.3 (d, J = 10.1 Hz), 129.3, 128.8, 127.5, 127.3, 127.2, 127.1 (d, J = 190.7 Hz), 126.9, 126.1 (d, J = 5.0 Hz), 62.1 (d, J = 5.3 Hz), 16.3 (d, J = 6.4 Hz). ³¹P NMR (243

MHz, CDCl₃) δ 18.91. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₂₂H₂₃O₃PNa, 389.1283; found, 389.1286.

diethyl (4'-butyl-[1,1'-biphenyl]-4-yl)phosphonate (3c)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (62.3 mg, 90%).

¹H NMR (600 MHz, CDCl₃) δ 7.86 (dd, J = 13.0, 7.9 Hz, 2H), 7.67 (dd, J = 7.8, 3.7 Hz, 2H), 7.52 (d, J = 7.8 Hz, 2H), 7.27 (d, J = 7.7 Hz, 2H), 4.21 – 4.06 (m, 4H), 2.66 (t, J = 7.8 Hz, 2H), 1.67 – 1.60 (m, 2H), 1.39 (dd, J = 14.9, 7.4 Hz, 2H), 1.34 (t, J = 7.1 Hz, 6H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 145.1 (d, J = 3.1 Hz), 143.1, 137.2, 132.2 (d, J = 10.4 Hz), 129.0, 127.0, 126.9 (d, J = 15.3 Hz), 126.6 (d, J = 190.6 Hz), 62.0 (d, J = 5.3 Hz), 35.2, 33.5, 22.3, 16.3 (d, J = 6.3 Hz), 13.8. ³¹P NMR (243 MHz, CDCl₃) δ 19.07. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₇O₃PNa, 369.1596; found, 369.1600.

diethyl (4'-pentyl-[1,1'-biphenyl]-4-yl)phosphonate (3d)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (61.2 mg, 85%).

¹H NMR (600 MHz, CDCl₃) δ 7.78 (dd, J = 13.0, 8.1 Hz, 2H), 7.59 (dd, J = 8.1, 3.8 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 4.13 – 3.98 (m, 4H), 2.60 – 2.54 (m, 2H), 1.61 – 1.53 (m, 2H), 1.31 – 1.23 (m, 10H), 0.82 (t, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 145.1 (d, J = 3.0 Hz), 143.1, 137.2, 132.2 (d, J = 10.3 Hz), 129.0, 127.0, 126.9 (d, J = 15.3 Hz), 126.5 (d, J = 190.8 Hz), 62.0 (d, J = 5.3 Hz), 35.5, 31.5, 31.0, 22.5, 16.3 (d, J = 6.4 Hz), 13.9. ³¹P NMR (243 MHz, CDCl₃) δ 19.12. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₁H₂₉O₃PNa, 383.1752; found, 383.1757.

diethyl naphthalen-2-ylphosphonate $(3e)^3$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); colorless oil (45.9 mg, 87%).

¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 15.5 Hz, 1H), 7.95 – 7.84 (m, 3H), 7.79 – 7.71 (m, 1H), 7.62 – 7.51 (m, 2H), 4.24 – 4.04 (m, 4H), 1.32 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.9 (d, J = 2.7 Hz), 134.0 (d, J = 10.2 Hz), 132.3 (d, J = 16.5 Hz), 128.8, 128.3 (d, J = 14.3 Hz),

128.2, 127.7 (d, J = 0.7 Hz), 126.8 (d, J = 1.1 Hz), 126.4 (d, J = 9.9 Hz), 125.3 (d, J = 187.9 Hz), 62.1 (d, J = 5.3 Hz), 16.3 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.09. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₄H₁₇O₃PNa, 287.0813; found, 287.0814.

diethyl (2-methylnaphthalen-1-yl)phosphonate (3f)

The title compound was purified by silica gel chromatography (PE/EA = 3/1); yellow oil (52.8 mg, 95%).

¹H NMR (600 MHz, CDCl₃) δ 9.00 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.34 (dd, J = 8.4, 4.6 Hz, 1H), 4.26 – 4.15 (m, 2H), 4.09 – 3.99 (m, 2H), 2.88 (d, J = 2.3 Hz, 3H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 144.86 (d, J = 10.1 Hz), 134.5(d, J = 12.8 Hz), 132.9, 132.1(d, J = 12.7 Hz), 130.1(d, J = 17.4 Hz), 128.3, 127.0, 125.2, 121.6 (d, J = 177.9 Hz), 61.5 (d, J = 5.2 Hz), 23.8, 16.3(d, J = 6.7 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 19.63. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₉O₃PNa, 301.0970; found, 301.0974.

diethyl anthracen-9-ylphosphonate (3g)

The title compound was purified by silica gel chromatography (PE/EA = 4/1); yellow oil (53.4 mg, 85%).

¹H NMR (400 MHz, CDCl₃) δ 9.37 (d, *J* = 9.2 Hz, 2H), 8.65 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.65 – 7.57 (m, 2H), 7.54 – 7.45 (m, 2H), 4.32 – 4.21 (m, 2H), 4.10 – 3.83 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 135.0 (d, *J* = 11.5 Hz), 134.6 (d, *J* = 4.1 Hz), 131.0 (d, *J* = 15.2 Hz), 129.0 (d, *J* = 1.3 Hz), 127.4 (d, *J* = 1.4 Hz), 127.3, 125.1, 118.7 (d, *J* = 177.4 Hz), 61.8 (d, *J* = 4.9 Hz), 16.3 (d, *J* = 6.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.61. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₈H₁₉O₃PNa, 337.0970; found, 337.0967.

diethyl anthracen-2-ylphosphonate (3h)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (48.4 mg, 77%).

¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 16.4 Hz, 1H), 8.52 (s, 1H), 8.42 (s, 1H), 8.07 – 7.98 (m, 3H), 7.67 (t, J = 9.5 Hz, 1H), 7.51 (p, J = 7.0 Hz, 2H), 4.28 – 4.08 (m, 4H), 1.35 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 135.4 (d, J = 10.0 Hz), 132.9, 132.1 (d, J = 2.6 Hz), 132.0 (d, J = 1.4 Hz), 130.0 (d, J = 17.4 Hz), 128.7 (d, J = 13.9 Hz), 128.4, 128.1 (d, J = 2.5 Hz), 126.5, 126.3, 125.9, 124.8, 124.70 (d, J = 188.6 Hz), 124.69, 62.2 (d, J = 5.3 Hz), 16.3 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.11. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₈H₁₉O₃PNa, 337.0970; found, 337.0967.

diethyl pyren-1-ylphosphonate $(3i)^4$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); white solid (56.1 mg, 83%). mp = 71-72 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, *J* = 9.3 Hz, 1H), 8.68 (dd, *J* = 14.3, 7.9 Hz, 1H), 8.28 – 8.16 (m, 4H), 8.12 (d, *J* = 8.9 Hz, 1H), 8.02 (t, *J* = 8.2 Hz, 2H), 4.33 – 4.21 (m, 2H), 4.20 – 4.07 (m, 2H), 1.33 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.5 (d, *J* = 3.1 Hz), 132.8 (d, *J* = 10.9 Hz), 131.8 (d, *J* = 9.4 Hz), 130.9, 130.3, 129.7, 129.0, 127.1, 126.3, 126.23, 126.17, 125.6 (d, *J* = 5.0 Hz), 124.6 (d, *J* = 14.4 Hz), 124.1 (d, *J* = 1.6 Hz), 123.9 (d, *J* = 15.5 Hz), 120.9 (d, *J* = 184.5 Hz), 62.2 (d, *J* = 5.1 Hz), 16.3 (d, *J* = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.88. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₂₀H₁₉O₃PNa, 361.0970; found, 361.0972.

diethyl phenanthren-9-ylphosphonate $(3j)^5$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); colorless oil (62.2 mg, 99%).

¹H NMR (400 MHz,CDCl₃) δ 8.71 (d, J = 7.3 Hz, 1H), 8.69 – 8.61 (m, 2H), 8.59 – 8.50 (m, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.77 – 7.61 (m, 4H), 4.30 – 4.19 (m, 2H), 4.16 – 4.04 (m, 2H), 1.31 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1 (d, J = 8.8 Hz), 132.2 (d, J = 2.8 Hz), 130.5 (d, J = 11.9 Hz), 130.0, 129.9 (d, J = 2.8 Hz), 129.7 (d, J = 3.4 Hz), 129.1, 127.4 (d, J = 3.6 Hz), 127.1, 127.1, 126.9, 123.2 (d, J = 182.4 Hz), 122.9 (d, J = 1.6 Hz), 122.5, 62.2 (d, J = 5.1 Hz), 16.3 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.36. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₉O₃PNa, 337.0970; found, 337.0974.

diethyl (1,2-dihydroacenaphthylen-5-yl)phosphonate (3k)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (56.3 mg, 97%).

¹H NMR (600 MHz, CDCl₃) δ 8.17 (dd, J = 15.9, 7.1 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.35 (d, J = 6.9 Hz, 1H), 7.34 – 7.31 (m, 1H), 4.18 (dp, J = 10.1, 7.2 Hz, 2H), 4.07 – 4.00 (m, 2H), 3.41 (s, 4H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 152.5, 146.4, 139.1 (d, J = 14.1 Hz), 136.5 (d, J = 11.3 Hz), 131.1 (d, J = 10.8 Hz), 129.3, 122.0, 120.1, 119.4 (d, J = 187.9 Hz), 118.4 (d, J = 16.8 Hz), 61.8 (d, J = 5.0 Hz), 30.4, 30.2, 16.3 (d, J = 6.5 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 19.92. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₉O₃PNa, 313.0970; found, 313.0975.

diethyl (9H-fluoren-2-yl)phosphonate (3l)⁵

The title compound was purified by silica gel chromatography (PE/EA = 3/1); yellow oil (51.3 mg, 85%).

¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 13.1 Hz, 1H), 7.88 – 7.81 (m, 3H), 7.57 (d, *J* = 7.3 Hz, 1H), 7.42 – 7.35 (m, 2H), 4.21 – 4.07 (m, 4H), 3.94 (s, 2H), 1.34 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 145.8, 143.9, 143.1 (d, *J* = 16.4 Hz), 140.5, 130.6 (d, *J* = 10.8 Hz), 128.4 (d, *J* = 10.5 Hz), 128.0, 127.0, 125.9 (d, *J* = 187.6 Hz), 125.2, 120.7, 119.8 (d, *J* = 16.5 Hz), 62.0 (d, *J* = 5.2 Hz), 36.8, 16.3 (d, *J* = 6.4 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 19.96. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₇H₁₉O₃PNa, 325.0970; found, 325.0975.

diethyl (9,9-dimethyl-9H-fluoren-2-yl)phosphonate (**3m**)⁵

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (55.4 mg, 84%).

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 13.2 Hz, 1H), 7.76 (dd, J = 12.2, 6.5 Hz, 3H), 7.44 (d, J = 5.1 Hz, 1H), 7.39 – 7.31 (m, 2H), 4.23 – 4.03 (m, 4H), 1.49 (s, 6H), 1.33 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 153.4 (d, J = 15.4 Hz), 143.3 (d, J = 3.1 Hz), 137.8, 130.7 (d, J = 10.8 Hz), 128.4, 127.1, 126.3 (d, J = 188.2 Hz), 126.2 (d, J = 10.7 Hz), 122.7, 120.7, 119.8 (d, J = 16.3 Hz), 62.0 (d, J = 5.4 Hz), 47.0 (d, J = 1.8 Hz), 26.8, 16.3 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 20.05. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₄O₃P, 331.1463; found, 331.1459.

diethyl (4-methoxyphenyl)phosphonate $(3n)^7$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); colorless oil (41.5 mg, 85%).

¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 12.7, 8.7 Hz, 2H), 6.96 (dd, J = 8.5, 2.9 Hz, 2H), 4.18 – 3.98 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 133.8 (d, J = 12.7, 8.7 Hz, 2H), 4.18 – 3.98 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 133.8 (d, J = 12.7, 8.7 Hz, 2H), 4.18 – 3.98 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 133.8 (d, J = 12.7, 8.7 Hz, 2H), 4.18 – 3.98 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 133.8 (d, J = 12.7, 8.7 Hz, 2H), 4.18 – 3.98 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 133.8 (d, J = 12.7, 8.7 Hz, 2H), 4.18 – 3.98 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 133.8 (d, J = 12.7, 8.7 Hz, 2H), 4.18 – 3.98 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H).

11.3 Hz), 119.5 (d, J = 194.1 Hz), 114.0 (d, J = 16.0 Hz), 61.88 (d, J = 5.2 Hz), 55.3, 16.31 (d, J = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.73. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₇O₄PNa, 267.0762; found, 267.0764.

diethyl (4-(tert-butyl)phenyl)phosphonate $(30)^2$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); colorless oil (50.2 mg, 93%).

¹H NMR (600 MHz, CDCl₃) δ 7.71 (dd, *J* = 13.0, 8.4 Hz, 2H), 7.48 – 7.41 (m, 2H), 4.15 – 3.98 (m, 4H), 1.33 – 1.26 (m, 15H). ¹³C NMR (151 MHz, CDCl₃) δ 155.8, 131.6 (d, *J* = 10.5 Hz), 125.4 (d, *J* = 15.2 Hz), 124.9 (d, *J* = 189.8 Hz), 61.9 (d, *J* = 5.2 Hz), 35.0, 31.0, 16.3 (d, *J* = 6.5 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 19.47. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₄H₂₃O₃PNa, 293.1283; found, 293.1288.

ethyl 4-(diethoxyphosphoryl)benzoate $(3p)^3$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); colorless oil (52.1 mg, 91%).

¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 7.8, 3.6 Hz, 2H), 7.85 (dd, J = 12.9, 8.1 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 4.10 (qd, J = 17.2, 9.7 Hz, 4H), 1.37 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 133.8 (d, J = 3.3 Hz), 131.7 (d, J = 10.0 Hz), 129.3 (d, J = 15.0 Hz), 133.0 (d, J = 186.4 Hz), 62.3 (d, J = 5.4 Hz), 61.34, 16.2 (d, J = 6.4 Hz), 14.18. ³¹P NMR (162 MHz, CDCl₃) δ 17.08. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₉O₅PNa, 309.0868; found, 309.0865.

diethyl [1,1'-biphenyl]-2-ylphosphonate $(3q)^8$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (51.0 mg, 88%).

¹H NMR (600 MHz, CDCl₃) δ 8.04 (ddd, J = 14.3, 7.7, 1.0 Hz, 1H), 7.55 (dd, J = 10.7, 4.4 Hz, 1H), 7.46 – 7.41 (m, 3H), 7.40 – 7.34 (m, 3H), 7.32 (dd, J = 9.7, 3.4 Hz, 1H), 3.92 (dp, J = 10.1, 7.1 Hz, 2H), 3.86 – 3.79 (m, 2H), 1.12 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 146.0 (d, J = 9.7 Hz), 141.4 (d, J = 4.2 Hz), 133.8 (d, J = 9.8 Hz), 131.9, 131.30 (d, J = 14.1 Hz), 129.3, 127.42, 127.37, 127.0 (d, J = 187.7 Hz), 126.9, 126.8, 61.7 (d, J = 6.0 Hz), 16.0 (d, J = 6.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 18.12. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₉O₃PNa, 313.0970; found, 313.0974.

diethyl (9H-carbazol-3-yl)phosphonate (3r)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (27.9 mg, 46%).

¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.59 (d, J = 13.9 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.85 – 7.77 (m, 1H), 7.52 – 7.39 (m, 3H), 7.26 (dd, J = 8.4, 6.3 Hz, 1H), 4.24 – 4.04 (m, 4H), 1.33 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0 (d, J = 2.8 Hz), 139.9, 128.7 (d, J = 11.8 Hz), 126.6, 125.2 (d, J = 11.7 Hz), 123.2 (d, J = 17.6 Hz), 122.8 (d, J = 1.7 Hz), 120.6, 120.1, 119.0 (d, J = 181.9 Hz), 111.0, 110.9 (d, J = 16.5 Hz), 62.0 (d, J = 5.1 Hz), 16.4 (d, J = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 21.78. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₆H₁₈NO₃PNa, 326.0922; found, 326.0924.

diethyl (9-phenyl-9H-carbazol-3-yl)phosphonate $(3s)^9$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (65.9 mg, 87%).

¹H NMR (600 MHz, CDCl₃) δ 8.68 (d, *J* = 13.8 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.62 (t, *J* = 7.7 Hz, 2H), 7.56 – 7.49 (m, 3H), 7.47 – 7.42 (m, 2H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 4.24 – 4.15 (m, 2H), 4.11 (dp, *J* = 10.0, 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 143.1, 141.4, 137.0, 130.0, 129.0 (d, *J* = 11.9 Hz), 128.0, 127.1, 126.7, 125.3 (d, *J* = 11.7 Hz), 123.2 (d, *J* = 17.5 Hz), 122.9, 120.8, 120.6, 118.3 (d, *J* = 191.6 Hz), 110.1, 109.9 (d, *J* = 16.2 Hz), 61.9 (d, *J* = 5.0 Hz), 16.3 (d, *J* = 6.5 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 21.25. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₂₂H₂₂NO₃PNa, 402.1235; found, 402.1240.

diethyl (4-(1H-pyrrol-1-yl)phenyl)phosphonate (3t)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (46.9 mg, 84%).

¹H NMR (600 MHz, CDCl₃) δ 7.85 (dd, J = 12.8, 8.5 Hz, 2H), 7.46 (dd, J = 8.5, 3.2 Hz, 2H), 7.15 – 7.11 (m, 2H), 6.39 – 6.33 (m, 2H), 4.19 – 4.05 (m, 4H), 1.32 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 143.5 (d, J = 3.3 Hz), 133.4 (d, J = 10.7 Hz), 124.9 (d, J = 193.3 Hz), 119.5 (d, J = 15.6 Hz),

118.9, 111.4, 62.1 (d, J = 5.3 Hz), 16.3 (d, J = 6.4 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 18.21. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₈NO₃PNa, 302.0922; found, 302.0927.

diethyl (2-oxo-2H-chromen-6-yl)phosphonate (3u)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); colorless oil (44.0 mg, 78%).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 13.5 Hz, 1H), 7.92 – 7.84 (m, 1H), 7.73 (d, *J* = 9.6 Hz, 1H), 7.38 (dd, *J* = 8.5, 2.9 Hz, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 4.11 (tdd, *J* = 17.2, 9.8, 7.7 Hz, 4H), 1.31 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 156.4 (d, *J* = 3.4 Hz), 142.8, 134.5 (d, *J* = 10.4 Hz), 132.4 (d, *J* = 11.5 Hz), 125.0 (d, *J* = 192.8 Hz), 118.7 (d, *J* = 16.9 Hz), 117.6, 117.3 (d, *J* = 15.0 Hz), 62.4 (d, *J* = 5.5 Hz), 16.3 (d, *J* = 6.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.60. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₃H₁₅O₅PNa, 305.0555; found, 305.0554.

diethyl benzofuran-5-ylphosphonate (3v)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (40.6 mg, 80%).

¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 13.8 Hz, 1H), 7.78 – 7.66 (m, 2H), 7.58 (dd, J = 8.2, 2.0 Hz, 1H), 6.83 (s, 1H), 4.11 (tdd, J = 17.2, 9.9, 7.7 Hz, 4H), 1.32 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0 (d, J = 3.3 Hz), 146.1, 127.6 (d, J = 11.9 Hz), 127.5 (d, J = 18.6 Hz), 126.2 (d, J = 11.6 Hz), 122.4 (d, J = 190.1 Hz), 111.8 (d, J = 16.7 Hz), 106.8, 62.1 (d, J = 5.3 Hz), 16.3 (d, J = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.96. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅O₄PNa, 277.0606; found, 277.0609.

tetraethyl [1,1'-biphenyl]-4,4'-diylbis(phosphonate) (**3w**)¹⁰

The title compound was purified by silica gel chromatography (PE/EA = 1/1); white solid (27.3 mg, 32%). mp = 45-46 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 12.8, 8.2 Hz, 4H), 7.68 (dd, J = 11.4, 9.7 Hz, 4H), 4.24 – 4.01 (m, 8H), 1.32 (t, J = 7.0 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8 (d, J = 3.3 Hz), 132.3 (d, J = 10.2 Hz), 127.9 (d, J = 189.5 Hz), 127.2 (d, J = 15.2 Hz), 62.1 (d, J = 5.5 Hz), 16.3 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.41. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₈O₆P₂Na, 449.1259; found, 449.1254.

tetraethyl chrysene-6,12-diylbis(phosphonate) (3xa)

The title compound was purified by silica gel chromatography (PE/EA = 1/1); yellow oil (27.0 mg, 27%).

¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, *J* = 18.5 Hz, 2H), 8.98 (d, *J* = 8.2 Hz, 2H), 8.65 (d, *J* = 8.2 Hz, 2H), 7.78 (dt, *J* = 15.0, 7.2 Hz, 4H), 4.36 – 4.23 (m, 4H), 4.20 – 4.06 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 131.1, 131.0, 130.8, 130.4 (d, *J* = 10.6 Hz), 129.1 (d, *J* = 3.1 Hz), 128.9 (d, *J* = 3.0 Hz), 127.7 (d, *J* = 6.1 Hz), 127.4 (d, *J* = 3.8 Hz), 126.4 (d, *J* = 181.7 Hz), 123.8, 62.5 (d, *J* = 5.2 Hz), 16.4 (d, *J* = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.96. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₂₆H₃₀O₆P₂Na, 523.1415; found, 523.1412.

diethyl chrysen-6-ylphosphonate (3xb)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (31.3 mg, 43%).

¹H NMR (400 MHz, CDCl₃) δ 9.61 (d, *J* = 18.5 Hz, 1H), 8.93 (d, *J* = 8.4 Hz, 1H), 8.83 (d, *J* = 7.8 Hz, 1H), 8.68 (dd, *J* = 18.3, 8.7 Hz, 2H), 8.11 (d, *J* = 9.1 Hz, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.75 (dd, *J* = 15.0, 7.5 Hz, 3H), 7.67 (t, *J* = 7.4 Hz, 1H), 4.35 – 4.23 (m, 2H), 4.20 – 4.08 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 133.6, 132.1(d, *J* = 0.9 Hz), 131.7 (d, *J* = 9.9 Hz), 131.1 (d, *J* = 2.9 Hz), 130.8 (d, *J* = 12.5 Hz), 130.6, 130.4 (d, *J* = 10.6 Hz), 130.1, 128.5, 127.4, 127.4, 127.1, 126.9 (d, *J* = 13.6 Hz), 126.2 (d, *J* = 16.7 Hz), 123.6 (d, *J* = 1.6 Hz), 123.29, 123.25 (d, *J* = 182.8 Hz), 120.7, 62.3 (d, *J* = 5.1 Hz), 16.4 (d, *J* = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.86. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₁O₃PNa, 387.1126; found, 387.1125.

diethyl styrylphosphonate $(3y)^{11}$

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (35.0 mg, 73%), *E-Z* stereoselectivity determined by ³¹P NMR (E/Z = 8:5).

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.0 Hz, 2H), 7.57 – 7.32 (m, 10H), 6.26 (t, J = 17.6 Hz, 1H), 5.81 (t, J = 14.9 Hz, 1H), 4.18 – 4.09 (m, 4H), 4.06 – 3.93 (m, 4H), 1.36 (t, J = 7.0 Hz, 6H), 1.19 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9 (d, J = 6.9 Hz), 148.4 (d, J = 1.6 Hz), 135.2 (d, J = 8.9 Hz), 134.8 (d, J = 22.8 Hz), 130.2, 129.5, 129.3, 128.8, 128.1, 127.7, 116.5 (d, J = 185.4 Hz), 113. 8 (d, J = 191.3 Hz), 61.82 (d, J = 7.5 Hz), 61.76 (d, J = 5.9 Hz), 16.4(d, J = 6.5 Hz), 16.1 (d, J = 6.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.56, 16.03. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₇O₃NaP, 263.0813; found, 263.0817.

diethyl (3-phenylpropyl)phosphonate (3z)¹²

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (17.4 mg, 34%).

¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, J = 7.3 Hz, 2H), 7.18 (t, J = 9.3 Hz, 3H), 4.07 (dt, J = 7.1, 6.1 Hz, 4H), 2.69 (t, J = 7.5 Hz, 2H), 2.00 – 1.85 (m, 2H), 1.79 – 1.67 (m, 2H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 128.4, 128.4, 126.0, 61.4 (d, J = 6.5 Hz), 36.4 (d, J = 17.2 Hz), 25.0 (d, J = 141.0 Hz), 24.1 (d, J = 4.8 Hz), 16.4 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 32.16. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₂₁O₃PNa, 279.1126; found, 279.1123.

diethyl (1-(cinnamylamino)-2-methylbutyl)phosphonate (4)

The title compound was purified by silica gel chromatography (PE/EA = 3/1); yellow oil (40.0 mg, 59%, dr = 4:3); diastereoselectivity determined by ³¹P NMR.

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.4 Hz, 2H), 7.31 – 7.25 (m, 2H), 7.19 (t, *J* = 7.2 Hz, 1H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.28 – 6.09 (m, 1H), 4.23 – 4.04 (m, 4H), 3.67 – 3.54 (m, 1H), 3.47 (dd, *J* = 13.9, 6.6 Hz, 1H), 2.87 (ddd, *J* = 19.5, 15.7, 2.9 Hz, 1H), 1.83 (dd, *J* = 14.1, 6.9 Hz, 1H), 1.74 – 1.61 (m, 1H), 1.61 – 1.38 (m, 1H), 1.38 – 1.22 (m, 7H), 1.01 (dd, *J* = 22.8, 6.8 Hz, 3H), 0.88 (q, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.0, 131.5, 128.4, 128.3, 127.3, 126.1, 61.6 (d, *J* = 7.3 Hz), 61.5 (d, *J* = 7.4 Hz), 58.9 (d, *J* = 143.8 Hz), 56.8 (d, *J* = 141.4 Hz), 51.4 (d, *J* = 3.6 Hz), 51.1 (d, *J* = 5.5 Hz), 36.1 (d, *J* = 5.2 Hz), 35.7 (d, *J* = 5.1 Hz), 27.3, 27.1, 16.53 (d, *J* = 2.8 Hz), 16.47 (d, *J* = 2.8 Hz), 14.9, 12.0. ³¹P NMR (162 MHz, CDCl₃) δ 29.05, 28.14. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₈H₃₀NO₃PNa, 362.1861; found, 362.1858.

methyl 2-(1-(4-(diethoxyphosphoryl)benzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (3bb)

The title compound was purified by silica gel chromatography (PE/EA = 2/1); yellow oil (39.8 mg, 42%).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (dd, J = 12.9, 7.9 Hz, 2H), 7.78 (dd, J = 7.8, 3.7 Hz, 2H), 6.96 (d, J = 2.2 Hz, 1H), 6.89 (d, J = 9.0 Hz, 1H), 6.66 (dd, J = 9.0, 2.2 Hz, 1H), 4.24 – 4.12 (m, 4H), 3.84 (s, 3H), 3.71 (s, 3H), 3.67 (s, 2H), 2.35 (s, 3H), 1.36 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 168.4, 156.2, 139.2, 135.8, 133.1 (d, J = 187.5 Hz), 132.0 (d, J = 9.9 Hz), 130.7 (d, J = 9.3 Hz), 129.2 (d, J = 14.9 Hz), 115.1, 112.9, 111.7, 101.4, 62.5 (d, J = 5.6 Hz), 55.7, 52.1, 30.1, 16.3 (d, J = 6.0 Hz), 13.5. ³¹P NMR (243 MHz, CDCl₃) δ 16.48. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₄H₂₉N O₇P, 474.1682; found, 474.1687.

6. Preliminary mechanistic studies

Controlled experiments 1-4 were carried out with **1a**, **1a-Boc**, or **1d** (0.2 mmol, 1.0 equiv) under Standard Conditions. The procedure was performed as in General procedure, but the results were monitored by TLC.

6.2 Radical-trapping experiments

Under the Standard Conditions, 2.0 equivalents of radical scavengers were added into the mixture. After the reaction finished, the mixture was concentrated under vacuum, and the residue was purified by silica gel chromatography (PE/EA = 2/1) to afford the product **3a**, respectively.

6.3 Analytical data of ESI-MS

In a 10 mL Schlenk tube containing a magnetic stir bar, **1d** (24.9mg, 0.1 mmol, 1.0 equiv), **2a** (56.0 mg, 0.2 mmol, 2.0 equiv), $PdCl_2[P(Cy)_3]_2$ (7.4 mg, 0.01 mmol, 10 mol %), Ag_3PO_4 (37.7 mg, 0.09 mmol, 0.9 equiv), Na_2CO_3 (21.2 mg, 0.2 mmol, 2 equiv) were added. The tube was evacuated and backfilled with Ar for 3 times, then 1,4-dioxane (1 mL) was added with a syringe under Ar and stirred on a pie-block preheated to 130 °C for 4 h. The reaction was cooled to room temperature, concentrated under vacuum, and diluted with CH₃CN prior to the injection into the mass spectrometer.

6.4 Proposed mechanism

Based on these results and previous reports on C-P bonds cleavage,¹³ a reaction mechanism was proposed. Firstly, Pd^{II} was reduced to form Pd⁰ *in situ*, followed by oxidative addition with halogenates to produce **Int-A**. On the other hand, the aminophosphonate was decomposed to phosphonate amine salt and aldehyde or ketone. Subsequently, the phosphonate amine salt immediately generated **Int-B** with silver salt, which was transmetallized with **Int-A** to give **Int-C**. Ultimately, reductive elimination produced Pd⁰ and C-P bond functionalized product **3**.

7. References

- (1) S. Sobhani and Z. Tashrifi, Synth. Commun., 2009, 39, 120.
- (2) H. Xu, X. Li, Y. Dong, S. Ji, J. Zuo, J. Lv and D. Yang, Org. Lett. 2023, 25, 3784.
- (3) N.Shen, R. Li, C. Liu, X. Shen, W. Guan and R. Shang, ACS Catal. 2022, 12, 2788.
- (4) L. Qiu, W. Hu, D. Wu, Z. Duan and F. Mathey, Org. Lett. 2018, 20, 7821.
- (5) Y. Bai, N. Liu, S. Wang, S. Wang, S. Ning, L. Shi, L. Cui, Z. Zhang and J. Xiang, Org. Lett. 2019, 21, 6835.
- (6) Q. Evrard, Z. Chaker, M. Roger, C. M. Sevrain, E. Delahaye, M. Gallart, P. Gilliot, C. Leuvrey, J.-M. Rueff, P. Rabu, C. Massobrio, M. Boero, A. Pautrat, P.-A. Jaffrès, G. Ori and G. Rogez, *Adv. Funct. Mater.* 2017, 1703576.
- (7) R. Zhuang, J. Xu, Z. Cai, G. Tang, M. Fang and Y. Zhao, Org. Lett. 2011, 13, 2110.
- (8) C. Liu, C.-L. Ji, T. Zhou, X. Hong and M. Szostak, Org. Lett. 2019, 21, 9256.
- (9) B. Huszár, R. Szolga, S. Bősze, R. O. Szabó, A. Simon, K. Karaghiosoff, M. Czugler, L. Drahos and G. Keglevich, *Chem.-Eur. J.* 2023, 29, e202302465.
- (10) C.-Y. Lo, C.-H. Chen, T. W. T. Tsai, L. Zhang, T.-S. Lim, W. Fann, J. C. C. Chan and T.-Y. Luh, J. Chin. Chem. Soc. 2010, 57, 539.
- (11) P. E. McDermott, M. P. Ó. Fearraigh, A. M. Horan, E. M. McGarrigle, *Org. Biomol. Chem.* 2023, *21*, 1027.
- (12) J. Yin, X. Lin, L. Chai, C.-Y. Wang, L. Zhu and C. Li, Chem, 2023, 9, 1945.

(13) (a) D.P. Jaisi, H. Li, A. F. Wallace, P. Paudel, M. Sun, A. Balakrishna and R. N. Lerch, J. *Agric. Food Chem.* 2016, *64*, 8474; (b) M. Doskocz, S. Roszak, D. Majumdar, J. Doskocz, R. Gancarz and J. Leszczynski, *J. Phys. Chem. A.* 2008, *112*, 2077.

8. Copies of NMR spectra

150

140

¹H NMR (400 MHz, CDCl₃) spectrum for 3a

an

50

20

10

90

³¹P NMR (162 MHz, CDCl₃) spectrum for 3a

¹³C NMR (151 MHz, CDCl₃) spectrum for 3b

³¹P NMR (243 MHz, CDCl₃) spectrum for 3b

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230

¹H NMR (600 MHz, CDCl₃) spectrum for 3c

¹³C NMR (151 MHz, CDCl₃) spectrum for 3c

¹H NMR (600 MHz, CDCl₃) spectrum for 3d

¹³C NMR (151 MHz, CDCl₃) spectrum for 3d

³¹P NMR (243 MHz, CDCl₃) spectrum for 3d

-19.12

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230

¹H NMR (400 MHz, CDCl₃) spectrum for 3e

4 7 8 6 6 8 8 8 8 9 7 9 9 7 9 9 9 7 9 7 9	413 413 413 413 414 413 413 413 413 413	5.18	200
VAPPI		ĩ	Y

³¹P NMR (162 MHz, CDCl₃) spectrum for 3e

-19.09

¹H NMR (600 MHz, CDCl₃) spectrum for 3f

³¹P NMR (243 MHz, CDCl₃) spectrum for 3f

-19.63

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230

¹H NMR (400 MHz, CDCl₃) spectrum for 3g

¹³C NMR (101 MHz, CDCl₃) spectrum for 3h

³¹P NMR (162 MHz, CDCl₃) spectrum for 3h

-19.11

150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

¹H NMR (400 MHz, CDCl₃) spectrum for 3i

¹³C NMR (101 MHz, CDCl₃) spectrum for 3i

³¹P NMR (162 MHz, CDCl₃) spectrum for 3j

¹H NMR (600 MHz, CDCl₃) spectrum for 3k

³¹P NMR (243 MHz, CDCl₃) spectrum for 31

-19.96

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230

¹H NMR (400 MHz, CDCl₃) spectrum for 3m

³¹P NMR (162 MHz, CDCl₃) spectrum for 3m

³¹P NMR (162 MHz, CDCl₃) spectrum for 3n

-19.73

¹H NMR (400 MHz, CDCl₃) spectrum for 3p

8.0 800 800 800 7.8 7 800 7.8 800 7.8 800 7.8 800 7.8 800 7.8 800 7.8 800 7.8 800 7.8 800 7.8 800 7.8 800 7.8000 7.80000 7.80000 7.80000 7.80000 7.80000000000	-128	43 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45	L13 L13 L13 L13 L13 L13 L13 L13 L13 L13
W 187		and that the	The fit

³¹P NMR (162 MHz, CDCl₃) spectrum for 3p

-17.08

150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

S40

¹H NMR (600 MHz, CDCl₃) spectrum for 3r

(138 134

³¹P NMR (243 MHz, CDCl₃) spectrum for 3r

-21.25

¹H NMR (400 MHz, CDCl₃) spectrum for 3s

³¹P NMR (162 MHz, CDCl₃) spectrum for 3s

³¹P NMR (243 MHz, CDCl₃) spectrum for 3t

-18.21

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230

¹H NMR (400 MHz, CDCl₃) spectrum for 3u

€.48 6.45	7418 7416 7416 7416 7416 7416 7411 7400 1400 1400	-201	
Ŷ	alter		V

¹³C NMR (101 MHz, CDCl₃) spectrum for 3u

³¹P NMR (162 MHz, CDCl₃) spectrum for 3u

-16.60

¹H NMR (400 MHz, CDCl₃) spectrum for 3v

¹³C NMR (101 MHz, CDCl₃) spectrum for 3v

³¹P NMR (162 MHz, CDCl₃) spectrum for 3v

³¹P NMR (162 MHz, CDCl₃) spectrum for 3w

¹H NMR (400 MHz, CDCl₃) spectrum for 3xa

¹³C NMR (101 MHz, CDCl₃) spectrum for 3xa

³¹P NMR (162 MHz, CDCl₃) spectrum for 3xa

¹H NMR (400 MHz, CDCl₃) spectrum for 3xb

¹³C NMR (101 MHz, CDCl₃) spectrum for 3xb

³¹P NMR (162 MHz, CDCl₃) spectrum for 3xb

¹³C NMR (101 MHz, CDCl₃) spectrum for 3y

³¹P NMR (162 MHz, CDCl₃) spectrum for 3y

S55

³¹P NMR (162 MHz, CDCl₃) spectrum for 3z

³¹P NMR (162 MHz, CDCl₃) spectrum for 4

29.05

¹H NMR (600 MHz, CDCl₃) spectrum for 3bb

120 110 100 ò -10

³¹P NMR (243 MHz, CDCl₃) spectrum for 3bb

-16.48

