Tailoring Helical Ends of π -Extended [6]Heterohelicenes to Control Optical, and Electrochemical Features

Viksit Kumar,^{a,b} Sangram D. Dongre,^{a,b} Geethu Venugopal,^{a,b} Aswini Narayanan,^{a,b} Sukumaran Santhosh Babu^{*,a,b}

^aOrganic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

Sr. No. Page No. Content General Information 1. S2 **S**4 2. **Experimental Procedures** 3. Figures S27 4. Tables S44 11. References S53

Table of Contents

General Information

Materials

All chemicals, 3-Bromo-1,2-benzenediamine, 4-tertbutyl Phenylacetylene, 4-tertbutyliodobenzene (TCI), potassium hydroxide (Loba Chemie), Lithium aluminium hydride, Selenium dioxide (Chempure) and copper Iodide (Spectrochem) were used as received. The solvents such as dichloromethane (CH_2Cl_2), N, N-dimethylformamide (DMF), toluene, Disopropylamine, dimethyl sulfoxide (DMSO), Thionyl chloride (Finar), were used after distillation in calcium hydride as further purification.

Thin layer chromatography was carried out using Aluchrosep Silica Gel 60/UV254 purchased from Merck Specialities Pvt Ltd and visualized either by UV Fluorescence or by iodine chamber. Column chromatography was performed using silica gel (100-200 mesh), bed was made by using 60-120 mesh silica purchased from Spectrochem Pvt. Ltd. India, and mixtures of Dichloromethane-Petroleum ether used for elution were distilled before use.

General

All the reactions were carried out in oven-dried round bottom flasks under an argon atmosphere unless otherwise mentioned. The ¹H, ¹³C NMR spectra were recorded at Bruker-400 and 500 MHz NMR spectrometer instruments. The chemical shift values for ¹H (TMS as internal standard) and ¹³C NMR are recorded in CDCl₃. The value of the coupling constant (*J*) is stated in Hertz (Hz). UV-Vis absorption spectra were recorded with a Shimadzu 1800 spectrophotometer, while all emission spectra were performed using PTI Quanta MasterTM Steady State Spectrofluorometer. The mass spectrometry experiments were conducted on Bruker ultraflex MALDI-TOF MS. The mass spectrum was recorded using 2, 5-Dihydroxybenzoic acid (DHB) as a matrix material. Steady State Spectrofluorometer. HPLC analysis was performed on Agilent 1260, Infinity Series using normal (CHIRALPAK SA, 5 mm, 4.6 mm x 250 mm) columns. Chiral molecule **SNG** and **SeNG** were separated using n-hexane: isopropanol (90:10) by monitoring at 254 nm. CD spectra were recorded on a Jasco J-815 CD spectrometer equipped with a Jasco PTC-424S/15 Peltier system. X-ray intensity data were collected on a Bruker SMART APEX II CCD diffractometer with graphitemonochromatized (Mo K α = 0.71073 Å) radiation at ambient temperature.

X-ray Single Crystallography

Single crystal of **SNG** and **SeNG**, suitable for X-ray crystallography analysis was obtained by slow evaporation of methanol and CHCl₃/CDCl₃ solution for 3 weeks. The crystal structure was deposited at the Cambridge Crystallographic Data Centre (CCDC) and the data can be obtained free of charge via www.ccdc.cam.ac.uk/structures.

X-ray intensity data measurements

X-ray intensity data measurements of all the samples were carried out on a Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer equipped with Incoatech multilayer mirrors optics. The intensity measurements were carried out with a microfocus sealed tube diffraction source (MoK_{α}= 0.71073 Å) at 100(2) K temperature. The Xray generator was operated at 50 kV and 1.4 mA. A preliminary set of cell constants and an orientation matrix were calculated from three sets of 36 frames. Data were collected with ω and φ scan width of 0.5° at different settings of φ , ω and 2θ keeping the sampleto-detector distance fixed at 5.00 cm. The X-ray data collection was monitored by the APEX3 program (Bruker, 2016). All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker, 2016). Using the APEX3 (Bruker) program suite, the structure was solved with the ShelXS-97 (Sheldrick, 2008) structure solution program, using direct methods. The model was refined with a version of ShelXL-2013 (Sheldrick, 2015) using Least Squares minimization. All the hydrogen atoms were placed in a geometrically idealized position and constrained to ride on their parent atoms. An ORTEP III view of the compound was drawn with 50% probability displacement ellipsoids, and H atoms are shown as small spheres of arbitrary radii.

Experimental Procedures:

Synthesis:

Heterohelicene synthesis is shown in Scheme S1.^{S1}

Scheme S1. Synthesis of π -extended SNG and SeNG helicenes. Conditions: a) I₂, DMSO, 150 °C, 10 h, 91%, b) KOH, EtOH, reflux, 1 h, 85%.

Synthesis of 4- Bromobenzo[c][1,2,5]thiadiazole (2):

In an oven-dried round bottom flask, 3-bromo-1,2-benzenediamine **1** (5g, 1 mmol) was taken and dissolved in CH_2Cl_2 (20 mL) followed by the addition of triethylamine (16 mL, 5 mmol). In an addition funnel, $SOCl_2$ (5 mL, 3 mmol) was dissolved in CH_2Cl_2 (10 mL) and added dropwise to the reaction mixture, the reaction mixture was stirred at reflux temperature. The reaction was monitored by TLC. After completion of the reaction, the solvent was removed under vacuum, and the combined organic layer was washed with water and concentrated under vacuum. The 4-bromobenzo[c][1,2,5]thiadiazole **2** was isolated by column chromatography (4.23g, 75%).

¹**H NMR (400 MHz, CDCl₃):** *δ* [**ppm**] = 7.94 (d, *J* = 8.8 Hz, 1 H), 7.81 (d, *J* = 7.1 Hz, 1 H), 7.45 ppm (t, *J* = 7.9 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 154.6, 153.3, 131.9, 129.9, 120.9, 114.4.

HRMS-ESI: m/z calculated for $C_6H_4N_2BrS [M+H]^+$: 214.9279, found: 214.9273. Melting point: 78 °C.

Procedure for synthesis of 4-((4-(tert-butyl)phenyl)ethynyl)benzo[c][1,2,5]thiadiazole (3):

To a mixture of 4-bromo-2,1,3-benzothiadiazole **2** (500 mg, 1 mmol), Pd(PPh₃)₂Cl₂ (37.2 mg, 0.01 mmol), and CuI (11.56 mg, 0.03 mmol) in diisopropylamine (5 mL) was added 4-*tert*-butylphenylacetylene (0.4 mL, 352 mg, 1.1 mmol). The mixture was stirred at rt for 30 mins under nitrogen, then the temperature was raised and kept at 70 °C for 24 h. After cooling, CH₂Cl₂ (50 mL) was added. Then, the solution was washed with water (30 mL \times 2) and brine (30 mL). The obtained organic solution was dried over Na₂SO₄. The solvent was removed on a rotary evaporator, and the residue was purified by silica gel column chromatography using CH₂Cl₂/*n*-hexane (1:10, v/v) as eluent to afford **3** as a greenish-yellow powder (557 mg, 85%).

¹**H NMR (500 MHz, CDCl₃):** δ [**ppm**] = 7.99 (dd, J = 8.8, 0.9 Hz, 1 H), 7.80 (dd, J = 6.9, 0.9 Hz, 1 H), 7.57 - 7.64 (m, 3 H, merged triplet and doublet), 7.42 (d, J = 8.5 Hz, 2 H), 1.35 ppm (s, 9 H)

¹³C NMR (125 MHz, CDCl₃): *δ* [ppm] = 154.6, 154.6, 152.3, 132.5, 131.7, 129.2, 125.4, 121.5, 119.6, 117.5, 96.1, 84.5, 34.9, 31.1.

HRMS-ESI: m/z calculated for $C_{18}H_{17}N_2S$ [M+H]⁺: 293.1112, found: 293.1109.

Melting point: 112 °C.

Procedure for synthesis of 4-((4-(tert-butyl)phenyl)ethynyl)benzo[c][1,2,5] selendiazole (4):

The 4-((4-(tert-butyl)phenyl)ethynyl)benzo[c][1,2,5]thiadiazole **3** (100 mg, 1.00 equiv.) was dissolved in THF (5 mL) in a heatgun-dried Schlenk-tube under nitrogen. LiAlH₄ (65 mg, 5 equiv.) was added slowly over 10 min at 0°C. After stirring for 2h at room temperature until the starting material was completely consumed. After that, the mixture was cooled down to 0 °C again and added a saturated NH₄Cl solution. The mixture was diluted with water (30 mL) and extracted three times with diethyl ether. The combined organic layers were dried over Na₂SO₄ and evaporated. The crude product was directly used for the next reaction for which the solution of the diamine (1 equiv.) in EtOH (8 mL per 50 mg diamin) at 60 °C was added a solution of selenium dioxide (5 equiv.) in hot water (100 mg SeO₂ in 1 mL). After heating the mixture overnight it was diluted with water and extracted three times with DCM. Purification by flash column chromatography gives 4-((4-(tert-butyl)phenyl)ethynyl)benzo[c][1,2,5] selendiazole 75 mg, 65% in two steps.

¹**H NMR (500 MHz, CDCl₃):** *δ* [**ppm**] = 7.83 (dd, *J* = 9.1, 0.9 Hz, 1 H), 7.69 (dd, *J* = 6.8, 0.9 Hz, 1 H), 7.60 (d, *J* = 8.5 Hz, 2 H), 7.48 (t, 1 H), 7.41 (d, *J* = 8.5 Hz, 2 H), 1.35 ppm (s, 9 H)

¹³C NMR (125 MHz, CDCl₃): δ [ppm] = 160.1, 159.7, 152.2, 132.7, 131.7, 129.4, 125.4, 123.6, 119.6, 119.0, 96.0, 85.0, 34.9, 31.1

HRMS-ESI: m/z calculated for C₁₈H₁₇N₂Se [M+H]⁺: 341.0557, found: 341.0536.

Melting point: 115 °C.

General procedure for the synthesis of 5 and 6:

A sealing tube (20 mL) equipped with a magnetic stirring bar was charged with **3** or **4** (1 eq.) and 2,3,4,5 tetrakis(4(tertbutyl)phenyl)cyclopenta-2,4-diene-1-one **CPD** (1.1 eq) and toluene (1.5 mL for 200 mg reaction). The flask was purged with N2 and closed. The reaction mixture was stirred for 48 h at 230 °C. After cooling to RT, 20 mL methanol was added and filtered off the white solid precipitate and was washed with an excess of cold methanol until the filtrate remained colorless. The remaining solid was dried under vacuum. The product was obtained as an off-white solid.

Synthesis of 5:

Compound **3** (100 mg, 1eq.) and 2,3,4,5 tetrakis(4(tertbutyl)phenyl)cyclopenta-2,4-diene-1one **CPD** (206.4 mg, 1.1 eq) were reacted according to the general procedure. An off-white solid was isolated after precipitation and further purification was done by column (silica gel, *n*-hexane/CH₂Cl₂, 9:1, 237 mg, 85%).

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.55 (d, J = 8.6 Hz, 1 H), 7.21 (t, J = 7.8 Hz, 1 H), 7.13 (d, J = 6.8 Hz, 1 H), 6.78 - 6.87 (m, 6 H), 6.72 (br. s., 10 H), 6.63 (d, J = 8.1 Hz, 2 H), 6.58 (d, J = 8.1 Hz, 2 H), 1.07 - 1.13 (m, 27 H), 1.00 ppm (s, 18 H).

¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 154.5, 154.2, 147.8, 147.5, 147.4, 141.5, 140.7, 140.6, 137.8, 137.6, 137.5, 135.4, 131.7, 131.1, 130.9, 131.0, 130.3, 128.7, 123.1, 123.0, 123.0, 122.6, 119.1, 34.1, 34.0, 33.9, 31.2, 31.0.

HR MS-ESI: m/z calculated for $C_{62}H_{69}N_2S$ [M+H]⁺: 873.5181, found: 873.5135.

Melting point: 310 °C.

Synthesis of 6:

Compound **4** (50 mg, 1eq.) and 2,3,4,5 tetrakis(4(tertbutyl)phenyl)cyclopenta-2,4-diene-1one **CPD** (90 mg, 1.1 eq) were reacted according to the general procedure. An off-white solid was isolated after precipitation and further purification was done by column (silica gel, *n*hexane/ CH_2Cl_2 , 9:1, 102 mg, 80%).

¹**H NMR (400MHz, CDCl₃):** δ [**ppm**] = 7.38 (d, J = 8.8 Hz, 1 H), 7.11 (t, 1 H), 6.99 (d, J = 5.9 Hz, 1 H), 6.82 (m, 6 H), 6.69 - 6.75 (m, 10 H), 6.64 (d, J = 8.1 Hz, 2 H), 6.58 (d, J = 7.9 Hz, 2 H), 1.11 (s, 9 H), 1.09 (s, 18 H), 1.00 (s, 18 H)

¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 160.1, 160.0, 147.8, 147.5, 147.4, 141.4, 140.6, 140.5, 137.8, 137.6, 136.8, 135.8, 131.7, 131.1, 130.9, 131.0, 130.3, 130.2, 129.1, 123.1, 123.1, 124.9, 122.6, 121.2, 34.0, 34.0, 31.2, 31.0.

HRMS-ESI: m/z calculated for $C_{62}H_{69}N_2Se [M+H]^+$: 921.4626, found: 921.4658.

Melting point: 312 °C.

General procedure for the synthesis of SNG and SeNG:

Round bottom flask (100 mL) equipped with a magnetic stirring bar was charged with **5** or **6** 1 eq., 6 eq. DDQ and CH_2Cl_2 (40 mL for 100 mg reaction). The mixture was degassed via N₂-bubbling for 20 min and meanwhile cooled to 0 °C. Later, 0.15 mL of triflic acid was added in one portion and the flask was closed with a rubber septum under N₂. The reaction mixture was stirred for 2h at 0 °C and after that, MeOH (30 mL) and NEt₃ (10 mL) were added. All solvents were evaporated and the crude was filtered over a pad of silica gel with *n*-hexane/CH₂Cl₂ (1:1). Final purification was achieved by column chromatography over silica gel with *n*-hexane/CH₂Cl₂.

Procedure for synthesis of SNG:

5 (100 mg) was reacted according to the general procedure. An orange crystalline solid was isolated after column chromatography (silica gel, *n*-hexane/CH₂Cl₂, 9:1, 79 mg, 80%).

¹**H NMR (500 MHz, CDCl₃):** δ [**ppm**] = 9.34 (s, 1 H), 9.31 (s, 1 H), 9.28 (s, 1 H), 9.27 (s, 1 H), 9.25 (s, 2 H), 9.19-9.17 (m, 3 H), 8.79 (s, 1 H), 8.26 (d, J = 9.2 Hz, 1 H), 7.85 (d, J = 8.5 Hz, 1 H), 6.89 (dd, J = 8.5, 1.8 Hz, 1 H), 1.82 - 1.85 (m, 36 H), 1.46 (s, 9 H)

¹³C NMR (125 MHz, CDCl₃): δ [ppm] = 154.4, 153.5, 149.6, 149.4, 149.4, 149.1, 148.9, 130.7, 130.6, 130.4, 130.0, 129.9, 129.8, 129.3, 129.1, 128.8, 127.5, 124.8, 124.8, 124.0, 123.7, 123.6, 123.2, 123.0, 122.6, 121.6, 120.3, 120.0, 119.6, 119.3, 119.2, 119.1, 118.9, 118.8, 117.9, 35.9, 35.8, 35.7, 34.9, 32.0, 31.4.

MALDI-TOF: m/z calculated for $C_{62}H_{58}N_2S$ [M+H]⁺: 862.4321, found: 862.8814.

Melting point: Stable up to ~320 °C, after that slowly decomposes.

Procedure for synthesis of SeNG:

6 (50 mg) was reacted according to the general procedure. A reddish crystalline solid was isolated after column chromatography (silica gel, *n*-hexane/CH₂Cl₂, 9:1, 40.5 mg, 82%).

¹**H NMR (500MHz, CDCl₃):** δ [**ppm**] = 9.34 (s, 1 H), 9.28 (s, 1 H), 9.30 (s, 1 H), 9.21-9.27 (m, 3 H), 9.14 (s, 2 H), 9.09 (d, J = 9.8 Hz, 1 H), 8.75 (s, 1 H), 8.10 (d, J = 9.5 Hz, 1 H), 7.91 (d, J = 8.5 Hz, 1 H), 6.90 (dd, J = 8.7, 1.7 Hz, 1 H), 1.81 - 1.84 (m, 36 H), 1.45 (s, 9 H).

¹³C NMR (125 MHz, CDCl₃): δ [ppm] = 159.8, 158.4, 149.6, 149.4, 149.0, 148.7, 130.7, 130.5, 130.4, 129.9, 129.8, 129.6, 129.2, 128.9, 128.7, 127.8, 126.3, 125.0, 124.1, 123.7, 123.6, 123.3, 123.1, 122.4, 122.1, 121.5, 120.3, 119.5, 119.3, 119.2, 119.1, 118.9, 118.8, 118.8, 118.3, 35.8, 35.7, 34.8, 32.0, 31.4.

MALDI-TOF: m/z calculated for $C_{62}H_{58}N_2Se [M+H]^+: 910.3765$, found: 910.9074.

Melting point: Stable up to \sim 320 °C, after that slowly decomposes.

¹H, ¹³C NMR, and Mass Spectra

¹H NMR (400 MHz) spectrum of 2 in CDCl₃ at 298 K

 $^{13}\mathrm{C}$ NMR (100 MHz) spectrum of 2 in CDCl_3 at 298 K

HR MS-ESI spectrum of 2

¹H NMR (400 MHz) spectrum of 3 in CDCl₃ at 298 K

 $^{13}\mathrm{C}$ NMR (100 MHz) spectrum of 3 in CDCl3 at 298 K

HR MS-ESI spectrum of 3

¹H NMR (400 MHz) spectrum of 4 in CDCl₃ at 298 K

 $^{13}\mathrm{C}$ NMR (100 MHz) spectrum of 4 in CDCl3 at 298 K

HR MS-ESI spectrum of 4

 $^1\mathrm{H}$ NMR (400 MHz) spectrum of 5 in CDCl_3 at 298 K

 $^{13}\mathrm{C}$ NMR (101 MHz) spectrum of 5 in CDCl3 at 298 K

 $^{13}\mathrm{C}$ NMR (100 MHz) cutout (aromatic region) spectrum of 5

HR MS-ESI spectrum of 5

¹H NMR (400 MHz) spectrum of 6 in CDCl₃ at 298 K

 $^{13}\mathrm{C}$ NMR (100 MHz) spectrum of 6 in CDCl3 at 298 K

HR MS-ESI spectrum of 6

¹H NMR (500 MHz) spectrum of SNG in CDCl₃ at 298 K

¹H NMR (500 MHz) cutout (aromatic region) spectrum of SNG

 $^{13}\mathrm{C}$ NMR (125 MHz) spectrum of SNG in CDCl_3 at 298 K

 $^{13}\mathrm{C}$ NMR (125 MHz) aromatic region cutout of SNG in CDCl_3 at 298 K

MALDI-TOF MS spectra of SNG

MALDI-TOF MS Zoomed spectra of SNG

¹H NMR (500 MHz) spectrum of SeNG in CDCl₃ at 298 K

¹H NMR (500 MHz) cutout (aromatic region) spectrum of SeNG

 $^{13}\mathrm{C}$ NMR (125 MHz) spectrum of SeNG in CDCl3 at 298 K

 $^{13}\mathrm{C}$ NMR (125 MHz) aromatic region cutout of SeNG in CDCl3 at 298 K

Comparison of ¹H NMR spectrum (aromatic region) of SNG and SeNG

MALDI-TOF MS spectra of SeNG

MALDI-TOF MS Zoomed spectra of SeNG

Figures

Figure S1. The inner torsion angles of a) SNG and b) SeNG.

Figure S2. Extended molecular packing of a-c) SNG and d-f) SeNG along a, b, and c axes, respectively.

Figure S3. Simulated absorption spectrum (blue line) of **SNG** and calculated oscillator strength (Green bar) of **SNG** at the B3LYP/6-311G (d, p) level.

Figure S4. Simulated absorption spectrum (blue line) of **SeNG** and calculated oscillator strength (Green bar) of **SNG** at the B3LYP/6-311G (d, p) level.

Figure S5. Normalized fluorescence spectra of SNG and SeNG in CH₂Cl₂.

Figure S6. Normalized phosphorescence spectra of SNG and SeNG in MTHF.

Figure S7. Fluorescence spectra of SNG and SeNG in MTHF at RT and 77K.

Figure S8. Calculated energy level diagram of SNG.

Figure S9. Calculated energy level diagram of SeNG.

<Peak Table>

PDAC	n i 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	18.286	63598002	2898099	45.512
2	18.952	76141598	2980369	54.488
Total		139739600	5878467	100.000

Column:	CHIRALPAK SA
Eluent System:	90:10 (HEXANE:IPA)
Flow rate:	1 ml/min Injection
vol.:	10 ul
Wavelength:	254 nm
Sample Conc.:	1.0mg/ml

Figure S10. HPLC profile of SNG in *n*-hexane:isopropanol (90:10) by monitoring at 254 nm.

Date Acquired : 7/	/20/2023 12:24:56 PM	Acquired by	: System Administrator	
Date Processed : 7/	/21/2023 4:03:35 PM	Processed by	: System Administrator	

<Chromatogram>

<Peak Table>

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	18.610	3081126	152269	100.000	
Total		3081126	152269	100.000	

Column:	CHIRALPAK SA
Eluent System:	90:10 (HEXANE:IPA)
Flow rate:	1 ml/min Injection
vol.:	10 ul
Wavelength:	254 nm
Sample Conc.:	1.0mg/ml

Figure S11. HPLC trace for (*M*)-SNG.

<Chromatogram>

System Administrator System Administrator

<Peak Table>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	19.189	2975712	134369	100.000
Total		2975712	134369	100.000

Column:	CHIRALPAK SA
Eluent System:	90:10 (HEXANE:IPA)
Flow rate:	1 ml/min Injection
vol.:	10 ul
Wavelength:	254 nm
Sample Conc.:	1.0mg/ml

Figure S12. HPLC trace for (P)-SNG

Date Acquired	: 7/20/2023 11:18:36 AM
Date Processed	: 7/21/2023 4:01:33 PM

: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	20.318	50200051	2004798	49.444	
2	22.080	51328594	1864855	50.556	
Total		101528646	3869652	100.000	

Column:	CHIRALPAK SA
Eluent System:	90:10 (HEXANE:IPA)
Flow rate:	1 ml/min Injection
vol.:	10 ul
Wavelength:	254 nm
Sample Conc.:	1.0mg/ml

Figure S13. HPLC profile of **SeNG** in *n*-hexane:isopropanol (90:10) by monitoring at 254 nm.

Date Acquired : 7/20/2023 1:15:41 PM	Acquired by	: System Administrator
Date Processed : 7/21/2023 4:07:57 PM	Processed by	: System Administrator

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%			
1	20.361	1333804	57785	100.000			
Total		1333804	57785	100.000			

Column:	CHIRALPAK SA
Eluent System:	90:10 (HEXANE:IPA)
Flow rate:	1 ml/min Injection
vol.:	10 ul
Wavelength:	254 nm
Sample Conc.:	1.0mg/ml

Figure S14. HPLC trace for (*M*)-SeNG

DAD: Signal A, 254 nm/Bw:4 nm Results

rea	Area	Retention Time
493	1484493	15.713
499	76254499	22.880
		Totals
992	77738992	

Column:CHIRALPAK SAEluent System:90 : 10 (HEXANE:IPA)Flow rate:1 ml/min Injectionvol.:10 ulWavelength:254 nmSample Conc.:1.0mg/ml

Figure S15. HPLC trace for (*P*)-SeNG

Figure S16. Simulated CD spectra and calculated rotatory strength (Green verticle bar) for assigning absolute configuration of isomer (*P*)-**SNG** at the B3LYP/6-311G (d, p) level.

Figure S17. Simulated CD spectra and calculated rotatory strength (Green verticle bar) for assigning absolute configuration of isomer (*P*)-**SeNG** at the B3LYP/6-311G (d, p) level.

Figure S18. Involved frontier orbitals of SNG.

LUMO	LUMO+1	LUMO+2	LUMO+3
НОМО	HOMO-1	НОМО-2	НОМО-3

Figure S19. Involved frontier orbitals of SeNG.

Figure S20. HOMO-LUMO energy gap of SNG and SeNG obtained by DFT calculation.

Tables

	$\Delta E (eV)$	λ (nm)	f	Configuration(orbital symmetry)	Coefficient
S0_S1	2.3321	531.65	0.0891	HOMO (230) _ LUMO (231)	0.69583
S0_S2	2.5410	487.94	0.0682	HOMO-1 (229) _ LUMO (231)	0.67663
S0_S3	2.9827	415.68	0.0775	HOMO (230) _ LUMO+1 (232)	0.50822
S0_S4	3.0137	411.41	0.0183	HOMO -2(228) _ LUMO (231)	0.64198
S0_S5	3.0477	406.81	0.0560	HOMO (230) _ LUMO+2(233)	0.50825
S0 _ S6	3.2985	375.88	0.1212	HOMO (230) _ LUMO+3 (234)	0.43038
S0_S7	3.3859	366.17	0.2805	HOMO-3 (227) _ LUMO (231)	0.38486
S0 _ S8	3.4135	363.22	0.1275	HOMO-3(227) _ LUMO (231)	0.39493
S0_S9	3.4947	354.78	0.1635	HOMO-4(226) _ LUMO (231)	0.36789
S0_S10	3.5712	347.18	0.2973	HOMO-4(226) _ LUMO (231)	0.45816

	ΔE (eV)	λ (nm)	f	Configuration	Coefficient
				(orbital symmetry)	
S0_T1	1.7693	700.74	0.0000	HOMO (230) _ LUMO (231)	0.60259
S0_T2	2.2768	544.55	0.0000	HOMO-1 (229) _ LUMO (231)	0.48939
S0_T3	2.3626	524.77	0.0000	HOMO-1 (229) _ LUMO	0.41450

				(231)	
S0_T4	2.5876	479.16	0.0000	HOMO (230) _ LUMO+2 (233)	0.36868
S0_T5	2.6438	468.97	0.0000	HOMO (230) _ LUMO+1 (232)	0.35992
S0_T6	2.7611	449.03	0.0000	HOMO (230) _ LUMO+1 (232)	0.37138
S0_T7	2.8302	438.08	0.0000	HOMO (230) _ LUMO+2 (233)	0.35785
S0_T8	2.9245	423.94	0.0000	HOMO-3 (227) _ LUMO (231)	0.34216
S0_T9	2.9580	419.15	0.0000	HOMO-1 (229) _ LUMO+1 (232)	0.42118
S0_T10	3.0988	400.10	0.0000	HOMO-2 (228) _ LUMO (231)	0.39639

	ΔE (eV)	λ (nm)	f	Configuration (orbital symmetry)	Coefficient
S0_S1	2.2313	555.67	0.0624	HOMO (239) _ LUMO (240)	0.69809
S0_S2	2.4222	511.87	0.0669	HOMO-1 (238) _ LUMO (240)	0.68947
S0_S3	2.9111	425.90	0.0013	HOMO-2 (237) _ LUMO (240)	0.68367
S0_S4	2.9393	421.81	0.0563	HOMO (239) _ LUMO+1 (241)	0.51130
S0_S5	3.0258	409.75	0.0548	HOMO (239) _ LUMO +2(242)	0.52925
S0 _ S6	3.2885	377.03	0.1913	HOMO (239) _ LUMO+3 (243)	0.38899
S0_S7	3.3034	375.32	0.0866	HOMO-3 (236) _ LUMO (240)	0.56435
S0_S8	3.3739	367.48	0.3412	HOMO -1(238) _ LUMO +2(242)	0.47316
S0_S9	3.4286	361.62	0.0777	HOMO-4 (235) _ LUMO (240)	0.57907
S0_S10	3.5002	354.22	0.2895	HOMO (239) _ LUMO+3 (243)	0.35022

 Table S2. Excitation properties of SeNG calculated at the TD-B3LYP/6-311G(d,p) level

	ΔE (eV)	λ (nm)	f	Configuration (orbital	Coefficient
				symmetry)	
S0 _ T1	1.6869	735.00	0.0000	HOMO (239) _ LUMO (240)	0.58927
S0_T2	2.1944	565.00	0.0000	HOMO-1(238) _ LUMO (240)	0.51885
S0_T3	2.2820	543.30	0.0000	HOMO-1 (238) _ LUMO (240)	0.36959

S0_T4	2.5274	490.56	0.0000	HOMO-2 (237) _ LUMO (240)	0.41058
S0_T5	2.5549	485.29	0.0000	HOMO-4 (235) _ LUMO (240)	0.33923
S0 _ T6	2.6838	461.98	0.0000	HOMO (239) _ LUMO+1 (241)	0.48055
S0 _ T7	2.7200	455.82	0.0000	HOMO (239) _ LUMO (240)	33920
S0 _ T8	2.8614	433.29	0.0000	HOMO (239) _ LUMO (240)	0.34093
S0_T9	2.9101	426.05	0.0000	HOMO-1 (238) _ LUMO+2 (242)	0.42612
S0_T10	3.0312	409.02	0.0000	HOMO-2 (237) _ LUMO (240)	0.37869

 Table S3. Photophysical parameters of SNG and SeNG.

Sample	λ_{\max} , abs (nm)	λ_{\max} , ems (nm)	$\phi_{ m Fl}$ [%]	t _{Fl} [ns]	$K_{\rm nr, fl} [10^9 {\rm s}^{-1}]$	$K_{r, fl} [10^9 s^{-1}]$
SNG	340	560	7.35	16.05	0.0577	0.0045
SeNG	349	590	0.9	3.88	0.255	0.0023

Table S4. Fluorescence lifetime of SNG and SeNG.

Sample	Fluorescence lifetime (ns)	CHISQ.
SNG@560 nm	16.05 (47.79 %) 4.98 (49.01 %) 0.50 (3.20 %)	1.14
SeNG@590 nm	1.37 (91.47 %) 3.88 (8.53 %)	1.09

Sample	Phosphorescence lifetime (ms)	CHISQ.
SNG@540 nm	216 (79.18 %) 103 (20.82%)	1.01
SeNG@550 nm	2600 (90.46 %) 1200 (9.54 %)	1.07

Table S5. Phosphorescence lifetime of **SNG** and **SeNG** at 77 K.

Details of DFT calculations

Ground (S0) state calculations were performed using restricted density functional theory (DFT). Singlet and triplet excited states were investigated using time-dependent density functional theory (TDDFT). The ground state singlet (S₀) state was calculated using rB3LYP/6-311G(d,p) level of theory. Also the TD-DFT calculations were done with same level of theory. All the geometries of the complexes in the S₀ state were optimized. The optimized Cartesian coordinates and total energies are listed below. On the basis of the Frank-Condon principle, the absorption properties were evaluated using the optimized S₀ state structure. The Gaussian05 software was used in all the DFT and TD-DFT calculations.^{S2}

Optimized Cartesian coordinates of different complexes (S_0 state) at the B3LYP/6-311G(d,p) level of theory.

SNG

Coordinates of Optimized Structure SNG

С	-0.907100797	-3.930872505	0.770591582
С	-0.791959717	-5.279983596	1.267068487
С	0.312586350	-5.755500938	1.900754041
С	1.384461290	-4.850197936	2.137397826
С	1.312967242	-3.494756023	1.632247187
С	0.179537701	-3.049746987	0.848700113
Ν	2.471320360	-5.103655423	2.864387103
S	3.324110674	-3.699050684	2.922892596
Ν	2.341335599	-2.744741630	2.023696088
С	0.079540941	-1.702970975	0.306145206
С	-1.224438614	-1.161049942	0.177294210
С	-2.361778664	-2.037496925	0.130520692
С	-3.654069252	-1.521662933	-0.143554189
С	-4.698356790	-2.421138799	-0.399383472
С	-4.526256199	-3.804101263	-0.359867390
С	-3.267010168	-4.290217306	-0.002462724
С	-2.186338197	-3.443663520	0.266114953
С	-5.662154865	-4.792798334	-0.684645408
С	-6.973012796	-4.078780716	-1.061171007
С	-5.242235975	-5.682438970	-1.878020899
С	-5.939779295	-5.685082157	0.547701125
С	1.191265900	-0.886662225	-0.055592145

С	1.021472273	0.517363355	-0.058122826
С	-0.278055973	1.085655488	0.025105843
С	-1.404899079	0.238763236	0.025510729
С	-2.728974667	0.788265737	-0.074924620
С	-0.446406716	2.513633484	0.047106311
С	2.177479960	1.378842745	-0.087678461
С	2.464503006	-1.414775897	-0.537207974
С	0.686002811	3.366630177	0.111942615
С	0.487717149	4.752415532	0.162534339
С	-0.781000330	5.327331561	0.160662972
С	-1.880457273	4.470120648	0.087571167
С	-1.751004257	3.080336115	0.019210827
С	-2.918318351	2.197284879	-0.089440349
С	-4.218525124	2.697197652	-0.203413046
С	-5.342051155	1.871511818	-0.282401173
С	-5.134565386	0.494739414	-0.256344063
С	-3.855463535	-0.069965238	-0.165978736
С	3.476974948	0.827613622	-0.220326981
С	4.592555578	1.657039486	-0.047453609
С	4.471300888	3.019959023	0.212090214
С	3.182293992	3.558082363	0.256566876
С	2.031567652	2.780075790	0.096668509

С	2.577742376	-2.713120172	-1.075710210	Н	1.700852282	-3.344436420	-1.125874070
С	3.770977852	-3.194379956	-1.567765596	Н	3.795388153	-4.198206892	-1.975845611
С	4.936882514	-2.401433333	-1.568128114	Н	5.668644695	-0.447299641	-1.149120800
С	4.813374137	-1.103675809	-1.096331782	Н	-7.998287525	3.854915191	0.772020726
С	3.601847544	-0.580100404	-0.596432412	Н	-6.947024478	2.830242063	1.763263150
С	-6.743945724	2.500346436	-0.391515608	Н	-6.275830820	4.218703213	0.903945747
С	-7.002373191	3.405762766	0.835318056	Н	-7.816017078	3.805859952	-1.773418501
С	-6.826303696	3.347823334	-1.682494340	Н	-6.655045057	2.728102413	-2.566772775
С	-7.861287769	1.442017846	-0.443219563	Н	-6.085353786	4.150473977	-1.690495770
С	-1.004691184	6.850046450	0.223957996	Н	-7.877508850	0.822307731	0.457549872
С	0.316274090	7.635320299	0.320620970	Н	-8.832034909	1.939310060	-0.517170982
С	-1.745544603	7.314731757	-1.051424536	Н	-7.762188216	0.785548952	-1.312051824
С	-1.857242717	7.194727745	1.467522375	Н	0.102208883	8.706311073	0.367900716
С	5.688904722	3.933667688	0.445428082	Н	0.881814141	7.373072490	1.219040440
С	5.702405515	5.062272630	-0.611656762	Н	0.954868690	7.466806820	-0.550705031
С	5.598995391	4.554761670	1.858954971	Н	-1.916538975	8.395214066	-1.019346181
С	7.022759480	3.170931720	0.343881621	Н	-2.717138543	6.826788634	-1.157807747
С	6.254625629	-2.975565222	-2.114326058	Н	-1.159361645	7.089227105	-1.946318547
С	6.072700418	-3.362502891	-3.600856786	Н	-1.356380753	6.874538096	2.385085006
С	7.418157862	-1.972032725	-2.018566302	Н	-2.020181033	8.275227041	1.527190501
С	6.637333495	-4.233997409	-1.300886628	Н	-2.836790298	6.712477511	1.437284223
Н	-1.638827930	-5.942332998	1.155003997	Н	6.564897279	5.717399647	-0.455299131
Н	0.373316747	-6.769870594	2.272992432	Н	5.767191151	4.649638425	-1.622104167
Н	-5.666690549	-2.026476009	-0.663953461	Н	4.802816834	5.679829385	-0.561022496
Н	-3.122296489	-5.359859451	0.052738486	Н	6.456327941	5.210121086	2.041373127
Н	-7.741628145	-4.822097942	-1.288335608	Н	5.595833610	3.776225581	2.626523872
Н	-7.348698850	-3.457717791	-0.243413754	Н	4.691531293	5.149691971	1.984586947
Н	-6.853142137	-3.448438191	-1.946441221	Н	7.164794146	2.729864034	-0.646508048
Н	-6.039008337	-6.392485245	-2.119863099	Н	7.852711393	3.860588019	0.518962616
Н	-4.339579949	-6.257830803	-1.660375287	Н	7.094244923	2.374272798	1.089207627
Н	-5.045570896	-5.075888165	-2.766088444	Н	7.001720821	-3.780654504	-4.000753366
Н	-5.059894925	-6.263128872	0.839111458	Н	5.287254502	-4.109892501	-3.733566180
Н	-6.241973266	-5.080981464	1.407402320	Н	5.806490606	-2.488199108	-4.201005960
Н	-6.744994236	-6.392920441	0.328618669	Н	8.332836186	-2.433313532	-2.400647505
Н	1.349701356	5.399635377	0.191473141	Н	7.607723388	-1.669329463	-0.985060406
Н	-2.869727793	4.904510853	0.084964148	Н	7.231061002	-1.073056529	-2.612113772
Н	-4.367809116	3.766946093	-0.231352538	Н	6.779056423	-3.987426773	-0.245154170
Н	-5.989853750	-0.161306655	-0.290672942	Н	5.867807167	-5.006595669	-1.362084125
Н	5.576092176	1.216136273	-0.099700851	Н	7.570889688	-4.661366105	-1.679715667
Н	3.075300406	4.617108312	0.443740230				

Optimized Cartesian coordinates of different complexes (S $_0$ state) at the B3LYP/6-311G(d,p) level of theory.

SeNG

Coordinates of Optimized Structure SeNG

С	0.589771000	-3.900967000	-0.526111000
С	0.301413000	-5.254656000	-0.941469000
С	-0.862536000	-5.624183000	-1.530670000
С	-1.832269000	-4.615208000	-1.824733000
С	-1.585791000	-3.236951000	-1.394537000
С	-0.387236000	-2.906587000	-0.633073000
Ν	-2.926675000	-4.839784000	-2.529575000
Se	-3.734290000	-3.234099000	-2.733195000
Ν	-2.473084000	-2.347391000	-1.798180000
С	-0.123040000	-1.560549000	-0.146675000
С	1.235188000	-1.165967000	-0.059428000
С	2.266795000	-2.163909000	-0.002016000
С	3.616440000	-1.790135000	0.218387000
С	4.557789000	-2.791457000	0.489617000
С	4.228356000	-4.146633000	0.514456000
С	2.912948000	-4.498732000	0.208922000
С	1.927662000	-3.544829000	-0.071081000
С	5.253479000	-5.245102000	0.853975000
С	6.648361000	-4.671505000	1.164530000
С	4.771029000	-6.030936000	2.095578000
С	5.390044000	-6.212642000	-0.344890000
С	-1.127514000	-0.610229000	0.208245000
С	-0.801216000	0.763509000	0.160040000
С	0.552938000	1.178596000	0.031807000
С	1.576196000	0.210015000	0.037185000
С	2.955037000	0.609648000	0.083919000
С	0.882416000	2.576335000	-0.032853000
С	-1.852313000	1.751339000	0.188430000
С	-2.439522000	-0.975965000	0.734569000
С	-0.150587000	3.553127000	-0.088692000
С	0.203015000	4.900530000	-0.163235000
С	1.532830000	5.331721000	-0.194439000

С	2.527845000	4.362196000	-0.136187000
С	2.240338000	2.990996000	-0.048241000
С	3.301748000	1.985078000	0.041334000
С	4.659102000	2.340740000	0.081703000
С	5.678941000	1.397132000	0.151904000
С	5.313309000	0.048247000	0.194246000
С	3.982378000	-0.370443000	0.172445000
С	-3.202434000	1.354839000	0.362616000
С	-4.221329000	2.300921000	0.186991000
С	-3.952241000	3.634127000	-0.111616000
С	-2.611470000	4.020812000	-0.193821000
С	-1.553798000	3.121646000	-0.035031000
С	-2.683250000	-2.234700000	1.322042000
С	-3.908917000	-2.561436000	1.859192000
С	-4.978681000	-1.642770000	1.856157000
С	-4.724544000	-0.384813000	1.331836000
С	-3.475162000	-0.017453000	0.787459000
С	7.170161000	1.782350000	0.178244000
С	7.385795000	3.305451000	0.117902000
С	7.813663000	1.258997000	1.483611000
С	7.886919000	1.149023000	-1.037148000
С	1.840552000	6.838443000	-0.278707000
С	1.208501000	7.422106000	-1.563963000
С	1.245840000	7.553699000	0.956938000
С	3.351917000	7.130334000	-0.317101000
С	-5.061677000	4.677405000	-0.340881000
С	-6.472088000	4.072622000	-0.216192000
С	-4.931112000	5.807805000	0.706443000
С	-4.920848000	5.274228000	-1.760755000
С	-6.334926000	-2.043146000	2.459828000
С	-6.151776000	-2.381470000	3.957939000
С	-7 383798000	-0.922389000	2 346228000

С	-6.878405000	-3.286078000	1.716871000
Н	1.060089000	-6.010741000	-0.794742000
Н	-1.054870000	-6.644041000	-1.837915000
Н	5.571294000	-2.499748000	0.715838000
Н	2.646760000	-5.546035000	0.202692000
Н	7.334667000	-5.488037000	1.403520000
Н	7.066133000	-4.131442000	0.310433000
Н	6.629170000	-3.995841000	2.023976000
Н	5.491843000	-6.813038000	2.352857000
Н	3.805563000	-6.512066000	1.923322000
Н	4.664046000	-5.368921000	2.958995000
Н	5.730422000	-5.681794000	-1.238006000
Н	6.117155000	-6.998308000	-0.117895000
Н	4.441974000	-6.698313000	-0.586880000
Н	-0.578173000	5.647032000	-0.183026000
Н	3.558440000	4.678337000	-0.156783000
Н	4.923771000	3.385579000	0.053907000
Н	6.095905000	-0.696707000	0.226893000
Н	-5.247231000	1.976394000	0.269780000
Н	-2.388757000	5.055880000	-0.410223000
Н	-1.881457000	-2.958718000	1.375721000
Н	-4.034345000	-3.540753000	2.306433000
Н	-5.499972000	0.364726000	1.378727000
Н	8.456524000	3.524786000	0.140297000
Н	6.981265000	3.737805000	-0.801327000
Н	6.928515000	3.816038000	0.969869000
Н	8.875468000	1.521936000	1.515862000
Н	7.737460000	0.172511000	1.567547000
Н	7.327679000	1.696199000	2.360023000
Н	7.455168000	1.508303000	-1.975111000

Н	8.949760000	1.409622000	-1.028911000
Η	7.811993000	0.059280000	-1.032299000
Η	1.416430000	8.494021000	-1.635733000
Н	1.615782000	6.935684000	-2.454366000
Η	0.124139000	7.292140000	-1.580352000
Н	1.452191000	8.627456000	0.910292000
Н	1.681696000	7.162959000	1.880341000
Η	0.162969000	7.425259000	1.019979000
Η	3.833860000	6.670488000	-1.184226000
Η	3.513976000	8.209294000	-0.385029000
Η	3.858159000	6.778544000	0.585967000
Н	-7.220135000	4.849496000	-0.395265000
Н	-6.640589000	3.278268000	-0.948370000
Н	-6.654477000	3.665153000	0.781965000
Н	-5.715692000	6.556384000	0.558398000
Н	-3.967891000	6.318141000	0.636328000
Н	-5.025560000	5.411536000	1.721032000
Н	-5.006825000	4.494167000	-2.521883000
Н	-5.706244000	6.014763000	-1.941096000
Н	-3.957680000	5.770370000	-1.900175000
Н	-7.108181000	-2.676028000	4.401158000
Н	-5.449111000	-3.204610000	4.105227000
Η	-5.773258000	-1.516149000	4.508747000
Н	-8.331865000	-1.262981000	2.770898000
Н	-7.568976000	-0.644305000	1.304992000
Н	-7.082345000	-0.025305000	2.893805000
Н	-7.021356000	-3.072877000	0.654049000
Н	-6.199437000	-4.137828000	1.797536000
Н	-7.843081000	-3.587430000	2.136861000

References

- S1. Iyer, V. S.; Wehmeier, M.; Brand, J. D.; Keegstra, M. A. and Mullen, K. Angew. Chem Int. Ed. Engi. 1997, 36, 1603-1607.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O., Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09 (Revision A.02), Gaussian, Inc., Wallingford CT, 2009.