Palladium/norbornene-catalyzed C-H/N-H cycloaddition of carbazoles with 2-halobenzoic acid derivatives

Shilei Liu,^a Jiang Nan,^{*a} Nan An,^a Rui Cao,^a Lanxin Zhu,^a Qiang Yan,^a Hanqing Zhang,^a Chengyuan Liang^b

^aShaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

^bXi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Email: nanjiang@sust.edu.cn

Table of Contents:

1.	General information	2
2.	General procedure for the synthesis of substrates	2
3.	General procedure for the synthesis of products 3	2
4.	General procedure for further substrate scope	11
5.	Scale-up reaction and derivatizations	12
6.	Mechanistic Studies	14
7.	Crystallographic data	16
8.	NMR and HRMS spectra	18
9.	References	58

1. General information

All reagents were used from commercial received unless otherwise noted. Analytical thin-layer chromatography was performed with 0.25 mm coated commercial silica gel plates (TLC Silica Gel 60 F_{254}); visualization of the developed chromatogram was performed by fluorescence. Flash Chromatography was performed with silica gel (300-400 mesh). Proton-1 nuclear magnetic resonance (¹H NMR) data were acquired at 400 MHz on a Bruker Ascend 400 (400 MHz) spectrometer, and chemical shifts are reported in delt a (δ) units, in parts per million (ppm) downfield from tetramethylsilane. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, coupling constants *J* are quoted in Hz. Carbon-13 nuclear magnetic resonance (¹³C NMR) data were acquired at 100 MHz on a Bruker Ascend 400 spectrometer, chemical shifts are reported in ppm relative to the center line of a triplet at 77.0 ppm for CDCl₃. High resolution mass spectra (HRMS) were acquired on a Bruker Daltonics MicroTof-Q II mass spectrometer. The Fourier IR data was determined on a VECTOR II spectrometer in Bruker Germany.

2. General procedure for the synthesis of substrates

The substrates **1a-d**, **1f**, **1i**, **1l-1m**, **1t** and **1u** were commercially available, and the Others (including **1e**^[1], **1k**^[1], **1g-h**^[2] **and 1j**^[2]) were prepared according to the reported procedures.

3. General procedure for the synthesis of products 3

A 15 mL pressure tube was charged with $Pd(OAc)_2$ (0.02 mmol, 4.5 mg, 0.1 equiv.), KOPiv (0.4 mmol, 56.0 mg, 2.0 equiv.), Na_2CO_3 (0.2 mmol, 21.2 mg, 1.0 equiv.), NBE (0.4 mmol, 37.6 mg, 2.0 equiv.), **1** (0.2 mmol, 1.0 equiv.), **2** (0.4 mmol, 2.0 equiv.) and DMF (2 mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under Ar atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na_2SO_4 and concentrated to dryness under reduced pressure. The crude product was purified by silica gel flash chromatography (PE/EA as the eluent) to give the products **3**.

8H-indolo[3,2,1-de]phenanthridin-8-one (3a)

White solid (42.1 mg, 78% yield). M.p.: 218-220 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.50 (d, J = 7.6 Hz, 1H), 8.35 (d, J = 7.3 Hz, 1H), 7.96 (d, J = 7.4 Hz, 1H), 7.77 (s, 2H), 7.67 (d, J = 6.8 Hz, 2H), 7.50 (dt, J = 14.8, 7.1 Hz, 2H), 7.37 (t, J = 6.7 Hz, 1H), 7.27 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.8, 138.1, 133.8, 133.4, 133.1, 129.0, 128.5, 128.3, 126.6, 126.4, 125.7, 124.7, 124.5, 122.4, 121.1, 120.8, 120.3, 117.5, 116.8. IR (KBr): 3468, 2924, 1750, 1663, 1599, 1498, 1434, 1343, 1304, 1267, 759, cm⁻¹.

2,12-dimethyl-8H-indolo[3,2,1-de]phenanthridin-8-one (3b)

White solid (46.8 mg, 78% yield). M.p.: 266-269 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.39 (d, *J* = 8.0 Hz, 1H), 8.32 (d, *J* = 8.3 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.62 (s, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.52 (s, 1H), 7.49 (s, 1H), 7.26 (t, *J* = 3.9 Hz, 1H), 2.48 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 136.4, 136.2, 135.3, 134.1, 133.7, 131.5, 129.4, 129.1, 128.6, 127.2, 126.2, 125.0, 122.6, 122.1, 121.2, 120.9, 117.4, 116.8, 22.1, 21.7. IR (KBr): 3684, 2921, 2857, 1753, 1667, 1595, 1490, 1453, 1350, 857, 812, 768, 684, 573 cm⁻¹.

2,12-di-tert-butyl-8H-indolo[3,2,1-de]phenanthridin-8-one (3c)

White solid (53.3 mg,70% yield). M.p.: 212-214 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, J = 8.6 Hz, 1H), 8.65 (d, J = 7.9 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 8.21 (s, 1H), 8.16 (s, 1H), 8.11 (s, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 1.57 (s, 9H), 1.50 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ 159.9, 148.3, 147.7, 136.9, 134.3, 133.0, 132.8, 129.5, 128.2, 128.1, 126.7, 125.7, 124.7, 122.4, 118.4, 117.3, 117.3,

116.9, 116.5, 35.7, 35.3, 32.3, 32.0. IR (KBr): 2954, 2863, 1674, 1489, 1452, 1362, 1274, 872, 824, 765, 685, 631cm⁻¹.

2,12-bis(trimethylsilyl)-8H-indolo[3,2,1-de]phenanthridin-8-one (3d)

White solid (57.4 mg, 71% yield). M.p.: 263-270 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.79 (d, J = 8.0 Hz, 1H), 8.64 (d, J = 7.9 Hz, 1H), 8.35 (d, J = 7.9 Hz, 1H), 8.29 (s, 1H), 8.26 – 8.22 (m, 2H), 7.85 – 7.72 (m, 2H), 7.62 (t, J = 7.5 Hz, 1H), 0.48 (s, 9H), 0.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 139.8, 137.6, 136.5, 135.6, 134.6, 133.8, 133.6, 130.1, 128.9, 128.5, 126.6, 126.4, 126.3, 125.7, 124.8, 123.0, 117.4, 117.3, 0.0. IR (KBr): 2952, 1677, 1599, 1487, 1357, 1260, 1158, 1108, 841, 763, 689, 621 cm⁻¹.

2,12-dimethoxy-8H-indolo[3,2,1-de]phenanthridin-8-one (3e)

Yellow solid (39.6 mg, 60% yield). M.p.: 192-195 °C. PE / EA = 5:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, J = 7.5, 2.8 Hz, 2H), 8.10 (d, J = 7.9 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.51 (s, 1H), 7.39 (s, 1H), 7.34 (s, 1H), 7.10 (d, J = 8.9 Hz, 1H), 3.95 (s, 3H), 3.93 (s, 3H).¹³C NMR (100 MHz, CDCl₃): δ 159.2, 157.6, 157.6, 133.6, 133.5, 132.7, 129.8, 129.4, 128.5, 128.4, 127.7, 125.2, 122.6, 118.2, 117.7, 115.5, 106.8, 106.8, 104.9, 56.5, 56.1. IR (KBr): 2924, 1695, 1599, 1499, 1464, 1422, 1367, 1327, 1263, 1199, 1163, 826, 774, 690 cm⁻¹.

2,12-diphenyl-8H-indolo[3,2,1-de]phenanthridin-8-one (3f)

White solid (56.3 mg, 67% yield). M.p.: 215-220 °C. PE / EA = 20:1, Rf = 0.32. 1H NMR (400 MHz, CDCl3 + 10% CF3COOD): δ 8.37 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.92 (s, 1H), 7.87 (s, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.56 (t, J = 8.3 Hz, 5H), 7.45 (dq, J = 19.5, 6.1, 5.6 Hz, 7H).13C NMR (100 MHz, CDCl3): δ 160.4, 140.8, 140.6, 138.8, s4

138.5, 137.5, 133.6, 133.4, 132.9, 129.2, 129.2, 129.1, 128.7, 127.8, 127.7, 127.6, 127.5, 127.4, 127.1, 126.5, 124.9, 122.4, 120.0, 119.4, 119.1, 117.6, 117.0. IR (KBr): 2923, 2856, 1674, 1597, 1474, 1361, 1273, 1200, 1137, 830, 740, 693 cm⁻¹.

2,12-di(furan-2-yl)-8H-indolo[3,2,1-de]phenanthridin-8-one (3g)

Yellow solid (48.0 mg, 60% yield). M.p.: 259-264 °C. PE / EA = 5:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.34 (d, J = 8.0 Hz, 2H), 8.03 (d, J = 7.9 Hz, 1H), 7.82 (s, 1H), 7.76 (s, 1H), 7.71 (d, J = 7.8 Hz, 4H), 7.55 (d, J = 7.0 Hz, 3H), 7.45 (d, J = 8.4 Hz, 1H), 6.78 – 6.68 (m, 2H).¹³C NMR (100 MHz, CDCl₃): δ 160.5, 144.2, 144.1, 144.1, 144.1, 139.0, 138.9, 137.3, 133.7, 133.5, 132.8, 130.4, 129.9, 129.4, 128.8, 127.0, 126.8, 126.5, 126.4, 126.3, 126.2, 125.0, 122.5, 118.6, 118.0, 117.8, 117.3, 109.2, 109.1. IR (KBr): 3452, 2925, 2859, 1777, 1668, 1498, 1361, 1281, 1156, 1047, 870, 773, 590, cm⁻¹.

2,12-di(thiophen-3-yl)-8H-indolo[3,2,1-de]phenanthridin-8-one (3h)

Yellow solid (53.3 mg, 62% yield). M.p.: 258-262 °C. PE / EA = 5:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.35 (d, J = 7.3 Hz, 2H), 8.04 (d, J = 7.6 Hz, 1H), 7.97 (s, 1H), 7.87 (s, 2H), 7.72 (t, J = 7.4 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.36 (dd, J = 12.9, 5.1 Hz, 3H), 7.30 (s, 1H), 7.15 (dd, J = 11.1, 3.8 Hz, 2H).¹³C NMR (100 MHz, CDCl₃): δ 159.5, 144.1, 144.0, 137.6, 133.7, 133.6, 133.2, 132.6, 132.1, 129.5, 129.0, 128.5, 128.4, 128.3, 128.3, 127.1, 126.8, 126.6, 125.4, 125.4, 125.1, 123.9, 123.8, 122.7, 118.9, 118.4, 118.0, 117.9, 117.4. IR (KBr): 3064, 2953, 2868, 1673, 1591, 1483, 1452, 1411, 1348, 132619, 1276, 1209, 1144, 861, 807, 760, 684, 549 cm⁻¹.

11-methyl-8H-indolo[3,2,1-de]phenanthridin-8-one (3i)

White solid (35.3 mg, 63% yield). M.p.: 181-183 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, J = 8.0 Hz, 1H), 8.56 (s, 1H), 8.21 – 8.13 (m, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.22 (d, J = 7.8 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 156.7, 136.4, 136.1, 131.9, 131.6, 130.7, 127.2, 126.2, 125.7, 124.2, 122.7, 122.2, 122.2, 120.6, 118.9, 118.7, 118.0, 116.1, 115.5, 24.6. IR (KBr): 3481, 2925, 2855, 1668, 1503, 1420, 1344, 1294, 872, 821, 796, 752, 693 cm⁻¹.

11-cyclopropyl-8H-indolo[3,2,1-de]phenanthridin-8-one (3j)

White solid (36.0 mg, 60% yield). M.p.: 172-177 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.57 (d, J = 7.9 Hz, 1H), 8.45 (s, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 2.17 – 2.06 (m, 1H), 1.10 (q, J = 5.3 Hz, 2H), 0.89 (q, J = 5.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 144.8, 138.8, 133.9, 133.6, 132.6, 129.0, 128.0, 127.5, 124.3, 123.8, 123.8, 122.9, 122.2, 120.3, 120.2, 119.4, 116.7, 113.8, 16.2, 10.0. IR (KBr): 3462, 2923, 1678, 1606, 1502, 1423, 1344, 1276, 1148, 1032, 967, 803, 749, 689 cm⁻¹.

11-methoxy-8H-indolo[3,2,1-de]phenanthridin-8-one (3k)

White solid (40.8 mg, 68% yield). M.p.: 165-172 °C. PE / EA = 10:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, J = 6.7 Hz, 1H), 8.23 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.74 – 7.65 (m, 3H), 7.58 – 7.50 (m, 1H), 7.33 (t, J = 7.7 Hz, 1H), 6.94 (d, J = 6.2 Hz, 1H), 3.94 (s, 3H).¹³C NMR (100 MHz, CDCl₃): δ 160.3, 160.1, 139.8, 134.0, 133.9, 132.9, 129.2, 128.2, 127.6, 124.4, 124.1, 122.4, 121.3, 120.0, 119.6, 118.8, 116.8, 113.6, 101.3, 56.0. IR (KBr): 3466, 2924, 1668, 1660, 1501, 1466, 1427, 1345, 1272, 1166, 1074, 854, 751, 691 cm⁻¹.

11-phenyl-8H-indolo[3,2,1-de]phenanthridin-8-one (3l)

White solid (33.3 mg, 49% yield). M.p.: 187-190 °C. PE / EA = 10:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.71 (s, 1H), 8.38 (d, *J* = 7.7 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 7.1 Hz, 4H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.52 (q, *J* = 7.4 Hz, 3H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.4, 140.8, 139.7, 138.0, 133.2, 132.8, 132.8, 128.3, 128.2, 127.8, 127.1, 126.6, 125.5, 124.9, 124.2, 124.0, 123.7, 121.7, 120.3, 120.1, 119.5, 116.3, 115.0. IR (KBr): 3435, 2949, 1669, 1602, 1418, 1341, 1286, 889, 747, 693, 639 cm⁻¹.

2-(9H-carbazol-3-yl)-8H-indolo[3,2,1-de]phenanthridin-8-one (3m)

White solid (29.5 mg, 34% yield). M.p.: 242-247 °C. PE / EA = 2:1, $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.83 (d, J = 8.1 Hz, 1H), 8.71 (d, J = 7.8 Hz, 1H), 8.53 (d, J = 8.1 Hz, 2H), 8.42 (d, J = 10.6 Hz, 2H), 8.19 (dd, J = 14.8, 5.9 Hz, 2H), 7.95 (t, J = 7.5 Hz, 1H), 7.83 (d, J = 6.8 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.59 (t, J = 7.2 Hz, 2H), 7.52 (s, 2H), 7.35 – 7.30 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 140.3, 140.1, 139.1, 138.8, 134.4, 133.7, 133.0, 129.5, 128.8, 128.6, 127.2, 126.9, 126.3, 126.0, 125.9, 125.6, 124.2, 123.4, 122.9, 122.8, 121.1, 120.8, 120.4, 120.0, 119.4, 118.6, 117.8, 117.5, 111.0, 110.1. IR (KBr): 3321, 2975, 2854, 1747, 1665, 1602, 1454, 1423, 1424, 1353, 1237, 1127, 772, 727, 589, 512 cm⁻¹.

2-(9H-carbazol-3-yl)-8H-indolo[3,2,1-de]phenanthridin-8-one (3m')

White solid (38.7 mg, 45% yield). M.p.: 256-258 °C. PE / EA = 2:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.63 (d, *J* = 7.2 Hz, 1H), 8.51 (d, *J* = 7.1 Hz, 1H), 8.21 (s, 2H),

8.12 – 7.99 (m, 4H), 7.86 – 7.76 (m, 2H), 7.65 (s, 2H), 7.59 (s, 1H), 7.40 (s, 3H), 7.25 (s, 2H).¹³C NMR (100 MHz, CDCl₃): δ 161.9, 140.8, 140.4, 139.5, 137.3, 134.6, 134.1, 132.6, 129.5, 129.0, 128.1, 128.0, 126.4, 126.3, 125.8, 125.7, 125.5, 124.4, 123.8, 123.0, 121.8, 121.0, 120.7, 120.6, 120.0, 119.7, 119.2, 118.1, 117.8, 111.2, 111.0. IR (KBr): 3361, 2950, 2925, 1660, 1591, 1448, 1341, 1275, 1240, 1140, 874, 801, 747, 592 cm⁻¹.

2,12-di(naphthalen-2-yl)-8H-indolo[3,2,1-de]phenanthridin-8-one (3t)

White solid (52.0 mg, 50% yield). M.p.: 255-257 °C. PE / EA = 10:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.24 (d, J = 8.3 Hz, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.88 (s, 1H), 7.83 – 7.69 (m, 9H), 7.64 (d, J = 7.2 Hz, 1H), 7.56 (t, J = 7.8 Hz, 2H), 7.45 (p, J = 7.0 Hz, 6H), 7.36 (t, J = 7.4 Hz, 1H).¹³C NMR (100 MHz, CDCl₃): δ 160.5, 138.6, 138.3, 137.7, 137.4, 137.3, 133.8, 133.8, 133.6, 133.5, 132.8, 132.6, 129.1, 128.8, 128.7, 128.6, 128.4, 128.4, 127.8, 127.8, 127.6, 127.1, 126.7, 126.5, 126.4, 126.3, 126.1, 126.0, 125.8, 125.5, 125.3, 125.0, 122.4, 120.0, 119.4, 119.0, 117.7, 116.9. IR (KBr): 3048, 1667, 1599, 1486, 1439, 1355, 1275, 1138, 855, 808, 738, 681, 607, 466 cm⁻¹.

11-fluoro-8H-indolo[3,2,1-de]phenanthridin-8-one (3u)

White solid (25.7 mg, 46% yield). M.p.: 244-246 °C. PE / EA = 50:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.45 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 11.2 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.81 (dd, J = 10.1, 2.8 Hz, 3H), 7.62 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.14 (t, J = 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 162.8 (d = 244.9 Hz), 161.2, 138.8 (d = 12.7 Hz), 134.1, 134.0, 133.8, 129.4, 128.9, 126.3, 125.2, 124.1, 123.0, 122.8, 121.9 (d = 9.8 Hz), 121.1, 120.2, 117.2, 113.4 (d = 23.8 Hz), 105.6 (d = 28.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.5. IR (KBr): 3675, 2954, 1677, 1602, 1427, 1348, 1293, 1254, 853, 802, 745, 690, 551 cm⁻¹.

3-fluoro-8H-indolo[3,2,1-de]phenanthridin-8-one (3u')

White solid (16.8 mg, 30% yield). M.p.: 220-224 °C. PE / EA = 50:1, $R_f = 0.28$. ¹H NMR (400 MHz, CDCl₃): δ 8.76 (d, J = 8.1 Hz, 1H), 8.67 (d, J = 7.8 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.90 (dd, J = 8.1, 4.2 Hz, 1H), 7.81 (t, J = 7.5 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.25 – 7.17 (m, 1H).¹³C NMR (100 MHz, CDCl₃): δ 159.9, 159.6 (d = 251.8 Hz), 139.5 (d = 1.5 Hz), 135.2 (d = 9.4 Hz), 133.7, 131.7 (d = 4.2 Hz), 129.5, 128.7, 127.7, 127.3 (d = 16.7 Hz), 126.0, 125.3, 121.4 (d = 10.6 Hz), 120.7 (d = 2.5 Hz), 120.4, 117.5, 112.5, 112.2, 106.5 (d = 15 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ -114.2. IR (KBr): 3053, 2923, 1677, 1611, 1503, 1459, 1365, 1336, 1308, 1203, 1097, 813, 745, 692, 588 cm⁻¹.

A 15 mL pressure tube was charged with $Pd(OAc)_2$ (0.02 mmol, 4.5 mg, 0.1 equiv.), KOPiv (0.4 mmol, 56.0 mg, 2.0 equiv.), Na_2CO_3 (0.2 mmol, 21.2 mg, 1.0 equiv.), NBE (0.4 mmol, 37.6 mg, 2.0 equiv.), **1a** (0.2 mmol, 33.4 mg, 1.0 equiv.), **2** (0.4 mmol, 2.0 equiv.) and DMF (2 mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under Ar atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by silica gel flash chromatography (PE/EA as the eluent) to give the products **3**.

6-methoxy-8H-indolo[3,2,1-de]phenanthridin-8-one (3n)

White solid (43.2 mg, 72% yield). M.p.: 170-176 °C. PE / EA = 10:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 11.1 Hz, 3H), 7.62 (t, J = 8.8 Hz, 2H), S9

7.47 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.20 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 3.87 (d, J = 2.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 159.4, 138.5, 133.1, 128.9, 127.8, 126.9, 126.6, 124.8, 124.0, 123.8, 123.7, 121.7, 120.6, 119.7, 119.4, 117.2, 116.9, 110.3, 55.7. IR (KBr): 3464, 2854, 1671, 1600, 1510, 1441, 1343, 1270, 1115, 1031, 830, 743, 567, 554 cm⁻¹.

6-fluoro-8H-indolo[3,2,1-de]phenanthridin-8-one (30)

White solid (39.0 mg, 68% yield). M.p.: 230-235 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.42 (d, J = 8.0 Hz, 1H), 7.94 (dt, J = 10.1, 5.9 Hz, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 7.9 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.43 – 7.28 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.8 (d = 248.8 Hz), 159.8, 137.9, 132.6, 130.2 (d = 2.4 Hz), 128.5, 128.3 (d = 7.6 Hz), 126.8, 126.1, 125.2, 124.8 (d = 8.0 Hz), 124.7, 121.9, 121.6, 121.1, 121.0, 120.2, 117.6, 116.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.3. IR (KBr): 3453, 2924, 1670, 1611, 1512, 1445, 1361, 1241, 1122, 827, 745, 554 cm⁻¹.

6-(trifluoromethyl)-8H-indolo[3,2,1-de]phenanthridin-8-one (3p)

White solid (42.9 mg, 65% yield). M.p.: 233-236 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.64 (s, 1H), 8.49 (d, *J* = 8.1 Hz, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.87 (dt, *J* = 21.0, 7.4 Hz, 4H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.43 (q, *J* = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 138.0, 136.6, 133.7, 130.7 (q = 33.6 Hz), 129.7, 129.7, 128.8, 126.8, 126.7(q = 4.1 Hz), 126.5, 126.2, 125.3, 124.9, 123.4, 122.5, 121.1, 121.0, 117.6, 115.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. IR (KBr): 3023, 2854, 1715, 1663, 1639, 1514, 1444, 1345, 749, 550 cm⁻¹.

5-methyl-8H-indolo[3,2,1-de]phenanthridin-8-one (3q)

White solid (40.3 mg, 72% yield). M.p.: 188-190 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.74 (d, J = 8.1 Hz, 1H), 8.41 (d, J = 8.1 Hz, 1H), 7.93 (t, J = 8.5 Hz, 2H), 7.87 (d, J = 6.8 Hz, 2H), 7.55 (t, J = 7.7 Hz, 1H), 7.41 (q, J = 8.0 Hz, 2H), 7.33 (d, J = 8.1 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 143.8, 138.8, 134.5, 133.9, 129.8, 129.4, 128.2, 126.6, 125.6, 125.0, 124.5, 124.1, 122.8, 121.0, 120.9, 120.3, 117.5, 117.3, 22.4. IR (KBr): 3029, 2950, 1671, 1608, 1506, 1442, 1334, 1255, 1169, 1116, 834, 752 cm⁻¹.

5-chloro-8H-indolo[3,2,1-de]phenanthridin-8-one (3r)

White solid (37.8 mg, 63% yield). M.p.: 241-245 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃ + 10% CF₃COOD): δ 8.36 (d, *J* = 6.6 Hz, 1H), 8.18 (d, *J* = 8.9 Hz, 1H), 7.76 (s, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.62 (d, *J* = 23.2 Hz, 2H), 7.48 – 7.40 (m, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.24 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 140.7, 140.7, 138.1, 135.2, 133.5, 130.7, 129.0, 128.6, 126.6, 126.0, 125.0, 124.8, 122.4, 121.8, 120.9, 120.4, 117.6, 115.9. IR (KBr): 3430, 3050, 2963, 1668, 1595, 1503, 1441, 1342, 1298, 1264, 1124, 888, 831, 743 cm⁻¹.

8H-indolo[3,2,1-de]phenanthridin-8-one (3s)

White solid (29.1 mg, 52% yield). M.p.: 195-200 °C. PE / EA = 20:1, $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, J = 8.1 Hz, 1H), 8.48 (d, J = 8.8 Hz, 1H), 8.09 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 7.5 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.29 (t, J = 7.8 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 137.9, 136.9, 135.9, 134.1, 132.4, 128.9, 127.8, 127.7, 127.4, 126.4, 125.0, 124.7, 124.3, 123.4, 120.2, 120.1, 118.6, 117.3, 25.3. IR (KBr): 3429, 2924, 2854, 1692, 1604, 1501, 1438, 1440, 1367, 1267, 745 cm⁻¹.

4. General procedure for further substrate scope

A 15 mL pressure tube was charged with $Pd(OAc)_2$ (0.02 mmol, 4.5 mg, 0.1 equiv.), KOPiv (0.4 mmol, 56.0 mg, 2.0 equiv.), Na_2CO_3 (0.2 mmol, 21.2 mg, 1.0 equiv.), NBE (0.4 mmol, 37.6 mg, 2.0 equiv.), **1a** (0.2 mmol, 33.4 mg, 1.0 equiv.), **2** (0.4 mmol, 2.0 equiv.) and DMF (2 mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under nitrogen atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by silica gel flash chromatography (PE/EA as the eluent) to give the products **3a**.

5. Scale-up reaction and derivatizations

A 75 mL pressure tube was charged with $Pd(OAc)_2$ (0.1 mmol, 22.5 mg, 0.1 equiv.), KOPiv (2.0. mmol, 280.0 mg, 2.0 equiv.), Na_2CO_3 (1.0 mmol, 106.0 mg, 1.0 equiv.), NBE (2.0 mmol, 188.0 mg, 2.0 equiv.), **1a** (1.0 mmol, 167.0 mg, 1.0 equiv.), **2a** (2.0 mmol, 398.0 mg, 2.0 equiv.) and DMF (10 mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under nitrogen atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by silica gel flash chromatography (PE/EA as the eluent) to give the product **3a** (0.22 g, 72% yield).

To a solution of **3a** (60.1 mg, 0.2 mmol), Lawesson's reagent (161.6 mg, 0.4 mmol), and toluene (2 mL) were successively added under air. The tube was sealed with a Teflon-coated cap and the reaction solution was heated at 120 °C for 12 h. The reaction mixture was filtered through a pad of celite and washed with DCM (10 mL). The combined organic layer was concentrated in vacuo. The crude product was purified by silica gel flash chromatography (PE:EA = 20:1 as the eluent) to give **4** as a product. Product **4**: Yellow solid (55.6 mg, 85% yield). M.p.: 225-230 °C. PE / EA = 50:1, R_f = 0.32. ¹H NMR (400 MHz, CDCl₃): δ 10.03 (d, *J* = 8.3 Hz, 1H), 9.26 (d, *J* = 8.3 Hz, 1H), 8.24 (d, *J* = 7.9 Hz, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 8.02 (d, *J* = 7.5 Hz, 1H), 7.77 (t, *J* = 7.4 Hz, 1H), 7.64 – 7.51 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 141.7, 134.8, 134.5, 133.7, 132.8, 129.0, 128.5, 128.3, 128.2, 126.7, 125.8, 124.3, 122.3, 120.8, 120.8, 120.7, 120.1, 119.5. IR (KBr): 3453, 2924, 2853, 1663, 1557, 1501, 1447, 1347, 1399, 1249, 1167, 1006, 757 cm⁻¹.

To a solution of **3a** (60.1 mg, 0.2 mmol), LiAlH₄ (15.2 mg, 0.4 mmol), and DCM (2 mL) were successively added under air. The tube was sealed with a Teflon-coated cap and the reaction solution was heated at room temperature for 6 h. The reaction mixture was filtered through a pad of celite and washed with DCM (2 mL). The combined organic layer was concentrated in vacuo. The crude product was purified by silica gel flash chromatography (PE:EA = 50:1 as the eluent) to give **5** as a product. Product **5**: White solid (53.0 mg, 90% yield). M.p.: 153-160 °C. PE / EA = 50:1, Rf = 0.32. 1H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.8 Hz, 1H), 7.94 (dd, *J* = 11.3, 7.8 Hz, 2H), 7.74 (d, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.30 (dd, *J* = 13.0, 5.7 Hz, 3H), 7.21 (t, *J* = 7.6 Hz, 1H), 5.54 (s, 2H). 13C NMR (100 MHz, CDCl₃): δ 140.2, 137.3, 130.2, 130.0, 127.8, 125.8, 123.6, 122.9, 121.4, 121.2, 120.5, 119.9, 119.7, 117.9, 117.8, 108.9, 45.8. IR (KBr): 3453, 2924, 2853, 1669, 1597, 1551, 1437, 1340, 1236, 1119, 824, 748, 555 cm⁻¹.

6. Mechanistic Studies

A 15 mL pressure tube was charged with $Pd(OAc)_2$ (0.02 mmol, 4.5 mg, 0.1 equiv.), KOPiv (0.4 mmol, 56.0 mg, 2.0 equiv.), Na_2CO_3 (0.2 mmol, 21.2 mg, 1.0 equiv.), NBE (0.4 mmol, 37.6 mg, 2.0 equiv.), **6** (0.2 mmol, 77.6 mg, 1.0 equiv.) and DMF (2 mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under nitrogen atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na_2SO_4 and TLC analysis indicated the absence of product 3a.

A 15 mL pressure tube was charged with $Pd(OAc)_2$ (0.02 mmol, 4.5 mg, 0.1 equiv.), KOPiv (0.4 mmol, 56.0 mg, 2.0 equiv.), Na_2CO_3 (0.2 mmol, 21.2 mg, 1.0 equiv.), **6** (0.2 mmol, 77.6 mg, 1.0 equiv.) and DMF (2 mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under nitrogen atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The organic layers were dried over dried over anhydrous Na₂SO₄ and TLC analysis indicated the absence of product 3a.

A 15 mL pressure tube was charged with Pd(OAc)₂ (0.01 mmol, 2.3 mg, 0.05 equiv.), KOPiv (0.4 mmol, 56.0 mg, 2.0 equiv.), Na₂CO₃ (0.2 mmol, 21.2 mg, 1.0 equiv.), NBE (0.4 mmol, 37.6 mg, 2.0 equiv.), **1a** (0.2 mmol, 33.4 mg, 1.0 equiv.), **2** (0.4 mmol, 79.6 mg, 2.0 equiv.) and DMF (2

mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under nitrogen atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by silica gel flash chromatography (PE/EA as the eluent) to give the products **3a** and **7**. Product **7**: White solid (8.32 mg, 16% yield). PE / EA = 50:1, R_f = 0.32. M.p.: 54-56 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 4.0 Hz, 2H), 7.30 (dt, *J* = 8.2, 4.1 Hz, 1H), 7.24 (d, *J* = 6.8 Hz, 1H), 7.18 (t, *J* = 7.3 Hz, 1H), 4.83 (d, *J* = 6.5 Hz, 1H), 4.07 (d, *J* = 6.5 Hz, 1H), 2.91 (s, 1H), 2.61 (s, 1H), 1.79 (t, *J* = 11.3, 5.9 Hz, 2H), 1.58 – 1.47 (m, 2H), 1.25 (t, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 138.2, 127.2, 126.7, 124.9, 122.5, 120.6, 119.4, 118.7, 118.2, 114.5, 109.7, 69.2, 59.2, 42.1, 40.4, 33.5, 28.6, 25.7. IR (KBr): 3053, 2924, 2873, 1643, 1577, 1492, 1447, 1321, 1255, 1119, 1041, 918, 744, 622 cm⁻¹.

A 15 mL pressure tube was charged with $Pd(OAc)_2$ (0.01 mmol, 2.3 mg, 0.05 equiv.), KOPiv (0.4 mmol, 56.0 mg, 2.0 equiv.), Na_2CO_3 (0.2 mmol, 21.2 mg, 1.0 equiv.), NBE (0.4 mmol, 37.6 mg, 2.0 equiv.), **1a** (0.2 mmol, 33.4 mg, 1.0 equiv.), **8** (0.4 mmol, 62.8 mg, 2.0 equiv.) and DMF (2 mL) under Ar atmosphere. The reaction mixture was stirred at 70 °C for 12 h under nitrogen atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaCl solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by silica gel flash chromatography (PE/EA as the eluent) to give the products **1a** and **7.** And the wanted compound **9** was did not detected.

A 15 mL pressure tube was charged with Pd(PPh₃)₄ (0.01 mmol, 11.5 mg, 0.05 equiv.),

 K_2CO_3 (0.2 mmol, 27.6 mg, 2.0 equiv.), **8** (0.2 mmol, 44.8 mg, 1.0 equiv.), **11** (0.24 mmol, 39.8 mg, 1.2 equiv.) and DME (2 mL) under Ar atmosphere. The reaction mixture was stirred at 80 °C for 12 h under nitrogen atmosphere in an oil bath. After cooling to room temperature, neutralized by a saturated aqueous NaHCO₃ solution, and extracted with EtOAc. The organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by silica gel flash chromatography (PE/EA as the eluent) to give the products **3a**.

7. Crystallographic data

Methods to get single crystals suitable for X-ray diffractiontest: 3c was dissolved in 2 mL of CH₂Cl₂, filtered, and then injected into a 20 mL vial. Subsequently, 5 mL of hexane was slowly added to the vial without shaking and the solution was allowed to evaporate slowly over the course of 2 days to give yellow single crystal.

Single crystal structures were measured on a Bruker D8 Venture with TXS diffractometer with a graphite monochromated Mo K α ($\lambda = 0.71073$ Å, at 296(2) K) radiation. The structure was solved by direct methods and refined anisotropically based on F^2 by a full-matrix least-squares refinement with the SHELXL-2014 program. Anisotropic thermal parameters were applied to non-hydrogen atoms, and all hydrogen atoms of organic ligands were calculated and added at the theoretical positions.

Figure S2 Molecular structure of $C_{27}H_{27}NO$, (3c). The thermal ellipsoids are shown at 50% probability.

complex	3c
CCDC number	2366116
Empirical formula	C ₂₇ H ₁₇ NO
Formula weight	381.49
Temperature [K]	293.00
Crystal system	triclinic
Space group (number)	P-1 (2)
<i>a</i> [Å]	7.057(3)
<i>b</i> [Å]	12.282(4)
<i>c</i> [Å]	13.493 (5)
α [°]	76.338(13)
β [°]	79.786(14)
γ [°]	78.458(14)
Volume [Å ³]	1103.0(8)
Ζ	2
$ ho_{ m calc} [m g cm^{-3}]$	1.149
$\mu~[{ m mm}^{-1}]$	0.069
F(000)	408.0
Crystal size [mm ³]	0.13×0.12×0.1
Crystal colour	clear light colourless
Crystal shape	block
Radiation	MoK α ($\lambda = 0.71073$)
2θ range [°]	5.948 to 55.196
	$-9 \le h \le 9$
Index ranges	$-15 \le k \le 15$
	$-17 \le l \le 17$
Reflections collected	32354
	5054
Independent reflections	$R_{\rm int} = 0.1207$
	$R_{ m sigma} = 0.0655$
Completeness to	99.7.%
$\theta = 53.594^{\circ}$	<i>уу.</i> т 70
Data / Restraints / Parameters	5054/87/299
Goodness-of-fit on F^2	1.031
$R_1[I \ge 2\sigma(I)]^{[a]}$	0.0746
$WR_2[I \ge 2\sigma(I)]^{[b]}$	0.2036
$R_1[I \ge 2\sigma(I)]^{[a]}$	0.1377
R_1 [all data] ^[b]	0.2676
R_1 Largest peak/hole [eÅ ⁻³]	0.27/-0.21

 Table S2 Crystal, Intensity Collection, and Refinement Data for Complexes 3c.

^[a] $R_1 = F_o - F_c / F_o$ ^[b] $wR_2 = \{w[(F_o)^2 - (F_c)^2]^2 / w[(F_o)^2]^2\}^{1/2}$

8. NMR and HRMS spectra

The HRMS spectra of compounds $3a^{[3]}$ and $7^{[4]}$ have been reported in relevant literatures. ¹H NMR of 3a (400 MHz, CDCl₃ + CF₃COOD)

¹H NMR of **3b** (400 MHz, CDCl₃ + CF₃COOD)

 $<^{2.48}_{2.45}$

¹³C NMR of **3b** (100 MHz, CDCl₃ + CF₃COOD)

¹³C NMR of **3c** (100 MHz, CDCl₃)

HRMS (ESI) m/z Calcd for $C_{27}H_{28}NO \ [M+Na]^+ 404.1985$, found 404.1984.

HRMS (ESI) (ESI) m/z Calcd for $C_{25}H_{28}NOSi_2$ [M+H]⁺ 414.1704, found 414.1701.

HRMS (ESI) m/z Calcd for $C_{21}H_{16}NO_3$ [M+H]⁺ 330.1125, found 330.1128.

¹H NMR of **3f** (400 MHz, $CDCl_3 + CF_3COOD$)

f1 (ppm)

HRMS (ESI) m/z Calcd for $C_{31}H_{20}NO$ [M+Na]⁺ 444.1359, found 444.1354.

¹H NMR of **3g** (400 MHz, CDCl₃ + CF₃COOD)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

HRMS (ESI) m/z Calcd for $C_{27}H_{16}NO_3$ [M+Na]⁺ 424.0944, found 424.0945.

¹H NMR of **3h** (400 MHz, $CDCl_3 + CF_3COOD$)

110 100 f1 (ppm) 190 180 140 130 120 (

HRMS (ESI) m/z Calcd for $C_{27}H_{16}NOS_2$ [M+Na]⁺ 456.0487, found 456.0486.

HRMS (ESI) m/z Calcd for $C_{20}H_{14}NO \ [M+H]^+ 284.1070$, found 284.1061.

¹H NMR of **3j** (400 MHz, CDCl₃)

HRMS (ESI) m/z Calcd for $C_{22}H_{16}NO \ [M+H]^+310.1226$, found 310.1213.

HRMS (ESI) m/z Calcd for $C_{20}H_{14}NO_2 [M+H]^+$ 300.1019, found 300.1020.

¹³C NMR of **3l** (100 MHz, CDCl₃ + CF₃COOD)

f1 (ppm) 120 110 Ċ

HRMS (ESI) m/z Calcd for $C_{25}H_{16}NO \ [M+H]^+ 346.1226$, found 346.1197.

¹H NMR of **3m** (400 MHz, $CDCl_3 + CF_3COOD$)

HRMS (ESI) m/z Calcd for $C_{31}H_{19}N_2O$ [M+Na]⁺ 457.1311, found 457.1317.

HRMS (ESI) m/z Calcd for $C_{31}H_{19}N_2O$ [M+Na]⁺ 457.1311, found 457.1312.

HRMS (ESI) m/z Calcd for $C_{20}H_{14}NO_2$ [M+Na]⁺ 322.0838, found 322.0840.

¹³C NMR of **3o** (100 MHz, CDCl₃ + CF₃COOD)

¹⁹F NMR of **3o** (376 MHz, CDCl₃ + CF₃COOD)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

HRMS (ESI) m/z Calcd for $C_{19}H_{11}FNO \ [M+H]^+ 288.0819$, found 288.0822.

¹H NMR of 3p (400 MHz, CDCl₃ + CF₃COOD)

¹³C NMR of **3p** (100 MHz, CDCl₃ + CF₃COOD)

f1 (ppm) 120 110

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

HRMS (ESI) m/z Calcd for $C_{20}H_{11}F_3NO \ [M+H]^+ 338.0787$, found 338.0777.

¹³C NMR of **3**q (100 MHz, CDCl₃) $\int_{0}^{0} \int_{0}^{0} \int_{0}$

¹H NMR of 3r (400 MHz, CDCl₃ + CF₃COOD)

HRMS (ESI) m/z Calcd for $C_{19}H_{11}CINO [M+H]^+$ 304.0524, found 304.0508.

110 100 f1 (ppm) 200 190 180 130 120

1.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. fl (ppm)

HRMS (ESI) m/z Calcd for $C_{39}H_{23}NO [M+Na]^+ 544.1672$, found 544.1665.

¹H NMR of 3u (400 MHz, CDCl₃ + CF₃COOD)

¹⁹F NMR of 3u (376 MHz, CDCl₃ + CF₃COOD)

20

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

HRMS (ESI) m/z Calcd for $C_{19}H_{11}FNO \ [M+Na]^+ 310.0639$, found 310.0632.

100 90 f1 (ppm) 140 130

 ^{19}F NMR of 3u' (376 MHz, CDCl₃)

— -114.2

HRMS (ESI) m/z Calcd for $C_{19}H_{11}FNO \ [M+Na]^+ 310.0639$, found 310.0640.

¹H NMR of 4 (400 MHz, CDCl₃)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

L.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 fl (ppm)

¹³C NMR of **5** (100 MHz, CDCl₃)

HRMS (ESI) m/z Calcd for $C_{19}H_{14}N$ [M+Na]⁺ 278.0940, found 278.0925.

^{140 130 120 110 100} fl (ppm)

9. References

- [1] M. Holzapfel, C. Lambert, J. Phys. Chem. C., 2008, 112, 1227.
- [2] N. Miyaura, K. Yamada, A. Suzuki, *Tetrahedron Lett.*, **1979**, *20*, 3437.
- [3] L. Qiao, K. Zhang, H. J. Li. P, Lu, Y. G. Wang, *Tetrahedron Lett.*, 2022, 91, 153648.
- [4] P. Annamalai, H. C. Hisao, S. Raju, Y. H. Fu, P. L. Chen, J. C. Horng, Y. H. Li, S. C. Chuang, Org. Lett., 2019, 21, 1182.