Impact of halogen…halogen interaction on mechanical motion of a 3D Pb(II) coordination polymer of elusive topology

Samim Khan,^a Sanobar Naaz,^a Shamim Ahmad,^b Rosa M. Gomila,^c Anjana Chanthapally,^d Antonio Frontera,^{*c} and Mohammad Hedayetullah Mir,^{*a}

^aDepartment of Chemistry, Aliah University, New Town, Kolkata 700 156, India.

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER)

Kolkata, Mohanpur Campus, Mohanpur 741246, India.

^cDepartament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.

^dDepartment of Science, Mar Athanasius College of Engineering, Kerala, India.

Electronic Supplementary Information

Experimental Procedures

Materials and general method

All chemicals purchased were reagent grade and were used without further purification. Elemental analysis (carbon, hydrogen and nitrogen) was performed on a Perkin–Elmer 240C elemental analyzer. Photo irradiation was carried out using Luzchem photoreactor (8 W UVA lamps) at ~350 nm at room temperature.

Syntheses of compounds

Synthesis of 1: A solution of H₂DCTP (0.047 g, 0.2 mmol) neutralized with Et₃N (0.021 g, 0.2 mmol) in 2 mL EtOH was slowly and carefully layered onto a solution of Pb(NO)₃ (0.066 g, 0.2 mmol), in H₂O (2 mL) using a 2 mL 1 : 1 (= v/v) buffer solution of MeOH and H₂O.The reaction mixture was kept in the dark. The colourless needle shaped crystals of [Pb(DCTP)]_n (1), were obtained after six days (0.60 g, yield 67%). Elemental analysis (%) calculated for C₈H_{3.5}Cl₂O_{4.75}Pb: C, 21.18; H, 0.78; found: C, 21.3; H, 0.9.

Synthesis of 2: The compound 2 was synthesized by UV Irradiation of 1: colourless needle single crystals of 1 were irradiated using a UV-lamp (LZC-UVA; Luzchem) centred at \sim 350 nm wavelength for 2 h to obtain photo-irradiated product in almost quantitative yield.

Synthesis of 3: The compound 3 was synthesized by UV Irradiation of 1: colourless needle single crystals of 1 were irradiated using a UV-lamp (LZC-UVA; Luzchem) centred at \sim 350 nm wavelength for 5 h to obtain photo- irradiated product in almost quantitative yield.

X-ray crystallography

Single crystals of the all compounds having suitable dimension were used for data collection using a Bruker SMART APEX II diffractometer equipped with graphite-monochromated MoK_{α} radiation (λ = 0.71073 Å). The crystal structure was solved using the SHELXT 2018/6 structure solution program.¹ The collected data (I >2 σ (I)) was integrated by using SAINT² program, and the absorption

correction was done by SADABS.³ Non-hydrogen atoms were refined by the help of anisotropic displacement parameters. All the hydrogen atoms were placed in their geometrically perfect positions and constrained to ride on their parent atoms. Crystallographic data for all compounds are summarized in Table S1, ESI† and selected bond lengths and bond angles are given in Table S2–S3, ESI†.

Computational methods

The calculations reported herein were performed using the Turbomole 7.2 program.⁴ The crystallographic coordinates were used for the calculations of the supramolecular assemblies. We used the crystallographic coordinates for the assemblies because we are interested in evaluating the interactions as they stand in the solid state. The level of theory used for the calculations was PBE0-D3/def2-TZVP.⁵⁻⁸ The MEP surface plots were generated using the wavefunction obtained at the same level of theory and the 0.01 a.u. isosurface to simulate the van der Waals envelope. The topological analysis of the electron density was carried out according to the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction plot index (NCIplot) methods proposed by Bader⁹ and W. Yang et al.¹⁰, respectively. Both were represented using the VMD program¹¹ and using the following settings for the NCIplot index representation: s = 0.5 a.u.; cut-off $\rho = 0.04$ a.u., and color scale $-0.03 \le \text{sign}(\lambda_2)\rho \le 0.03a.u$. The electron localization function (ELF)¹² analysis was performed using the MultiWFNprogram¹³at the PBE0-D3/def2-TZVP level of theory. The natural bond orbital (NBO) analysis¹⁴ was used to study charge transfer effects by means of the NBO7 program.¹⁵

Fig. S1 Asymmetric unit of 1with 50% thermal ellipsoid plot.

Fig. S2 The novel 3D-metal SBU of Pb(II) with pcu-h topology in 1.

Fig. S3 3D network topology of **1** with 3-connected **pcu-h** topology (orange) crossed by the ligand generating two 5-connected new topology of point symbol (4⁶.6⁴).

Fig. S4 (a) MEP surface of the theoretical model (see Fig. 1c for the chemical representation). (b) Detail of the MEP around the Cl-atom. (c) Detail of the MEP (lateral view) around the Cl-atom and the cone angle. The values at selected points are given in kcal/mol.

Fig. S5 NBO representation of the LP(Cl) $\rightarrow \sigma^*$ (Cl–C) interaction.

Formula	C ₁₆ H ₇ Cl ₄ O _{9.50} Pb ₂ (1)	C ₈ H _{3.60} Cl ₂ O _{4.80} Pb (2)	C ₈ H _{3.814} Cl ₂ O _{4.907} Pb (3)
fw	907.42	454.60	456.52
crystsyst	Trigonal	Trigonal	Trigonal
space group	<i>R</i> 3	R3	R3
<i>a</i> (Å)	19.6265(4)	19.6501(3)	19.8059(2)
<i>b</i> (Å)	19.6265(4)	19.6501(3)	19.8059(2)
<i>c</i> (Å)	13.3507(3)	13.3615(2)	13.3701(2)
a(deg)	90	90	90
β (deg)	90	90	90
γ (deg)	120	120	120
$V(Å^3)$	4453.7	4468.02	4542.07
Z	9	18	18
Temp(K)	100	100	100
$D_{\rm calcd}({\rm g/cm^3})$	3.045	3.041	3.015
μ (mm ⁻¹)	17.583	17.527	37.458
$\lambda(\text{\AA})$	0.71073	0.71073	1.54184
GOF on F^2	1.080	1.066	1.832
Final R	R1 = 0.0232	R1 = 0.0222	R1 = 0.1310
indices	wR2 = 0.0508	wR2 = 0.0468	wR2 = 0.3836
$[I > 2\sigma(I)]^{a,b}$			

 Table S1. Crystal data and refinement parameters for compound 1-3.

 ${}^{a}R1 = \Sigma ||F_{o}| \quad |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}wR2 = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Bond length (Å)			
	1	2	
Pb(1)-O(1)	2.495(4)	2.493(4)	
Pb(1)-O(2)	2.461(3)	2.464(3)	
Pb(1)-O(3)a	2.616(3)	2.619(3)	
Pb(1)-O(1)b	2.815(5)	2.820(5)	
Pb(1)-O(5)c	2.902(10)	2.917(10)	
Pb(1)-O(3)d	Pb(1)-O(3)d 2.514(5)		
Pb(1)-O(4)d	2.780(5)	2.781(5)	
Pb(1)-O(4)e	3.023(4)	3.026(3)	
	Bond angle (°)		
O(1)-Pb(1)-O(2)	52.82(12)	52.82(12)	
O(1)-Pb(1)-O(3)a	113.33(13)	113.37(13)	
O(1)-Pb(1)-O(1)b	140.51(10)	140.48(10)	
O(1)-Pb(1)-O(5)c	108.1(2)	108.2(2)	
O(1)-Pb(1)-O(3)d	82.31(13)	82.26(13)	
O(1)-Pb(1)-O(4)d	72.94(13)	72.96(11)	
O(1)-Pb(1)-O(4)e	75.86(11)	75.92(11)	
O(2)-Pb(1)-O(3)a	80.68(10)	80.70(10)	
O(1)b-Pb(1)-O(2)	107.49(13)	107.42(12)	
O(2)-Pb(1)-O(5)c	141.2(2)	141.8(2)	
O(2)-Pb(1)-O(3)d	102.91(12)	103.01(11)	
O(2)-Pb(1)-O(4)d	123.20(14)	123.27(13)	
O(2)-Pb(1)-O(4)e	72.49(10)	72.49(10)	
O(1)b-Pb(1)-O(3)a	92.91(16)	92.84(16)	
O(3)a-Pb(1)-O(5)c	135.0(2)	134.6(2)	
O(3)a-Pb(1)-O(3)d	62.82(16)	63.03(16)	
O(3)a-Pb(1)-O(4)d	O(3)a-Pb(1)-O(4)d 110.44(14) 110.63		
O(3)a-Pb(1)-O(4)e	136.85(13)	136.76(13)	

Table S2. Selected bond lengths and bond angles in 1-2.

O(1)b-Pb(1)-O(5)c	63.8(2)	64.2(2)
O(1)b-Pb(1)-O(3)d	137.07(12)	137.16(11)
O(1)b-Pb(1)-O(4)d	126.31(13)	126.25(13)
O(1)b-Pb(1)-O(4)e	65.00(10)	64.91(10)
O(3)d-Pb(1)-O(5)c	107.5(2)	106.7(2)
O(4)d-Pb(1)-O(5)c	65.8(2)	65.1(2)
O(4)e-Pb(1)-O(5)c	69.8(2)	70.5(2)
O(3)d-Pb(1)-O(4)d	49.08(12)	49.08(12)
O(3)d-Pb(1)-O(4)e	155.49(14)	155.45(14)
O(4)d-Pb(1)-O(4)e	112.47(11)	112.38(10)

Symmetric transformation: a = 1+x-y, x, 1-z; b = 1/3+y, 2/3-x+y, 2/3-z; c = 5/3-y, 1/3+x-y, -

2/3+z; d = 2/3-x+y, 4/3-x, -2/3+z; e = 5/3-x, 4/3-y, 4/3-z

Bond length (Å)		
Pb(1)-O(1)	2.537(19)	
Pb(1)-O(2)	2.47(2)	
Pb(1)-O(3)f	2.62(2)	
Pb(1)-O(1)g	2.86(3)	
Pb(1)-O(3)h	2.52(2)	
Pb(1)-O(4)h	2.81(2)	
Pb(1)-O(5)i	2.86(8)	
Bond angle (°)		
O(1)-Pb(1)-O(2)	53.1(5)	
O(1)-Pb(1)-O(3)f	112.1(7)	
O(1)-Pb(1)-O(1)g	141.7(6)	
O(1)-Pb(1)-O(3)h	82.1(6)	
O(1)-Pb(1)-O(4)h	73.1(5)	
O(1)-Pb(1)-O(5)i	109.3(10)	

Table S3. Se	lected bond	lengths and	d bond ang	gles in 3
		<u> </u>		

O(2)-Pb(1)-O(3)f	80.1(6)
O(1)g-Pb(1)-O(2)	106.7(6)
O(2)-Pb(1)-O(3)h	103.9(7)
O(2)-Pb(1)-O(4)h	123.9(5)
O(2)-Pb(1)-O(5)i	139.7(12)
O(1) g-Pb(1)-O(3)f	92.3(7)
O(3)f-Pb(1)-O(3)h	63.0(7)
O(3)f-Pb(1)-O(4)h	110.6(6)
O(3)f-Pb(1)-O(5)i	135.8(11)
O(1)g-Pb(1)-O(3)h	136.2(6)
O(1)g-Pb(1)-O(4)h	126.6(6)
O(1)g-Pb(1)-O(5)i	62.7(10)
O(3)h-Pb(1)-O(4)h	48.8(6)
O(3)h-Pb(1)-O(5)i	109.2(11)
O(4)h-Pb(1)-O(5)i	67.8(10)

Symmetric transformation: f = y, -x+y, 1-z; g = 1/3+x-y, -1/3+x, 2/3-z; h = 2/3-y, 1/3+x-y, -1/3+x-y, -1

2/3+z; i = 2/3-x+y, 1/3-x, -2/3+z

References

- (1) G. M. Sheldrick, Acta Crystallogr. A, 2015, 71, 3-8.
- (2) *SMART and SAINT*; Bruker AXS Imc.: Madison, WI, 1998.
- (3) SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- (4) R. Ahlrichs, M. Bar, M. Haser, H. Horn and C. Kolmel, *Chem. Phys. Lett.*, 1989, 162, 165–169.
- (5) C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158–6169.
- (6) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- (7) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- (8) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.
- (9) R. F.W. Bader, Chem. Rev., 1991, 91, 893–928.
- (10) J. Contreras-García, E.R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, J. Chem. Theory Comput., 2011, 7, 625–632.
- (11) W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33–38.
- (12) A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 1990, 92, 5397.
- (13) T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592.
- (14) E. D. Glendening, C.R. Landis and F. Weinhold, Comput. Mol. Sci., 2012, 2, 1–42.
- (15) E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, NBO 7.0: New Vistas in Localized and Delocalized Chemical Bonding Theory; Theoretical Chemistry Institute, University of Wisconsin-Madison: Madison, WI, USA, 2018.