Supporting Information

Two New Tellurite Compounds $ACu_3Te_2O_8$ (A = Ca, Cd) with

Ferromagnetic Spin-1/2 Kagomé Layers

Guozhao Wang^{a,b,c}, Wenya Xiang^{a,b,c}, Zhiying Zhao^a, Meiyan Cui^a, Zhangzhen He*,^a

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

^bCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China

°Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China

*E-mail: <u>hcz1988@hotmail.com; hezz@fjirsm.ac.cn.</u>

Figure S1 The grown crystals of $ACu_3Te_2O_8$ (A = Ca, Cd).

Figure S2 The powder XRD patterns of $ACu_3Te_2O_8$ (A = Ca, Cd).

Figure S3 The energy-dispersive spectrometry (EDS) elemental analyses of

 $ACu_3Te_2O_8$ (A = Ca, Cd).

Figure S4 Views of the coordination environments of (a) Cu, (b) Te, and (c) Ca atoms in the structure.

Figure S5 Specific heat of $ACu_3Te_2O_8$ (A = Ca, Cd) measured at 0 T.

Figure S6 Temperature-dependence of reciprocal magnetic susceptibilities (χ^{-1}) for CdCu₃Te₂O₈ with the applied field (*H*) parallel and perpendicular to the *c*-axis. **Figure S7** FC and ZFC susceptibilities of ACu₃Te₂O₈ (A= Ca, Cd) measured at 0.1 T. **Figure S8** The linkages of magnetic Cu²⁺ ions of (a) ACu₃Te₂O₈ (A = Ca, Cd) and (b) Zn_xCu_{4-x}(OH)₆Cl₂ (0 $\leq x \leq 1$).

Table S1 Crystal data and structure refinements for $ACu_3Te_2O_8$ (A = Ca, Cd).

Table S2 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for ACu₃Te₂O₈ (A = Ca, Cd).

Table S3 Anisotropic displacement parameters for $ACu_3Te_2O_8$ (A = Ca, Cd).

Table S4 Selected bond lengths [Å] and bond angles for CaCu₃Te₂O₈.

Table S5 Selected bond lengths [Å] and bond angles for CdCu₃Te₂O₈.

Table S6 A comparison between ACu₃Te₂O₈ (A = Ca, Cd) and Zn_xCu_{4-x}(OH)₆Cl₂ (0 \leq x \leq 1).

Experimental details

Single crystals of $ACu_3Te_2O_8$ (A = Ca, Cd) were synthesized by a conventional hydrothermal method. For CaCu₃Te₂O₈, a mixture includes 0.6 mmol CuO (macklin, 99.9%, 0.0477 g), 1.15 mmol K₂TeO₃ (macklin, 99.5%, 0.2919 g), 0.3 mmol CaCO₃ (aladdin, 99%, 0.0300 g), and 3 mL deionized water. For CdCu₃Te₂O₈, a mixture includes 0.6 mmol CuO (macklin, 99.9%, 0.0477 g), 1.2 mmol K₂TeO₃ (macklin, 99.5%, 0.3046 g), 0.45 mmol CdCO₃ (aladdin, 97%, 0.0776 g), and 1.5 mL deionized water. Such mixtures were separately sealed in autoclaves equipped with a Teflon liner (28 mL). The autoclaves were then put into a furnace and heated at 270 °C for 4 days under autogenous pressure respectively, followed by slowly cooling to room temperature at a rate of ~ 4 °C h⁻¹ for 2 days. The black block-shaped crystals of CaCu₃Te₂O₈ and CdCu₃Te₂O₈ (Figure S1) were selected by manual under a microscope and washed several times using deionized water and ethanol (99%), and further dried at 60 °C for 2 h. The powdered samples for various physical measurements were prepared by crushing single crystals, which were confirmed to have a high purity by powder X-ray diffraction (XRD) (Figure S2) and the EDS element analysis (Figure S3).

Small crystals of both compounds were selected and mounted on glassy fibers for single-crystal XRD measurements. Data collection was performed on a Rigaku Mercury CCD diffractometer equipped with a graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 100 K. The data sets were corrected for Lorentz and polarization factors as well as for the absorption by Multiscan method. The structure was solved by direct methods and refined by Olex-2 software [1] All non-hydrogen atoms were refined with anisotropic thermal parameters. The final refined structural parameters were checked by the PLATON program [2]. Crystallographic data and structural refinement details are summarized in Table S1. The detailed structural parameters can be seen in Tables S2-S5.

Magnetic and specific heat measurements were performed using a commercial Quantum Design Physical Property Measurement System (PPMS). Samples of CaCu₃Te₂O₈ (12.80 mg) and CdCu₃Te₂O₈ (12.80 mg) were placed in a gel capsule sample holder which was suspended in a plastic drinking straw. Magnetic susceptibility was measured at 0.1 T from 300 to 2 K (temperature scan of 5 K/min). Isothermal magnetization was measured at 2 K in applied field from 0 to 5 T (field scan of 0.1 T/step). Specific heat data was obtained from 2 to 150 K under zero field using a relaxation method.

- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- [2] A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.

Figure S1 The grown crystals of (a) CaCu₃Te₂O₈ and (b) CdCu₃Te₂O₈.

Figure S2 The powder XRD patterns of (a) CaCu₃Te₂O₈ and (b) CdCu₃Te₂O₈.

Figure S3 The energy-dispersive spectrometry (EDS) elemental analyses of (a) $CaCu_3Te_2O_8$ and (b) $CdCu_3Te_2O_8$.

Figure S4 Views of the coordination environments of (a) Cu, (b) Te, and (c) Ca atoms in the structure.

Figure S5 Specific heat of $ACu_3Te_2O_8$ (A = Ca, Cd) measured at 0 T.

Figure S6 Temperature-dependence of reciprocal magnetic susceptibilities (χ^{-1}) for CdCu₃Te₂O₈ with the applied field (*H*) parallel and perpendicular to the c-axis, in which the red solid line is a fit of Curie–Weiss law.

Figure S7 FC and ZFC susceptibilities of $ACu_3Te_2O_8$ (A= Ca, Cd) measured at 0.1 T.

Figure S8 The linkages of magnetic Cu^{2+} ions of (a) $ACu_3Te_2O_8$ (A = Ca, Cd) and (b) $Zn_xCu_{4-x}(OH)_6Cl_2$ ($0 \le x \le 1$), where one of the two equivalent O2 sites is shown in $ACu_3Te_2O_8$.

formula	CaCu ₃ Te ₂ O ₈	CdCu ₃ Te ₂ O ₈
Fw	613.9	686.22
<i>T</i> (K)	100	100
λ (Å)	0.71073	0.71073
space group	R-3m	R-3m
<i>a</i> (Å)	6.4391(3)	6.4227(12)
<i>c</i> (Å)	16.7324(8)	16.340(4)
V(Å3)	600.81(6)	583.8(3)
Ζ	3	3
$D_{ m calcd} ({ m g \ cm^{-3}})$	5.090	5.856
$\mu (\mathrm{mm}^{-1})$	15.684	18.141
GOF on F^2	1.296	1.161
R1, wR2 $[I > 2\sigma(I)]^{a}$	0.0311, 0.0732	0.0358, 0.0745
R1, wR2 (all data)	0.0313, 0.0733	0.0391, 0.0756

Table S1. Crystal Data and Structure Refinements for $ACu_3Te_2O_8$ (A = Ca, Cd)

 ${}^{a}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|, \text{ and } wR_{2} = \left\{\sum w[(F_{0})^{2} - (F_{c})^{2}]^{2} / \sum w[(F_{0})^{2}]^{2}\right\}^{1/2}$

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ACu₃Te₂O₈ (A = Ca, Cd). U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor

Atom	x	у	z	U(eq)
Te1	3333.33	6666.67	5008.4(5)	7.2(3)
Cu1	1666.67	3333.33	3333.33	10.0(4)
Cal	0	0	5000	10.7(8)
01	0	0	3605(6)	8(2)
02	1018(16)	3937(15)	4448(4)	10.0(16)
Atom	X	у	Z	U(eq)
Te1	3333.33	6666.67	5037.7(7)	4.2(4)
Cd1	3333.33	6666.67	1666.67	4.9(5)
Cu1	1666.67	3333.33	3333.33	4.8(5)
01	3333.33	6666.67	3033(8)	6(3)
02	975(19)	4030(20)	4430(6)	7(2)

Table S3 Anisotropic Displacement Parameters (Å²×10³) for ACu₃Te₂O₈ (A = Ca,Cd). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

Atom	U11	U ₂₂	U33	U ₂₃	U13	U12
Te1	5.7(4)	5.7(4)	10.3(5)	0	0	2.8(2)
Cul	9.0(6)	7.6(8)	13.0(7)	-0.3(5)	-0.2(3)	3.8(4)
Cal	9.9(13)	9.9(13)	12.1(19)	0	0	5.0(6)
01	10(3)	10(3)	3(4)	0	0	5.0(16)
O2	8(4)	6(4)	13(4)	-2(3)	-1(3)	1(3)
Atom	U11	U ₂₂	U33	U ₂₃	U13	U12
Te1	4.6(5)	4.6(5)	3.5(6)	0	0	2.3(2)
Cd1	5.9(6)	5.9(6)	3.0(8)	0	0	3.0(3)
Cul	5.9(7)	4.6(10)	3.3(8)	1.5(7)	0.8(4)	2.3(5)
01	8(4)	8(4)	3(6)	0	0	4(2)
O2	7(2)	7(2)	7(2)	-0.8(10)	0.4(10)	3.5(13)

Table S4 Selected bond lengths [Å] and bond angles for $CaCu_3Te_2O_8$

Atom-Atom	Length/Å	Atom-Atom	Length/Å
Te1-O2 ³	1.890(8)	Ca1-O1 ¹¹	2.335(10)
Te1-O2 ⁴	1.890(8)	Cal-O1	2.335(10)
Te1-O2 ⁵	1.890(8)	Ca1-O2 ¹²	2.460(8)
Te1-O2 ⁶	1.890(8)	Ca1-O2 ¹³	2.460(8)
Te1-O2 ⁷	1.890(8)	Ca1-O2 ¹⁴	2.460(8)
Te1-O2	1.890(8)	Ca1-O2 ¹⁵	2.460(8)
Cu1-O1 ⁹	1.913(2)	Ca1-O2 ¹⁶	2.460(8)
Cu1-O1	1.913(2)	Ca1-O2 ¹⁷	2.460(8)
Cu1-O2	1.991(8)	Ca1-O2 ¹⁸	2.460(8)

Cu1-O2 ⁷	1.991(8)	Ca1-O2 ¹⁹	2.460(8)
Cu1-O2 ⁹	1.991(8)	Ca1-O2 ²⁰	2.460(8)
Cu1-O2 ¹⁰	1.991(8)	Ca1-O2 ⁷	2.460(8)

¹+X,1+Y,+Z; ²1+X,1+Y,+Z; ³1-Y,1+X-Y,+Z; ⁴1-Y,1-X,+Z; ⁵+Y-X,1-X,+Z; ⁶+X,1+X -Y,+Z; ⁷+Y-X,+Y,+Z; ⁸1/3+X,2/3+Y,-1/3+Z; ⁹1/3-X,2/3-Y,2/3-Z; ¹⁰1/3-Y+X,2/3-Y,2/ 3-Z; ¹¹-X,-Y,1-Z; ¹²-Y+X,+X,1-Z; ¹³-X,-X+Y,1-Z; ¹⁴+Y,-X+Y,1-Z; ¹⁵-Y+X,-Y,1-Z; ¹⁶ -Y,-X,+Z; ¹⁷-Y,+X-Y,+Z; ¹⁸+Y-X,-X,+Z; ¹⁹+Y,+X,1-Z; ²⁰+X,+X-Y,+Z

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
O2 ³ -Te1-O2 ⁵	118.5(5)	O1 ¹¹ -Ca1-O2 ¹⁸	67.93(18)
O2 ³ -Te1-O2 ⁶	37.8(5)	O2 ¹⁶ -Ca1-O2 ¹⁹	180.0(3)
O2 ⁴ -Te1-O2	118.5(5)	O2 ¹⁶ -Ca1-O2 ¹⁸	73.25(19)
O2 ⁵ -Te1-O2	97.5(3)	O2 ¹⁶ -Ca1-O2 ¹⁴	106.75(19)
O2 ⁶ -Te1-O2	97.5(3)	O2 ¹⁸ -Ca1-O2 ¹⁴	73.25(19)
O2 ⁶ -Te1-O2 ⁴	64.8(5)	O2 ¹² -Ca1-O2 ¹⁸	127.7(4)
O2 ⁷ -Te1-O2 ⁵	64.8(5)	O2 ¹⁶ -Ca1-O2 ¹²	99.1(4)
O2 ⁶ -Te1-O2 ⁵	97.5(3)	O2 ¹⁵ -Ca1-O2 ¹³	180.0(3)
O2 ³ -Te1-O2 ⁴	97.5(3)	O2 ¹⁶ -Ca1-O2 ¹⁷	80.9(4)
O2 ⁴ -Te1-O2 ⁷	97.5(3)	O2 ¹⁵ -Ca1-O2 ¹⁸	80.9(4)
O2 ³ -Te1-O2 ⁷	97.5(3)	O2 ¹⁷ -Ca1-O2 ²⁰	151.2(4)
O2 ⁴ -Te1-O2 ⁵	37.8(5)	O2 ¹⁹ -Ca1-O2 ¹⁵	28.8(4)
O2 ⁷ -Te1-O2	37.8(5)	O2 ¹⁹ -Ca1-O2 ¹⁷	99.1(4)
O2 ⁶ -Te1-O2 ⁷	118.5(5)	O2 ¹³ -Ca1-O2 ¹²	73.25(19)
O2 ³ -Te1-O2	64.8(5)	O2 ¹³ -Ca1-O2 ¹⁴	127.7(4)
O1-Cu1-O1 ⁹	180	O2 ¹⁶ -Ca1-O2 ¹⁵	151.2(4)
O1 ⁹ -Cu1-O2	93.3(4)	O2 ¹⁵ -Ca1-O2 ¹⁷	73.25(19)
O1-Cu1-O2 ¹⁰	93.3(4)	O2 ¹⁹ -Ca1-O2 ¹⁸	106.75(19)
O1-Cu1-O2 ⁹	93.3(4)	O2 ¹⁹ -Ca1-O2 ²⁰	106.75(19)
O1-Cu1-O2	86.7(4)	O2 ¹³ -Ca1-O2 ¹⁸	99.1(4)
O1 ⁹ -Cu1-O2 ⁷	93.3(4)	O2 ¹³ -Ca1-O2 ¹⁷	106.75(19)

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
O1 ⁹ -Cu1-O2 ¹⁰	86.7(4)	O2 ¹⁷ -Ca1-O2 ¹⁸	52.3(4)
O1-Cu1-O2 ⁷	86.7(4)	O2 ⁷ -Ca1-O2 ¹⁸	180
O1 ⁹ -Cu1-O2 ⁹	86.7(4)	O2 ¹³ -Ca1-O2 ⁷	80.9(4)
O2 ¹⁰ -Cu1-O2	144.2(5)	O2 ¹² -Ca1-O2 ¹⁷	180
O2 ⁹ -Cu1-O2 ¹⁰	35.8(5)	O2 ¹² -Ca1-O2 ⁷	52.3(4)
O2 ⁹ -Cu1-O2	180	O2 ¹⁹ -Ca1-O2 ¹⁴	73.25(19)
O2 ¹⁰ -Cu1-O2 ⁷	180.0(6)	O2 ¹⁷ -Ca1-O2 ⁷	127.7(4)
O2 ⁹ -Cu1-O2 ⁷	144.2(5)	O2 ¹⁶ -Ca1-O2 ¹³	28.8(4)
O2-Cu1-O2 ⁷	35.8(5)	O2 ⁷ -Ca1-O2 ¹⁴	106.75(19)
O1 ¹¹ -Ca1-O1	180	O2 ¹⁷ -Ca1-O2 ¹⁴	28.8(4)
O1 ¹¹ -Ca1-O2 ¹²	67.93(18)	O2 ¹⁹ -Ca1-O2 ¹²	80.9(4)
O1 ¹¹ -Ca1-O2 ¹³	112.07(17)	O2 ¹⁹ -Ca1-O2 ¹³	151.2(4)
O1 ¹¹ -Ca1-O2 ¹⁴	112.07(18)	O2 ¹⁶ -Ca1-O2 ²⁰	73.25(19)
O1-Ca1-O2 ¹⁵	112.07(17)	O2 ¹⁵ -Ca1-O2 ¹²	106.75(19)
O1 ¹¹ -Ca1-O2 ⁷	112.07(18)	O2 ¹⁵ -Ca1-O2 ²⁰	127.7(4)
O1-Ca1-O2 ¹³	67.93(17)	O2 ¹⁶ -Ca1-O2 ⁷	106.75(19)
O1 ¹¹ -Ca1-O2 ¹⁶	112.07(17)	O2 ¹² -Ca1-O2 ²⁰	28.8(4)
O1-Ca1-O2 ¹²	112.07(18)	O2 ¹³ -Ca1-O2 ²⁰	52.3(4)
O1 ¹¹ -Ca1-O2 ¹⁷	112.07(18)	O2 ⁷ -Ca1-O2 ²⁰	73.25(19)
O1-Ca1-O2 ⁷	67.93(18)	O2 ¹⁹ -Ca1-O2 ⁷	73.25(19)
O1-Ca1-O2 ¹⁶	67.93(17)	O2 ¹⁴ -Ca1-O2 ²⁰	180
O1-Ca1-O2 ¹⁸	112.07(18)	O2 ¹⁸ -Ca1-O2 ²⁰	106.75(19)
O1 ¹¹ -Ca1-O2 ¹⁹	67.93(17)	O2 ¹⁵ -Ca1-O2 ¹⁴	52.3(4)
O1-Ca1-O2 ¹⁴	67.93(17)	O2 ¹⁵ -Ca1-O2 ⁷	99.1(4)
O1 ¹¹ -Ca1-O2 ²⁰	67.93(17)	O2 ¹² -Ca1-O2 ¹⁴	151.2(4)
O1-Ca1-O2 ²⁰	112.07(18)	Cu1 ¹⁷ -O1-Cu1 ¹³	114.6(2)
O1-Ca1-O2 ¹⁹	112.07(17)	Cu1 ¹⁷ -O1-Cu1	114.6(2)
O1 ¹¹ -Ca1-O2 ¹⁵	67.93(17)	Cu1 ¹³ -O1-Cu1	114.6(2)

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
O1-Ca1-O2 ¹⁷	67.93(18)	-	-
¹ +X,1+Y,+Z; ² 1+X,1+Y,+	-Z; ³ +X,1+X-Y,+	Z; 41-Y,1-X,+Z; 51-Y,1+X	-Y,+Z; ⁶ +Y-X,1
-X,+Z; ⁷ +Y-X,+Y,+Z; ⁸ 1/.	3+X,2/3+Y,-1/3+	Z; ⁹ 1/3-X,2/3-Y,2/3-Z; ¹⁰ 1/	3-Y+X,2/3-Y,2/
3-Z; ¹¹ -X,-Y,1-Z; ¹² +Y,-X	X+Y,1-Z; ¹³ +Y-X	X,-X,+Z; ¹⁴ -Y,-X,+Z; ¹⁵ -Y+X	$X,+X,1-Z; {}^{16}+X,$
+X-Y,+Z; ¹⁷ -Y,+X-Y,+Z;	¹⁸ -Y+X,-Y,1-Z;	¹⁹ -X,-X+Y,1-Z; ²⁰ +Y,+X,1-Z	Z

Table S5 Selected bond lengths [Å] and bond angles for CdCu₃Te₂O₈

Atom-Atom	Length/Å	Atom-Atom	Length/Å
Te1-O2 ¹	1.892(11)	Cd1-O2 ¹¹	2.518(11)
Te1-O2	1.892(11)	Cd1-O2 ¹²	2.518(11)
Te1-O2 ²	1.892(11)	Cd1-O2 ¹³	2.518(11)
Te1-O2 ³	1.892(11)	Cd1-O2 ¹⁴	2.518(11)
Te1-O2 ⁴	1.892(11)	Cd1-O2 ¹⁵	2.518(11)
Te1-O2 ⁵	1.892(11)	Cd1-O2 ¹⁶	2.518(11)
Cd1-O1	2.233(13)	Cu1-O1	1.918(3)
Cd1-O1 ⁶	2.233(13)	Cu1-O1 ¹²	1.918(3)
Cd1-O2 ⁷	2.518(11)	Cu1-O2 ⁹	1.952(10)
Cd1-O2 ⁸	2.518(11)	Cu1-O2 ¹²	1.952(10)
Cd1-O2 ⁹	2.518(11)	Cu1-O2 ⁴	1.952(10)
Cd1-O2 ¹⁰	2.518(11)	Cu1-O2	1.952(10)

¹+X,1+X-Y,+Z; ²1-Y,1-X,+Z; ³1-Y,1+X-Y,+Z; ⁴+Y-X,+Y,+Z; ⁵+Y-X,1-X,+Z; ⁶2/3-X, 4/3-Y,1/3-Z; ⁷1/3-Y,2/3-X,-1/3+Z; ⁸1/3+Y,2/3-X+Y,2/3-Z; ⁹1/3-Y+X,2/3-Y,2/3-Z; ¹⁰1 /3+X,2/3+Y,-1/3+Z; ¹¹1/3-Y,2/3+X-Y,-1/3+Z; ¹²1/3-X,2/3-Y,2/3-Z; ¹³1/3-X,2/3-X+Y, 2/3-Z; ¹⁴1/3-Y+X,2/3+X,2/3-Z; ¹⁵1/3+Y-X,2/3+Y,-1/3+Z; ¹⁶1/3+Y,2/3+X,2/3-Z

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
O2 ¹ -Te1-O2 ²	41.4(7)	O2 ¹³ -Cd1-O2 ¹⁶	129.3(5)
O2-Te1-O2 ³	41.4(6)	O2 ⁹ -Cd1-O2 ⁷	149.2(5)
O2-Te1-O2 ⁴	95.0(4)	O2 ¹⁵ -Cd1-O2 ⁹	107.2(2)
O2 ⁵ -Te1-O2 ³	95.0(4)	O2 ¹⁵ -Cd1-O2 ⁷	100.6(5)

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
O2 ² -Te1-O2 ⁴	95.0(4)	O2 ¹⁴ -Cd1-O2 ⁹	180
O2 ⁵ -Te1-O2 ⁴	41.4(6)	O2 ¹³ -Cd1-O2 ¹⁴	72.8(2)
O2 ² -Te1-O2 ³	115.9(6)	O2 ¹⁰ -Cd1-O2 ¹⁵	30.8(5)
O2 ¹ -Te1-O2 ⁵	95.0(4)	O2 ¹¹ -Cd1-O2 ⁹	79.4(5)
O2 ² -Te1-O2	95.0(4)	O2 ¹⁰ -Cd1-O2 ¹²	100.6(5)
O2 ¹ -Te1-O2 ⁴	115.9(6)	O2 ¹⁶ -Cd1-O2 ¹⁴	149.2(5)
O2 ⁵ -Te1-O2	115.9(6)	O2 ¹³ -Cd1-O2 ¹²	180
O2 ² -Te1-O2 ⁵	59.3(7)	O2 ¹⁵ -Cd1-O2 ¹²	72.8(2)
O2 ¹ -Te1-O2 ³	95.0(4)	O2 ⁸ -Cd1-O2 ¹²	30.8(5)
O2 ³ -Te1-O2 ⁴	59.3(7)	O2 ⁸ -Cd1-O2 ¹⁴	79.4(5)
O2 ¹ -Te1-O2	59.3(7)	O2 ¹¹ -Cd1-O2 ¹²	149.2(5)
O1-Cd1-O1 ⁶	180	O2 ¹⁴ -Cd1-O2 ¹²	107.2(2)
O1-Cd1-O2 ⁷	111.7(2)	O2 ¹⁵ -Cd1-O2 ⁸	50.7(5)
O1 ⁶ -Cd1-O2 ⁸	68.3(2)	O2 ¹⁰ -Cd1-O2 ¹⁶	107.2(2)
O1-Cd1-O2 ⁹	68.3(2)	O2 ¹⁰ -Cd1-O2 ⁷	72.8(2)
O1 ⁶ -Cd1-O2 ¹⁰	111.7(2)	O2 ¹³ -Cd1-O2 ⁸	149.2(5)
O1-Cd1-O2 ¹¹	68.3(2)	O2 ¹³ -Cd1-O2 ⁷	50.7(5)
O1 ⁶ -Cd1-O2 ¹¹	111.7(2)	O2 ¹⁶ -Cd1-O2 ⁷	180
O1-Cd1-O2 ¹²	111.7(2)	O2 ¹⁶ -Cd1-O2 ⁸	72.8(2)
O1 ⁶ -Cd1-O2 ⁷	68.3(2)	O2 ¹⁰ -Cd1-O2 ¹³	79.4(5)
O1-Cd1-O2 ¹³	68.3(2)	O2 ¹¹ -Cd1-O2 ⁷	72.8(2)
O1-Cd1-O2 ¹⁴	111.7(2)	O2 ⁹ -Cd1-O2 ¹²	72.8(2)
O1 ⁶ -Cd1-O2 ¹³	111.7(2)	O2 ¹² -Cd1-O2 ⁷	129.3(5)
O1-Cd1-O2 ¹⁵	68.3(2)	O2 ¹⁰ -Cd1-O2 ⁸	72.8(2)
O1-Cd1-O2 ¹⁶	68.3(2)	O2 ¹⁰ -Cd1-O2 ⁹	129.3(5)
O1 ⁶ -Cd1-O2 ⁹	111.7(2)	O2 ⁸ -Cd1-O2 ⁷	107.2(2)
O1 ⁶ -Cd1-O2 ¹⁶	111.7(2)	O2 ¹⁵ -Cd1-O2 ¹⁶	79.4(5)
O1 ⁶ -Cd1-O2 ¹⁵	111.7(2)	O1-Cu1-O1 ⁹	180

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
O1-Cd1-O2 ¹⁰	68.3(2)	O1 ⁹ -Cu1-O2	87.6(5)
O1 ⁶ -Cd1-O2 ¹²	68.3(2)	O1-Cu1-O2 ¹⁶	87.6(5)
O1-Cd1-O2 ⁸	111.7(2)	O1 ⁹ -Cu1-O2 ¹⁶	92.4(5)
O1 ⁶ -Cd1-O2 ¹⁴	68.3(2)	O1 ⁹ -Cu1-O2 ⁹	92.4(5)
O2 ¹³ -Cd1-O2 ⁹	107.2(2)	O1-Cu1-O2 ³	92.4(5)
O2 ¹⁵ -Cd1-O2 ¹³	107.2(2)	O1-Cu1-O2	92.4(5)
O2 ¹⁶ -Cd1-O2 ¹¹	107.2(2)	O1-Cu1-O2 ⁹	87.6(5)
O2 ¹⁶ -Cd1-O2 ⁹	30.8(5)	O1 ⁹ -Cu1-O2 ³	87.6(5)
O2 ¹⁵ -Cd1-O2 ¹¹	129.3(5)	O2 ¹⁶ -Cu1-O2	140.0(6)
O2 ¹⁰ -Cd1-O2 ¹⁴	50.7(5)	O2 ¹⁶ -Cu1-O2 ³	180
O2 ¹⁴ -Cd1-O2 ¹¹	100.6(5)	O2-Cu1-O2 ³	40.0(6)
O2 ¹⁵ -Cd1-O2 ¹⁴	72.8(2)	O2 ⁹ -Cu1-O2	180
O2 ¹⁰ -Cd1-O2 ¹¹	107.2(2)	O2 ⁹ -Cu1-O2 ³	140.0(6)
O2 ⁸ -Cd1-O2 ⁹	100.6(5)	O2 ⁹ -Cu1-O2 ¹⁶	40.0(6)
O2 ¹³ -Cd1-O2 ¹¹	30.8(5)	Cu1 ² -O1-Cu1	113.7(3)
O2 ¹⁴ -Cd1-O2 ⁷	30.8(5)	Cu1 ² -O1-Cu1 ⁴	113.7(3)
O2 ⁸ -Cd1-O2 ¹¹	180	Cu1-O1-Cu1 ⁴	113.7(3)
O2 ¹⁶ -Cd1-O2 ¹²	50.7(5)		

¹+X,1+X-Y,+Z; ²+Y-X,1-X,+Z; ³+Y-X,+Y,+Z; ⁴1-Y,1+X-Y,+Z; ⁵1-Y,1-X,+Z; ⁶2/3-X, 4/3-Y,1/3-Z; ⁷1/3+Y-X,2/3+Y,-1/3+Z; ⁸1/3-Y,2/3-X,-1/3+Z; ⁹1/3-X,2/3-Y,2/3-Z; ¹⁰1/ 3-X,2/3-X+Y,2/3-Z; ¹¹1/3+Y,2/3+X,2/3-Z; ¹²1/3-Y,2/3+X-Y,-1/3+Z; ¹³1/3+Y,2/3-X+ Y,2/3-Z; ¹⁴1/3+X,2/3+Y,-1/3+Z; ¹⁵1/3-Y+X,2/3+X,2/3-Z; ¹⁶1/3-Y+X,2/3-Y,2/3-Z; ¹⁷-1/3+X,-2/3+Y,1/3+Z

Table S6 A comparison between ACu₃Te₂O₈ (A = Ca, Cd) and Zn_xCu_{4-x}(OH)₆Cl₂ (0 \leq x \leq 1)

	Herbertsmithite	Kapellasite	CaCu3Te2O8	CdCu3Te2O8
	ZnCu ₃ (OH) ₆ Cl ₂	ZnCu ₃ (OH) ₆ Cl ₂		
Space group	R-3m	P-3m1	R-3m	R-3m
The location of nonmagnetic cations	Between the layers	Within the layers	Between the layers	Between the layers
Cu-O-Cu	Connected via	Connected via	Connected via	Connected via
	edge-sharing	edge-sharing	corner-sharing	corner-sharing
Cu ²⁺ Coordination	Cu-O, 1.982 (4×);	Cu-O, 1.974 (4×);	Cu-O, 1.913 (2×),	Cu-O, 1.918 (2×),
(Å)	Cu-Cl, 2.769 (2×)	Cu-Cl, 2.762 (2×)	1.991 (2×)	1.952 (2×)
d _{Cu-Cu} (Å)	3.417	3.165	3.219	3.211
d _{interlayer} (Å)	5.089	5.702	5.879	5.754
∠Cu-O-Cu(deg)	118.9	105.54	114.54	113.7