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Methods 

We used density-functional theory (DFT) with VASP 5.4.41–4 to obtain an optimised crystal 

structure and evaluate the solid-state phonon modes, using the PBE functional5 with the semi-

empirical DFT-D3 dispersion correction6 and projector augmented-wave (PAW) 

pseudopotentials including a 4f-in-core potential for Dy.7,8 We used a plane-wave basis set 

with an energy cutoff of 850 eV and sampled the electronic structure at the Γ-point, justified 

by convergence of single-point energy and stress calculations. Starting from the primitive cell 

of 1 obtained from the Cambridge Structural Database (CCDC 2046705),9 the atomic positions 

and unit cell parameters were optimised, maintaining the experimental unit cell volume, to total 

energy and force tolerances of 10-8 eV and 0.01 eV Å-1. Phonons were calculated with 

Phonopy10 from force constants evaluated in a 2×2×1 supercell. Third-order force constants 

were then calculated in the primitive cell using Phono3py.11 Including all pairwise atomic 

displacements would require more than 2.7 million single-point calculations, so we employed 

various distance cutoffs of 3 < rcut < 7 Å, in steps of 0.5 Å beyond which the pair-wise third-

order force were assumed to be zero. This reduces the number of single-point computations to 

between 63,468 (rcut = 3 Å) and 674,244 (rcut = 7 Å). Linewidths were calculated using second-

order perturbation theory on q-point grids with up to 5×5×5 subdivisions. 

We used our established protocol for calculating the molecular spin-phonon coupling in the 

crystalline phase.12–14 In this approach, we perform molecular state-average complete active 

space self-consistent field spin-orbit (SA-CASSCF-SO) calculations on a single cation of 1 

surrounded by a spherical cluster of unit cells (approximate radius 30 Å, chosen by 

convergence testing). Molecules in the vicinity of the reference molecule are represented by 

point charges determined from gas-phase DFT calculations on each unique molecule, using 

Gaussian 09d,15 with Dy substituted with Y to avoid a multiconfigurational ground state, and 

fitting the external molecular electrostatic potential using the CHELPG method.16 The cluster 

is then embedded in a spherical conductor (Kirkwood solvent model with ε → ∞) to screen the 

unphysical surface charges to accurately reproduce the long-range Madelung potential.14 

Our SA-CASSCF-SO calculations are performed using OpenMolcas 23.02,17 considering 18 S 

= 5/2 states (6H and 6F terms) in a 9-in-7 active space (4f9 configuration) using the second-

order Douglas-Kroll-Hess relativistic decoupling,18 the Cholesky “atomic compact” resolution 

of the identity method for approximation of two electron integrals,19 and ANO-RCC basis sets 

for all atoms (VTZP for Dy, VDZP for the first coordination sphere and VDZ for all other 

atoms).20,21 These 18 spin-free states are then mixed with SO coupling, and the electronic states 



corresponding to the 6H15/2 multiplet are projected out of the ab initio basis to define the 

equilibrium Hamiltonian 𝐻" (note that this is not just the lowest 16 Kramers doublets, but the 

entire angular momentum content of the multiplet). The spin-phonon coupling Hamiltonian for 

each phonon mode (index j) at each q-point, !"#

!$𝒒"
, is evaluated using our linear vibronic 

coupling method,14,22,23 and the components relevant to the 6H15/2 multiplet are projected 

directly without recourse to a model Hamiltonian (see Figure S1 below for comparison of this 

approach to that using a model crystal field Hamiltonian). We note that our method does not 

include derivatives of the SO coupling operators, which are approximated using the atomic 

mean-field method;24 recent work by Lunghi and co-workers has shown that this might have 

an non-zero effect on rates.25 

Magnetic relaxation rates were determined using TAU,12,13 considering both Orbach and 

Raman-I rate expressions, derived from perturbation theory, given by Equations 1–6 below.13 

Calculation of the rates using these perturbative expressions requires an energy gap within the 

lowest Kramers doublet, which occurs in the experiment due to the presence of a dipolar 

magnetic field and/or the driving AC magnetic field, and thus we apply a small magnetic field 

of 2 Oe along the main magnetic axis of the molecule to split the ground doublet by ca. 0.02 

cm-1. The Raman-I integral is restricted to ω < 99 cm-1 to avoid divergence in the perturbation 

expression, which is sufficiently smaller than the first crystal field excitation of 457.47 cm-1 

while including sufficient modes populated in the Raman region < 60 K (Figure S2). Integration 

is performed over anti-Lorentzian phonon lineshapes (Equation 9 below)13 to an equivalent 

range of μ ± 2σ (95%) using the trapezoidal method with 100 equidistant steps. 
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Equation 6 
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Comparison of the model-free rates (used for all of the work herein) and those obtained by 

considering the dynamics using a model Hamiltonian parameterised by a crystal-field approach 

shows that the two methods give very similar results, differing by an average factor of 2 in the 

Orbach region and an average factor of 4 in the Raman-I region (Figure S1).  

 

a) Raman b) Orbach c) Total 

   

Figure S1. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature with fixed phonon linewidth of 𝛤 = 

10 cm-1, employing direct Hamiltonian derivatives (red) and crystal field model derivatives 

(black). The calculations were performed using the solid-state phonon modes evaluated on a 

1×1×1 q-point mesh. Error bars on the experimental rates correspond to one estimated standard 

deviation.26,27 

 

Table S1. Optimised lattice parameters of the primitive unit cell of 1 compared to experimental 

measurements.9 

Parameter Experimental Optimised 

a (Å) 11.6278(3) 11.63269 

b (Å) 12.6173(5) 12.59458 

c (Å) 20.3029(7) 20.34757 

𝜶 (°) 107.031(3) 107.0157 

𝜷 (°) 96.387(3) 96.7115 

𝜸 (°) 99.377(3) 99.3399 



Table S2. Electronic structure of 1 calculated with the crystal field parameters obtained from 

CASSCF-SO at the DFT optimised geometry. Each row corresponds to a Kramers doublet. 

Energy (cm–1) Energy (K) gx gy gz Anglea 

(deg) 

Wavefunctionb 

 

<Jz> 

0.00 0.00 0.00 0.00 19.99  --   99.7% |± 15/2〉  7.49 

465.28 664.78 0.00 0.00 17.09 2.26 99.7% |± 13/2〉  6.50 

713.58 1019.55 0.00 0.00 14.42 4.31 97.5% |± 11/2〉 + 1.1% |± 7/2〉 + 

0.8% |± 9/2〉  

5.48 

883.82 1262.79 0.03 0.04 11.74 4.40 96.9% |± 9/2〉 + 2.1% |± 5/2〉 + 

0.8% |± 11/2〉  

4.46 

1043.52 1490.98 0.17 0.25 9.10 4.70 97.0% |± 7/2〉 + 1.6% |± 3/2〉 + 

1.0% |± 11/2〉  

3.49 

1192.13 1703.30 1.12 1.63 6.47 2.79 96.5% |± 5/2〉 + 2.1% |± 9/2〉 + 

0.8% |± 1/2〉  

2.51 

1307.27 1867.81 0.89 1.93 3.87 1.13 97.2% |± 3/2〉 + 1.6% |± 7/2〉 + 

0.8% |∓ 1/2〉  

1.51 

1369.55 1956.80 1.30 9.97 11.13 89.88 98.1% |± 1/2〉 + 0.9% |± 5/2〉 + 

0.7% |∓ 3/2〉 

0.50 

 

 

Figure S2. Calculated Raman total magnetic reversal rates for 1 as a function of temperature 

obtained with solid-state phonon modes, evaluated including phonons with frequencies up to 

99 (black), 149 (red), 200 (green), 293 (blue), 390 (pink) and 481 cm-1. Evaluated on a 3×3×3 

q-point mesh with a fixed phonon linewidth 𝛤 = 1 cm. 
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Figure S3. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature obtained with solid-state phonon 

modes evaluated on 1×1×1 (red), 2×2×2 (green), 3×3×3 (blue), 4×4×4 (magenta) and 5×5×5 

(orange) q-point meshes. Imaginary modes were excluded from the calculations, and a fixed 

phonon linewidth 𝛤 = 10 cm-1 was used. Error bars on the experimental rates correspond to one 

estimated standard deviation.26,27 
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Figure S4. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature obtained with imaginary modes 

excluded from the calculations (red) or with their frequencies set to the absolute values (blue). 

The calculations were performed with the solid-state phonon modes evaluated on a 4×4×4 q-

point mesh and a fixed phonon linewidth 𝛤 = 10 cm-1. Error bars on the experimental rates 

correspond to one estimated standard deviation.26,27 
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Figure S5. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature obtained with fixed phonon 

linewidths of 𝛤 = 0.1 (red), 1 (green) and 10 cm-1 (blue), and with linewidths from the NVT 

approximation28 (magenta). The calculations were performed with solid-state phonon modes 

evaluated on a 1×1×1 q-point mesh. Error bars on the experimental rates correspond to one 

estimated standard deviation.26,27 The total NVT rates exclude the Raman contribution at T ≥ 

62 K due to numerical instabilities. 
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Figure S6. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature obtained with fixed phonon 

linewidths of 𝛤 = 0.1 (red), 1 (green) and 10 cm-1 (blue), with linewidths from the NVT 

approximation28 (magenta), and with DFT linewidths calculated at 300 K (orange). The 

calculations were performed with solid-state phonon modes evaluated on a 2×2×2 q-point 

mesh. Error bars on the experimental rates correspond to one estimated standard deviation.26,27 

The total NVT rates exclude the Raman contribution at T ≥ 62 K due to numerical instabilities. 
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Figure S7. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature obtained with fixed phonon 

linewidths of 𝛤 = 0.1 (red), 1 (green) and 10 (blue) cm-1, with linewidths from the NVT 

approximation28 (magenta), and with DFT linewidths calculated at 300 K (orange). The 

calculations were performed with solid-state phonon modes evaluated on a 3×3×3 q-point 

mesh. Error bars on the experimental rates correspond to one estimated standard deviation.26,27 

The total NVT rates exclude the Raman contribution at T ≥ 62 K due to numerical instabilities. 
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Figure S8. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature obtained with fixed phonon 

linewidths of 𝛤 = 0.1 (red), 1 (green) and 10 (blue) cm-1, and with linewidths from the NVT 

approximation28 (magenta). The calculations were performed using the solid-state phonon 

modes evaluated on a 4×4×4 q-point mesh, and the frequencies of imaginary modes were set 

to their absolute values. Error bars on the experimental rates correspond to one estimated 

standard deviation.26,27 The total NVT rates exclude the Raman contribution at T ≥ 62 K due to 

numerical instabilities. 
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Figure S9. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature obtained with fixed phonon 

linewidths of 𝛤 = 0.1 (red), 1 (green) and 10 (blue) cm-1, and with linewidths from the NVT 

approximation28 (magenta). The calculations were performed using the solid-state phonon 

modes evaluated on a 4×4×4 q-point mesh, and imaginary modes were excluded. Error bars on 

the experimental rates correspond to one estimated standard deviation.26,27 The total NVT rates 

exclude the Raman contribution at T ≥ 62 K due to numerical instabilities. 
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 Figure S10. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature with fixed phonon linewidths of 𝛤 = 

0.1 (red), 1 (green) and 10 (blue) cm-1, and with linewidths from the NVT approximation28 

(magenta). The calculations were performed using the solid-state phonon modes evaluated on 

a 5×5×5 q-point mesh, and the frequencies of imaginary modes were set to their absolute 

values. Error bars on the experimental rates correspond to one estimated standard deviation.26,27 

The total NVT rates exclude the Raman contribution at T ≥ 62 K due to numerical instabilities. 
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Figure S11. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature with fixed phonon linewidths of 𝛤 = 

0.1 (red), 1 (green) and 10 (blue) cm-1, and with linewidths from the NVT approximation28 

(magenta). The calculations were performed using the solid-state phonon modes evaluated on 

a 5×5×5 q-point mesh, and imaginary modes were excluded. Error bars on the experimental 

rates correspond to one estimated standard deviation.26,27 The total NVT rates exclude the 

Raman contribution at T ≥ 62 K due to numerical instabilities. 

 

 

Figure S12. Magnetic reversal rates of 1 as a function of full-width half-maximum (FWHM) 

linewidth. Calculations are performed on the 1×1×1 q-point mesh at different fixed 

temperatures. 



In our previous work we explained the decrease in Raman-I rates as a function of increasing 

linewidth as arising due to the Bose-Einstein occupation terms that diminish contributions from 

high-energy phonons at a finite temperature.14 This occurs when large linewidths smear out 

phonon modes to higher and lower energies, but there is a hard limit that the pDOS must 

approach zero at zero energy, which is enforced in our method by the use of anti-Lorentzian 

lineshapes (Equation 9). We show the effect empirically in our rates for compound 1 above 

(Figure S12), but we sought to show in a more direct context how this arises. Considering one 

of the Raman-I terms (Equation 6), we simplify the expression by considering only one phonon 

mode 𝒒𝑗 = 𝒒′𝑗′ from which both phonon energies ℏ𝜔 and ℏ𝜔′ are taken, in a system with only 

one excited state |𝜓2⟩, and further set +𝜓%*𝑉.𝒒)
(+,)*𝜓2/ = +𝜓2*𝑉.𝒒#)#

(+,)*𝜓&/ = +𝜓%*𝑉.𝒒#)#
(+,)*𝜓2/ =

+𝜓2*𝑉.𝒒)
(+,)*𝜓&/ = 1, 𝜋 = 1 and ℏ = 1, and define 𝐸% = 0 and ℏ𝜔3 = ℏ𝜔 − 𝐸& to give: 

𝛾 = )V
1
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1
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W
.
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Equation 10 

Considering the case of 𝐸2 ≫ 𝑘4𝑇 and 𝐸& ≪ 𝑘4𝑇 (e.g. 𝐸2 = 500 cm-1, 𝐸& = 0.02 cm-1 and 10 

K < 𝑇 < 100 K, valid for Dy(III) SMMs such as the present compound 1), we perform numeric 

integrals of Equation 10 using Mathematica as a function of FWHM linewidth in the range 10-

3 cm-1 ≤ Γ ≤ 103 cm-1 for a range of temperatures and central phonon energies ℏ𝜔𝒒) (Figure 

S13). The results for ℏ𝜔𝒒) = 10 cm-1 and ℏ𝜔𝒒) = 30 cm-1 are qualitatively in agreement with 

the full calculation results (Figure S12), showing the same profiles and temperature 

dependence. In all but a few circumstances, the rate decreases with increasing linewidth, as we 

found empirically in our full calculations on compound 1 and in prior work.14 The cases where 

there is a positive correlation between rates and linewidths are when: i) Γ < 𝐸&, and ii) when 

𝑘4𝑇 ≪ ℏ𝜔𝒒) and Γ	~	ℏ𝜔𝒒) (e.g. Figure S13e at 10 K for Γ~ 50 cm-1). Case i) does not in the 

full calculations on compound 1 as 𝐸&	~	0.02 cm-1 and Γ > 0.1 cm-1 for all modes (Figure 3a). 

The positive correlation in case ii) is far-outweighed by the negative correlation for lower 

energy modes at the same temperature: i.e., the positively-correlated rates for ℏ𝜔𝒒) = 100 cm-

1 at 10 K and Γ~ 50 cm-1 (Figure S13e) are on the order of 10-11 a.u., while the rates for ℏ𝜔𝒒) =

10 cm-1 at 10 K and Γ~ 50 cm-1 (Figure S13a) have a negative correlation and are on the order 

of 10-8 a.u. Thus, the latter case is also not observed when integrating all phonon modes in the 

low-energy region as we perform in our full calculations.  



a) ℏ𝜔𝒒) = 10 cm-1 b) ℏ𝜔𝒒) = 30 cm-1 

  

 

c) ℏ𝜔𝒒) = 50 cm-1 

 

d) ℏ𝜔𝒒) = 70 cm-1 

  

 

e) ℏ𝜔𝒒) = 100 cm-1 

 

Figure S13. Model rates (Equation 10) as a function of linewidth at 10 (black), 20 (orange), 

30 (yellow), 40 (light green), 50 (dark green), 60 (light blue), 70 (dark blue), 80 (purple), 90 

(pink) and 100 K (red) for a selection of central phonon mode energies. Discontinuities in the 

ℏ𝜔𝒒) = 50 cm-1, ℏ𝜔𝒒) = 70 cm-1 and ℏ𝜔𝒒) = 100 cm-1 data are due to numerical instabilities 

in the integration in Mathematica. 
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Figure S14. Calculated phonon linewidths (left) and phonon lifetimes (right) as a function of 

mode energy at 300 K, at the unique q-points in a 2×2×2 mesh, calculated with pair-distance 

cutoffs of rcut = 3 (top row) to 7 Å (bottom row). 

 

Table S3. Minimum, maximum, average and standard deviation (SD) of the differences 

between the calculated 300 K phonon lifetimes of 1, evaluated on a 2×2×2 q-point mesh and 

obtained with pair-distance cutoffs of rcut = 3-7 Å, compared to the largest rcut = 7 Å. 

rcut [Å] 

Δ [ps] Δ [%] 

Min. Max. Avg. SD Min. Max. Avg. SD 

3.0 0.00 45.94 0.65 2.31 0.03 501.49 58.40 61.49 

3.5 0.00 44.15 0.54 2.00 0.01 306.99 46.55 47.00 

4.0 0.00 30.58 0.41 1.48 0.00 212.62 34.19 33.95 

4.5 0.00 12.52 0.29 0.81 0.01 175.23 25.15 24.69 

5.0 0.00 8.33 0.20 0.54 0.00 138.14 18.12 18.34 

5.5 0.00 8.81 0.15 0.55 0.01 88.70 12.20 13.01 

6.0 0.00 9.58 0.10 0.48 0.00 65.93 6.67 8.42 

6.5 0.00 9.73 0.07 0.49 0.00 66.95 3.87 5.39 

7.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure S15. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature with a fixed phonon linewidth of 𝛤 

= 10 cm-1 (blue) or the calculated mode-dependent linewidths at 300 K obtained with pair-

distance cutoffs of rcut = 7 (orange), 5 (purple) and 3 Å (grey). The calculations were performed 

using the solid-state phonon modes evaluated on a 2×2×2 q-point mesh. Error bars on the 

experimental rates correspond to one estimated standard deviation.26,27 
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Figure S16. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature with mode- and temperature-

dependent calculated phonon linewidths obtained with pair-distance cutoffs of rcut = 7 (red), 5 

(green) and 3 (blue) Å, or a fixed linewidth of 𝛤 = 10 cm-1 (orange). The calculations were 

performed using the solid-state phonon modes evaluated on a 2×2×2 q-point mesh. Error bars 

on the experimental rates correspond to one estimated standard deviation.26,27  
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Figure S17. Experimental (black circles) and calculated a) Raman, b) Orbach and c) total 

magnetic reversal rates for 1 as a function of temperature with mode- and temperature-

dependent calculated phonon linewidths obtained with a pair-distance cutoffs of rcut = 7 Å 

(blue), or a fixed linewidth of 𝛤 = 10 cm-1 (orange). The calculations were performed using the 

solid-state phonon modes evaluated on a 3×3×3 q-point mesh. Error bars on the experimental 

rates correspond to one estimated standard deviation.26,27 

 

a) 13.8 cm-1 b) 99.1 cm-1 c) 997.1 cm-1 

   

Figure S18. Calculated phonon linewidths as a function for temperature for three different 

modes (a, b, c), obtained using a range of pair-distance cutoffs and q-point meshes.  
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