Supporting Information

Table of Contents

1. General information	S2
2. Experimental procedure	S2
3. Characterization data of the products	S 4
4. X-ray Crystal Structure for 2, 26, and 37	S23
5 References	S26
6 Control Experiments	S27
7. ¹ H, ¹⁹ F and ¹³ C NMR spectra of products	S28

1. General information

All experiments were carried out under an atmosphere of air Flash column chromatography was performed over silica gel 48-75 μ m. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded on Bruker-AV (500 MHz, 471 MHZ and 126 MHz, respectively) instrument internally referenced to SiMe₄ or chloroform signals. HRMS was recorded using waters G2-Xs qtof mass spectrometer. The new compounds were characterized by ¹H NMR, ¹⁹F NMR, ¹³C NMR, MS and HRMS. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹⁹F NMR, ¹³C NMR data and MS data with those of literature. The Substrates 1¹ and TFHZ-Tfs² was synthesized according to the reported methods.

Trichloromethane (CHCl₃), dichloromethane, dichloroethane and ethyl acetate were freshly distilled from CaH₂; tetrahydrofuran (THF), toluene and ether were dried with sodium benzophenone and distilled before use.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. All reagents and solvents were used as received from commercial sources (*Energy Chemical, J&K*[®], *Adamas-beta*[®], *Bidepharm*) without further purification.

2. Experimental procedure

2.1 K_2CO_3 -Promoted [3 + 2] annulation of in situ formed trifluorodiazoethane with 4-nitroisoxazoles

In a 10 mL of sealed tube, a mixture of 4-nitroisoxazoles **1** (0.2 mmol), **TFHZ-Tfs** (0.4 mmol, 128.0 mg), K_2CO_3 (0.7 mmol, 96.7 mg) and CH₃CN (2 mL) was stirred at 35 °C for 6-12 h. After completion of the reaction (detected by TLC), the reaction mixture was concentrated under reduced pressure. The residue was separated by

column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford **2-40**.

2.2 Scaled-Up version of 2.

In a 100 mL of sealed tube, a mixture of 4-nitro-3-phenylisoxazole (5.0 mmol, 0.95 g), **TFHZ-Tfs** (10 mmol, 3.2 g), K_2CO_3 (17.5 mmol, 2.42 g) and CH₃CN (30 mL) was stirred at 35 °C for 12 h. After completion of the reaction (detected by TLC), the reaction mixture was concentrated under reduced pressure. The residue was separated by column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford **2** in 1.08 g, 85% yield.

2.3 The transformation of the Product 38.

To compound **13** (60.2 mg, 0.2 mmol) in 3 mL CH₃CN was added DABCO (26.9 mg, 0.24 mmol) at rt. Then the reaction was stirred for 13 h at rt. The aqueous solution was extracted with DCM three times. The combined organic layers were dried over Na₂SO₄. After evaporation of the solvent, the resulting crude mixture was purified by flash chromatography on silica gel to afford compound **38** in 80% yield.

To compound **13** (60.2 mg, 0.2 mmol) in 3 mL CH₃CN was added K_2CO_3 (82.9 mg, 0.6 mmol) at rt, the reaction was stirred for 2 h at rt. The resulting mixture was

extracted with EA three times. The combined organic layers were dried over Na_2SO_4 . After evaporation of solvent, the resulting crude mixture was purified by flash chromatography on silica gel to afford compound **39** in 50% yield.

3. Characterization data of the products

NOTE: When deuterated DMSO as a solvent, the ¹³C NMR signal of the $C(sp^2)$ bounded to the CF₃ are sometimes not visible in the ¹³C NMR spectra.

3-phenyl-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (2)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **2** as a yellow solid (48.0 mg, 95% yield); ¹H NMR (500 MHz, DMSO) δ 14.81 (s, 1H), 8.04 – 8.02 (m, 2H), 7.65 – 7.64 (m, 3H); ¹⁹F NMR (471 MHz, DMSO) δ -59.11; ¹³C NMR (126 MHz, DMSO) δ 157.05, 148.36, 135.96, 132.00, 129.99, 127.89, 126.06, 120.87 (q, *J* = 266.8 Hz); HRMS (ESI) m/z calcd. for C₁₁H₇F₃N₃O⁺ [M+H] ⁺ = 254.0536, found 254.0536.

3-(4-methoxyphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (3)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **3** as a white solid (45.9 mg, 81% yield); ¹H NMR (500 MHz, DMSO) δ 14.72 (s, 1H), 7.95 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H); ¹⁹F NMR (471 MHz, DMSO) δ -59.20; ¹³C NMR (126 MHz, DMSO) δ 162.10, 156.83, 147.87, 135.87, 129.45, 120.91 (q, *J* = 267.2 Hz), 119.75 (q, *J* = 40.3 Hz), 118.24, 115.31, 55.91; HRMS (ESI) m/z calcd. for C₁₂H₉F₃N₃O₂⁺ [M+H]⁺= 284.0641, found 284.0644.

3-(p-tolyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (4)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **4** as a white solid (44.9 mg, 84% yield). ¹H NMR (500 MHz, DMSO) δ 14.74 (s, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 7.9 Hz, 2H), 2.42 (s, 3H); ¹⁹F NMR (471 MHz, DMSO) δ -59.17; ¹³C NMR (126 MHz, DMSO) δ 156.89, 148.20, 141.98, 135.91, 130.42, 127.70, 123.19, 120.87 (q, *J* = 267.3 Hz), 21.48; HRMS (ESI) m/z calcd. for C₁₂H₉F₃N₃O⁺ [M+H]⁺= 268.0692, found 268.0692.

3-(4-(hexyloxy)phenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (5)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **4** as a white solid (60.7 mg, 86% yield); ¹H NMR (500 MHz, DMSO) δ 7.64 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 3.75 (t, *J* = 6.5 Hz, 2H), 1.48 – 1.42 (m, 2H), 1.15 – 1.12 (m, 2H), 1.03 (d, *J* = 3.5 Hz, 4H), 0.60 (t, *J* = 6.7 Hz, 3H); ¹⁹F NMR (471 MHz, DMSO) δ -59.24; ¹³C NMR (126 MHz, DMSO) δ 161.51, 156.69, 147.92, 136.13, 129.35, 120.87 (q, *J* = 267.3 Hz), 118.06, 115.60, 68.22, 31.45, 28.98, 25.57, 22.48, 14.20; HRMS (ESI) m/z calcd. for C₁₇H₁₉F₃N₃O₂⁺ [M+H] ⁺ = 354.1424, found 354.1420.

3-(4-propoxyphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (6)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **6** as a white solid (54.1 mg, 87% yield); ¹H NMR (500 MHz, DMSO) δ 14.74 (s, 1H), 7.95 (d, *J* = 8.6 Hz, 2H), 7.16 (d, *J* = 8.7 Hz, 2H), 4.05 (t, *J* = 6.5 Hz, 2H), 1.79 (dd, *J* = 14.0, 6.9 Hz, 2H), 1.03 (t, *J* = 7.4 Hz, 3H); ¹⁹F NMR (471 MHz, DMSO) δ -59.16; ¹³C NMR (126 MHz, DMSO) δ 161.61, 156.80, 148.01, 135.99, 129.50, 120.90 (q, *J* = 267.2 Hz), 118.10, 115.79, 69.77, 22.40, 10.75; HRMS (ESI) m/z calcd. for C₁₄H₁₃F₃N₃O₂⁺ [M+H]⁺ = 312.0954, found 312.0953.

3-(4-(4-bromophenoxy)phenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole(7)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **7** as a white solid (37.2 mg, 44% yield); ¹H NMR (500 MHz, DMSO) δ 8.04 (d, *J* = 8.7 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 8.7 Hz, 2H), 7.11 (d, *J* = 8.8 Hz, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -54.33; ¹³C NMR (126 MHz, DMSO) δ 159.48, 156.93, 155.46, 147.78, 136.05, 133.57, 130.05, 122.09, 121.24, 120.87 (q, *J* = 267.1 Hz), 119.55, 116.70; HRMS (ESI) m/z calcd. for C₁₇H₁₀BrF₃N₃O₂⁺ [M+H] ⁺ = 423.9903, found 423.9904.

3-(4-isopropylphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (8)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **8** as a white solid (55.4 mg, 94% yield); ¹H NMR (500 MHz, DMSO) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 3.03 – 2.97 (m, 1H), 1.27 (d, *J* = 6.9 Hz, 6H); ¹⁹F NMR (471

MHz, DMSO) δ -59.20; ¹³C NMR (126 MHz, DMSO) δ 156.87, 152.63, 148.24, 136.08, 127.90, 127.82, 123.61, 120.87 (q, *J* = 267.3 Hz), 60.18, 33.92, 23.93; HRMS (ESI) m/z calcd. for C₁₄H₁₃F₃N₃O⁺ [M+H]⁺ = 296.1005, found 296.1003.

3-(2,3-dihydrobenzofuran-5-yl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (9)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **9** as a yellow solid (35.9 mg, 61% yield); ¹H NMR (500 MHz, DMSO) δ 7.85 (s, 1H), 7.75 (d, *J* = 8.3 Hz, 1H), 6.97 (d, *J* = 8.3 Hz, 1H), 4.66 (t, *J* = 8.8 Hz, 2H), 3.29 (t, *J* = 8.7 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.14; ¹³C NMR (126 MHz, DMSO) δ 162.82, 156.59, 148.22, 136.11, 129.56, 128.57, 124.56, 120.90 (q, *J* = 267.1 Hz), 118.05, 110.13, 72.25, 29.06; HRMS (ESI) m/z calcd. for C₁₃H₉F₃N₃O₂⁺ [M+H]⁺= 296.0641, found 296.0640.

3-([1,1'-biphenyl]-4-yl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (10)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **10** as a white solid (47.4 mg, 72% yield); ¹H NMR (500 MHz, DMSO) δ 14.83 (s, 1H), 8.10 (d, *J* = 8.2 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.78 (d, *J* = 7.4 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.45 (t, *J* = 7.3 Hz, 1H); ¹⁹F NMR (471 MHz, DMSO) δ -59.11; ¹³C NMR (126 MHz, DMSO) δ 157.01, 148.07, 143.44, 139.32, 136.12, 129.52, 128.72, 128.43, 128.05, 127.33, 124.99, 120.87 (q, *J* = 267.4 Hz); HRMS (ESI) m/z calcd. for C₁₇H₁₁F₃N₃O⁺ [M+H]⁺ = 330.0849, found 330.0849.

3-(4-fluorophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (11)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **11** as a white solid (45.0 mg, 83% yield); ¹H NMR (500 MHz, DMSO) δ 7.97 (dd, *J* = 7.9, 5.5 Hz, 2H), 7.39 (t, *J* = 8.5 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.29, -108.48; ¹³C NMR (126 MHz, DMSO) δ 164.20 (d, *J* = 249.9 Hz), 156.94, 147.28, 135.83, 130.15 (d, *J* = 9.0 Hz), 122.55 (d, *J* = 3.5 Hz), 120.78 (q, *J* = 267.3 Hz), 116.94 (d, *J* = 22.2 Hz); HRMS (ESI) m/z calcd. for C₁₁H₆F₄N₃O⁺ [M+H]⁺= 272.0442, found 272.0440.

3-(4-chlorophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (12)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **12** as a white solid (39.6 mg, 69% yield); ¹H NMR (500 MHz, DMSO) δ 14.77 (s, 1H), 7.99 (d, *J* = 8.5 Hz, 2H), 7.68 (d, *J* = 8.5 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.23; ¹³C NMR (126 MHz, DMSO) δ 157.10, 147.34, 136.67, 135.70, 129.95, 129.48, 124.90, 120.78 (q, *J* = 267.4 Hz); HRMS (ESI) m/z calcd. for C₁₁H₆ClF₃N₃O⁺ [M+H]⁺= 288.0146, found 288.0147.

3-(4-bromophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (13)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **13** as a white solid (60.9 mg, 92% yield); ¹H NMR (500 MHz, DMSO) δ 14.82 (s, 1H), 7.94 (d, *J* = 8.4

Hz, 2H), 7.84 (d, J = 8.3 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.13; ¹³C NMR (126 MHz, DMSO) δ 157.13, 147.57, 135.80, 132.96, 129.72, 125.54, 125.28, 120.81 (q, J = 267.1 Hz); HRMS (ESI) m/z calcd. for C₁₁H₆BrF₃N₃O⁺ [M+H]⁺= 331.9641, found 331.9641.

3-(4-iodophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (14)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **14** as a white solid (69.0 mg, 91% yield); ¹H NMR (500 MHz, DMSO) δ 7.99 – 7.94 (m, 2H), 7.76 – 7.71 (m, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.10; ¹³C NMR (126 MHz, DMSO) δ 157.04, 147.75, 138.73, 135.86, 129.45, 125.47, 120.79 (q, *J* = 267.2 Hz), 99.30; HRMS (ESI) m/z calcd. for C₁₁H₆F₃IN₃O⁺ [M+H] ⁺= 379.9502, found 379.9505.

6-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)-4H-pyrazolo[3,4-d]isoxazole (15)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **15** as a white solid (59.7 mg, 93% yield); ¹H NMR (500 MHz, DMSO) δ 14.85 (s, 1H), 8.17 (d, *J* = 8.1 Hz, 2H), 7.95 (d, *J* = 8.2 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.27, -61.63; ¹³C NMR (126 MHz, DMSO) δ 157.35, 147.21, 135.67, 131.69 (q, *J* = 32.3 Hz), 131.00, 129.98, 128.61, 126.75 (q, *J* = 3.7 Hz), 124.21 (q, *J* = 272.7 Hz), 120.75 (q, *J* = 267.0 Hz); HRMS (ESI) m/z calcd. for C₁₂H₆F₆N₃O⁺ [M+H] ⁺ = 322.0410, found 322.0412.

4-(6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazol-3-yl)benzonitrile (16)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **16** as a yellow solid (50.0 mg, 90% yield); ¹H NMR (500 MHz, DMSO) δ 8.15 (d, *J* = 8.1 Hz, 2H), 8.10 (d, *J* = 8.2 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.16; ¹³C NMR (126 MHz, DMSO) δ 157.34, 147.21, 135.79, 133.79, 130.33, 128.56, 120.74 (q, *J* = 267.4 Hz), 118.58, 114.22; HRMS (ESI) m/z calcd. for C₁₂H₆F₃N₄O⁺ [M+H]⁺ = 279.0488, found 279.0486.

3-(4-nitrophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (17)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **17** as a yellow solid (38.1 mg, 64% yield); ¹H NMR (500 MHz, DMSO) δ 8.42 – 8.40 (m, 2H), 8.23 – 8.21 (m, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.12; ¹³C NMR (126 MHz, DMSO) δ 157.39, 149.35, 146.93, 135.91, 132.04, 129.14, 124.95, 120.73 (q, *J* = 267.1 Hz); HRMS (ESI) m/z calcd. for C₁₁H₆F₃N₄O₃⁺ [M+H] ⁺ = 299.0387, found 299.0389.

3-(m-tolyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (18)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **18** as a white solid (52.3 mg, 98% yield); ¹H NMR (500 MHz, MeOD) δ 7.73 (s, 1H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 2.42 (s, 3H); ¹⁹F NMR

(471 MHz, MeOD) δ -61.98; ¹³C NMR (126 MHz, MeOD) δ 156.96, 148.00, 139.18, 135.76, 131.56, 129.61, 128.88, 127.45, 126.00, 124.00, 120.44 (q, J = 266.7 Hz), 19.89; HRMS (ESI) m/z calcd. for C₁₂H₉F₃N₃O⁺ [M+H] ⁺ = 268.0692, found 268.0692.

3-(3-ethoxyphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (19)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **19** as a white solid (24.4 mg, 41% yield); ¹H NMR (500 MHz, DMSO) δ 14.55 (s, 1H), 7.69 (d, *J* = 8.9 Hz, 2H), 7.39 (d, *J* = 2.9 Hz, 1H), 7.28 (dd, *J* = 8.9, 3.0 Hz, 1H), 4.16 (q, *J* = 6.9 Hz, 1H), 1.40 (t, *J* = 6.9 Hz, 3H); ¹⁹F NMR (471 MHz, DMSO) δ -59.21; ¹³C NMR (126 MHz, DMSO) δ 158.05, 156.65, 156.49, 147.09, 136.55, 131.84, 125.94, 123.66, 120.82 (q, *J* = 267.2 Hz), 119.51, 117.54, 64.42, 14.91; HRMS (ESI) m/z calcd. for C₁₃H₁₁F₃N₃O₂⁺ [M+H]⁺= 298.0798, found 298.0796.

3-(o-tolyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (20)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **20** as a white solid (52.8 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃) δ 11.33 (s, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.43-7.40 (m, 1H), 7.36 (d, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.4 Hz, 1H), 2.54 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -60.67; ¹³C NMR (126 MHz, CDCl₃) δ 156.62, 148.77, 137.58, 137.37, 131.73, 130.81, 129.76, 126.46, 125.17, 121.89 (q, *J* = 41.4 Hz), 119.89 (q, *J* = 268.1 Hz), 21.20; HRMS (ESI) m/z calcd. for C₁₂H₉F₃N₃O⁺ [M+H]⁺ = 268.0692, found 268.0692.

3-(naphthalen-2-yl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (21)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **21** as a yellow solid (50.9 mg, 84% yield); ¹H NMR (500 MHz, DMSO) δ 14.66 (s, 1H), 8.58 (d, *J* = 7.6 Hz, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H), 8.05 (d, *J* = 6.0 Hz, 1H), 7.75 – 7.66 (m, 3H); ¹⁹F NMR (471 MHz, DMSO) δ -59.17; ¹³C NMR (126 MHz, DMSO) δ 156.36, 148.84, 137.70, 134.02, 132.24, 130.21, 130.17, 129.33, 128.53, 127.31, 125.93, 125.78, 122.93, 120.95 (q, *J* = 267.5 Hz), 119.86 (q, *J* = 41.2 Hz); HRMS (ESI) m/z calcd. for C₁₅H₈F₃N₃NaO⁺ [M+Na]⁺= 326.0512, found 326.0510.

3-(5-chlorofuran-2-yl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (22)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **22** as a yellow solid (42.7 mg, 77% yield); ¹H NMR (500 MHz, DMSO) δ 14.75 (s, 1H), 7.50 – 7.39 (m, 1H), 6.94 – 6.82 (m, 1H); ¹⁹F NMR (471 MHz, DMSO) δ -59.33; ¹³C NMR (126 MHz, CDCl₃) δ 157.15, 141.00, 140.02, 139.30, 134.46, 120.12 (q, *J* = 267.7 Hz), 115.48, 109.20, 39.81 (q, *J* = 21.0 Hz); HRMS (ESI) m/z calcd. for C₉H₄ClF₃N₃O₂⁺ [M+H]⁺ = 277.9939, found 277.9938.

3-(1H-indol-3-yl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (23)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **23** as a yellow solid

(35.6 mg, 61% yield); ¹H NMR (500 MHz, DMSO) δ 14.54 (s, 1H), 12.09 (s, 1H), 8.33 (s, 1H), 8.10 (d, J = 7.7 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.29-7.22 (m, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.07; ¹³C NMR (126 MHz, DMSO) δ 155.47, 145.12, 137.30, 136.69, 130.03, 124.34, 123.52, 121.74, 121.61, 121.08 (q, J = 267.0 Hz), 119.73 (q, J = 40.9 Hz), 112.79, 101.94; HRMS (ESI) m/z calcd. for C₁₃H₈F₃N₄O⁺ [M+H]⁺= 293.0645, found 293.0648.

3-benzyl-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (24)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **24** as a yellow solid (37.9 mg, 71% yield); ¹H NMR (500 MHz, CDCl₃) δ 10.29 (s, 1H), 7.28 – 7.18 (m, 5H), 4.13 (s, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -60.70; ¹³C NMR (126 MHz, CDCl₃) δ 156.91, 148.79, 136.70, 135.07, 129.37, 128.76, 127.94, 121.93 (q, *J* = 41.6 Hz), 119.88 (q, *J* = 266.3 Hz), 31.15; HRMS calcd. for: C₁₂H₉F₃N₃O⁺ [M+H] ⁺ = 268.0692, found 268.0692.

3-(2-chloro-5-(trifluoromethyl)phenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]iso xazole (25)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **25** as a white solid (52.5 mg, 74% yield); ¹H NMR (500 MHz, DMSO) δ 14.48 (s, 1H), 8.17 (s, 1H), 8.06 – 8.03 (m, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.32, -61.42; ¹³C NMR (126 MHz, CDCl₃) δ 161.66, 150.90, 149.40, 142.00, 141.07, 136.87, 134.59, 133.83 (q, *J* = 33.1

Hz), 133.65, 131.32, 128.53 (q, J = 272.3 Hz), 125.51 (q, J = 267.0 Hz); HRMS calcd. for: C₁₂H₅ClF₆N₃O⁺ [M+H] ⁺ = 356.0020, found 356.0020.

3-(5-chloro-2-methoxyphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (26)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **26** as a yellow solid (42.9 mg, 65% yield); ¹H NMR (500 MHz, DMSO) δ 14.00 (s, 1H), 7.82 (d, *J* = 2.7 Hz, 1H), 7.66 (dd, *J* = 9.0, 2.7 Hz, 1H), 7.34 (d, *J* = 9.0 Hz, 1H), 3.97 (s, 3H); 19F NMR (471 MHz, DMSO) δ -59.21; ¹³C NMR (126 MHz, DMSO) δ 156.62, 156.35, 144.62, 136.54, 133.04, 128.36, 125.27, 120.89 (q, *J* = 266.8 Hz), 116.12, 114.65, 57.44; HRMS calcd. for: C₁₂H₈ClF₃N₃O₂⁺ [M+H]⁺ = 318.0252, found 318.0253.

3-(2-fluoro-6-methoxyphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (27)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **27** as a yellow solid (49.4 mg, 82% yield); ¹H NMR (500 MHz, MeOD) δ 7.59-7.54 (m, 1H), 7.07 (d, *J* = 8.5 Hz, 1H), 6.95 (t, *J* = 9.2 Hz, 1H), 3.97 (s, 3H); ¹⁹F NMR (471 MHz, MeOD) δ -62.11, -112.27; ¹³C NMR (126 MHz, MeOD) δ 160.79 (d, *J* = 253.0 Hz), 158.88 (d, *J* = 5.6 Hz), 156.00, 140.94, 137.18, 133.01 (d, *J* = 11.0 Hz), 120.55 (q, *J* = 268.1 Hz), 108.27 (d, *J* = 22.2 Hz), 107.14 (d, *J* = 3.1 Hz), 103.31 (d, *J* = 15.7 Hz), 55.89; HRMS calcd. for: C₁₂H₈F₄N₃O₂⁺ [M+H]⁺ = 302.0547, found 302.0549.

3-(3-chloro-2-fluorophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (28)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **28** as a white solid (40.3 mg, 66% yield); ¹H NMR (500 MHz, DMSO) δ 8.00 (t, *J* = 7.0 Hz, 1H), 7.89 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 1H); ¹⁹F NMR (471 MHz, DMSO) δ -59.21, -115.46; ¹³C NMR (126 MHz, DMSO) δ 157.09, 155.27 (d, *J* = 253.9 Hz), 143.09, 136.20, 134.03, 128.36, 126.85 (d, *J* = 4.2 Hz), 121.40 (d, *J* = 17.3 Hz), 120.82 (q, *J* = 267.3 Hz), 119.45 (q, *J* = 39.5 Hz), 116.06 (d, *J* = 12.2 Hz); HRMS calcd. for: C₁₁H₅ClF₄N₃O⁺ [M+H]⁺= 306.0052, found 306.0054.

3-(4-bromo-2-(trifluoromethoxy)phenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]i soxazole (29)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **29** as a yellow solid (62.2 mg, 75% yield); ¹H NMR (500 MHz, DMSO) δ 14.53 (s, 1H), 7.99 – 7.94 (m, 2H), 7.91 – 7.86 (m, 1H); ¹⁹F NMR (471 MHz, DMSO) δ -57.16, -59.59; ¹³C NMR (126 MHz, DMSO) δ 156.90, 146.45, 144.31, 136.10, 132.69, 132.25, 125.76 (d, *J* = 24.2 Hz), 123.89, 121.77, 120.26 (q, *J* = 259.7 Hz), 119.63, 117.52; HRMS calcd. for: C₁₂H₅BrF₆N₃O₂⁺ [M+H] ⁺ = 415.9464, found 415.9467.

6-(trifluoromethyl)-3-(2,3,4-trifluorophenyl)-4H-pyrazolo[3,4-d]isoxazole (30)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **30** as a white solid

(56.5 mg, 92% yield); ¹H NMR (500 MHz, MeOD) δ 7.95 – 7.90 (m, 1H), 7.48-7.43 (m, 1H); ¹⁹F NMR (471 MHz, MeOD) δ -62.22 (s), -117.49 (s), -130.05 (dd, *J* = 21.0, 6.1 Hz), -142.62 (dd, *J* = 20.9, 15.0 Hz); ¹³C NMR (126 MHz, DMSO) δ 157.12, 155.77 (dd, *J* = 252.2, 9.7 Hz), 151.81 (dt, *J* = 254.7, 13.8 Hz), 147.08 (dd, *J* = 244.7, 12.9 Hz), 142.14, 135.62, 120.69 (q, *J* = 267.3 Hz), 119.52 (q, *J* = 40.7 Hz), 116.99 (dd, *J* = 21.3, 3.3 Hz), 111.08 (ddd, *J* = 15.1, 6.7, 4.2 Hz), 107.91 (dd, *J* = 28.1, 22.0 Hz); HRMS calcd. for: C₁₁H₄F₆N₃O⁺ [M+H]⁺= 308.0253, found 308.0254.

3-(4-bromo-2,5-dimethoxyphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazo le (31)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **31** as a white solid (49.3 mg, 63% yield); ¹H NMR (500 MHz, MeOD) δ 7.52 (s, 1H), 7.43 (s, 1H), 3.97 (s, 3H), 3.89 (s, 3H); ¹⁹F NMR (471 MHz, MeOD) δ -62.10; ¹³C NMR (126 MHz, MeOD) δ 156.86, 151.55, 150.66, 144.38, 136.05, 123.73, 120.56 (q, *J* = 266.6 Hz), 117.32, 115.55, 114.41, 111.01, 56.33, 55.88; HRMS calcd. for: C₁₃H₁₀BrF₃N₃O₃⁺ [M+H]⁺ = 391.9852, found 391.9853.

6-(trifluoromethyl)-3-(2,4,5-trifluorophenyl)-4H-pyrazolo[3,4-d]isoxazole (32)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **32** as a white solid (49.7 mg,81% yield); ¹H NMR (500 MHz, DMSO) δ 14.50 (s, 1H), 8.09 – 8.04 (m, 1H), 8.01-7.96 (m, 1H); ¹⁹F NMR (471 MHz, DMSO) δ -59.39, -113.27, -128.45 (dd,

J = 22.6, 6.6 Hz), -141.04; ¹³C NMR (126 MHz, DMSO) δ 157.18, 155.82 (dd, J = 250.6, 9.8 Hz), 151.85 (dt, J = 254.7, 13.7 Hz) 147.13 (ddd, J = 244.5, 12.9, 3.1 Hz), 142.25, 135.66, 120.74 (q, J = 268.9 Hz), 119.65 (q, J = 40.6 Hz), 117.17 (dd, J = 21.3, 2.8 Hz), 111.14 (ddd, J = 14.7, 6.8, 3.8 Hz), 108.00 (dd, J = 28.2, 22.0 Hz); HRMS calcd. for: C₁₁H₄F₆N₃O⁺ [M+H]⁺= 308.0253, found 308.0254.

3-(3-chloro-2,5-difluorophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazole (33)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **33** as a yellow solid (37.5 mg, 58% yield); ¹H NMR (500 MHz, DMSO) δ 8.07 (dd, J = 9.9, 6.1 Hz, 1H), 8.01 (dd, J = 9.2, 6.1 Hz, 1H); ¹⁹F NMR (471 MHz, DMSO) δ -59.31 (s), -115.42 (d, J = 12.7 Hz), -119.63 (d, J = 15.4 Hz); ¹³C NMR (126 MHz, DMSO) δ 157.19, 156.66 (d, J = 2.1 Hz), 155.54 (d, J = 2.5 Hz), 154.66 (d, J = 2.3 Hz), 153.59 (d, J = 2.7 Hz), 142.32, 135.74, 124.41 (dd, J = 20.0, 11.6 Hz), 120.72 (q, J = 267.4 Hz), 119.73 (d, J = 27.3 Hz), 119.36, 118.45 (d, J = 230.3 Hz), 116.32 (dd, J = 25.7, 3.4 Hz), 114.52 (dd, J = 15.0, 8.0 Hz); HRMS calcd. for: C₁₁H₄ClF₅N₃O⁺ [M+H] ⁺ = 323.9958, found 323.9954.

3-(3,5-diisopropyl-4-methoxyphenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isox azole (34)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **34** as a yellow solid (54.3 mg, 74% yield); ¹H NMR (500 MHz, DMSO) δ 14.86 (s, 1H), 7.69 (s, 2H), 3.71 (s, 3H), 3.34 – 3.28 (m, 2H), 1.25 (d, *J* = 7.0 Hz, 12H); ¹⁹F NMR (471 MHz, DMSO) δ -59.08; ¹³C NMR (126 MHz, DMSO) δ 157.33, 157.06, 148.22, 143.45, 135.72, 123.94, 122.40, 120.91 (q, *J* = 267.1 Hz), 62.61, 26.69, 24.04; HRMS calcd. for: C₁₈H₂₁F₃N₃O₂⁺ [M+H]⁺= 368.1580, found 368.1581.

3-(benzo[c][1,2,5]thiadiazol-4-yl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazol e (35)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **35** as a white solid (24.9 mg, 40% yield); ¹H NMR (500 MHz, DMSO) δ 14.38 (s, 1H), 8.55 – 8.48 (m, 1H), 8.40 (d, J = 8.1 Hz, 1H), 7.99 – 7.92 (m, 1H); ¹⁹F NMR (471 MHz, DMSO) δ -59.13; ¹³C NMR (126 MHz, DMSO) δ 157.32, 154.93, 151.98, 144.98, 136.78, 130.52, 128.61, 124.67, 123.23 (q, J = 266.8 Hz), 119.04; HRMS calcd. for: C₁₁H₅F₃N₅OS⁺ [M+H] ⁺ = 312.0161, found 312.0161.

3-(2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)-6-(trifluoromethyl)-4H-pyrazol o[3,4-d]isoxazole (36)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **36** as a yellow oil

(49.9 mg, 57% yield); ¹H NMR (500 MHz, DMSO) δ 14.16 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.60 – 7.56 (m, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.29 – 7.25 (m, 2H), 2.08 – 2.04 (m, 1H), 1.33 – 1.25 (m, 2H), 1.01 (d, J = 4.4 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO) δ -59.20, -112.82; ¹³C NMR (126 MHz, DMSO) δ 162.43 (d, J = 245.9 Hz), 160.63, 156.17, 148.61, 148.34, 146.78, 138.29, 132.03, 131.65, 131.39, 131.36, 129.17, 127.24, 126.55, 125.18, 120.68 (q, J = 267.3 Hz), 118.63, 115.82 (d, J = 21.7 Hz), 15.84, 11.69; HRMS calcd. for: C₂₃H₁₅F₄N₄O⁺ [M+H]⁺ = 439.1177, found 439.1176.

3-(trifluoromethyl)-1H-pyrazolo[3,4-f]quinoxaline (37)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **37** as a yellow solid (18.0 mg, 38% yield); ¹H NMR (500 MHz, DMSO) δ 14.60 (s, 1H), 9.08 (d, *J* = 2.1 Hz, 1H), 9.01 (d, *J* = 2.0 Hz, 1H), 8.14 (d, *J* = 9.2 Hz, 1H), 8.07 (d, *J* = 9.3 Hz, 1H); 19F NMR (471 MHz, DMSO) δ -60.44; 13C NMR (126 MHz, DMSO) δ 145.48, 144.39, 142.14, 141.06, 137.66, 135.83 (q, *J* = 38.6 Hz), 130.10, 122.32 (q, *J* = 268.2 Hz), 116.83, 114.90; HRMS calcd. for: C₁₀H₆F₃N₄⁺ [M+H] ⁺ = 239.0539, found 239.0541.

3-(trifluoromethyl)-1H-benzo[4,5]thieno[3,2-c]pyrazole (38)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **38** as a yellow solid (26.3 mg, 54% yield); ¹H NMR (500 MHz, DMSO) δ 14.68 (s, 1H), 8.04 (dd, J = 17.8, 7.8 Hz, 2H), 7.56 – 7.50 (m, 2H); 19F NMR (471 MHz, DMSO) δ -59.93; ¹³C

NMR (126 MHz, DMSO) δ 145.44, 144.85, 132.90 (q, J = 38.9 Hz), 127.42, 125.97, 125.43, 123.49, 122.01 (q, J = 267.8 Hz), 121.75, 117.13; HRMS calcd. for: $C_{10}H_6F_3N_2S^+$ [M+H]⁺ = 243.0198, found 243.0199.

tert-butyl 3-(trifluoromethyl)pyrazolo[4,3-b]indole-4(1H)-carboxylate (39)³

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **39** as a yellow solid (39.0 mg, 30% yield); ¹H NMR (500 MHz, DMSO) δ 14.20 (s, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.54 (t, *J* = 8.2 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 1.65 (s, 9H); 19F NMR (471 MHz, DMSO) δ -56.32; ¹³C NMR (126 MHz, DMSO) δ 149.61, 141.95, 136.80, 127.64 , 124.98 (q, *J* = 37.5 Hz), 124.05, 123.84, 121.82 (q, *J* = 267.3 Hz), 119.79, 117.40, 115.60, 85.36, 28.19.

3-(4-bromophenyl)-N,N-dimethyl-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazol e-4-sulfonamide (40)

40, a yellow solid (69.3 mg, 80% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, J = 19.3, 8.5 Hz, 4H), 3.03 (s, 6H); ¹⁹F NMR (471 MHz, CDCl₃) δ -61.47; ¹³C NMR (126 MHz, CDCl₃) δ 158.12, 149.33, 135.02, 131.92, 131.08, 125.81, 124.17, 124.00 (q, J = 43.4 Hz), 119.13 (q, J = 269.9 Hz), 39.31; HRMS calcd. for: C₁₃H₁₁BrF₃N₄O₃S⁺ [M+H]⁺ = 438.9682, found 438.9680.

Ethyl-2-(3-(4-bromophenyl)-6-(trifluoromethyl)-4H-pyrazolo[3,4-d]isoxazol-4-yl) acetate (41)

41, a yellow solid (40.1 mg, 48% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 5.05 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ -60.75; ¹³C NMR (126 MHz, CDCl₃) δ 166.31, 158.31, 147.93, 135.79, 132.78, 129.50, 125.65, 125.16, 121.68 (q, J = 43.8 Hz), 119.65 (q, J = 268.4 Hz), 62.73, 53.59, 13.98; HRMS calcd. for: C₁₅H₁₂BrF₃N₃O₃⁺ [M+H] ⁺ = 418.0009, found 418.0009.

4. X-ray Crystal Structure for 2, 26, and 37

Suitable crystals of compound **2**, **26**, and **37** were obtained by slowly evaporating a mixture of dichloromethane and hexane solution at ambient temperature. A colorless crystal of **2**, **26** and **37** was mounted on a glass fiber at a random orientation.

A Single colourless needle-shaped crystals of **2**, **26** and **37** were used as supplied. A suitable crystal with dimensions $0.40 \times 0.15 \times 0.05$ mm3 was selected and mounted on a Bruker D8 Venture diffractometer. The crystal was kept at a steady T = 170.00 K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2018) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2019/2 (Sheldrick, 2015) using full matrix least squares minimisation on F2. The ellipsoids are shown at 30% probability levels. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 2373144 for compound **2**, CCDC 2373145 for compound **26**, CCDC 2373147 for compound **37**.

5. Reference

- T. Morita, N. Ito and H. Nakamura, Asymmetric Synthesis of Bicyclic Isoxazolines via Dearomative Cycloaddition of 4-Nitroisoxazoles with Zwitterionic π-Allyl Palladium Species. Org. Lett., 2023, 25, 26, 4787–4791.
- H. Wang, Y. Ning, Y. Sun, P. Sivaguru and X. Bi, Cycloaddition of Trifluoroacetaldehyde N-Triftosylhydrazone (TFHZ-Tfs) with Alkynes for Synthesizing -Trifluoromethylpyrazoles. *Org. Lett.*, 2020, 22, 2012–2016.
- S. Kumar, L. Fatma, N. Vaishanv, K. Mohanan, CsF-Mediated Reaction of Trifluorodiazoethane with 3-Nitroindoles Enables Access to Trifluoromethylpyrazolo[4,3-b]indoles. J. Org. Chem., 2024, 89, 761–769.

6. Control Experiments

1a	+	$N_2 = \sqrt{\frac{CF_3}{N_2}}$ 0.4 M in toluene	3.5 eq. Cs ₂ CO ₃ DMF, 35 °C, 6 h 60% yield	2	(A)
	2a		3.5 eq. K₂CO₃ CH₃CN, 35 °C, 6 h 45% NMR yield	N ₂	CF ₃ (B)
	2a		1) 3.5 eq. K₂CO₃ CH₃CN, 35 °C, 4 h 2) 1a , 35 °C, 4h 70% yield	2	(C)
1a	+	2b	3.5 eq. K ₂ CO ₃ CH ₃ CN, 35 °C 29% yield	► 2	(D)
1a	+	2c	3.5 eq. K ₂ CO ₃ CH ₃ CN, 35 °C 44% yield	► 2	(E)
1a	+	2d	3.5 eq. K ₂ CO ₃ CH ₃ CN, 35 °C trace	► 2	(F)
1a	+	∕=NNHT1 Ph	s 3.5 eq. K₂CO₃ CH₃CN, 35 °C ND	Ph H	Ph (G)
	F ₃ C ^N N [×]	S O CF ₃	F ₃ C ^{-N} N ^S O	CF ₃	
	2a F ₃ C ^N N H 2c	S O CH	$F_{3}C^{N}N^{S}$		

7. ¹H, ¹³C, ¹⁹F NMR spectra of compounds

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

 $\int_{7.10}^{8.05} \int_{7.10}^{8.05} \int_{7.10}^{7.06} \int_{7.10}^{7.26} \int_{7.10}^{7.26} \int_{7.10}^{7.12} \int_{7.10}^{7.12} \int_{7.10}^{7.12} \int_{7.10}^{8.05} \int_{7.00}^{8.05} \int_{7.00}^{8.$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

7.997.977.977.977.397.387.38 -2.51

³H NMR (500 MHz, DMSO)

$$\sum_{7.57}^{8.000} \chi_{7.67}^{7.09}$$

¹H NMR (500 MHz, DMSO)

-14.77

¹⁹F NMR (471 MHz, DMSO)

$$-157.04$$

 -147.75
 -147.75
 -138.73
 -123.88
 -123.98
 -123.98
 -121.85
 -99.30
 -99.30
 -99.30
 -99.30
 -99.30
 -39.25
 -39.275
 -39.275
 -39.275
 -39.275
 -39.275
 -39.275
 -39.275
 -39.275

¹H NMR (500 MHz, DMSO)

-2.51

16

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

-11.33

-21.19

13C NMR (126 MHz, CDCl₃)

19F NMR (471 MHz, DMSO)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

-4.13

-10.29

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

—3.73

-2.55

¹H NMR (500 MHz, MeOD)

---62.22

19F NMR (471 MHz, MeOD)

30

-14.50

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (500 MHz, DMSO)

19F NMR (471 MHz, DMSO)

36

0 -10 -20

20

10

156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

S82

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

