Supporting Information

Photo-induced difluoroalkylation/cyclization of alkyne ketones: A

novel strategy to access difluoroalkyl thiofavones

Shengjie Song,^a Can Luo,^a Guan Wang,^b Jingjing Guo,^b Zhi Chen,^a and Jianjun Li^{a c*}

^a Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

^b School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China.

^c Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China.

*E-mail: lijianjun@zjut.edu.cn

Table of Contents

1. General Information
2. Experimental Procedures
2.1 Preparation of Starting Materials
2.1.1 General Procedure A (for the synthesis of 1a-1v) ¹⁻³
2.1.2 General Procedure B (for the synthesis of bromodifluoroacetates) ⁴
2.1.3 General Procedure C (for the synthesis of bromodifluoroketone) ⁵
2.1.4 General Procedure D (for the synthesis of bromodifluoroacetamides) ⁴ S5
2.1.5 General procedure E (for the synthesis of 1aj and 1ak)S6
2.1.6 General procedure F (for the synthesis of 1ag-1ai, 1al, and 1am)
2.2 Optimization of Reaction Conditions
2.3 General Procedure G (for the Preparation of Compounds 3)
2.4 Scale-up Reaction
2.5 "On/off" LED Irradiation Experiment
2.6 UV-vis Absorbance Experiment
2.7 Titration Experiments of BrCF2COOEt with TMEDA S10
2.8 Determination of the Association Constant (K _{TMEDA}) S11
2.9 Determination of Binding Stoichiometry of EDA Complexes
2.10 Radical Trapping and Control Experiments
3. Characterization Data
4. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra
5. References

1. General Information

The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. All reactions were monitored by TLC with silica gel coated plates. ¹H (400 MHz) NMR, ¹H (600 MHz) NMR, ¹³C (100 MHz) NMR, ¹³C (150 MHz) NMR, ¹⁹F (376 MHz) NMR and ¹⁹F (565 MHz) NMR spectra were recorded on Varian and Bruker spectrometers in Chloroform-d or DMSO-d₆ using tetramethylsilane (TMS) as the internal standards. Data are reported as follows: Chemical shift (multiplicity, coupling constants, number of protons). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd= doublet of doublets, dt = doublet of triplets, td = triplet of doublets. Mass spectra were measured with a HRMS-APCI instrument using ESI ionization. UV/vis absorption spectra experiments were conducted on a HitachiF-7000 FL Spectrophotometer. Melting points were measured by WRS-1C Melting Point Apparatus (Shanghai INESA Physico-Optical Instrument Co., Ltd.). Photo-induced reactions were performed under 460-465 nm light irradiation using a 25 W LED lamp (purchased from Xuzhou Ai Jia Electronic Technology Co., Ltd. in Taobao.com). The distance from the light source to the irradiation vessel was approximate 1.5 cm, and no filter was used in our study. A fan was employed to ensure reactions remained at or near room temperature when using LED.

2. Experimental Procedures

2.1 Preparation of Starting Materials

2.1.1 General Procedure A (for the synthesis of 1a-1v)¹⁻³

To a stirred solution of 2-(methylthio)benzoic acid (1.5g, 8.92 mmol) in anhydrous DCM (20 mL) was added DMF (3 drops), oxalyl dichloride (1.13 mL, 1.5 equiv.). The reaction mixture was stirred at room temperature for 4 h, before DCM was removed by rotary evaporation. To the residue was added Et₃N (25 mL), Pd(PPh₃)₂Cl₂ (125 mg, 0.02 equiv.) and CuI (34 mg, 0.02 equiv.). Then, the mixture was degassed and recharged with argon. Phenylacetylene (1.17 mL, 1.2 equiv.) was added by a syringe. The reaction was stirred overnight at room temperature under argon atmosphere before Et₃N was removed by rotary evaporation. The remained mixture was extracted with EtOAc (20 mL × 3), and the combined organic layers were washed with H₂O and brine, respectively, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on a silica gel (petroleum ether/EtOAc = 25/1-5/1) to provide products in 45-78% yields. 2.1.2 General Procedure B (for the synthesis of bromodifluoroacetates)⁴

$$\begin{array}{c} O \\ Br \\ F \\ F \\ \end{array} OH \\ \begin{array}{c} 1. \text{oxalyl chloride (1.1 equiv.), DMF (10.0 \ \mu\text{L}),} \\ \underline{DCM (0.5 \ \text{M}), \text{ r.t., 2 h}} \\ \hline 2. \ R^{1}\text{OH (1.1 equiv.), Et}_{3}\text{N (1.1 equiv.),} \\ DCM (0.25 \ \text{M}), 0 \ ^{\circ}\text{C-r.t., 6 h} \end{array} \right) \begin{array}{c} O \\ Br \\ F \\ F \\ \hline 2w, 2x \end{array}$$

The bromodifluoroacetates were synthesized according to the literature procedure. To a 2-bromo-2,2-difluoroacetic acid (875 mg, 1.0 equiv.) in DCM (10 mL, 0.50 M) solution slowly added oxalyl chloride (0.46 mL, 1.1 equiv.) and DMF (10 μ L) at room temperature. After stirring at room temperature for 2 h, the reaction mixture was cooled to 0 °C, and then a mixture of R¹OH (1.1 equiv.) and Et₃N (0.76 mL, 1.1 equiv.) dissolved in DCM (10 mL) was added dropwise. The reaction mixture stirred at room temperature for 6 h, then quenched with saturated NaHCO₃ solution (20 mL)

and extracted with DCM (30 mL \times 3). The organic layer was collected, washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether/EtOAc (30/1-10/1) to afford the title compounds. 2.1.3 General Procedure C (for the synthesis of bromodifluoroketone)⁵

Ethyl 2-bromo-2,2-difluoroacetate (10 mmol, 1.0 equiv.) and dry THF (10 mL) were added to a Schlenk flask in a glovebox. The flask was then sealed with a screw cap before taken out from the glovebox, arylmagnesium bromide solution (1.0 M in THF, 11 mmol, 1.1 equiv.) was added slowly into the reaction system over 20 min with vigorous stirring at -78 °C. The mixture was stirred at -78 °C for further 3 h before being quenched with 3 N HCl. Water (20 mL) was then added and the organic layer was extracted with diethyl ether (15 mL \times 3). The combined organic extracts were dried with anhydrous Ns₂SO₄ and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give the corresponding product **2y** in 65% yield.

2.1.4 General Procedure D (for the synthesis of bromodifluoroacetamides)⁴

$$\mathbb{R}^{R^{3}}_{\text{NH}} + \mathbb{B}_{F} + \mathbb{O}_{F} = \mathbb{O}_{F} + \mathbb{O}_{R^{2}} + \mathbb{O}_{R^$$

The bromodifluoroacetamides were synthesized according to the literature procedure. To a mixture of ethyl bromodifluoroacetate (785 μ L, 1.2 equiv.) and amines (5.0 mmol, 1.0 equiv.) added La(OTf)₃ (146.5 mg, 5 mol%). The reaction mixture stirred at room temperature for 18 h, then quenched with H₂O (20 mL) and extracted with EtOAc (30 mL × 3). The organic layer was collected, washed with brine, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether/EtOAc (15/1-5/1) to afford the title compounds.

2.1.5 General procedure E (for the synthesis of 1aj and 1ak)

STEP 1: To a solution of 4-ethynylbenzoic acid (5.0 mmol, 1.0 equiv.), R⁴OH (6.0 mmol, 1.2 equiv.) and DMAP (0.5 mmol, 0.1 equiv.) in dry DCM (25 mL) were added DCC (6.0 mmol, 1.2 equiv.). The reaction mixture was allowed to stir at room temperature for 6 h and then concentrated under reduced pressure. Cold EtOAc (10 mL) was added to the residue and dicyclohexyl urea was filtered off. The solution was concentrated under reduced pressure, and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1-5/1).

STEP 2: To the **STEP 1** product was added Et₃N (25 mL), Pd(PPh₃)₂Cl₂ (0.02 equiv.) and CuI (0.02 equiv.). Then, the mixture was degassed and recharged with argon, 2-(methylthio)benzoyl chloride (1.5 equiv.) was added by a syringe. The reaction was stirred overnight at room temperature under argon atmosphere before Et₃N was removed by rotary evaporation. The remained mixture was extracted with EtOAc (20 mL \times 3), and the combined organic layers were washed with H₂O and brine, respectively, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on a silica gel (petroleum ether/EtOAc = 20/1-10/1) to provide products in 40-58% yields.

2.1.6 General procedure F (for the synthesis of 1ag-1ai, 1al, and 1am)

STEP 1: To a solution of (4-ethynylphenyl)methanol (6.0 mmol, 1.2 equiv.), R⁵COOH (5.0 mmol, 1.0 equiv.) and DMAP (0.5 mmol, 0.1 equiv.) in dry DCM (25 mL) were added DCC (6.0 mmol, 1.2 equiv.). The reaction mixture was allowed to

stir at room temperature for 6 h and then concentrated under reduced pressure. Cold EtOAc (10 mL) was added to the residue and dicyclohexyl urea was filtered off. The solution was concentrated under reduced pressure, and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1-3/1).

STEP 2: To the **STEP 1** product was added Et₃N (25 mL), Pd(PPh₃)₂Cl₂ (0.02 equiv.) and CuI (0.02 equiv.). Then, the mixture was degassed and recharged with argon. 2-(methylthio)benzoyl chloride (1.5 equiv.) was added by a syringe. The reaction was stirred overnight at room temperature under argon atmosphere before Et₃N was removed by rotary evaporation. The remained mixture was extracted with EtOAc (20 mL × 3), and the combined organic layers were washed with H₂O and brine, respectively, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on a silica gel (petroleum ether/EtOAc = 10/1-3/1) to provide products in 46-68% yields.

2.2 Optimization of Reaction Conditions

Table S1. Optimization of Reaction Conditions^a

	+	BrCF ₂ COOEt Ba Solve 25 W 2a	se int, r.t. LEDs 3a	CF2COOEt
Entry	Additive	Solvent	Light source	Yield (%) b
1	Cs_2CO_3	DMSO	460-465 nm	24
2	K_2CO_3	DMSO	460-465 nm	27
3	DABCO	DMSO	460-465 nm	37
4	DBU	DMSO	460-465 nm	35
5	Et ₃ N	DMSO	460-465 nm	57
6	DIPEA	DMSO	460-465 nm	60
7	TMEDA	DMSO	460-465 nm	68
8	2,6-lutidine	DMSO	460-465 nm	34
9	-	DMSO	460-465 nm	9
10	TMEDA	CH ₃ CN	460-465 nm	56
11	TMEDA	THF	460-465 nm	31
12	TMEDA	DMF	460-465 nm	61
13	TMEDA	DCM	460-465 nm	42
14	TMEDA	EtOAc	460-465 nm	33
15	TMEDA	toluene	460-465 nm	49

Entry	Additive	Solvent	Light source	Yield (%) ^b
16	TMEDA	DCE	460-465 nm	47
17	TMEDA	DMSO	400-800 nm	55
18	TMEDA	DMSO	390-400 nm	53
19	TMEDA	DMSO	430-440 nm	62
20	TMEDA	DMSO	530-540 nm	NR
21	TMEDA	DMSO	In the dark	NR
22 ^c	TMEDA	DMSO	460-465 nm	80
23 ^{<i>c,d</i>}	TMEDA	DMSO	460-465 nm	28
24 ^{<i>c</i>,<i>e</i>}	TMEDA	DMSO	460-465 nm	51
25 ^{c,f}	TMEDA	DMSO	460-465 nm	71
26 ^{<i>c</i>,<i>g</i>}	TMEDA	DMSO	460-465 nm	Trace

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol) and additive (0.4 mmol) in solvent (2 mL) under irradiation of 25 W 460-465 nm LEDs with N₂ protection at room temperature for 24 h unless noted otherwise. ^bIsolated yields based on **1a**. ^{*c*} Reaction time was 48 h. ^{*d*} TMEDA (0.1 mmol) was used. ^{*e*} TMEDA (0.2 mmol) was used. ^{*f*} **2a** (0.4 mmol). ^{*g*} Under an air atmosphere.

2.3 General Procedure G (for the Preparation of Compounds 3)

The reaction was conducted in an oven-dried 5-mL vial equipped with a stir bar. **1** (0.2 mmol, 1.0 equiv.), **2** (0.6 mmol, 3.0 equiv.) and TMEDA (0.4 mmol, 2.0 equiv.) were sequentially added in DMSO (2 mL) under argon atmosphere. The mixture was stirred at room temperature with a cooling fan under irradiation of a 25 W 460-465 nm LED for 48 h. Upon completion, the reaction mixture was diluted with EtOAc (10 mL), washed with brine (10 mL \times 3), dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum using a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (petroleum ether/EtOAc = 30/1-4/1) to give the desired products **3**.

2.4 Scale-up Reaction

The reaction was conducted in an oven-dried 100-mL vial equipped with a stir bar. 1-(2-(methylthio)phenyl)-3-phenylprop-2-yn-1-one **1a** (6.0 mmol, 1.0 equiv.), ethyl 2-bromo-2,2-difluoroacetate **2a** (18.0 mmol, 3.0 equiv.) and TMEDA (12.0 mmol, 2.0 equiv.) were sequentially added in DMSO (30 mL) under argon atmosphere. The mixture was stirred at room temperature with a cooling fan under irradiation of a 25 W 460-465 nm LED for 48 h. Upon completion, the reaction mixture was diluted with EtOAc (40 mL), washed with brine (30 mL × 3), dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum using a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (petroleum ether/EtOAc = 15/1) to give the desired product **3a** in 56% yield.

2.5 "On/off" LED Irradiation Experiment

Figure S1. "On/off" LED irradiation experiment for the synthesis of 3a

"On/off" LED irradiation experiment was used to explore the essential role of visible light in this transformation, as descripted in Figure S1. The model reaction of **1a** and **2a** was designed to be irradiated under successive on/off LED irradiation conditions at every 4 h interval for a total of 24 h. The yield of **3a** was determined by ¹⁹F NMR every 4 h. As can be seen, obvious increases in yield were observed once the reaction was irradiated with blue light. In contrast, almost no increase in yield was

observed when the reaction was conducted in dark, demonstrating an essential role of the visible-light irradiation in this transformation.

2.6 UV-vis Absorbance Experiment

Figure S2. A variety of solutions of **2a** (0.01 M), TMEDA (0.01 M), **2a** + TMEDA (0.01 M) in DMSO were prepared. Then, the UV-vis absorption spectra of a series of solutions were recorded on a HitachiF-7000 FL Spectrophotometer, by measuring 100 μ L solution into the 4 cm path quartz cuvettes with 3 mL DMSO.

UV-vis absorbance experiment has been carried out for confirming the formation of the EDA complex as illustrated above in Figure S2, the blue UV absorbance line came from BrCF₂COOEt solution, orange one came from TMEDA solution, and yellow one came from the mixed solution of BrCF₂COOEt and TMEDA. UV-vis spectra revealed that upon mixing BrCF₂COOEt with TMEDA, an obvious bathochromic shift of the UV-vis absorbance was observed, strongly suggesting that BrCF₂COOEt-TMEDA EDA complex might indeed be formed in the mixed solution.

2.7 Titration Experiments of BrCF₂COOEt with TMEDA

¹⁹F NMR spectra of mixtures of BrCF₂COOEt and TMEDA in Chloroform-*d* were recorded at 298 K. In an NMR tube, the total volume of the mixture was 0.6 mL, the concentration of BrCF₂COOEt (0.03 mmol) was kept constant at 0.5 M, and that of TMEDA was varied from 0 to 2.0 M. The molar ratios of BrCF₂COOEt/TMEDA were 1:0, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, and 1:10. Fluorobenzene ($\delta F_{Ph} =$ -113.0660) was used as an internal standard. The ¹⁹F NMR signal of -CF₂Br group in BrCF₂COOEt shifted upfield along with increasing the amount of TMEDA, indicating the formation of EDA complex of BrCF₂COOEt with TMEDA (Figure S3).

50 -60.55 -60.60 -60.65 -60.70 -60.75 -60.80 -60.85 -60.90 -60.95 -61.00 -61.05 -61.1013.00 -113.10 -113.20 -113.20 -113.20

Figure S3. Titration experiments of BrCF2COOEt with TMEDA

Entry	[BrCF ₂ COOEt](M)	1/[TMEDA](M)	δ (ppm)	Δδ (ppm)	1/Δδ (ppm)
1	0.05	-	-60.7895	-	-
2	0.05	20	-60.8080	0.0185	54.0541
3	0.05	10	-60.8257	0.0362	27.6243
4	0.05	6.67	-60.8374	0.0479	20.8768
5	0.05	5	-60.8477	0.0582	17.1821
6	0.05	4	-60.8590	0.0695	14.3885
7	0.05	3.33	-60.8668	0.0773	12.9366
8	0.05	2.86	-60.8790	0.0895	11.1732
9	0.05	2.5	-60.8929	0.1034	9.6712
10	0.05	2.22	-60.9019	0.1124	8.8968
11	0.05	2	-60.9112	0.1217	8.2169

2.8 Determination of the Association Constant (KTMEDA)

¹⁹F NMR spectra of mixtures of BrCF₂COOEt and TMEDA in Chloroform-*d* were recorded at 298 K. In an NMR tube, the total volume of mixture was 0.6 mL, the concentration of BrCF₂COOEt (0.03 mmol) was kept constant at 0.5 M, while that of TMEDA was varied from 0 to 2.0 M. The molar ratios of BrCF₂COOEt/TMEDA

were 1:0, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, and 1:10. Fluorobenzene ($\delta F_{Ph} =$ -113.0660) was used as an internal standard. ¹⁹F NMR for each sample was recorded and the changes of chemical shift ($\Delta\delta$) for -CF₂Br group in BrCF₂COOEt were used to draw the plot. The association constant of BrCF₂COOEt with TMEDA (**K**_{TMEDA}) was calculated: **K**_{TMEDA} = c/a = 3.8645/2.4987 = 1.55 M⁻¹.

Figure S4. Plot for determination of the association constant (KTMEDA).

Entry [BrCF2COOEt](M)		[BrCF2COOEt]/[BrCF2COOEt	Aδ (ppm)	[BrCF2COOEt]×Λδ(M.ppm)	
	[+TMEDA]		[Jierzeeezi] Ee(mppm)	
1	0	0	0	0	
2	0.05	0.1	0.0749	0.003745	
3	0.10	0.2	0.0615	0.006150	
4	0.15	0.3	0.0507	0.007605	
5	0.20	0.4	0.0443	0.008860	
6	0.25	0.5	0.0342	0.008552	
7	0.30	0.6	0.0247	0.007410	
8	0.35	0.7	0.0174	0.006090	
9	0.4	0.8	0.0099	0.003960	
10	0.45	0.9	0.0050	0.002242	
11	0.5	1	0	0	

2.9 Determination of Binding Stoichiometry of EDA Complexes

The binding stoichiometry between BrCF₂COOEt and TMEDA was evaluated using Job's plot analysis: ¹⁹F NMR spectra mixtures of BrCF₂COOEt and TMEDA in Chloroform-*d* were recorded at 298 K. Fluorobenzene ($\delta F_{Ph} = -113.0660$) was used as an internal standard. The total volume of the mixture was 0.5 mL, and the total amount of BrCF₂COOEt and TMEDA was kept constant at 0.25 mmol (0.5 M), while the amount of BrCF₂COOEt was varied from 0 to 0.25 mmol (0-0.5 M). The molar ratios of [BrCF₂COOEt]/[BrCF₂COOEt + TMEDA] were 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. ¹⁹F NMR for each sample was recorded and the changes of chemical shift ($\Delta\delta$) for -CF₂Br group in BrCF₂COOEt were used to draw the plot. The stoichiometry was determined by plotting ratios of [BrCF₂COOEt]/[BrCF₂COOEt + TMEDA] to afford a maximum value. X_{max} = b/(-2a) = 0.0321/(-2) × (-0.0336) = 0.48. These data indicate that the formation of EDA complex of BrCF₂COOEt with TMEDA in a binding stoichiometry of 1:1.

Figure S5. Job's plot.

2.10 Radical Trapping and Control Experiments

Standard conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), TMEDA (0.4 mmol), and DMSO (2 mL) were irradiated with a 460-465 nm LED (25 W) for 48 h under N_2 atmosphere at room temperature, isolated yields based on **1a**.

Radical trapping experiments between **1a** and **2a** were conducted under standard conditions with three trapping agents (TEMPO, BHT and DPE) to catch the putative radical. The desired product **3a** was obtained in 36% yield when BHT was added (**Eq. 1**). No desired product **3a** was detected when TEMPO was employed as the radical scavenger, indicating that the reaction was completely inhibited (**Eq. 2**). To our delight, the corresponding TEMPO-CF₂CO₂Et adduct was successfully detected by HRMS (Figure S6). HRMS (ESI): $C_{13}H_{24}F_2NO_3^+$, $[M+H]^+$ calcd: 280.1719, found: 280.1718. Due to a 9% yield of **3a** was obtained when the reaction was performed without TMEDA (**Eq. 3**), we further added 3.0 equiv. of DPE into this photoredox reaction system which led to no formation of **3a** (**Eq. 4**). The corresponding DPE-CF₂CO₂Et adduct was successfully detected by HRMS (Figure S7). HRMS (ESI): $C_{18}H_{17}F_2O_2^+$, $[M+H]^+$ calcd: 303.1191, found: 303.1187.

Figure S7. Crude ESI-MS of the DPE-trapping experiments

3. Characterization Data

4-(3-(2-(methylthio)phenyl)-3-oxoprop-1-yn-1-yl)benzyl 2-(4-isobutylphenyl)pro panoate (1ag).

Prepared by general procedure F on a 5 mmol scale. Product was obtained as a yellow oil (46 % yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.45 – 8.41 (m, 1H), 7.60 (d, *J* = 8.1 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.26 – 7.21 (m, 4H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.16 (q, *J* = 13.2 Hz, 2H), 3.80 (q, *J* = 7.1 Hz, 1H), 2.50 – 2.47 (m, 5H), 1.92 – 1.84 (m, 1H), 1.55 (d, *J* = 7.2 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 177.53, 174.29, 144.85, 140.73, 138.98, 137.43, 134.60, 133.33, 133.12, 132.98, 129.40, 127.64, 127.24, 124.32, 123.26, 119.85, 92.30, 87.41, 65.46, 45.13, 45.04, 30.20, 22.39, 18.30, 15.49.

HRMS (ESI): Calcd for $C_{30}H_{31}O_3S^+$ [M+H]⁺: 471.1988, found: 471.1985.

4-(3-(2-(methylthio)phenyl)-3-oxoprop-1-yn-1-yl)benzyl 2-(4-benzoylphenyl)pro panoate (1ah).

Prepared by general procedure F on a 5 mmol scale. Product was obtained as a yellow oil (40% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.42 (d, *J* = 7.8 Hz, 1H), 7.82 – 7.78 (m, 3H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.64 – 7.54 (m, 5H), 7.52 – 7.46 (m, 3H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 7.5 Hz, 3H), 5.17 (s, 2H), 3.90 (q, *J* = 7.1 Hz, 1H), 2.50 (s, 3H), 1.60 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 196.42, 177.57, 173.66, 144.86, 140.52, 138.53, 138.03, 137.43, 134.66, 133.34, 133.06, 132.58, 131.47, 130.06, 129.20, 129.15, 128.60, 128.35, 127.88, 124.28, 123.28, 120.11, 92.14, 87.46, 65.85, 45.39, 18.31, 15.50.

HRMS (ESI): Calcd for C₃₃H₂₇O₄S⁺ [M+H]⁺: 519.1625, found: 519.1621.

4-(3-(2-(methylthio)phenyl)-3-oxoprop-1-yn-1-yl)benzyl 4-((*tert*-butoxycarbonyl) amino)-3-(4-chlorophenyl)butanoate (1ai).

Prepared by general procedure F on a 5 mmol scale. Product was obtained as a yellow solid (32% yield), m.p. 146–148 $^{\circ}\mathrm{C}$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.44 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.30 – 7.26 (m, 3H), 7.20 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 5.04 (q, 2H), 4.55 (s, 1H), 3.50 – 3.41 (m, 1H), 3.37 – 3.31 (m, 1H), 3.29 – 3.24 (m, 1H), 2.80 (dd, J = 15.6, 5.8 Hz, 1H), 2.67 (dd, J = 15.6, 9.2 Hz, 1H), 2.49 (s, 3H), 1.41 (s, 9H).

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 177.55, 171.33, 155.80, 144.84, 139.47, 138.39, 134.65, 133.34, 133.11, 133.00, 129.03, 128.90, 128.07, 124.30, 123.28, 120.09, 92.18, 87.48, 79.55, 65.59, 45.57, 42.06, 38.13, 28.34, 15.49.

HRMS (ESI): Calcd for C₃₂H₃₃ClNO₅S⁺ [M+H]⁺: 578.1762, found: 578.1755.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 4-(3-(2-(methylthio)phenyl)-3-oxopro p-1-yn-1-yl)benzoate (1aj).

Prepared by general procedure E on a 5 mmol scale. Product was obtained as a yellow oil (41% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.45 – 8.42 (m, 1H), 8.10 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.59 – 7.56 (m, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 4.97 (td, *J* = 10.9, 4.4 Hz, 1H), 2.50 (s, 3H), 2.15 (d, *J* = 11.9 Hz, 1H), 1.99 – 1.93 (m, 1H), 1.78 – 1.73 (m, 2H), 1.61 – 1.56 (m, 2H), 1.19 – 1.10 (m, 2H), 0.97 – 0.93 (m, 7H), 0.82 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (150 MHz, Chloroform-*d*) δ 177.30, 165.13, 145.06, 134.68, 133.47, 132.94, 132.66, 132.37, 129.65, 124.59, 124.34, 123.31, 91.15, 88.83, 75.48, 47.27, 40.94, 34.29, 31.47, 26.59, 23.68, 22.02, 20.75, 16.55, 15.48.

HRMS (ESI): Calcd for C₂₇H₃₁O₃S⁺ [M+H]⁺: 435.1988, found: 435.1985.

(3a*S*,5*S*,6*R*,6a*S*)-5-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofu ro[2,3-*d*][1,3]dioxol-6-yl 4-(3-(2-(methylthio)phenyl)-3-oxoprop-1-yn-1-yl)benzoa te (1ak).

Prepared by general procedure E on a 5 mmol scale. Product was obtained as a yellow oil (35% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.43 – 8.39 (m, 1H), 8.07 (d, *J* = 8.3 Hz, 2H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.60 – 7.55 (m, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.31 – 7.28 (m, 1H), 5.98 (d, *J* = 3.6 Hz, 1H), 5.53 (d, *J* = 2.7 Hz, 1H), 4.66 (d, *J* = 3.6 Hz, 1H), 4.38 – 4.35 (m, 1H), 4.34 – 4.32 (m, 1H), 4.16 – 4.13 (m, 1H), 4.11 – 4.08 (m, 1H), 2.49 (s, 3H), 1.58 (s, 3H), 1.43 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H).

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 177.15, 164.29, 145.15, 134.67, 133.55, 132.82, 132.79, 130.95, 129.77, 125.43, 124.37, 123.31, 112.44, 109.49, 105.16, 90.61, 89.18, 83.37, 79.99, 77.09, 72.56, 67.40, 26.86, 26.73, 26.22, 25.21, 15.46. **HRMS** (ESI): Calcd for C₂₉H₃₁O₈S⁺ [M+H]⁺: 539.1734, found: 539.1728.

4-(3-(2-(methylthio)phenyl)-3-oxoprop-1-yn-1-yl)benzyl 4-(*N*,*N*-dipropylsulfamo yl)benzoate (1al).

Prepared by general procedure F on a 5 mmol scale. Product was obtained as a yellow oil (35% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.44 (d, *J* = 7.8 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.61 – 7.50 (m, 3H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 4.0 Hz, 1H), 5.45 (s, 2H), 3.12 (t, *J* = 8.0 Hz, 4H), 2.50 (s, 3H), 1.61 – 1.54 (m, 4H), 0.89 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 177.54, 164.96, 144.92, 144.63, 138.15, 134.65, 133.39, 133.22, 133.07, 133.03, 130.37, 128.33, 127.11, 124.31, 123.27, 120.52, 91.95, 87.58, 66.57, 49.94, 21.94, 15.50, 11.16.

HRMS (ESI): Calcd for $C_{30}H_{32}NO_5S_2^+$ [M+H]⁺: 550.1716, found: 550.1711.

4-(3-(2-(methylthio)phenyl)-3-oxoprop-1-yn-1-yl)benzyl 2-(4-(4-chlorobenzoyl)p henoxy)-2-methylpropanoate (1am).

Prepared by general procedure F on a 5 mmol scale. Product was obtained as a yellow oil (38% yield).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.41 (dd, J = 7.8, 1.4 Hz, 1H), 7.71 – 7.68 (m, 4H), 7.61 (d, J = 8.2 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.46 – 7.43 (m, 2H), 7.36 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 7.2 Hz, 3H), 6.86 – 6.82 (m, 2H), 5.24 (s, 2H), 2.49 (s, 3H), 1.72 (s, 6H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.15, 177.49, 173.42, 159.48, 144.89, 138.47, 137.70, 136.25, 134.70, 133.41, 133.08, 132.97, 132.65, 132.02, 131.18, 130.52, 128.59, 128.39, 128.32, 124.28, 123.31, 120.42, 117.22, 91.83, 87.57, 79.42, 66.55, 25.47, 15.50.

HRMS (ESI): Calcd for C₃₄H₂₈ClO₅S⁺ [M+H]⁺: 583.1340, found: 583.1336.

Methyl (2-bromo-2,2-difluoroacetyl)-L-valinate (1an).

Prepared by general procedure D on a 5 mmol scale. Product was obtained as a colorless oil (41% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.83 (d, *J* = 8.4 Hz, 1H), 4.56 (dd, *J* = 8.8, 4.8 Hz, 1H), 3.80 (s, 3H), 2.36 – 2.20 (m, 1H), 0.97 (dd, *J* = 14.2, 6.9 Hz, 6H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 171.07, 159.79 (t, *J* = 27.9 Hz), 111.31 (t, *J* = 316.0 Hz), 57.63, 52.64, 31.59, 18.76, 17.57.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -60.84 (d, J = 7.5 Hz).

Data are consistent with reported in the literature.⁶

Methyl (2-bromo-2,2-difluoroacetyl)-L-phenylalaninate (1ao).

Prepared by general procedure D on a 5 mmol scale. Product was obtained as a white solid (64% yield), m.p. 64–65 °C.

¹**H NMR** (MHz, Chloroform-*d*) δ 7.36 – 7.27 (m, 3H), 7.15 – 7.09 (m, 2H), 6.76 (d, *J* = 5.2 Hz, 1H), 4.93 – 4.86 (m, 1H), 3.81 (s, 3H), 3.34 – 3.15 (m, 2H).

¹³**C NMR** (MHz, Chloroform-*d*) δ 170.49, 159.27 (t, *J* = 28.3 Hz), 134.63, 129.28, 128.83, 127.60, 111.25 (t, J = 315.8 Hz), 53.67, 52.86, 37.31.

¹⁹F NMR (MHz, Chloroform-*d*) δ -60.82 (d, J = 8.2 Hz). HRMS (ESI): Calcd for C₁₂H₁₃BrF₂NO₃⁺ [M+H]⁺: 336.0041, found: 336.0037.

Ethyl 2,2-difluoro-2-(4-oxo-2-phenyl-4*H*-thiochromen-3-yl)acetate (3a).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 15/1). Product was obtained as a white solid (80% yield), m.p. 97–98 °C.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.38 – 8.34 (m, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.84 (m, 1H), 7.76 – 7.70 (m, 1H), 7.60 – 7.51 (m, 5H), 4.25 (q, *J* = 7.1 Hz, 2H), 1.17 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 178.80 (t, *J* = 3.0 Hz), 162.85 (t, *J* = 32.3 Hz), 158.29, 136.99, 135.11, 133.83, 130.79, 129.75, 129.59, 128.91, 128.36, 128.31, 126.86, 125.16 (t, *J* = 20.2 Hz), 112.84 (t, *J* = 251.7 Hz), 62.94, 14.12.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -94.80.

Data are consistent with reported in the literature.⁷

Ethyl 2,2-difluoro-2-(4-oxo-2-(*p*-tolyl)-4*H*-thiochromen-3-yl)acetate (3b).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 15/1). Product was obtained as a colorless oil (88% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.49 (m, 1H), 7.72 – 7.66 (m, 1H), 7.63 – 7.56 (m, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.32 – 7.26 (m, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.24 (t, *J* = 3.0 Hz), 163.46 (t, *J* = 32.2 Hz), 157.95, 140.42, 137.34, 132.46, 132.23, 130.36, 128.96, 128.91, 128.35, 128.06 (t, *J* = 3.0, 2.0 Hz), 125.92 (t, *J* = 20.2 Hz), 125.45, 112.69 (t, *J* = 253.4 Hz), 62.72, 21.45, 13.92.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.92.

Data are consistent with reported in the literature.⁸

Ethyl 2,2-difluoro-2-(4-oxo-2-(o-tolyl)-4H-thiochromen-3-yl)acetate (3c).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 15/1). Product was obtained as a colorless oil (81% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.56 – 8.53 (m, 1H), 7.73 – 7.68 (m, 1H), 7.64 – 7.59 (m, 2H), 7.41 – 7.36 (m, 1H), 7.34 – 7.26 (m, 3H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.38 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (100 MHz, Chloroform-*d*) δ 178.92 (t, J = 2.9 Hz), 163.24 (t, J = 32.2 Hz), 156.92, 137.51, 135.37 (t, J = 2.4 Hz), 134.20, 132.51, 130.36, 130.11, 129.73, 129.00, 128.40, 127.99 (t, J = 2.0 Hz), 126.74 (t, J = 20.3 Hz), 125.53, 125.50, 112.77 (t, J = 254.5 Hz), 62.74, 19.38, 13.91.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.03 – -108.47 (m).

HRMS: Calcd for C₂₀H₁₇F₂O₃S⁺ [M+H]⁺: 375.0861, found: 375.0854.

Ethyl 2,2-difluoro-2-(4-oxo-2-(*m*-tolyl)-4*H*-thiochromen-3-yl)acetate (3d).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 20/1). Product was obtained as a white solid (76% yield), m.p. 96–97 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.54 – 8.49 (m, 1H), 7.73 – 7.67 (m, 1H), 7.63 – 7.57 (m, 2H), 7.39 – 7.30 (m, 4H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.17 (t, J = 3.0 Hz), 163.45 (t, J = 32.2 Hz), 157.90, 138.07, 137.29, 134.99, 132.48, 130.86, 130.35, 128.93, 128.60 (t, J = 2.3 Hz), 128.37, 128.12, 125.82 (t, J = 20.5 Hz), 125.46, 125.28 (t, J = 2.5 Hz), 112.65 (t, J = 253.4 Hz), 62.73, 21.40, 13.92.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -96.06 (d, J = 12.9 Hz).

HRMS (ESI): Calcd for C₂₀H₁₇F₂O₃S⁺ [M+H]⁺: 375.0861, found: 375.0856.

Ethyl 2,2-difluoro-2-(2-(4-methoxyphenyl)-4-oxo-4*H*-thiochromen-3-yl)acetate (3e).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 12/1). Product was obtained as a white solid (83% yield), m.p. 129–130 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.48 (m, 1H), 7.72 – 7.66 (m, 1H), 7.62 – 7.57 (m, 2H), 7.52 – 7.47 (m, 2H), 7.02 – 6.97 (m, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.38 (t, J = 3.1 Hz), 163.51 (t, J = 32.3 Hz), 161.17, 157.73, 137.38, 132.42, 130.40, 129.76 (t, J = 2.5 Hz), 128.91, 128.31, 127.32, 125.72 (t, J = 20.4 Hz), 125.41, 113.73, 112.72 (t, J = 253.3 Hz), 62.71, 55.41, 13.92.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.76.

HRMS (ESI): Calcd for C₂₀H₁₆F₂O₄S⁺ [M+H]⁺: 391.0810, found: 391.0807.

Ethyl 2-(2-(4-(*tert*-butyl)phenyl)-4-oxo-4*H*-thiochromen-3-yl)-2,2-difluoroacetate (3f).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 15/1). Product was obtained as a white solid (82% yield), m.p. 107–108 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.49 (m, 1H), 7.72 – 7.66 (m, 1H), 7.62 – 7.57 (m, 2H), 7.52 – 7.47 (m, 4H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.38 (s, 9H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.25 (t, J = 3.0 Hz), 163.47 (t, J = 32.2 Hz), 157.99, 153.47, 137.39, 132.43, 132.15, 130.37, 128.91, 128.32, 127.89 (t, J = 2.4 Hz), 125.79 (t, J = 20.5 Hz), 125.45, 125.21, 112.68 (t, J = 253.3 Hz), 62.69, 34.88, 31.23, 13.93.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.89.

HRMS (ESI): Calcd for C₂₃H₂₃F₂O₃S⁺ [M+H]⁺: 417.1330, found: 417.1325.

Ethyl 2,2-difluoro-2-(4-oxo-2-(4-propylphenyl)-4*H*-thiochromen-3-yl)acetate (3 g).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 20/1). Product was obtained as a white solid (83% yield), m.p. 104–106 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 (d, J = 8.1 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.62 – 7.57 (m, 2H), 7.46 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 2.67 (t, J = 8.0 Hz, 2H), 1.74 – 1.68 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.25 (t, J = 2.9 Hz), 163.47 (t, J = 32.2 Hz), 158.01, 145.10, 137.37, 132.45, 132.41, 130.36, 128.91, 128.33, 128.04 (t, J = 2.4 Hz), 125.80 (t, J = 20.5 Hz), 125.45, 112.68 (t, J = 253.3 Hz), 62.71, 37.85, 24.30, 13.92, 13.82.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.93.

HRMS (ESI): Calcd for C₂₂H₂₁F₂O₃S⁺ [M+H]⁺: 403.1174, found: 403.1177.

Ethyl 2,2-difluoro-2-(4-oxo-2-(4-pentylphenyl)-4*H*-thiochromen-3-yl)acetate (3h). Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =30/1). Product was obtained as a colorless oil (66% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.49 (m, 1H), 7.72 – 7.66 (m, 1H), 7.62 – 7.57 (m, 2H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.72 – 2.66 (m, 2H), 1.71 – 1.65 (m, 2H), 1.40 – 1.31 (m, 7H), 0.93 (t, *J* = 8.0, 4.0 Hz, 3H).

¹³**C** NMR (100 MHz, Chloroform-*d*) δ 179.25 (t, *J* = 3.0 Hz), 163.48 (t, *J* = 32.2 Hz), 158.02, 145.39, 137.38, 132.44, 132.36, 130.37, 128.92, 128.32, 128.26, 128.06 (t, *J* = 2.4 Hz), 125.80 (t, *J* = 20.4 Hz), 125.44, 112.68 (t, *J* = 253.3 Hz), 62.70, 35.80, 31.51, 30.89, 22.54, 14.04, 13.92.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.92.

HRMS (ESI): Calcd for C₂₄H₂₅F₂O₃S⁺ [M+H]⁺: 431.1487, found: 431.1491.

Ethyl 2,2-difluoro-2-(2-(4-fluorophenyl)-4-oxo-4*H*-thiochromen-3-yl)acetate (3i). Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 12/1). Product was obtained as a white solid (75% yield), m.p. 108-109 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.48 (m, 1H), 7.74 – 7.68 (m, 1H), 7.64 – 7.58 (m, 2H), 7.54 (dd, J = 8.5, 5.2 Hz, 2H), 7.17 (t, J = 8.6 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.10 (t, J = 3.0 Hz), 163.76 (d, J = 250.9 Hz), 163.32 (t, J = 32.1 Hz), 156.38, 137.00, 132.62, 131.00 (d, J = 3.5 Hz), 130.33, 130.21 (dt, J = 8.7, 2.6 Hz), 128.95, 128.54, 126.26 (t, J = 20.5 Hz), 125.47, 115.55 (d, J = 22.1 Hz), 112.65 (t, J = 253.4 Hz), 62.83, 13.91.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.90, -104.36 – -117.28 (m).

Ethyl 2-(2-(4-chlorophenyl)-4-oxo-4*H*-thiochromen-3-yl)-2,2-difluoroacetate (3j). Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 12/1). Product was obtained as a white solid (65% yield), m.p. 127-129 °C.

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 8.36 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.89 (t, *J* = 7.6 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.65 – 7.58 (m, 4H), 4.25 (q, *J* = 7.1 Hz, 2H), 1.18 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, DMSO- d_6) δ 178.71 (t, J = 2.8 Hz), 162.72 (t, J = 32.2 Hz), 156.93, 136.84, 135.77, 133.93, 133.86, 130.26 (t, J = 3.0, 2.0 Hz), 129.74, 129.72, 129.09, 128.38, 126.92, 125.39 (t, J = 20.2 Hz), 112.82 (t, J = 251.6 Hz), 63.03, 14.12.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -94.78.

Data are consistent with reported in the literature.⁸

Ethyl 2-(2-(4-bromophenyl)-4-oxo-4*H*-thiochromen-3-yl)-2,2-difluoroacetate (3 k).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 12/1). Product was obtained as a white solid (76% yield), m.p. 133-134 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.49 (m, 1H), 7.74 – 7.69 (m, 1H), 7.65 – 7.59 (m, 4H), 7.44 – 7.39 (m, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.00 (t, J = 3.0 Hz), 163.25 (t, J = 32.0 Hz), 156.07, 136.89, 133.89, 132.66, 131.58, 130.30, 129.68 (t, J = 2.5 Hz), 128.98, 128.60, 126.18 (t, J = 20.6 Hz), 125.50, 124.70, 112.62 (t, J = 253.6 Hz), 62.88, 13.91.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.91.

Data are consistent with reported in the literature.⁸

Ethyl 2-(2-(3-bromophenyl)-4-oxo-4*H*-thiochromen-3-yl)-2,2-difluoroacetate (31). Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 20/1). Product was obtained as a white solid (58% yield), m.p. 110–112 °C.

¹**H** NMR (400 MHz, DMSO- d_6) δ 8.39 – 8.34 (m, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.93 – 7.87 (m, 1H), 7.82 (t, J = 1.6 Hz, 1H), 7.81 – 7.72 (m, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.19 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 178.67 (t, *J* = 2.5 Hz), 162.67 (t, *J* = 32.3 Hz), 156.30, 137.08, 136.82, 133.97, 133.63, 131.10, 130.78, 129.76, 128.39, 127.58, 126.95, 125.39 (t, *J* = 20.2 Hz), 121.90, 112.81 (t, *J* = 251.7 Hz), 63.07, 14.13.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -94.88 (d, J = 15.8 Hz).

HRMS (ESI): Calcd for C₁₉H₁₄BrF₂O₃S⁺ [M+H]⁺: 438.9810, found: 438.9809.

Ethyl 2,2-difluoro-2-(4-oxo-2-(4-(trifluoromethyl)phenyl)-4*H*-thiochromen-3-yl) acetae (3m).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 15/1). Product was obtained as a white solid (68% yield), m.p. 116–117 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.54 – 8.50 (m, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.74 – 7.70 (m, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.65 – 7.61 (m, 2H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 178.84 (t, *J* = 3.0 Hz), 163.13 (t, *J* = 31.9 Hz), 155.44, 138.50, 136.70, 132.78, 132.03 (q, *J* = 32.9 Hz), 130.27, 129.00, 128.74, 128.60 (t, *J* = 2.5 Hz), 126.42 (t, *J* = 20.6 Hz), 125.57, 125.32 (q, *J* = 3.7 Hz), 123.70 (q, *J* = 272.5 Hz), 112.60 (t, *J* = 253.5 Hz), 62.94, 13.89.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.87, -95.98.

Data are consistent with reported in the literature.⁸

Ethyl 2-(2-(4-cyanophenyl)-4-oxo-4*H*-thiochromen-3-yl)-2,2-difluoroacetate (3n). Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 8/1). Product was obtained as a white solid (65% yield), m.p. 177–178 °C.

¹**H** NMR (400 MHz, DMSO- d_6) δ 8.39 – 8.36 (m, 1H), 8.06 – 8.03 (m, 2H), 8.03 – 8.00 (m, 1H), 7.93 – 7.88 (m, 1H), 7.82 – 7.78 (m, 2H), 7.78 – 7.73 (m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.19 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 178.52 (t, *J* = 2.8 Hz), 162.58 (t, *J* = 32.3 Hz), 156.18, 139.50, 136.65, 134.04, 132.93, 129.86, 129.71, 129.42, 128.41, 127.02, 125.44 (t, *J* = 20.3 Hz), 118.60, 113.50, 112.78 (t, *J* = 251.8 Hz), 63.14, 14.12. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -94.88.

HRMS (ESI): Calcd for C₂₀H₁₄F₂NO₃S⁺ [M+H]⁺: 386.0657, found: 386.0651.

Ethyl 2,2-difluoro-2-(2-(4-nitrophenyl)-4-oxo-4*H*-thiochromen-3-yl)acetate (30). Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 8/1). Product was obtained as a white solid (50% yield), m.p. 239–240 °C.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.42 – 8.36 (m, 3H), 8.04 (d, *J* = 7.9 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.89 (d, *J* = 8.7 Hz, 2H), 7.80 – 7.74 (m, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 178.50 (t, *J* = 3.0 Hz), 162.55 (t, *J* = 32.2 Hz), 155.78, 148.95, 141.15, 136.60, 134.09, 130.03, 129.92, 129.73, 128.43, 127.06, 125.54 (t, *J* = 20.6 Hz), 124.12, 112.79 (t, *J* = 246.4 Hz), 63.17, 14.12.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -94.87.

HRMS (ESI): Calcd for C₁₉H₁₄F₂NO₅S⁺ [M+H]⁺: 406.0555, found: 406.0551.

Ethyl 2,2-difluoro-2-(2-(4-formylphenyl)-4-oxo-4*H*-thiochromen-3-yl)acetate (3 p).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 10/1). Product was obtained as a colorless oil (52% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.12 (s, 1H), 8.55 – 8.51 (m, 1H), 8.00 (d, J = 8.3 Hz, 2H), 7.76 – 7.70 (m, 3H), 7.66 – 7.61 (m, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 191.41, 178.81 (t, J = 3.1 Hz), 163.13 (t, J = 31.9 Hz), 155.56 (t, J = 1.7 Hz), 140.64, 137.12, 136.68, 132.78, 130.28, 129.47, 129.04, 128.91 (t, J = 2.5 Hz), 128.75, 126.30 (t, J = 20.7 Hz), 125.57, 112.59 (t, J = 253.6 Hz), 62.96, 13.91.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -96.03. HRMS (ESI): Calcd for C₂₀H₁₄F₂O₄S⁺ [M+H]⁺: 389.0654, found: 389.0659.

Methyl 4-(3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-oxo-4*H*-thiochromen-2-yl)benz oate (3q).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 7/1). Product was obtained as a colorless oil (60% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.49 (m, 1H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.74 – 7.69 (m, 1H), 7.65 – 7.59 (m, 4H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 178.88 (t, J = 3.0 Hz), 166.27, 163.19 (t, J = 31.9 Hz), 156.09, 139.28, 136.82, 132.70, 131.57, 130.28, 129.47, 128.99, 128.65, 128.24 (t, J = 2.5 Hz), 126.21 (t, J = 20.7 Hz), 125.54, 112.58 (t, J = 253.5 Hz), 62.89, 52.45, 13.90.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -96.07.

HRMS (ESI): Calcd for C₂₁H₁₇F₂O₅S⁺ [M+H]⁺: 419.0759, found: 419.0755.

Ethyl 2-(2-([1,1'-biphenyl]-4-yl)-4-oxo-4*H*-thiochromen-3-yl)-2,2-difluoroacetate (3r).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 25/1). Product was obtained as a white solid (69% yield), m.p. 117–119 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 (d, J = 8.3 Hz, 1H), 7.74 – 7.69 (m, 3H), 7.69 – 7.65 (m, 2H), 7.65 – 7.59 (m, 4H), 7.50 (t, J = 7.5 Hz, 2H), 7.45 – 7.40 (m, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.20 (t, *J* = 3.0 Hz), 163.44 (t, *J* = 32.2 Hz), 157.41, 143.01, 139.96, 137.26, 133.92, 132.53, 130.39, 128.98, 128.96, 128.65 (t, *J* = 2.4 Hz), 128.44, 127.99, 127.21, 126.93, 125.98 (t, *J* = 20.3 Hz), 125.50, 112.71 (t, *J* = 254.5 Hz), 62.80, 13.93.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.83.

HRMS (ESI): Calcd for C₂₅H₁₉F₂O₃S⁺ [M+H]⁺: 437.1017, found: 437.1014.

Ethyl 2-(2-(4-(dimethylamino)phenyl)-4-oxo-4*H*-thiochromen-3-yl)-2,2-difluoroa cetate (3s).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 10/1). Product was obtained as a yellow solid (46% yield), m.p. 171-173 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 – 8.46 (m, 1H), 7.70 – 7.64 (m, 1H), 7.61 – 7.54 (m, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.06 (s, 6H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 179.70 (t, J = 2.9 Hz), 163.73 (t, J = 32.5 Hz), 158.82, 151.53, 137.69, 132.20, 130.49, 129.71 (t, J = 2.5 Hz), 128.84, 128.04, 125.35, 124.69 (t, J = 20.2 Hz), 112.86 (t, J = 253.0 Hz), 111.24, 62.57, 40.24, 13.93. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -95.35.

HRMS (ESI): Calcd for C₂₁H₂₀F₂NO₃S⁺ [M+H]⁺: 404.1126, found: 404.1130.

Ethyl 2,2-difluoro-2-(2-(4-methoxyphenyl)-4-oxo-4*H*-thiopyrano[2,3-*b*]pyridin-3 -yl)acetate (3t).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =4/1). Product was obtained as a white solid (75% yield), m.p. 151-153 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.85 (dd, *J* = 4.5, 1.8 Hz, 1H), 8.72 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.55 (dd, *J* = 8.1, 4.6 Hz, 1H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 180.07 (t, J = 3.0 Hz), 163.35 (t, J = 32.1 Hz), 161.37, 159.62, 158.10, 153.60, 137.05, 129.69 (t, J = 2.4 Hz), 127.59, 126.98, 126.11 (t, J = 20.6 Hz), 123.41, 113.88, 112.52 (t, J = 254.0 Hz), 62.85, 55.44, 13.91. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.97.

HRMS (ESI): Calcd for C₁₉H₁₆F₂NO₃S⁺ [M+H]⁺: 392.0763, found: 392.0759.

Ethyl 2,2-difluoro-2-(4-oxo-2-(pyridin-3-yl)-4*H*-thiochromen-3-yl)acetate (3u).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA = 5/1). Product was obtained as a colorless oil (61% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.83 – 8.72 (m, 2H), 8.54 – 8.49 (m, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.67 – 7.61 (m, 2H), 7.47 – 7.42 (m, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 178.78 (t, *J* = 3.0 Hz), 163.04 (t, *J* = 31.9 Hz), 153.29, 151.01, 147.86 (t, *J* = 2.3 Hz), 136.69, 135.72 (t, *J* = 2.6 Hz), 132.79, 131.38, 130.31, 129.05, 128.81, 126.97 (t, *J* = 20.6 Hz), 125.55, 123.03, 112.63 (t, *J* = 253.4 Hz), 62.98, 13.90.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.63 (d, J = 103.6 Hz). **HRMS** (ESI): Calcd for C₁₈H₁₄F₂NO₃S⁺ [M+H]⁺: 362.0657, found: 362.0654.

Ethyl 2,2-difluoro-2-(4-oxo-2-(thiophen-2-yl)-4*H*-thiochromen-3-yl)acetate (3v). Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =10/1). Product was obtained as a yellow solid (55% yield), m.p. 92–94 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.49 – 8.45 (m, 1H), 7.73 – 7.67 (m, 1H), 7.63 – 7.56 (m, 3H), 7.46 (d, *J* = 3.5 Hz, 1H), 7.18 – 7.14 (m, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.37 (t, J = 3.0 Hz), 163.34 (t, J = 32.2 Hz), 150.30, 137.08, 134.46, 132.62, 130.66 (t, J = 3.4 Hz), 130.43, 129.78, 128.92, 128.53, 127.69, 126.39 (t, J = 20.5 Hz), 125.39, 112.32 (t, J = 253.3 Hz), 62.77, 13.92.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.58.

HRMS (ESI): Calcd for $C_{17}H_{13}F_2O_3S_2^+$ [M+H]⁺: 367.0269, found: 367.0272.

Methyl 2,2-difluoro-2-(4-oxo-2-phenyl-4*H*-thiochromen-3-yl)acetate (3w).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =15/1). Product was obtained as a white solid (65% yield), m.p. 95–97 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.55 – 8.50 (m, 1H), 7.73 – 7.68 (m, 1H), 7.64 – 7.59 (m, 2H), 7.56 – 7.46 (m, 5H), 3.90 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 179.16 (t, J = 3.0 Hz), 163.97 (t, J = 32.3 Hz), 157.87, 137.23, 134.97, 132.58, 130.27, 130.11, 129.00, 128.47, 128.27, 128.05 (t, J = 2.5 Hz), 125.84 (t, J = 20.5 Hz), 125.49, 112.60 (t, J = 253.3 Hz), 53.42. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -96.01.

HRMS (ESI): Calcd for C₁₈H₁₃F₂O₃S⁺ [M+H]⁺: 347.0548, found: 347.0547.

Phenethyl 2,2-difluoro-2-(4-oxo-2-phenyl-4H-thiochromen-3-yl)acetate (3x).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =25/1). Product was obtained as a colorless oil (67% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 – 8.45 (m, 1H), 7.74 – 7.69 (m, 1H), 7.64 – 7.58 (m, 2H), 7.53 – 7.45 (m, 5H), 7.22 – 7.15 (m, 4H), 7.15 – 7.10 (m, 1H), 4.49 (t, *J* = 7.1 Hz, 2H), 3.01 (t, *J* = 7.1 Hz, 2H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.08 (t, *J* = 2.9 Hz), 163.17 (t, *J* = 32.6 Hz), 157.52, 137.25, 137.22, 135.00, 132.53, 130.26, 130.05, 129.02, 128.88, 128.42, 128.38, 128.25, 128.04 (t, *J* = 2.4 Hz), 126.49, 125.89 (t, *J* = 20.5 Hz), 125.43, 112.59 (t, *J* = 253.0 Hz), 66.91, 34.64.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -96.40.

HRMS (ESI): Calcd for C₂₅H₁₉F₂O₃S⁺ [M+H]⁺: 437.1017, found: 437.1015.

3-(1,1-difluoro-2-(4-methoxyphenyl)-2-oxoethyl)-2-phenyl-4*H***-thiochromen-4-on** e (**3y**).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =25/1). Product was obtained as a white solid (72% yield), m.p. 109–111 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.44 (dd, J = 8.1, 1.1 Hz, 1H), 8.09 (d, J = 8.9 Hz, 2H), 7.70 – 7.66 (m, 1H), 7.63 – 7.59 (m, 3H), 7.58 – 7.53 (m, 1H), 7.52 – 7.47 (m, 3H), 6.96 – 6.92 (m, 2H), 3.88 (s, 3H).

¹³**C** NMR (100 MHz, Chloroform-*d*) δ 187.08, 179.06 (t, J = 3.0 Hz), 163.68, 156.99, 137.34, 135.24, 132.42, 132.11 (t, J = 3.2 Hz), 130.51, 129.95, 129.06, 128.27, 128.23, 128.14 (t, J = 2.4 Hz), 127.74 (t, J = 21.2, 20.2 Hz), 126.19 (t, J = 1.9 Hz), 125.40, 116.82 (t, J = 258.6 Hz), 113.75, 55.48.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -91.68.

HRMS (ESI): Calcd for C₂₄H₁₇F₂O₃S⁺ [M+H]⁺: 423.0861, found: 423.0856.

N-(cyclopropylmethyl)-2,2-difluoro-2-(4-oxo-2-phenyl-4*H*-thiochromen-3-yl)acet amide (3z).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =5/1). Product was obtained as a white solid (62% yield), m.p. 166–168 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 – 8.47 (m, 1H), 7.69 – 7.65 (m, 1H), 7.62 – 7.55 (m, 4H), 7.51 – 7.43 (m, 3H), 6.76 (s, 1H), 3.34 – 3.24 (m, 2H), 1.13 – 1.05 (m, 1H), 0.62 – 0.56 (m, 2H), 0.33 – 0.28 (m, 2H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.29 (t, J = 2.7 Hz), 164.05 (t, J = 27.8 Hz), 157.76 (t, J = 2.0 Hz), 137.11, 135.49, 132.32, 130.67, 129.84, 128.92, 128.21, 128.17 (t, J = 3.0 Hz), 128.07, 125.59 (t, J = 20.2 Hz), 125.33, 114.94 (t, J = 257.3 Hz), 44.52, 10.35, 3.51.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.73 – -103.61 (m).

HRMS (ESI): Calcd for C₂₁H₁₈F₂NO₂S⁺ [M+H]⁺: 386.1021, found: 386.1024.

3-(1,1-difluoro-2-morpholino-2-oxoethyl)-2-phenyl-4*H***-thiochromen-4-one (3aa).** Prepared by general procedure E on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =5/1). Product was obtained as a white solid (42% yield), m.p. 152–154 °C.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.37 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.89 – 7.84 (m, 1H), 7.75 – 7.70 (m, 1H), 7.58 – 7.50 (m, 5H), 3.62 – 3.53 (m, 2H), 3.51 – 3.44 (m, 6H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 178.13, 161.27 (t, *J* = 28.1 Hz), 156.63, 136.76, 135.57, 133.60, 130.52, 130.23, 129.42, 128.81, 128.54, 128.29, 126.82 (t, *J* = 20.6 Hz), 126.70, 115.67 (t, *J* = 255.2 Hz), 66.39, 66.15, 46.44, 43.55.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -88.30.

HRMS (ESI): Calcd for C₂₁H₁₈F₂NO₃S⁺ [M+H]⁺: 402.0970, found: 402.0967.

N-(2-ethoxyethyl)-2,2-difluoro-2-(4-oxo-2-phenyl-4*H*-thiochromen-3-yl)acetamid e (3ab).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =4/1). Product was obtained as a white solid (65% yield), m.p. 139–140 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 – 8.45 (m, 1H), 7.69 – 7.64 (m, 1H), 7.62 – 7.55 (m, 4H), 7.50 – 7.43 (m, 3H), 7.03 (s, 1H), 3.63 – 3.54 (m, 6H), 1.24 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.25 (t, J = 2.6 Hz), 164.27 (t, J = 28.0 Hz), 157.75 (t, J = 1.7 Hz), 137.10, 135.48, 132.32, 130.66, 129.84, 128.93, 128.20, 128.16 (t, J = 2.6 Hz), 128.08, 125.60 (t, J = 20.3 Hz), 125.33, 114.84 (t, J = 257.4 Hz), 68.54, 66.56, 39.54, 15.13.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -87.92 – -103.61 (m).

HRMS (ESI): Calcd for C₂₁H₂₀F₂NO₃S⁺ [M+H]⁺: 404.1126, found: 404.1123.

2,2-difluoro-2-(4-oxo-2-phenyl-4*H*-thiochromen-3-yl)-*N*-phenylacetamide (3ac).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =5/1). Product was obtained as a white solid (58% yield), m.p. 114–116 °C.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.59 (s, 1H), 8.50 (d, *J* = 7.9 Hz, 1H), 7.70 – 7.65 (m, 3H), 7.63 – 7.57 (m, 4H), 7.53 – 7.47 (m, 3H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.41 (t, *J* = 2.6 Hz), 162.04 (t, *J* = 28.0 Hz), 158.53, 137.12, 136.75, 135.29, 132.50, 130.58, 130.01, 129.10, 128.98, 128.38, 128.20, 128.16, 125.38, 125.33 (t, *J* = 20.5 Hz), 125.06, 120.24, 114.91 (t, *J* = 258.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.96.

HRMS (ESI): Calcd for C₂₃H₁₆F₂NO₂S⁺ [M+H]⁺: 408.0864, found: 408.0859.

Methyl (2,2-difluoro-2-(4-oxo-2-phenyl-4*H*-thiochromen-3-yl)acetyl)phenylalani nate (3ad).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =3/1). Product was obtained as a white solid (50% yield), m.p. 132–133 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.49 (m, 1H), 7.71 – 7.66 (m, 1H), 7.62 – 7.55 (m, 4H), 7.51 – 7.45 (m, 3H), 7.31 – 7.26 (m, 5H), 7.24 – 7.20 (m, 1H), 5.01 – 4.94 (m, 1H), 3.74 (s, 3H), 3.27 (d, *J* = 5.5 Hz, 2H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.16 (t, *J* = 2.8 Hz), 170.94, 163.57 (t, *J* = 28.6 Hz), 157.97, 137.05, 135.61, 135.36, 132.36, 130.67, 129.92, 129.57, 129.03, 128.55, 128.24, 128.17 (t, *J* = 3.0 Hz), 128.13, 127.14, 125.36 (t, *J* = 20.3 Hz), 125.33, 114.60 (t, *J* = 257.2 Hz), 53.51, 52.39, 37.90.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -96.19 (d, J = 23.7 Hz).

HRMS (ESI): Calcd for C₂₇H₂₂F₂NO₄S⁺ [M+H]⁺: 494.1232, found: 494.1228.

Methyl 2-(4-oxo-2-phenyl-4H-thiochromen-3-yl)propanoate (3ae).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =15/1). Product was obtained as a white solid (45% yield), m.p. 139–141 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.57 – 8.53 (m, 1H), 7.66 – 7.61 (m, 1H), 7.60 – 7.54 (m, 2H), 7.54 – 7.49 (m, 5H), 3.69 (s, 3H), 3.62 (q, *J* = 7.0 Hz, 1H), 1.39 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 178.87, 174.15, 149.83, 137.39, 136.22, 135.15, 131.49, 130.80, 129.78, 129.22, 128.98, 128.44, 127.55, 125.54, 52.07, 40.32, 15.28.

HRMS (ESI): Calcd for C₁₉H₁₇O₃S⁺ [M+H]⁺: 325.0893, found: 325.0895.

2-(4-oxo-2-phenyl-4H-thiochromen-3-yl)propanenitrile (3af).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =10/1). Product was obtained as a white solid (41% yield), m.p. 126–127 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.66 – 8.60 (m, 1H), 7.70 – 7.65 (m, 1H), 7.64 – 7.54 (m, 5H), 7.47 – 7.41 (m, 2H), 3.98 (q, *J* = 7.0 Hz, 1H), 1.61 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 177.96, 152.27, 136.74, 135.08, 131.99, 130.63, 130.46, 129.37, 129.35, 129.32, 128.20, 128.12, 125.56, 120.65, 26.15, 17.77. HRMS (ESI): Calcd for C₁₈H₁₄NOS⁺ [M+H]⁺: 292.0791, found: 292.0788.

4-(3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-oxo-4*H*-thiochromen-2-yl)benzyl-2-(4-is obutylphenyl)propanoate (3ag).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =20/1). Product was obtained as a yellow oil (65% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 8.1 Hz, 1H), 7.71 (t, *J* = 7.3 Hz, 1H), 7.61 (d, *J* = 5.7 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.24 (d, *J* = 7.9 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 5.20 (s, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.82 (q, *J* = 7.1 Hz, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.91 – 1.84 (m, 1H), 1.56 (d, *J* = 7.2 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 0.92 (d, *J* = 6.6 Hz, 6H).

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 179.08, 174.41, 163.33 (t, *J* = 32.1 Hz), 157.08, 140.71, 138.30, 137.49, 137.14, 134.62, 132.55, 130.35, 129.41, 128.95, 128.47, 128.24, 127.30, 127.24, 126.07 (t, *J* = 20.5 Hz), 125.48, 112.64 (t, *J* = 253.5 Hz), 65.52, 62.76, 45.14, 45.04, 30.21, 22.39, 18.38, 13.92.

¹⁹**F NMR** (565 MHz, Chloroform-*d*) δ -95.92.

HRMS (ESI): Calcd for C₃₃H₃₃F₂O₅S⁺ [M+H]⁺: 579.2011, found: 579.2006.

4-(3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-oxo-4*H*-thiochromen-2-yl)benzyl 2-(4-benzoylphenyl)propanoate (3ah).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =20/1). Product was obtained as a yellow oil (60% yield).

¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 6.7 Hz, 3H), 7.71 (t, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 8.2 Hz, 3H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.45 (m, 5H), 7.34 (d, *J* = 7.9 Hz, 2H), 5.21 (s, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.92 (q, *J* = 7.1 Hz, 1H), 1.60 (d, *J* = 7.2 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 196.43, 179.06 (t, J = 2.7 Hz), 173.74, 163.31 (t, J = 32.1 Hz), 156.96, 140.57, 137.99, 137.93, 137.47, 137.10, 134.81, 132.54, 131.51, 130.34, 130.07, 129.28, 129.15, 128.96, 128.64, 128.47, 128.34, 127.48, 126.06 (t, J = 20.3 Hz), 125.48, 112.63 (t, J = 253.5 Hz), 65.87, 62.78, 45.41, 18.35, 13.91.

¹⁹**F NMR** (565 MHz, Chloroform-*d*) δ -95.93. **HRMS** (ESI): Calcd for C₃₆H₂₉F₂O₆S⁺ [M+H]⁺: 627.1647, found: 627.1639.

4-(3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-oxo-4*H*-thiochromen-2-yl)benzyl 4-((*te rt*-butoxycarbonyl)amino)-3-(4-chlorophenyl)butanoate (3ai).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =4/1). Product was obtained as a yellow oil (45% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.50 (d, J = 8.1 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.62 – 7.58 (m, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.30 – 7.25 (m, 4H), 7.15 (d, J = 8.1 Hz, 2H), 5.09 (s, 2H), 4.58 (s, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.50 – 3.41 (m, 1H), 3.38 – 3.33 (m, 1H), 3.31 – 3.26 (m, 1H), 2.81 (dd, J = 15.6, 5.7 Hz, 1H), 2.69 (dd, J = 15.6, 9.1 Hz, 1H), 1.42 (s, 9H), 1.33 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 179.07 (t, J = 3.0 Hz), 171.45, 163.31 (t, J = 32.1 Hz), 157.04, 155.85, 139.52, 137.77, 137.12, 134.82, 132.93, 132.59, 130.30, 129.08, 128.93, 128.50, 128.29, 127.75, 126.02 (t, J = 20.5 Hz), 125.52, 112.63 (t, J = 253.3 Hz), 79.56, 65.65, 62.79, 45.59, 42.02, 38.14, 28.35, 13.93.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.91.

HRMS (ESI): Calcd for C₃₅H₃₅ClF₂NO₇S⁺ [M+H]⁺: 686.1785, found: 686.1782.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 4-(3-(2-ethoxy-1,1-difluoro-2-oxoeth yl)-4-oxo-4*H*-thiochromen-2-yl)benzoate (3aj).

Prepared by general procedure E on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =25/1). Product was obtained as a yellow oil (50% yield).

¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.53 – 8.50 (m, 1H), 8.15 (d, J = 8.3 Hz, 2H), 7.73 – 7.69 (m, 1H), 7.63 – 7.59 (m, 4H), 4.99 (td, J = 10.9, 4.4 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 2.16 (d, J = 11.8 Hz, 1H), 2.03 – 1.97 (m, 1H), 1.79 – 1.74 (m, 2H), 1.62 – 1.56 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.20 – 1.11 (m, 2H), 0.98 – 0.93 (m, 7H), 0.83 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 178.89, 165.25, 163.19 (t, J = 32.0 Hz), 156.22, 139.09, 136.85, 132.69, 132.27, 130.28, 129.45, 128.98, 128.64, 128.19,

126.17 (t, J = 20.7 Hz), 125.56, 112.61 (t, J = 253.5 Hz), 75.36, 62.88, 47.24, 40.94, 34.27, 31.47, 26.47, 23.54, 22.07, 20.83, 16.47, 13.92. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -96.01.

HRMS (ESI): Calcd for C₃₀H₃₃F₂O₅S⁺ [M+H]⁺: 543.2011, found: 543.2017.

(3a*S*,5*S*,6*R*,6a*S*)-5-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofu ro[2,3-*d*][1,3]dioxol-6-yl 4-(3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-oxo-4*H*-thioch romen-2-yl)benzoate (3ak).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =6/1). Product was obtained as a yellow oil (49% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 8.4 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 2H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 4H), 5.98 (d, *J* = 3.4 Hz, 1H), 5.54 (d, *J* = 2.3 Hz, 1H), 4.67 (d, *J* = 3.4 Hz, 1H), 4.42 – 4.33 (m, 4H), 4.18 – 4.14 (m, 1H), 4.14 – 4.11 (m, 1H), 1.58 (s, 3H), 1.44 (s, 3H), 1.36 – 1.33 (m, 6H), 1.30 (s, 3H).

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 178.80, 164.40, 163.11 (t, *J* = 31.9 Hz), 155.69, 139.85, 136.70, 132.73, 130.95, 130.29, 129.58, 129.07, 129.01, 128.70, 128.41, 126.29 (t, *J* = 20.6 Hz), 125.54, 112.59 (t, *J* = 253.6 Hz), 112.44, 109.52, 105.14, 83.36, 79.93, 72.55, 67.36, 62.90, 26.90, 26.73, 26.21, 25.24, 13.89.

¹⁹**F NMR** (565 MHz, Chloroform-*d*) δ -96.02 (d, J = 8.0 Hz).

HRMS (ESI): Calcd for C₃₂H₃₃F₂O₁₀S⁺ [M+H]⁺: 647.1757, found: 647.1749.

4-(3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-oxo-4*H*-thiochromen-2-yl)benzyl 4-(*N*, *N*-dipropylsulfamoyl)benzoate (3al).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =6/1). Product was obtained as a yellow solid (42% yield), m.p. 131–133 °C.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.52 – 8.49 (m, 1H), 8.23 (d, *J* = 8.5 Hz, 2H), 7.91 (d, *J* = 8.5 Hz, 2H), 7.72 – 7.69 (m, 1H), 7.62 – 7.55 (m, 6H), 5.47 (s, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.13 – 3.10 (m, 4H), 1.59 – 1.53 (m, 4H), 1.33 (t, *J* = 7.1 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 6H).
¹³**C NMR** (150 MHz, Chloroform-*d*) δ 179.03, 165.00, 163.28 (t, J = 32.1 Hz), 156.84, 144.55, 137.61, 137.04, 135.16, 133.15, 132.61, 130.40, 130.32, 128.93, 128.52, 128.51, 127.94, 127.09, 126.10 (t, J = 19.1 Hz), 125.51, 112.66 (t, J = 253.3 Hz), 66.56, 62.79, 49.96, 21.95, 13.90, 11.16.

¹⁹**F NMR** (565 MHz, Chloroform-*d*) δ -95.86.

HRMS (ESI): Calcd for C₃₃H₃₄F₂NO₇S₂⁺ [M+H]⁺: 658.1739, found: 658.1731.

4-(3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-oxo-4*H*-thiochromen-2-yl)benzyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (3am).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =8/1). Product was obtained as a yellow oil (61% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.51 – 8.47 (m, 1H), 7.71 – 7.67 (m, 5H), 7.62 – 7.57 (m, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.44 – 7.40 (m, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 6.84 – 6.80 (m, 2H), 5.28 (s, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 1.73 (s, 6H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, Chloroform-*d*) δ 194.13, 179.00 (t, J = 3.0 Hz), 173.44, 163.26 (t, J = 32.0 Hz), 159.46, 156.75, 138.44, 137.12, 136.99, 136.29, 135.17, 132.60, 132.01, 131.18, 130.49, 130.27, 128.90, 128.56, 128.51, 128.34, 128.07, 126.02 (t, J = 20.5 Hz), 125.56, 117.26, 112.63 (t, J = 253.4 Hz), 79.41, 66.61, 62.81, 25.45, 13.91.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -95.95.

HRMS (ESI): Calcd for C₃₇H₃₀ClF₂O₇S⁺ [M+H]⁺: 691.1363, found: 691.1355.

Methyl (2,2-difluoro-2-(4-oxo-2-(*o*-tolyl)-4*H*-thiochromen-3-yl)acetyl)-*L*-valinate (3an).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =8/1). Product was obtained as a yellow oil (46% yield).

¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.51 (d, J = 8.2 Hz, 1H), 7.66 (td, J = 7.6, 1.5 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.38 – 7.33 (m, 2H), 7.29 – 7.25 (m, 2H), 7.11 (t, J =

8.7 Hz, 1H), 4.61 – 4.55 (m, 1H), 3.79 (s, 3H), 2.40 (d, *J* = 6.6 Hz, 3H), 2.33 – 2.25 (m, 1H), 1.07 – 1.02 (m, 6H).

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 178.71, 171.51, 163.78 (td, J = 28.2, 9.5 Hz), 157.25 (d, J = 9.8 Hz), 137.30, 135.44 (d, J = 8.5 Hz), 134.64 (d, J = 6.1 Hz), 132.28, 130.64 (d, J = 3.1 Hz), 129.99 (d, J = 6.7 Hz), 129.55, 129.04 (d, J = 2.7 Hz), 128.15, 128.03, 126.26 (td, J = 19.6, 6.5 Hz), 125.43 (d, J = 3.3 Hz), 125.34, 114.74 (td, J = 257.6, 6.0 Hz), 57.43 (d, J = 2.1 Hz), 52.27, 31.73, 19.43 (d, J = 3.3 Hz), 18.80, 17.86.

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -97.13 – -101.92 (m). HRMS (ESI): Calcd for C₂₄H₂₄F₂NO₄S⁺ [M+H]⁺: 460.1389, found: 460.1396.

Methyl (2,2-difluoro-2-(4-oxo-2-(*o*-tolyl)-4*H*-thiochromen-3-yl)acetyl)-*L*-phenyla laninate (3ao).

Prepared by general procedure G on a 0.2 mmol scale and purified by flash chromatography on silica gel (PE/EA =8/1). Product was obtained as a white solid (51% yield), m.p. 68–69 °C.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.54 (d, J = 7.4 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.61 – 7.56 (m, 2H), 7.40 – 7.36 (m, 1H), 7.36 – 7.33 (m, 1H), 7.32 – 7.25 (m, 7H), 7.15 – 7.10 (m, 1H), 4.98 – 4.92 (m, 1H), 3.73 (d, J = 1.3 Hz, 3H), 3.32 – 3.21 (m, 2H), 2.40 (s, 3H).

¹³**C NMR** (150 MHz, Chloroform-*d*) δ 178.79, 170.92, 163.43 (t, J = 28.4 Hz), 157.41, 137.33, 135.62, 135.44 (t, J = 2.4 Hz), 134.59, 132.33, 130.65, 130.03 (d, J = 2.7 Hz), 129.59, 129.56, 129.07, 128.54, 128.21, 128.02, 127.12, 126.27 (t, J = 20.0 Hz), 125.46, 125.36, 114.58 (t, J = 257.3 Hz), 53.46 (d, J = 4.4 Hz), 52.34, 37.91 (d, J = 12.4 Hz), 19.44 (d, J = 2.0 Hz).

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -95.08 – -106.87 (m).

HRMS (ESI): Calcd for C₂₈H₂₄F₂NO₄S⁺ [M+H]⁺: 508.1389, found: 508.1381.

4. ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra

¹H NMR (600 MHz, Chloroform-*d*) spectrum of **1ag**

¹³C NMR (150 MHz, Chloroform-d) spectrum of 1ag

¹H NMR (400 MHz, Chloroform-*d*) spectrum of **1ah**

¹³C NMR (100 MHz, Chloroform-*d*) spectrum of **1ah**

¹H NMR (600 MHz, Chloroform-d) spectrum of **1ai**

¹³C NMR (150 MHz, Chloroform-*d*) spectrum of **1ai**

¹H NMR (600 MHz, Chloroform-d) spectrum of 1aj

¹³C NMR (150 MHz, Chloroform-*d*) spectrum of **1aj**

¹H NMR (600 MHz, Chloroform-d) spectrum of 1ak

¹³C NMR (150 MHz, Chloroform-*d*) spectrum of **1ak**

¹H NMR (400 MHz, Chloroform-*d*) spectrum of **1al**

¹³C NMR (100 MHz, Chloroform-*d*) spectrum of **1al**

¹H NMR (400 MHz, Chloroform-d) spectrum of 1am

¹³C NMR (100 MHz, Chloroform-*d*) spectrum of **1am**

S46

S48

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of **3a**

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum of **3a**

¹H NMR (400 MHz, Chloroform-*d*) spectrum of **3b**

¹³C NMR (100 MHz, Chloroform-*d*) spectrum of **3b**

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3b

¹H NMR (400 MHz, Chloroform-d) spectrum of 3c

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3c

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3c

¹H NMR (400 MHz, Chloroform-d) spectrum of **3d**

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3d

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3d

¹H NMR (400 MHz, Chloroform-d) spectrum of 3e

¹³C NMR (100 MHz, Chloroform-*d*) spectrum of **3e**

¹⁹F NMR (376 MHz, Chloroform-*d*) spectrum of **3e**

¹H NMR (400 MHz, Chloroform-d) spectrum of **3f**

¹⁹F NMR (376 MHz, Chloroform-*d*) spectrum of **3f**

¹H NMR (400 MHz, Chloroform-d) spectrum of **3g**

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3g

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3g

¹H NMR (400 MHz, Chloroform-d) spectrum of **3h**

¹³C NMR (100 MHz, Chloroform-d) spectrum of **3h**

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3h

¹H NMR (400 MHz, Chloroform-*d*) spectrum of **3i**

¹³C NMR (100 MHz, Chloroform-*d*) spectrum of **3i**

¹H NMR (400 MHz, DMSO-d₆) spectrum of 3j

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3j**

¹⁹F NMR (376 MHz, DMSO-d₆) spectrum of **3j**

¹H NMR (400 MHz, Chloroform-d) spectrum of 3k

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3k

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3k

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3**l

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **31**

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum of **3**I

¹H NMR (400 MHz, Chloroform-d) spectrum of **3m**

¹³C NMR (100 MHz, Chloroform-d) spectrum of **3m**

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of **3m**

¹H NMR (400 MHz, DMSO-d₆) spectrum of **3n**

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3n**

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum of **3n**

¹H NMR (400 MHz, DMSO-d₆) spectrum of 30

 13 C NMR (100 MHz, DMSO- d_6) spectrum of **30**

¹H NMR (400 MHz, Chloroform-d) spectrum of 3p

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3p

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3p

¹H NMR (400 MHz, Chloroform-d) spectrum of **3q**

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3q

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3q

¹H NMR (400 MHz, Chloroform-d) spectrum of 3r

¹³C NMR (100 MHz, Chloroform-d) spectrum of **3r**

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3r

¹H NMR (400 MHz, Chloroform-d) spectrum of 3s

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3s

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3s

¹H NMR (400 MHz, Chloroform-d) spectrum of 3t

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3t

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3t

¹H NMR (400 MHz, Chloroform-d) spectrum of **3u**

¹³C NMR (100 MHz, Chloroform-d) spectrum of **3u**

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of **3u**

¹H NMR (400 MHz, Chloroform-d) spectrum of 3v

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3v

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3v

¹H NMR (400 MHz, Chloroform-d) spectrum of 3w

¹³C NMR (100 MHz, Chloroform-d) spectrum of **3w**

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3w

¹H NMR (400 MHz, Chloroform-d) spectrum of 3x

¹³C NMR (100 MHz, Chloroform-d) spectrum of **3x**

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3x

¹H NMR (400 MHz, Chloroform-d) spectrum of 3y

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3y

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3y

¹H NMR (400 MHz, Chloroform-d) spectrum of 3z

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3z

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3z

¹H NMR (400 MHz, DMSO-d₆) spectrum of 3aa

¹³C NMR (100 MHz, DMSO-d₆) spectrum of **3aa**

¹⁹F NMR (376 MHz, DMSO-d₆) spectrum of 3aa

¹H NMR (400 MHz, Chloroform-d) spectrum of **3ab**

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3ab

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3ab

¹H NMR (600 MHz, Chloroform-d) spectrum of 3ac

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3ac

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3ac

¹H NMR (400 MHz, Chloroform-d) spectrum of 3ad

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3ad

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3ad

¹H NMR (400 MHz, Chloroform-d) spectrum of 3ae

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3ae

¹H NMR (400 MHz, Chloroform-d) spectrum of 3af

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3af

¹H NMR (600 MHz, Chloroform-d) spectrum of **3ag**

¹³C NMR (150 MHz, Chloroform-d) spectrum of 3ag

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of 3ag

¹H NMR (600 MHz, Chloroform-d) spectrum of **3ah**

¹³C NMR (150 MHz, Chloroform-d) spectrum of 3ah

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of **3ah**

¹H NMR (600 MHz, Chloroform-d) spectrum of 3ai

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3ai

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3ai

¹H NMR (600 MHz, Chloroform-d) spectrum of 3aj

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3aj

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3aj

¹H NMR (600 MHz, Chloroform-d) spectrum of **3ak**

¹³C NMR (150 MHz, Chloroform-d) spectrum of 3ak

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of 3ak

¹H NMR (600 MHz, Chloroform-d) spectrum of 3al

¹³C NMR (150 MHz, Chloroform-d) spectrum of 3al

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of 3al

¹H NMR (400 MHz, Chloroform-d) spectrum of 3am

¹³C NMR (100 MHz, Chloroform-d) spectrum of 3am

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of 3am

¹H NMR (600 MHz, Chloroform-d) spectrum of **3an**

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of 3an

¹³C NMR (150 MHz, Chloroform-d) spectrum of 3an

¹H NMR (600 MHz, Chloroform-d) spectrum of 3ao

¹³C NMR (150 MHz, Chloroform-d) spectrum of 3ao

¹⁹F NMR (565 MHz, Chloroform-d) spectrum of 3ao

5. References

[1] C. X. Zhou, A. V. Dubrovsky and R. C. Larock, J. Org. Chem., 2006, 71, 1626-1632.

[2] D. Zhu, Z. Wu, B. Luo and S. Wen, Org. Lett., 2018, 20, 4815-4818.

[3] B. Alcaide, P. Almendros and C. Lazaro-Milla, *Chem. -Eur. J.*, 2018, 4, 8186-8194.

[4] M. Y. Ngai, G. Y. Zhao and S. Lim, J. Am. Chem. Soc., 2023, 145, 8275-8284.

[5] C.-H. Qu, G.-T. Song, J. Xu, W. Yan, C.-H. Zhou, H.-Y. Li, Z.-Z. Chen and Z.-G. Xu, *Org. Lett.*, 2019, **21**, 8169-8173.

[6] T. L. Andersen, M. W. Frederiksen, K. Domino, T. Skrydstrup, *Angew. Chem. Int. Ed.*, 2016, **55**, 10396-10400.

[7] X. Han, Z. Yue, X. Zhang, Q. He and C. Yang, J. Org. Chem., 2013, 78, 4850-4856.

[8] J. Xu, F. Zhang, S. Zhang, L. Zhang, X. Yu, J. Yan and Q. Song, *Org. Lett.*, 2019, **21**, 1112-1115.