Supporting Information for

Dispersion-Induced Cooperative Hydrogen Atom Transfer for Radical Iodoalkylation

Shaoqun Zhu,*a Lizi Jia, A Qi Cheng, Ying Han, Qiu Suna Huaguang Yu, Xiaoyun Chen, and Hong Hou

^aSchool of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
^bKey Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of
Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
^cSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang
212005, China

shaoqun.zhu@yzu.edu.cn

1. General information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents used in reactions were p.A. grade and dried only if indicated. Solvents for chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with F-254 indicator, visualized by irradiation with UV light. Column chromatography was performed using silica gel Merck 60 (particle size 0.063–0.2 mm). Melting points were measured on a Yanaco Micro Melting Point Apparatus, ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded on a Variance VNMR 400 or Bruker AV-600 spectrometer in CDCl₃. For ¹H NMR spectra, data are quoted in the following order: chemical shift (\delta) in parts per million (ppm) downfield of tetramethylsilane, using residual protonated solvent as internal standard (CDCl₃ at 7.26 ppm). Multiplicities are indicated s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), coupling constants (J) are in Hertz (Hz). For proton-decoupled ¹³C NMR spectra, chemical shifts (J) are also quoted in parts per million (ppm) downfield of tetramethylsilane, using deuterated solvent as internal standard (CDCl₃ at 77.0 ppm). High resolution mass spectra (HRMS) were obtained on AB 5800 MALDI-TOF/TOF and are recorded using electrospray ionization (ESI). X-ray crystallographic data were collected using D8 quest X-ray diffractometer. UV-Visible absorption spectroscopies were recorded on a fluorescence photometer (UV-1750, 190-1100nm).

2. Preparation of starting materials

2.1) General procedure for the synthesis of indole-3-carboxaldehyde derivatives

2f-2r, **1x-1ad** were prepared according to the previous reported procedures. Citations to the references containing characterization data for these compounds: $2f^1$, $2g^2$, $2h^3$, $2i^3$, $2j^4$, $2k^5$, 2m, $2n^3$,

 $2q^4$, $1x^6$, $1y^6$, $1z^6$, $1aa^6$, $1ab^6$, $1ac^6$, $1ad^6$ are consistent with the previous reports. **1a-1w** were purchased from energy-chemical, bidepharm and leyan chemical.

2.2) Preparation of 2l

To a solution of aniline (2.0 equiv, 20 mmol, 1.86 g, 1.8 mL) in DMF (20.0 mL), dimethyl allylmalonate (10 mmol, 1.63 mL) was added dropwise at room temperature. The mixture was stirred at 80 °C for 8 h and then diluted with H₂O and extracted with ethyl acetate. Combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure and purified by flash column chromatography on silica gel (ethyl acetate /petroleum ether = 1:15) to give the desired product **2l** as reddish brown soild (1.0 g, 43% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.10 (t, *J* = 8.0 Hz, 1H), 5.82-5.72 (m, 1H), 5.09 (dd, *J* = 28.0, 12.0 Hz, 2H), 3.74 (s, 3H), 3.48 (t, *J* = 8.0 Hz, 1H). 2.73 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 171.5, 166.0, 137.4, 133.6, 128.8, 124.5, 120.1, 117.9, 53.0, 52.5, 34.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₆NO₃⁺ 234.1125; found 234.1128.

3. Unsuccessful examples

The above terminal alkynes were tested under both of the radical iodoalkylative cyclization and iodoalkylation conditions, and very low reaction conversions were observed for those cases.

4. General procedure for the three-component radical iodoalkylative cyclization

Terminal alkynes **1** (2.0 equiv, 0.4 mmol), K_2CO_3 (2.0 equiv, 0.4 mmol, 55.3 mg), CHI₃ (2.0 equiv, 0.4 mmol, 156.0 mg) and a stir bar were added to a sealed tube under a nitrogen atmosphere, MeCN (2.0 mL) as solvent and **2** (0.2 mmol, 1.0 equiv) were added, respectively. The reaction mixture was then stirred under a 450 nm blue LEDs irradiation for 12 h at room temperature. The crude mixture was directly purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1:30 to 1:3) to give the desired products **4a-4ar**.

5. Characterization data of iodoalkylative cyclization products

Dimethyl 3-(4-chlorophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4a)

Yellow solid (69.0 mg, 79% yield); m.p. 106-108 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.30 (m, 4H), 6.21 (d, J = 1.6 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.64-3.58 (m, 1H), 3.36 (dd, J = 12.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 170.9, 147.7, 134.3, 132.3, 128.9, 127.9, 126.1 (d, J = 5.1 Hz, 1C), 64.8, 53.0 (d, J = 4.0 Hz, 1C), 47.3, 38.4, 10.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆ClINaO₄⁺ 456.9674; found 456.9685.

Dimethyl 3-(4-fluorophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4b)

Yellow oil (70.6 mg, 84% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.34 (m, 2H), 7.07-7.03 (m, 2H), 6.16 (d, J = 4.0 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.65-3.58 (m, 1H), 3.37 (dd, J = 8.0, 4.0 MeO₂C CO₂Me Hz, 1H), 3.09 (t, J = 8.0 Hz, 1H), 2.92 (dd, J = 12.0, 8.0 Hz, 1H), 2.50 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.0, 162.7 (d, $J_{C-F} = 249.5$ Hz, 1C), 147.8, 129.9, 128.4 (d, $J_{C-F} = 8.1$ Hz, 1C), 125.3, 115.7 (d, J = 21.2 Hz, 1C), 64.8 53.0, 47.5, 38.5, 11.1. ¹⁹F NMR (376 MHz, CDCl₃): -112.61. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆FINaO₄⁺ 440.9970; found 440.9977.

Dimethyl 3-(4-bromophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4c)

^{Br} Yellow solid (83.9 mg, 88% yield); m.p. 78-80 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.47 (m, 2H), 7.25 (dd, J = 1.2, 4.0 Hz, 2H), 6.22 (d, J = 1.6 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.64-3.57 (m, 1H), 3.35 (q, J = 4.0 Hz, 1H), 3.09 (t, J = 8.0 Hz, 1H), 2.92 (q, J = 8.0 Hz, 1H), 2.49 (dd, J = 8.0, 16.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 170.9, 147.8, 132.7, 131.9, 128.2, 126.1 (d, J = 5.1 Hz, 1C), 122.5, 64.8, 53.0 (d, J = 4.0 Hz, 1C), 47.2, 38.4, 10.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆BrINaO₄⁺ 500.9169; found 500.9168.

Dimethyl 4-(iodomethyl)-3-(p-tolyl) cyclopent-2-ene-1,1-dicarboxylate (4d)

Yellow solid (75.3 mg, 91% yield); m.p. 74-76 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 6.17 (d, J = 4.0 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H),

 $MeO_2C CO_2Me = 3.68-3.62 \text{ (m, 1H)}, 3.41 \text{ (dd, } J = 12.0, 4.0 \text{ Hz}, 1\text{H}), 3.09 \text{ (t, } J = 8.0 \text{ Hz}, 1\text{H}), 2.91 \text{ (q, } J = 8.0 \text{ Hz}, 1\text{H}), 2.51 \text{ (dd, } J = 16.0, 4.0 \text{ Hz}, 1\text{H}), 2.35 \text{ (s, 3H)}. {}^{13}C \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3): \delta 171.2, 171.2, 148.7, 138.5, 130.9, 129.4, 126.51, 124.4 \text{ (d, } J = 4.0 \text{ Hz}, 1\text{C}), 64.7, 52.9, 47.5, 38.5, 21.2 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{C}), 11.5. \text{ HRMS} (ESI) \text{ m/z: } [\text{M}+\text{Na}]^+ \text{ calcd for } \text{C}_{17}\text{H}_{19}\text{INaO}_4^+ 437.0220; \text{ found } 437.0215.$

Dimethyl 3-(4-ethylphenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4e)

Et Yellow oil (71.2 mg, 83% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:20); ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.18 (d, J = 1.6 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.70-3.63 (m, 1H), 3.43 (dd, J = 8.0 Hz, 2H), 6.18 (d, J = 1.6 Hz, 1H), 3.09 (t, J = 12.0 Hz, 1H), 2.92 (q, J = 8.0 Hz, 1H), 2.65 (q, J = 8.0 Hz, 2H), 2.50 (dd, J = 16.0, 4.0 Hz, 1H), 1.23 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): 171.2, 171.2, 148.7, 144.8, 131.1 128.2, 126.6, 124.4, 64.7, 52.9 (d, J = 4.0 Hz, 1C), 47.5, 38.5, 28.6, 15.4, 11.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₁INaO₄⁺ 451.0377; found 451.0369.

Dimethyl 4-(iodomethyl)-3-(4-propylphenyl) cyclopent-2-ene-1,1-dicarboxylate (4f)

ⁿPr Yellow oil (63.0 mg, 71% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.18 (d, J = 4.0 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.70-3.63 (m, 1H), 3.43 (dd, J= 12.0, 4.0 Hz, 1H), 3.09 (t, J = 12.0 Hz, 1H), 2.91 (dd, J = 12.0, 8.0 Hz, 1H), 2.58 (t, J = 8.0 Hz, 2H), 2.51 (dd, J = 12.0, 4.0 Hz, 1H), 1.64 (dd, J = 12.0, 8.0 Hz, 2H), 0.94 (t, J= 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.2, 171.2 148.7, 143.3, 131.1, 128.8, 126.5, 124.4, 64.7, 52.9 (d, J = 4.0 Hz, 1C), 47.5, 38.5, 37.7, 24.4, 13.8 11.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₃INaO₄⁺ 465.0533; found 465.0524.

Dimethyl 3-(4-butylphenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4g)

Yellow oil (76.5 mg, 84% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.18 (d, J = 4.0 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.70-3.62 (m, 1H), 3.43 (dd,

 $MeO_{2}C^{C}O_{2}Me \quad J = 12.0, 4.0 \text{ Hz}, 1\text{H}), 3.09 \text{ (t, } J = 12.0 \text{ Hz}, 1\text{H}), 2.91 \text{ (dd, } J = 12.0, 4.0 \text{ Hz}, 1\text{H}), 2.60 \text{ (t, } J = 8.0 \text{ Hz}, 2\text{H}), 2.51 \text{ (dd, } J = 12.0, 4.0 \text{ Hz}, 1\text{H}), 1.61-1.57 \text{ (m, } 2\text{H}), 1.40-1.32 \text{ (m, } 2\text{H}), 0.93 \text{ (t, } J = 8.0 \text{ Hz}, 3\text{H}). {}^{13}C \text{ NMR} \text{ (101 MHz, CDCl}_{3}): \delta 171.2 \text{ (d, } J = 6.1 \text{ Hz}, 1\text{C}), 148.7, 143.5, 131.0, 128.8, 126.5, 124.4, 64.7, 52.9 \text{ (d, } J = 1.0 \text{ Hz}, 1\text{C}), 47.5, 38.5, 35.4, 33.5, 22.3, 13.9, 11.5. HRMS \text{ (ESI) m/z: } [M+Na]^+ \text{ calcd for } C_{20}H_{25}INaO_{4}^+ 479.0690\text{; found } 479.0701.$

Dimethyl 3-(4-(tert-butyl) phenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4h)

^{Bu} Yellow oil (83.5 mg, 92% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 4.0 Hz, 1H), 7.32 (d, J = 4.0 Hz, 1H), 6.19 (d, J = 4.0 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.71-3.64 (m, 1H), 3.45 (dd, J = 8.0, 4.0 Hz, 1H), 3.08 (t, J = 8.0 Hz, 1H), 2.92 (dd, J = 12.0, 8.0 Hz, 1H), 2.50 (dd, J = 16.0, 4.0 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 171.2, 171.2 151.7, 148.5, 130.8, 126.3, 125.6, 124.5, 64.7, 52.9 (d, J = 5.0 Hz, 1C), 47.6, 38.6, 34.6, 31.2, 11.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₂₅INaO₄⁺ 479.0690; found 479.0689.

Dimethyl 4-(iodomethyl)-3-(4-methoxyphenyl) cyclopent-2-ene-1,1-dicarboxylate (4i)

Yellow oil (58.6 mg, 68% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, J = 4.0, 2.0 Hz, 2H), 6.88 (dd, J = 4.0, 2.0 Hz, 2H), 6.11 (d, J = 4.0 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.73 (s, 3H), 3.66-3.60 (m, 1H), 3.41 (dd, J = 12.0, 4.0 Hz, 1H), 3.09 (t, J = 8.0 Hz, 1H), 2.89 (q, J = 8.0 Hz, 1H), 2.51 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.3,

171.3, 159.8, 148.2, 127.9, 126.2, 123.3, 114.1, 64.7, 55.3, 52.9 (d, J = 3.0 Hz, 1C), 47.6, 38.5, 11.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₁₉INaO₅⁺ 453.0169; found 453.0176.

Dimethyl 3-(4-acetylphenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4j)

Ac Yellow solid (61.5 mg, 70% yield); m.p. 130-132 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:9); ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 6.33 (d, J = 1.2 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.70-3.65 (m, 1H), 3.36 (dd, J = 12.0, 4.0 Hz, 1H), 3.11 (t, J = 12.0 Hz, 1H), 2.94 (q, J = 8.0 Hz, 1H), 2.60 (s, 3H), 2.50 (dd, J = 12.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 197.3, 170.7, 147.9, 138.4, 136.7, 128.7, 127.8, 126.8, 64.9, 53.0, 47.1, 38.4, 26.6, 10.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₉INaO₅⁺ 465.0170; found 465.0162.

Dimethyl 4-(iodomethyl)-3-(4-(trifluoromethyl) phenyl) cyclopent-2-ene-1,1-dicarboxylate (4k)

Yellow solid (79.6 mg, 85% yield); m.p. 78-80 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 6.31 (d, J = 1.6 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H),

MeO₂C[']CO₂Me 3.69-3.62 (m, 1H), 3.36 (dd, J = 12.0, 4.0 Hz, 1H), 3.10 (t, J = 12.0 Hz, 1H), 2.96 (q, J = 8.0 Hz, 1H), 2.50 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 147.7, 137.4 (d, $J_{C-F} = 1.0$ Hz, 1C), 130.3 (q, $J_{C-F} = 33.3$ Hz, 1C), 127.8 (d, $J_{C-F} = 8.1$ Hz, 1C), 127.0, 125.7 (d, $J_{C-F} = 3.0$ Hz, 1C), 122.6, 64.9, 53.1 (d, J = 7.1 Hz, 1C), 47.2, 38.4, 10.7. ¹⁹C NMR (376 MHz, CDCl₃): -62.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₁₆F₃INaO₄⁺ 490.9938; found 490.9943.

Dimethyl 3-([1,1'-biphenyl]-4-yl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4l)

F₃C

Yellow solid (87.3 mg, 92% yield); m.p. 128-130 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.0 Hz, 4H), 7.48-7.43 (m, 4H), 7.36 (t, J = 8.0 Hz, 1H), 6.28 (s, 1H), 3.81 (s, 3H), 3.75 (s,

$$\begin{split} & \mathsf{MeO_2C'CO_2Me} \quad 3\mathrm{H}, 3.71 \text{ (s, 1H)}, 3.46 \text{ (d, } J = 12.0 \text{ Hz}, 1\mathrm{H}), 3.14 \text{ (t, } J = 12.0 \text{ Hz}, 1\mathrm{H}), 2.95 \text{ (dd, } J = 12.0, 8.0 \text{ Hz}, 1\mathrm{H}), 2.54 \text{ (dd, } J = 12.0, 4.0 \text{ Hz}, 1\mathrm{H}). {}^{13}\mathrm{C} \text{ NMR} \text{ (101 MHz, CDCl_3): } \delta 171.1, 171.1, 148.4, 141.3, 140.3, 132.7, 128.8, 127.6, 127.4, 127.1, 127.0, 125.3, 64.8, 53.0, 47.5, 38.5, 11.3. \\ & \mathsf{HRMS} \text{ (ESI) m/z: } [\mathrm{M+Na}]^+ \text{ calcd for } \mathrm{C_{22}H_{21}INaO_4^+} 499.0377; \text{ found } 499.0367. \end{split}$$

Dimethyl 3-(4-acetamidophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4m)

AcHN Yellow oil (41.1 mg, 45% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:2); ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.0 Hz, 1H), 7.43 (s, 1H), 7.33 (d, J = 8.0 Hz, 2H), 6.16 (s, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.65-3.59 (m, 1H), 3.39 (dd, J = 8.0 Hz, 2H), 6.16 (s, 1H), 3.09 (t, J = 8.0 Hz, 1H), 2.89 (dd, J = 12.0, 4.0 Hz, 1H), 2.50 (d, J = 16.0, 4.0 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.3, 171.0, 149.0, 136.0, 134.1, 130.7, 128.4, 128.2, 127.9, 125.7, 64.9, 52.9, 49.1, 38.7, 20.4, 11.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₀INNaO₅⁺ 480.0278; found 480.027.

Dimethyl 3-(4-ethynylphenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4n)

Yellow oil (43.1 mg, 51% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.25 (d, J = 4.0 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.67-3.61 (m, 1H), 3.37 (dd, J = 8.0, 4.0 Hz, 1H), 3.14 (s, 1H), 3.09 (t, J = 12.0 Hz, 1H), 2.92 (dd, J = 12.0, 8.0 Hz, 1H), 2.51 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 148.1, 134.2,

132.4, 126.5, 126.4, 122.1, 83.2, 78.4, 64.8, 53.0, 47.2, 38.4, 11.0. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{18}H_{17}INaO_4^+$ 447.0064; found 447.0075.

Dimethyl 3-(3-chlorophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (40)

Yellow oil (45.5 mg, 84% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.38 (s, 1H), 7.30-7.27 (m, 2H), 7.25-7.24 (m, 1H), 6.24 (d, J = 1.6 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.64-3.58 (m, 1H), 3.37 (dd, J = 12.0, 4.0 Hz, 1H), 3.10 (t, J = 8.0 Hz, 1H), 2.92 (dd, J = 16.0, 8.0 Hz, 1H), 2.50 (dd, J = 12.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 170.8, 147.6, 135.7, 134.7, 130.0, 128.5 (d, J = 3.0 Hz, 1C), 126.9, 126.8, 124.8, 64.8, 53.1 (d, J = 1.6 Hz, 1C), 47.2, 38.4, 10.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆CIINaO₄⁺ 456.9674; found 456.9676.

Dimethyl 3-(3-fluorophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4p)

Dimethyl 3-(3-bromophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4q)

Br Yellow oil (63.4 mg, 66% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.54 (t, J = 4.0 Hz, 1H), 7.45-7.43 (m, 1H), 7.31-7.28 (m, 1H), 7.23 (t, J = 8.0 Hz, 1H), 6.23 (d, J = 4.0 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.64-3.57 (m, 1H), 3.36 (dd, J = 12.0, 4.0 Hz, 1H), 3.10 (t, J = 8.0 Hz, 1H), 2.92 (dd, J = 12.0, 8.0 Hz, 1H), 2.49 (dd, J = 16.0, 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 170.8, 170.8, 147.5, 136.0, 131.4, 130.3, 129.6, 126.9, 125.2, 122.9, 64.8, 53.0, 47.2 38.4, 10.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆BrINaO₄⁺ 500.9169; found 500.9177.

Dimethyl 4-(iodomethyl)-3-(3-methoxyphenyl) cyclopent-2-ene-1,1-dicarboxylate (4r)

Yellow oil (58.1 mg, 68% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:15); ¹H NMR (400 MHz, CDCl₃): δ 7.28 (t, J = 8.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 4.0 Hz, 1H), 6.88-6.85 (m, 1H), 6.22 (d, J = 1.6 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 3.68-3.61 (m, 1H), 3.42 (dd, J = 12.0, 4.0 Hz, 1H), 3.11 (t, J = 8.0 Hz, 1H), 2.93 (dd, J = 16.0, 8.0 Hz, 1H), 2.50 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 171.0, 159.8, 148.7, 135.2, 129.7, 125.6, 119.0, 113.9, 112.4, 64.8, 55.3, 53.0, 47.5, 38.5, 11.3. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₁₉INaO₅⁺ 453.0169; found 453.0161.

Dimethyl 3-(2-chlorophenyl)-4-(iodomethyl) cyclopent-2-ene-1,1-dicarboxylate (4s)

Yellow oil (73.7 mg, 85% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.36 (m, 1H), 7.32-7.30 (m, 1H), 7.27-7.23 (m, 2H), 6.11 (d, J = 1.6 Hz, 1H), 3.81 (s, 4H), 3.75 (s, 3H), 3.23-3.20 (m, 1H), 3.04-2.95 (m, 2H), 2.35-2.30 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.0, 170.6,

147.9, 133.7, 132.3, 131.2, 130.1 (d, J = 5.1 Hz, 1H), 130.0, 129.4, 126.8, 64.7, 53.0 (t, J = 4.0 Hz, 1C), 47.9, 38.9, 11.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆ClINaO₄⁺ 456.9674; found 456.9674.

Dimethyl 4-(iodomethyl)-3-(o-tolyl) cyclopent-2-ene-1,1-dicarboxylate (4t)

MeO₂C´CO₂Me

Yellow oil (79.8 mg, 96% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.13 (m, 4H), 5.95 (d, J = 4.0 Hz, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 3.62-3.54 (m, 1H),3.20 (dd, J = 8.0, 4.0 Hz, 1H), 3.03 (d, J

 $MeO_2C' CO_2Me = 8.0 Hz, 1H), 2.98 (t, J = 8.0 Hz, 1H), 2.35 (s, 3H), 2.31 (t, J = 4.0 Hz, 1H).$ ¹³C NMR (101 MHz, CDCl₃): δ 171.3, 170.9, 149.0, 135.9, 134.0, 130.7, 128.3, 128.2, 127.8, 125.6, 64.8, 52.9 (d, J = 2.0 Hz, 1C), 49.0, 38.7, 20.4, 11.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₁₉INaO₄⁺ 437.0220; found 437.0216.

Dimethyl 4-(iodomethyl)-3-phenylcyclopent-2-ene-1,1-dicarboxylate (4u)

Yellow oil (64.7 mg, 81% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.29 (m, 5H), 6.22 (d, J = 4.0 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.71-3.64 (m, 1H), 3.41 (dd, J = 12.0, 4.0 Hz, 1H), 3.10 (t, J =8.0 Hz, 1H), 2.93 (q, J = 8.0 Hz, 1H), 2.50 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR

(101 MHz, CDCl₃): δ 171.1, 171.1, 148.8, 133.8, 128.7, 128.5, 126.6, 125.3 (d, *J* = 4.04 Hz, 1C), 64.8, 53.0, 47.4, 38.5, 11.3. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₇INaO₄⁺ 423.0064; found 423.0069.

Dimethyl 4-(iodomethyl)-3-(naphthalen-2-yl) cyclopent-2-ene-1,1-dicarboxylate (4v)

Yellow solid (52.9 mg, 59% yield); m.p. 103-105 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.81 (m, 3H), 7.79 (s, 1H), 7.56 (dd, J = 8.0, 4.0 Hz, 1H), 7.52-7.47 (m, 2H), 6.36 (d, J = 4.0 Hz, 1H), 3.83 (s, 3H), 3.81-3.78 (m, 1H), 3.76 (s, 3H), 3.49 (dd, J = 12.0, 4.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.98 (dd, J = 12.0, 8.0 Hz, 1H), 2.58 (dd, J = 12.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 171.1, 148.8, 133.2, 133.2, 131.2, 128.5, 128.2, 127.7, 126.5, 126.5, 125.8, 125.6, 124.6, 64.9, 53.0 (q, J = 1.0 Hz, 1C), 47.5, 38.6, 11.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₁₉INaO₄⁺ 473.0220; found 473.0220.

Dimethyl 4-(iodomethyl)-3-(thiophen-2-yl) cyclopent-2-ene-1,1-dicarboxylate (4w)

Yellow oil (49.5 mg, 61% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, J = 4.8, 2.8 Hz, 1H), 7.24 (dd, J = 2.8, 1.2 Hz, 1H), 7.20 (dd, J = 5.2, 1.2 Hz, 1H), 6.16 (d, J = 1.2 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.60-3.53 (m, 1H), 3.50 (dd, J = 12.0, 4.0 Hz, 1H), 3.14 (t, J = 8.0 Hz, 1H), 2.85 (q, J = 8.0 Hz, 1H), 2.56 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 171.1, 143.6, 135.4, 126.4, 126.2, 124.3 (d, J = 4.04 Hz, 1C), 122.4, 64.8, 53.0, 48.7, 38.5, 11.1. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₄H₁₅INaO₄S⁺ 428.9628; found 428.9619.

Dimethyl (E)-4-(iodomethyl)-3-styrylcyclopent-2-ene-1,1-dicarboxylate (4x)

Yellow oil (34.4mg, 40% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 1H), 6.80 (d, J = 16.0 Hz, 1H), 6.61 (d, J = 16.0 Hz, 1H), 6.04 (s, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.57-3.54 (m, 1H), 3.49 (t, J = 8.0 Hz, 1H), 3.18 (t, J = 8.0 Hz, 1H), 2.79 (q, J = 8.0 Hz, 1H), 2.59 (dd, J = 16.0, 8.0 Hz,

1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 171.1, 147.1, 136.3, 132.1, 128.7, 128.2, 128.1, 126.6, 122.3, 64.6, 53.0 (d, J = 6.1 Hz, 1C), 46.9, 38.6, 11.0. HRMS (ESI): [M+Na]⁺ calcd for C₁₈H₁₉INaO₄⁺ 449.0220; found 449.0224.

Dimethyl (E)-4-(iodomethyl)-3-(2-methylstyryl)cyclopent-2-ene-1,1-dicarboxylate (4y)

Me MeO₂C CO₂Me

Yellow oil (63.4mg, 72% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.46 (t, J = 4.0 Hz, 1H), 7.18 (q, J = 4.0 Hz, 3H), 6.85 (d, J = 16.0 Hz, 1H), 6.67 (d, J = 16.0 Hz, 1H), 6.04 (s, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.56 (dd, J = 12.0, 4.0 Hz, 1H), 3.50 (t, J = 8.0 Hz,

MeO₂C CO₂Me 1H), 3.21 (t, J = 8.0 Hz, 1H), 2.81 (dd, J = 12.0, 8.0 Hz, 1H), 2.58 (dd, J = 4.0, 12.0 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 147.5, 135.9, 135.5, 130.5, 130.1, 128.1, 127.9, 126.3, 125.3, 123.5, 77.4, 77.0, 76.7, 64.7, 53.0, 47.2, 38.6, 19.9, 10.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₁INaO₄⁺ 463.0377; found 463.0381.

Dimethyl (E)-4-(iodomethyl)-3-(2-methylstyryl)cyclopent-2-ene-1,1-dicarboxylate (4z)

Yellow oil (45.8 mg, 52% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.0 Hz, 3H), 7.10-7.08 (m, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.58 (d, J = 20.0 Hz, 1H), 6.03 (s, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.56 (dd, J = 12.0, 4.0 Hz, 1H), 3.48 (t, J = 12.0 Hz, 1H),

 $MeO_{2}C'CO_{2}Me = 3.18 (t, J = 8.0 Hz, 1H), 2.79 (dd, J = 12.0, 8.0 Hz, 1H), 2.59 (dd, J = 12.0, 4.0 Hz, 1H), 2.36 (s, 3H). {}^{13}C NMR (101 MHz, CDCl_{3}): \delta 171.1, 147.2, 138.3, 136.3, 132.3, 129.1, 128.6, 127.9, 127.4, 123.7, 122.1, 64.6, 53.0, 47.0, 38.7, 21.4, 11.0. HRMS (ESI) m/z: <math>[M+Na]^{+}$ calcd for C₁₉H₂₁INaO₄⁺ 463.0377; found 463.0365.

Dimethyl (E)-4-(iodomethyl)-3-(4-methylstyryl)cyclopent-2-ene-1,1-dicarboxylate (4aa)

Yellow oil (34.9mg, 43% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.75 (d, J = 16.0 Hz, 1H), 6.58 (d, J = 16.0 Hz, 1H), 6.01 (s, 1H), 3.77 (s, 3H), 3.75(s, 3H), 3.55 (dd, J = 12.0, 4.0 Hz, 1H), 3.48 (t, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.78 (dd, J = 12.0, 8.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.78 (dd, J = 12.0, 8.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.78 (dd, J = 12.0, 8.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.78 (dd, J = 12.0, 8.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.78 (dd, J = 12.0, 8.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.78 (dd, J = 12.0, 8.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 2.59 (dd, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 3.17 (t, J = 12.0 Hz, 1H), 2.78 (dd, J = 12.0 Hz, 1H), 3.17 (t, J

12.0, 4.0 Hz,, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 147.3, 138.3, 133.6, 132.1, 129.4, 127.5, 126.5, 121.3, 64.6, 53.0, 47.1, 38.7, 21.2, 11.0, 1.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₁INaO₄⁺ 463.0377; found 463.0385.

Dimethyl (E)-3-(2-([1,1'-biphenyl]-4-yl)vinyl)-4-(iodomethyl)cyclopent-2-ene-1,1dicarboxylate (4ab)

Yellow solid (49.3mg, 49% yield); m.p. 95-97 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.60 (t, J = 8.0 Hz, 4H), 7.50 (d, J = 8.0 Hz, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.38-7.33 (m, 1H), 6.85 (d, J = 20.0 Hz, 1H), 6.65 (d, J = 16.0 Hz, 1H), 6.07 (s, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 3.58 (dd, J = 12.0, 4.0 Hz, 1H), 3.51 (t, J = 8.0 Hz, 1H), 3.20 (t,

J = 8.0 Hz, 1H), 2.81 (q, J = 8.0 Hz, 1H), 2.61 (dd, J = 12.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 147.2, 141.0, 140.4, 135.4, 131.7, 128.8, 128.2, 127.5, 127.4, 127.1, 126.9, 122.3,

64.7, 53.0, 47.0, 38.7, 11.0. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{24}H_{23}INaO_4^+$ 525.0533; found 525.0535.

Dimethyl (E)-4-(iodomethyl)-3-(2-(naphthalen-2-yl)vinyl)cyclopent-2-ene-1,1-dicarboxylate (4ac)

Yellow solid (53.6mg, 56% yield); m.p. 88-90 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.83-7.79 (m, 4H), 7.62 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.48-7.45 (m, 2H), 6.93 (d, J = 16.0 Hz, 1H), 6.78 (d, J = 16.0 Hz, 1H), 6.09 (s, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 3.61 (dd, J = 12.0, 4.0 Hz, 1H), 3.58-3.51 (m, 1H), 3.22 (t, J = 8.0 Hz, 1H), 2.82 (q, J = 8.0 Hz, 1H), 2.62 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR

(101 MHz, CDCl₃): δ 171.1, 147.2, 133.9, 133.5, 133.3, 132.3, 128.4, 128.3, 128.1, 127.7, 127.2, 126.5, 126.3, 123.1, 122.6, 64.7, 53.0, 47.1, 38.7, 11.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₂₁INaO₄⁺ 499.0377; found 499.0367.

Dimethyl (E)-4-(iodomethyl)-3-(2-phenylprop-1-en-1-yl)cyclopent-2-ene-1,1-dicarboxylate (4ad)

Yellow oil (44.3mg, 50% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.41 (m, 2H), 7.37-7.33 (m, 2H), 7.30-7.28 (m, 1H), 6.08 (d, J = 4.0 Hz, 1H), 5.96 (s, 1H), 3.79 (s, 3H), 3.75

 $MeO_2C'CO_2Me$ (s, 3H), 3.40 (dd, J = 12.0, 4.0 Hz, 1H), 3.24-3.21 (m, 1H), 3.17 (t, J = 8.0 Hz, 1H), 2.84 (dd, J = 16.0, 8.0 Hz, 1H), 2.30 (t, J = 8.0 Hz, 1H), 2.26 (d, J = 4.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.4, 171.2, 146.1, 143.2, 142.0, 128.4, 127.6, 127.3, 126.0, 120.0 (d, J = 6.1 Hz, 1C), 65.0, 53.0, 49.6, 38.2, 18.4, 11.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₂IO₄⁺ 441.0557; found 441.0549.

Tetramethyl 3,3'-(1,4-phenylene)bis(4-(iodomethyl)cyclopent-2-ene-1,1-dicarboxylate) (4ae)

Yellow solid (78.3 mg, 54% yield); m.p. 64-66 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:6); ¹H NMR (400 MHz, CDCl₃): δ 7.39 (s, 4H), 6.25 (d, J = 1.2 Hz, 2H), 3.80 (s, 6H), 3.74 (s, 6H), 3.68-3.61 (m, 2H), 3.42-3.37 (m, 2H), 3.13-3.07 (m, 2H), 2.93 (dd, J = 12.0, 8.0 Hz, 2H).2.51 (dd, J = 12.0, 4.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 171.0 (d, J = 2.0 Hz, 1C), 148.1 (d, J = 4.0 Hz, 1C), 133.9 (d, J = 2.0 Hz, 1C), 127.0 (d, J = 1.0

^{MeO₂C CO₂Me Hz, 1C), 125.9, 64.8, 53.0 (d, J = 1.0 Hz, 1C), 47.3, 38.4, 11.1 (d, J = 2.0 Hz, 1C). HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₆H₂₈I2NaO₈⁺ 744.9766; found 744.9764.}

Dimethyl 3-(4-chlorophenyl)-4-(iodomethyl)-4-methylcyclopent-2-ene-1,1-dicarboxylate (4af)

Yellow solid (60.8 mg, 68% yield); m.p. 83-85 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:15); ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.29 (m, 2H), 7.27 (s, 1H), 7.25 (dd, J = 2.0, 1.6 Hz, 1H), 5.91 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.28 (dd, J = 16.0, 8.0 Hz, 2H), 2.77 (d, J = 12.0 Hz, 1H), 2.52 (d, J = 16.0 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 171.0, 151.0, 134.1, 133.4, 129.4, 128.5, 127.5, 63.3, 53.1, 53.0, 51.4, 46.2, 26.8, 20.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₉ClIO₄⁺

449.0011; found 449.0011.

Dimethyl 3-(4-chlorophenyl)-4-(2-iodopropan-2-yl)cyclopent-2-ene-1,1-dicarboxylate (4ag)

Yellow oil (48.2 mg, 52% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 12.0 Hz, 2H), 5.91 (s, 1H), 3.76 (s, 6H), 3.73 (d, J = 4.0 Hz, 1H), 3.26 (s, 2H), 1.76 (s, 3H), 1.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.2, 148.3, 133.6, 131.7, 129.5, 128.1, 127.1, 62.8, 52.9, 39.2, 23.5, 21.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for

C₁₈H₂₀ClINaO₄⁺ 484.9987; found 484.9977.

Dimethyl 3-(4-chlorophenyl)-4-(1-iodoethylidene)cyclopent-2-ene-1,1-dicarboxylate (4ah)

Yellow oil (61.0 mg, 66% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.22 (s, 1H), 3.77 (s, 6H), 3.41 (s, 2H), 2.62 (s, 3H). ¹³C NMR (101 MHz,

 $MeO_{2}C'CO_{2}Me CDCl_{3}: \delta 170.2, 148.8, 142.1, 137.0, 134.0, 133.4, 131.2, 128.0, 85.1, 62.4, 53.2$ (d, *J* = 3.0 Hz, 1C), 39.9, 34.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₈INNaO₄S₂⁺ 468.9674; found 468.9665.

Diethyl 3-(4-chlorophenyl)-4-(iodomethylene)cyclopent-2-ene-1,1-dicarboxylate (4ai)

C

Yellow oil (52.8 mg, 61% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 1H), 6.39 (s, 1H), 6.24 (t, J = 4.0 Hz, 1H), 3.80 (s, 6H), 3.32 (d, J = 4.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 170.1, 152.6, 146.1, 134.3, 131.7, 129.6, 129.1, 128.8,

128.4, 73.4, 62.6, 53.3, 43.40. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{16}H_{14}CIINaO_4^+$ 454.9518; found 454.9525.

Methyl 3-(4-chlorophenyl)-4-(iodomethyl)-1-(methylsulfonyl)cyclopent-2-ene-1-carboxylate (4aj)

Hz, 4H), 2.62 (q, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 167.9, 154.1, 135.1, 131.8, 129.1,

128.1, 121.2, 82.9, 53.8, 46.2, 37.5, 35.2, 11.9. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{15}H_{16}CIINaO_4S^+$ 476.9395; found 476.9392.

Methyl 1-acetyl-3-(4-chlorophenyl)-4-(iodomethyl)cyclopent-2-ene-1-carboxylate (4ak)

^{Cl} Yellow oil (45.1 mg, 54% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:6); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.29 (m, 4H), 6.24 (dd, J = 8.0, 1.6 Hz, 1H), 3.77 (d, J = 24.0 Hz, 3H), 3.61-3.52 (m, 1H), 3.37-3.32 (m, 1H), 3.11-3.03 (m, 1H), 2.94-2.78 (m, 1H), 2.48-2.33 (m, 1H), 2.26 (d, J = 40.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 202.6 (d, J = 9.1 Hz, 1C), 171.4 (d, J = 8.1 Hz,), 148.1 (d, J = 7.1 Hz, 1C), 134.3, 132.3 (d, J = 8.0 Hz, 1C), 129.0, 127.9, 126.1 (d, J = 24.2 Hz, 1C), 71.7 (d, J = 8.1 Hz, 1C), 53.0, 47.1 (d, J = 27.3 Hz, 1C), 36.9 (d, J = 5.0 Hz, 1C), 26.8 (d, J = 68.7 Hz, 1C), 11.3 (d, J = 15.2Hz, 1C). HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆ClINaO₃⁺ 440.9725; found 440.9719.

Methyl 3-(4-chlorophenyl)-4-(iodomethyl)-1-(phenylcarbamoyl)cyclopent-2-ene-1carboxylate (4al)

^{C1} Yellow oil (68.7 mg, 69% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:6); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 16.0 Hz, 1H), 7.57-7.49 (m, 2H), 7.36-7.29 (m, 6H), 7.16-7.09 (m, 1H), 6.30 (dd, J = 16.0, 1.6 Hz, 1H), 3.82 (d, J = 28.0 Hz, 3H), 3.66-3.55 (m, 1H), 3.41-3.36 (m, 1H), 3.33-3.17 (m, 1H), 3.14-2.95 (m, 1H), 2.75-2.47 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 172.3 (d, J = 47.0 Hz, 1C), 167.5 (d, J = 8.0 Hz, 1C), 149.5, 148.5, 137.2 (d, J = 6.1 Hz, 1C), 134.5 (d, J = 9.1 Hz, 1C), 132.1, 128.9 (t, J = 2.0 Hz, 1C), 127.9 (d, J = 4.0 Hz, 1C), 126.2 (d, J = 4.0 Hz, 1C), 124.7 (d, J = 2.0 Hz, 1C), 119.9 (d, J = 11.1 Hz, 1C), 66.7 (d, J = 6.3 Hz, 1C), 53.3 (d, J = 11.1 Hz, 1C), 46.7 (d, J = 26.3Hz, 1C), 38.3 (d, J = 11.1 Hz, 1C), 11.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₀ClINO₃⁺ 496.0171; found 496.0165.

Methyl 1-(tert-butylcarbamoyl)-3-(4-chlorophenyl)-4-(iodomethyl)cyclopent-2-ene-1carboxylate (4am)

Yellow oil (39.2 mg, 41% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:6); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.26 (m, 4H), 6.19 (dd, J = 20.0, 4.0 Hz, 1H),6.14-6.04 (m, 1H) 3.77 (d, J = 24.0 Hz, 3H), 3.59-3.49 (m, 1H), 3.38-3.33

 $\begin{array}{l} {}_{\mathsf{MeO}_2\mathsf{C}} \widehat{}_{\mathsf{C}(\mathsf{O})\mathsf{NH}^\mathsf{n}\mathsf{Bu}} \quad (\mathsf{m}, 1\mathsf{H}), \ 3.31\text{-}3.22 \ (\mathsf{m}, 2\mathsf{H}), \ 3.21\text{-}2.80 \ (\mathsf{m}, 2\mathsf{H}), \ 2.68\text{-}2.32 \ (\mathsf{m}, 1\mathsf{H}), \ 1.56\text{-}1.42 \\ (\mathsf{m}, 2\mathsf{H}), \ 1.39\text{-}1.29 \ (\mathsf{m}, 2\mathsf{H}), \ 0.95\text{-}0.88 \ (\mathsf{m}, 3\mathsf{H}). \ ^{13}\mathsf{C} \ \mathsf{NMR} \ (101 \ \mathsf{MHz}, \mathsf{CDCl}_3): \ \delta \ 172.3 \ (\mathsf{d}, J = 33.3\mathsf{Hz}, 1\mathsf{C}), \ 169.7 \ (\mathsf{d}, J = 49.5 \ \mathsf{Hz}, 1\mathsf{C}), \ 148.2 \ (\mathsf{d}, J = 80.8 \ \mathsf{Hz}, 1\mathsf{C}), \ 134.3, \ 132.3, \ 129.0, \ 127.9 \ (\mathsf{d}, J = 8.1 \ \mathsf{Hz}, 1\mathsf{C}), \ 126.6, \ 65.8, \ 53.1, \ 47.0, \ 39.8, \ 38.4, \ 31.4, \ 19.9, \ 13.7, \ 11.4. \ \mathsf{HRMS} \ (\mathsf{ESI}) \ \mathsf{m/z}: \ [\mathsf{M}+\mathsf{Na}]^+ \ \mathsf{calcd} \\ \mathsf{for} \ \mathsf{C}_{19}\mathsf{H}_{23}\mathsf{CIINNaO}_3^+ \ 498.0303; \ \mathsf{found} \ 498.0308. \end{array}$

Diethyl 3-(4-chlorophenyl)-4-(iodomethyl)cyclopent-2-ene-1,1-dicarboxylate (4an)

Yellow solid (49.9 mg, 54% yield); m.p. 95-97 °C; $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.32 (s, 4H), 6.22 (d, J = 1.6 Hz, 1H), 4.29-4.15 (m, 4H), 3.64-3.58 (m, 1H), 3.36 (dd, J = 12.0, 8.0 Hz, 1H), 3.09 (t, J = 8.0 Hz, 1H), 2.89 (q, J = 8.0 Hz, 1H), 2.51 (dd, J = 16.0, 4.0 Hz, 1H), 1.30 (t, J = 8.0 Hz, 3H), 1.25 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃): δ 170.5, 147.5, 134.3, 132.4, 128.9, 127.9, 126.3, 65.0, 61.9, 47.4, 38.2, 14.1, (d, *J* = 6.1 Hz, 1C), 11.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₀ClINNaO₄⁺ 484.9987 found 484.9988.

1,1'-(3-(4-Chlorophenyl)-4-(iodomethyl)cyclopent-2-ene-1,1-diyl)bis(ethan-1-one) (4ao)

Yellow oil (27.5 mg, 35% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:9); ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.36 (d, J = 1.6 Hz, 1H), 3.51-3.45 (m, 1H), 3.34 (dd, J = 12.0, 4.0 Hz 1H), 3.06 (dd, J = 10.1, 8.0 Hz, 1H), 2.86 (dd, J = 12.0, 8.0 Hz, 1H), 2.37 (dd, J = 12.0, 8.0

Hz), 2.27 (s, 3H), 2.16 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ 204.7, 203.8, 148.5, 134.4, 132.4, 129.0, 127.8, 126.2, 79.6, 46.5, 35.8, 27.5, 26.8, 11.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₆CIINNaO₂⁺ 424.9776; not found (Confirmed by GC-MS).

3-(4-Chlorophenyl)-4-(iodomethyl)cyclopent-2-ene-1,1-dicarbonitrile (4ap)

Yellow oil (21.3 mg, 45% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:9); ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.02 (d, J = 2.4 Hz, 1H), 3.79-3.73 (m, 1H), 3.34 (q, J = 4.0 Hz, 1H), 3.21-3.08 (m, 2H), 2.81 (dd, J = 16.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 152.8,

136.2, 130.0, 129.5, 128.2, 119.5, 114.8(d, *J* = 15.2, 1C), 47.0, 43.1, 37.4, 8.0. HRMS (ESI) m/z: calcd 367.9577; not found (Confirmed by GC-MS).

Dimethyl 3-(4-chlorophenyl)-4-iodo-3a,4,5,6,7,7a-hexahydro-1H-indene-1,1-dicarboxylate (4aq)

NC CN

Yellow oil (39.4mg, 42% yield); $R_f = 0.25$ (ethyl acetate/petroleum ether, 1:30); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.34 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 5.97 (d, J = 4.0 Hz, 1H), 4.93 (d, J = 4.0 Hz, 1H), 3.99 (t, J = 4.0 Hz, 1H), 3.77 (s, 3H), 3.68 (s, 3H), 3.57-3.52 (m, 1H), 1.88-1.78 (m, 2H), 1.57-1.42 (m, 3H), 1.18-

1.10 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 170.0, 168.9, 148.2, 134.1, 133.5, 128.9, 128.1, 127.0, 67.5, 54.0, 52.7, 52.5, 42.2, 32.9, 31.4, 23.7, 21.2. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₀ClINaO₄⁺ 496.9987; found 496.9984.

2-(4-Chlorophenyl)-3-(iodomethyl)-8,8-dimethyl-7,9-dioxaspiro[4.5]dec-1-ene-6,10-dione (4ar)

Yellow solid (40.2mg, 45% yield); m.p. 141-143 °C; R_f = 0.25 (ethyl acetate/petroleum ether, 1:6); ¹H NMR (400 MHz, CDCl₃): δ 7.377.31 (m, 4H), 5.93 (d, J = 4.0 Hz, 1H), 3.96-3.89 (m, 1H), 3.41 (dd, J = 12.0, 4.0 Hz, 1H), 3.24 (t, J = 12.0 Hz, 1H), 2.99 (q, J = 8.0)

Hz ,1H), 2.61 (dd, J = 16.0, 4.0 Hz, 1H), 1.81 (d, J = 4.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl3): ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 168.8, 151.3, 134.9, 131.4, 128.5 (d, J = 4.0 Hz, 1C), 129.1, 128.1, 124.4, 105.4, 58.9, 49.0, 43.0, 29.3, 28.8, 9.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₁₆CIINaO₄⁺ 468.9674; not found.

8. Procedure for the scale-up reaction

1-Ethyl-4-ethynylbenzene **1e** (2.0 equiv, 10.0 mmol, 1.30 g), dimethyl allylmalonate **2a** (8.0 mol, 0.86 g), CHI₃ (2.0 equiv, 10 mmol, 3.94 g), K₂CO₃ (2.0 equiv, 10.0 mmol, 1.38 g) and a stir bar were added to a sealed tube under nitrogen atmosphere, MeCN (30.0 mL) as solvent was then added, and the reaction mixture was stirred under a 450 nm blue LEDs irradiation for 12 h at room temperature. After **2a** was completely consumed (monitored by TLC), the crude mixture was directly purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1:30) to give the desired product **4e** as yellow oil (1.50 g, 70% yield).

9. Product derivation.

9.1) Intramolecular annulation⁷

Compound **4a** (0.2 mmol, 86.9 mg, 1.0 equiv), $Pd(PPh_3)_4$ (10 mol%, 23.1 mg), K_3PO_4 (0.6 mmol, 127.4 mg, 3.0 equiv) and a stir bar were added to a sealed tube in nitrogen atmosphere, then 1,4-dioxane (2.0 mL) were added. The reaction heated to 110 °C and stirred for 24 hours. After **4a** was completely consumed (monitored by TLC), the reaction mixture was allowed to cool down to room temperature, was then quenched with 1.0 mL 1M HCl and extracted with 2.0 mL CH₂Cl₂. The organic layer was dried over Na₂SO₄, concentrated and purified by flash column chromatography

on silica gel (ethyl acetate/petroleum ether = 1:40) to give the desired product **5** as colorless oil (38.3 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* =4.0 Hz, 3H), 6.21 (s, 1H), 5.09 (d, *J* = 4.0 Hz, 1H), 5.03 (t, *J* = 4.0 Hz, 1H), 3.77 (s, 6H), 3.74 (t, *J* = 4.0 Hz, 1H), 3.35 (t, *J* = 0.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 148.6, 147.5, 134.1, 132.4, 129.6, 128.6, 128.1, 106.7, 63.5, 53.0 (d, *J* = 5.0 Hz, 1C), 39.6 (d, *J* = 71.7 Hz, 1C), 38.8, 20.1. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₅ClNaO₄⁺ 329.0551; found 329.0547.

9.2) Reduction and spiro-cyclization^{8,9}

Compound **4e** (1.0 equiv, 0.6 mmol, 257.0 mg) was added to LiAlH₄ (4.0 equiv, 2.4 mmol, 91.1 mg) in THF (5.0 mL) at 0 °C within 30 min, and the reaction mixture was stirred at room temperature for 90 min, then EtOAc (2 mL) was added in 0 °C and the mixture was poured into 1.0 mL 1M HCl. The mixture was extracted with EAOAc, dried over Na₂SO₄, concentrated and purified by flash column chromatography on silica gel to obtain **6** (74.0 mg, 50%, white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.84 (d, *J* = 1.2 Hz, 1H), 3.74 (s, 2H), 3.66 (s, 2H), 3.38-3.30 (m, 1H), 2.65 (t, *J* = 8.0 Hz, 2H), 2.61-2.55 (m, 2H), 2.19 (dd, *J* = 12.0, 8.0 Hz, 1H), 1.49 (dd, *J* = 12.0, 4.0 Hz, 1H), 1.23 (t, *J* = 8.0 Hz, 3H), 1.14 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.5, 143.6, 133.1, 127.9, 126.4, 126.1, 69.9, 69.3, 55.2, 38.9, 38.2, 28.6, 21.6, 15.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₂NaO₂⁺ 269.1512; found 269.1497.

A mixture of **6** (1.0 equiv, 0.3 mmol, 74.0 mg) and CCl₄ (3.0 equiv, 0.9 mmol, 138.4 mg) in THF (3.0 mL) cooled to -40 °C, the solution of N, N, N', N'', N'', N''-hexamethylphosphinetriamine (TDAP, 1.1 equiv, 0.33 mmol, 53.9 mg) in THF (2.0 mL) are added over three hours under a nitrogen atmosphere. Then the reaction mixture was stirred at room temperature for one hour, and then concentrated under vacuum. The solution of above mixture in the methanol is added to the sodium (3.0 equiv, 0.9 mmol, 20.7 mg) solution within 5 minutes, and after refluxing for one hour, the sodium chloride is filtered. Then the solution was concentrated in vacuum and purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 30:1) to obtain **7** (Clear colorless liquid, 75%, 51.4 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.24 (s, 1H), 4.77 (q, *J* = 4.0 Hz, 2H), 4.71 (d, *J* = 8.0 Hz, 1H), 4.66 (d, *J* = 4.0 Hz, 1H), 3.26-3.18 (m, 1H), 2.64 (dd, *J* = 12.0, 8.0 Hz, 2H), 2.54 (dd, *J* = 12.0, 8.0 Hz, 1H), 2.05 (dd, *J* = 12.0, 4.0 Hz, 1H), 1.24 (t, *J* = 8.0 Hz, 3H), 1.06 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃):

$$\begin{split} &\delta \, 149.1, 143.7, 132.6, 128.2, 127.9, 126.3, 83.9, 83.3, 51.6, 45.4, 39.2, 28.6, 21.2, 15.5. \, \text{HRMS (ESI)} \\ &\text{m/z: } [\text{M}+\text{H}]^+ \, \text{calcd for } \text{C}_{16}\text{H}_{21}\text{O}^+ \, 229.1587; \, \text{found } 229.1578. \end{split}$$

9.3) Elimination of hydroiodic acid⁴

Compound **4y** (0.2 mmol, 88.0 mg, 1.0 equiv), DBU (0.5 mmol, 76.6 mg, 2.5 equiv), DCM (2.0 mL) and a stir bar were added to a 10 mL sealed tube in nitrogen atmosphere. The solution was refluxed for 8 h. Then the solution was concentrated in vacuum and purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether =30:1) to obtain **8** (38.7 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.50 (m, 1H), 7.26 (t, *J* = 8.0 Hz, 1H), 7.21-7.16 (m, 3H), 6.65 (d, *J* = 16.0 Hz, 1H), 6.32 (s, 1H), 5.24 (t, *J* = 4.0 Hz, 1H), 5.07 (d, *J* = 1.2 Hz,1H), 3.78 (s, 6H), 3.30 (t, *J* = 4.0 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.9, 148.7, 144.5, 136.0 (d, *J* = 4.0 Hz, 1C), 131.2, 130.4, 130.1 (d, *J* = 8.1 Hz, 1C), 128.0, 126.2, 125.6, 120.8, 105.0, 63.3, 53.0 (d, *J* = 6.1 Hz, 1C), 38.9, 19.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₀NaO₄⁺ 335.1254; found 335.1260.

Compound **4z** (0.2 mmol, 88.0 mg, 1.0 equiv), DBU (0.5 mmol, 76.6 mg, 2.5 equiv), DCM (2.0 mL) and a stir bar were added to a 10 mL sealed tube in nitrogen atmosphere. The solution was refluxed for 8 h. Then the solution was concentrated in vacuum and purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether =30:1) to obtain **9** (33.7 mg, 54%). ¹H NMR (400 MHz, CDCl₃): δ 7.27 (s, 1H), 7.23 (t, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz 1H), 7.02 (d, *J* = 16.0 Hz, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 6.32 (s, 1H), 5.23 (t, *J* = 4.0 Hz, 1H), 5.06 (dd, *J* = 4.0, 0.4 Hz, 1H), 3.77 (s, 6H), 3.28 (t, *J* = 4.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.9, 148.7, 144.3, 138.2, 136.8, 133.5, 129.9 (d, *J* = 7.1 Hz, 1C), 129.0, 128.6, 127.3, 123.8, 119.1, 104.9, 63.3, 53.0 (d, *J* = 5.0 Hz, 1C), 38.8, 21.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₀NaO₄⁺ 335.1254; found 335.1259.

10. Control experiments and Reaction mechanism proposed

Mechanism proposed for the radical iodoalkylative cyclization

11. Reaction thermally under dark condition

1a (54.6 mg, 2.0 equiv), **2a** (34.8 mg, 0.2 mmol), CHI₃ (157.5 mg, 2.0 equiv), K_2CO_3 (55.3 mg, 2.0 equiv) and a stir bar were added to a sealed tube under a nitrogen atmosphere in 100 °C oil bath under dark. MeCN (2.0 mL) as solvent was then added. The mixture was stirred for 12 h at room temperature, and no reaction was observed.

12. Light on-off experiment

1a (273.0 mg, 2.0 equiv), **2a** (86.1 mg, 0.5 mmol), CHI₃ (393.8 mg, 2.0 equiv), K₂CO₃ (138.3 mg, 2.0 equiv), MeCN (5.0 mL) and a stir bar was added to a 10 mL sealed tube. Firstly, the mixture was irradiated by a 450 nm blue LEDs for 3 h under N₂ atmosphere. 0.5 mL reaction mixture was taken out from the reaction system under N₂ atmosphere for ¹H NMR analysis. The remaining mixture was stirred in the absence of light for an additional 1 h. Then another 0.5 mL reaction mixture was taken out from the reaction system under N₂ atmosphere for ¹H NMR analysis. Secondly, the blue LEDs were turned back on to irradiate the remaining mixture. After an additional 4 h of irradiation, the lamps were turned off and 0.5 mL reaction mixture was taken out from the reaction system. The remaining mixture was taken out for ¹H NMR analysis. The remaining mixture was taken out from the lamps were turned off and 0.5 mL reaction mixture was taken out from the reaction system for ¹H NMR analysis. The remaining mixture was taken out from the reaction system for ¹H NMR analysis. The remaining mixture was taken out from the reaction system for ¹H NMR analysis. The remaining mixture was taken out from the reaction system ¹H NMR analysis. Finally, the LEDs were turned back on to irradiate the remaining mixture, and after an additional 5 h of irradiation, the lamps were turned off and 0.5 mL reaction mixture was taken out from the reaction system for ¹H NMR analysis. The remaining mixture was stirred in the absence of light for an additional 5 h of irradiation, the lamps were turned off and 0.5 mL reaction mixture was stirred in the absence of light for an additional 1 h. Then another 0.5 mL reaction mixture was taken out from the reaction system for ¹H NMR analysis. The remaining mixture was taken out from the reaction system of ¹H NMR analysis. The remaining mixture was taken out from the reaction system of ¹H NMR analysis.

Figure S1: Light on-off experiment S18

13. The UV-Visible absorption spectroscopy experiment

Figure S2: UV-Vis absorption spectroscopy of 2a, CHI₃ and their mixture The UV-Vis spectroscopy experiment was carried out using the 0.1 M dimethyl allyl malonate 2asolution of MeCN solvent; 0.001 M CHI₃ solution of MeCN solvent as the sample, respectively. As the results shown in Fig S1, the maximum absorption wavelength of the malonate ester and CHI₃ were both recorded in the UV spectral region, while the malonate ester and CHI₃ were mixed together (1:1 v/v) and under the visible-light irradiation for five minutes, a significant red shift for the absorption spectroscopy of reaction components were observed.

14. X-ray Structure of product

Single crystal of **4a** was obtained by recrystallization from dichloromethane/n-hexane solution. The crystal structure was determined by standard crystallographic methods. A colorless block-shaped crystal (mm³) was used for single-crystal X-ray diffraction. The data were collected at 273.15 K using a Bruker D8 QUEST X-ray diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by Direct Methods and refined by full-matrix least-squares techniques on F2 with anisotropic displacement parameters for all atoms using SHELX-2014. All the processes were performed within Olex2. The final refinements included anisotropic displacements parameters for all atoms and a secondary extinction correction. The crystallographic parameter data is listed in **Table S1**.

Figure S1. Crystal Structure of **4a** with thermal ellipsoids drawn at the 30% probability level. Hydrogens are omitted for clearity and Crystallographic data for **4a** have been deposited with the Cambridge Crystallographic Data Center as CCDC: **2208470**. And the crystal data and details of the data collection are given in **Table S1**

Figure S1: Crystal structure of 4a

1 able S1 . Crystal dat	a of 4a
--------------------------------	----------------

Empirical formula	$C_{16}H_{16}ClIO_4$									
CCDC	2208470									
Formula weight	434.64									
Temperature(K)	273.15									
Wavelength(Å)	0.71073	3								
Crystal system	triclinic	;								
space group	P-1									
	a = 8.2223(3) Å	$\alpha = 93.878(2)^{\circ}$								
Unit cell dimensions	b = 10.3432(5) Å	$\beta = 97.956(2)^{\circ}$								
	c = 11.0230(6) Å	$\gamma = 110.091(4)^{\circ}$								
Volume(Å ³)	865.22(7	/)								
Z	2									
Calculated density(g·cm ⁻³)	1.392									
Absorption coefficient(mm ⁻¹)	1.251									
F(000)	2512.0									
Crystal size(mm)	0.12 imes 0.11 imes 0.1									
θ range for data collection	3.658 to 55	.046								
h, k, l ranges	-31<=h<=32, -13<=k<=	=16, -25<=1<=27								
Reflections collected	29006									
Independent reflections	6792 [R(int) =	0.0453]								
Completeness	99%									
Absorption correction	Multi-scan									
Data / restraints / parameters	6792/42/319									
Goodness-of-fit on F^2	1.066									
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0608, wR_2 = 0.1731$									
<i>R</i> indices (all data)	$R_1 = 0.1020, wR_2 = 0.1960$									
Largest diff. peak and hole	1.16 and -0.76 e·Å ⁻³									

15. References

- [1] H. Park, Y. Hong, Y. B. Kim, T. Choi, Org. Lett. 2010, 12, 3442.
- [2] H. Feng, Y. Wang, J. Chen, L. Zhou. Adv. Synth. Catal. 2015, 357, 940.
- [3] B. Yu, S. Mohamed, J. Ardisson, Chem. Commun. 2022, 58, 1374.
- [4] Z. Guan, S. Zhu, Y. Ye, X. Li, Y. Liu, P. Wang, H. Zhang, Z. Huang, A. Lei, Angew. Chem. Int.
- Ed. 2022, 134, e202207059.
- [5] W. Yang, L. Huang, H. Liu, W. Wang, H. Li, Chem. Commun. 2013, 49, 4667.
- [6] M. Giel, A. S. Barrow, C.J. Smedley, W. Lewis, J. E. Moses, Chem. Commun. 2021, 57, 6991.
- [7] A. R. O. Venning, P. T. Bohan, E. J. Alexanian, J. Am. Chem. Soc. 2015, 137, 3731.
- [8] Y. Wang, Y. Yuan, Z. Wang, Y. Gu, S. Fu, L. Kong, Y. Li, Org. Lett. 2021, 23, 5911.
- [9] B. Castro, C. Selve, Tetrahedron Lett. 1973, 4459.

16. ¹H, ¹³C and ¹⁹F NMR spectra

MeO₂C[']CO₂Me 4a ¹H NMR (400 MHz, CDCI₃)

С

MeO₂C²CO₂Me 4b ¹⁹F{¹H} NMR (376 MHz, CDCb)

— -112.61

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
							29	26	<u>c</u>	18		73	26	3 2 2	223	6 1	88	6 2 6	35				
	Me						~ ~	17.1	<u>.</u>	6.		, m	, m		i ni ni	inini	~ ~ ~	100	66				
)—	=\						\sim	1	$\mathbf{\mathbf{\nabla}}$		L.			<u> </u>	$1 \leq$							
	<i>. .</i>	- >																					

MeO₂C[']CO₂Me 4d ¹H NMR (101 MHz, CDC₆)

|--|

MeO₂C CO₂Me 4d ¹³C{¹H}NMR (101 MHz, CDCb)

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
	Et	>					$\int_{c}^{7.32}$	7.26	L 7.18	$<_{6.18}^{6.18}$			3.79	r 3.65 r 3.65 r 3.65	7 3.64	- 3:41 - 3:41 3:11	- 2.89	2.66	L 2.52 2.48	∠ 1.25	$\sum_{1.21}^{1.23}$		

MeO₂C²CO₂Me 4e ¹H NMR (400 MHz, CDCb)

MeO₂C²CO₂Me 4g ¹H NMR (400 MHz, CDCL)

-4g ¹³C{¹H} NMR (101 MHz, CDC⊌)

6.0 5.5 fl (ppm) 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

 $4k\ ^{13}\text{C}\{^1\text{H}\}\,\text{NMR}$ (101 $\,\text{MHz},\,\text{CDC}_{\text{b}})$

F₃C MeO₂C¹CO₂Me

4k ¹⁹F{¹H} NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -140 -160 -180 -200 fl (ppm)

$$\begin{array}{c} 7.52\\ 7.735\\ 7.735\\ 7.735\\ 7.735\\ 7.735\\ 7.735\\ 7.356\\ 7.3$$

MeO₂C⁷CO₂Me 4m ¹³C(¹H) NMR (101 MHz, CDCb)

S38

MeO₂C ℃O₂Me 4p ¹⁹F{¹H}NMR (376 MHz, CDCl₃)

4s ¹³C{¹H} NMR (101 MHz, CDCb)

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

MeO₂C⁷CO₂Me 4t ¹³C{¹H} NMR (101 MHz, CDC₆)

S44

 $\begin{array}{c} \begin{array}{c} 171.07 \\ \hline 171.06 \\ \hline 171.06 \\ \hline 171.06 \\ \hline 128.24 \\ \hline 77.00 \\ \hline 77.00 \\ \hline 77.00 \\ \hline 77.00 \\ \hline 53.04 \\ \hline 53.04 \\ \hline - 46.93 \\ \hline - 38.59 \end{array}$

-10.96

S51

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
		Хм	le		c t	7.31 7.31 7.30	r 7.30 r 7.29	7.26	L 7.25 L 7.25		- 5.91					$\int \frac{3.29}{3.26}$	$\int \frac{2.79}{2.76}$	$\overline{\sqrt{2.54}}$		- 1.42			

MeO₂C²CO₂Me 4af ¹H NMR (400 MHz, CDC)₃

$< \frac{171.13}{170.96}$	- 150.79	$\int_{127.52}^{134.13} 134.13$	$ \underbrace{\int_{76.68}^{77.32}} $	- 63.33	$\frac{53.02}{-51.41}$	

4af ¹³C{¹H}NMR (101 MHz,CDC닝)

																		1 .		1 .			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
							\sim		~		_				<u>`</u> ~ + ~	5			5				
	CI						. <u>с</u>	i X X	Ξ.	ċ	<u>,</u>				6.6.6	.2			2	5			
	\sim								<u> </u>		0				က်ယ်ကိ	ė			-	-			
	/-	`\						\sim	_						\sim								
	1	∥ Me	Me																				

MeO₂C[']CO₂Me 4ag ¹H NMR (400 MHz, CDC_b)

MeO₂C²CO₂Me

4ah ¹H NMR (400 MHz, CDCL)

4ai ¹³C{¹H}NMR (101 MHz, CDCb)

7.5 5.0 1.0 11.0 10.5 10.0 9.5 9.0 8.0 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0.0 8.5

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
			~				CE L -	~ 7.26				ر 4.26 د	74.24 74.23 74.22	4.20		<u>_</u> 3:34	- 2.86	L 2.52 2.48	$\int_{\Gamma} \frac{1.32}{1.30}$	1.28	[1.23		

4an ¹H NMR (400 MHz, CDCb)

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
			~-1				∫ 7.43	7.33 7.33 7.31	L 7.26					5.78 5.78 5.77	5.75 73.74	± 3.73	 ✓ 3.19 ✓ 3.10 ✓ 3.10 	2.83	2.79					

NC^CCN 4ap ¹H NMR (400 MHz, CDC_b)

$$- 152.81 \\ - 136.17 \\ - 136.17 \\ - 136.17 \\ 128.20 \\ - 119.50 \\ - 119.50 \\ - 114.74 \\ 76.74 \\ 76.74 \\ - 37.42 \\ - 37.42 \\ - 8.01 \\ - 8.0$$

CI

 $4ap~^{13}\text{C}\{^1\text{H}\}\,\text{NMR}$ (101 MHz, CDCb)

MeO₂C CO₂Me 4aq ¹H NMR (400 MHz, CDCb)

21 ¹H NMR (400 MHz,CDCb)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 66 50 40 30 20 10 0 -10 ft (ppm)

