Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

1 Supporting Information

² Serine 85 functions as a catalytic acid in the

³ reprotonation process during EvAS-catalyzed

4 astellifadiene biosynthesis

5 Weiyan Zhang,^a Kaitong Peng,^a Keying Lan,^a Kangwei Xu,^b Ruibo Wu,^b Tom Hsiang,^c Shaoping
6 Nie,^d Lixin Zhang,^a Xinye Wang,^{*a,e} and Xueting Liu^{*a}

7 Correspondence

- 8 Xueting Liu, State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University
- 9 of Science and Technology (ECUST), Shanghai 200237, China.
- 10 E-mail: liuxueting@ecust.edu.cn (X. Liu); xywung@163.com (X. Wang).

11

12

13

14

15

16

17

18

19 20

20

21 22

Table of Contents

Supplemental Materials and Methods
1.1. General
1.2. Sequence alignment and structure-function relationships of BFTPSs5
1.3. Structural analysis of EvAS-TC domain
1.4. Plasmids construction and site-directed mutagenesis
1.5. Transformation of <i>S. cerevisiae</i> expressing wild-type EvAS and its variants
1.6. Metabolites analysis by GC-MS
1.7. Isolation and purification of compounds 1 and 2 7
1.8. Computational details for DFT calculations
1.9. Molecular dynamic simulations
1.10. Structural elucidation of compounds 1 and 2
1.11. Protein sequence of EvAS (accession number: LC113889)9
1.12. DNA sequence of codon-optimized <i>EvAS</i> (opt)10
SUPPORTING FIGURES
Figure S1. Schematic diagram of the cyclization patterns correlated with representative sesterterpenes catalyzed by bifunctional terpene synthases (BFTPSs) from fungi
Figure S2. Proposed reaction mechanism for the generation of 1 13
Figure S3. HR-EI-MS spectrum of 113
Figure S4. ¹ H NMR (600 MHz, C_6D_6) spectrum of 1 14
Figure S5. ¹³ C NMR (150 MHz, C ₆ D ₆) spectrum of 1 14
Figure S6. HSQC NMR (600 MHz, C ₆ D ₆) spectrum of 1 15
Figure S7. HR-EI-MS spectrum of 215
Figure S8. ¹ H NMR (600 MHz, C_6D_6) spectrum of 2 16
Figure S9. ¹³ C NMR (150 MHz, C ₆ D ₆) spectrum of 2 16
Figure S10. HSQC NMR (600 MHz, C ₆ D ₆) spectrum of 2 17
Figure S11. $^{1}H-^{1}H$ COSY NMR (600 MHz, $C_{6}D_{6}$) spectrum of 2 17
Figure S12. HMBC NMR (600 MHz, C ₆ D ₆) spectrum of 2 18
Figure S13. NOESY NMR (600 MHz, C ₆ D ₆) spectrum of 2 18
Figure S14. ¹ H NMR (600 MHz, CDCl ₃) spectrum of 2 19
Figure S15. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 2 19
Figure S16. The optimized lowest energy conformers for (2 <i>E</i> ,6 <i>E</i> ,10 <i>S</i> ,11 <i>R</i> ,14 <i>S</i> ,15 <i>S</i> ,18 <i>S</i>)- 2 at the B3LYP/6-31G(d)20

Figure S17. Experimental and calculated (B3LYP/6-31G(d,p)) ECD spectra of 220
Figure S18. Protein models of TC domains of NfSS and EvAS predicted using AlphaFold2.
Figure S19. The PROCHECK results of EvAS-TC model indicate the good quality of the model predicted using AlphaFold221
Figure S20. The structure of isolated compounds 1–2 and GC-MS profiles of crude extracts obtained from EvAS-WT, and its variants
Figure S21. Amino acid sequence alignments of Type B BFTPSs
Figure S22. Scatter diagrams of the conformations of the EvAS-WT/ IM2 and EvAS-WT/ 2 complexes
Figure S23. The Gibbs free energy profiles (in kcal/mol) for reprotonation sequence mediated by carbonyl oxygen of serine, progressing from state 2 to IM3 24
Figure S24. Conversion of 2_S-O_H to IM3_S-O from IRC calculations
Figure S25. Conversion of 2_S=O_H to IM3_S=O from IRC calculations25
Figure S26. The RMSD profiles of the protein backbones of EvAS-WT/ IM2 , and EvAS-WT/ 2 , during 100 ns (x 2) molecular dynamics simulations
Figure S27. Mass spectra of (A) astellifadiene (1) and (B) astellifatriene (2) from the transformants
SUPPORTING TABLES
Table S1. The bifunctional terpene synthases characterized from fungi and their products.
Table S2. Comparison of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR (in benzene- d_6) data of 1 to those of astellifadiene (500 MHz, in benzene- d_6) in the literature
Table S3. 1D and 2D NMR Data of 2. 31
Table S4. Comparison of ¹ H (600 MHz) and ¹³ C (150 MHz) NMR (in CDCl ₃) data of astellifatriene (2) to those of C1 (900 MHz, in CDCl ₃) in the literature
Table S5. Measured specific rotation of compound 2 computed (Boltzmann-averaged and
relative free energies computed at b3lyp/6-311g(d,p) level) specific rotation at different wavelengths
Table S6. Relative production of the products from EvAS, and its variants
Table S7. Pocket volumes of EvAS and its variants predicted by POVME
Table S8. Primers for mutation in this study. 35
Table S9. Energy analysis for the conformers of (2 <i>E</i> ,6 <i>E</i> ,10 <i>S</i> ,11 <i>R</i> ,14 <i>S</i> ,15 <i>S</i> ,18 <i>S</i>)- 2 35
Table S10. Cartesian coordinates for the conformers of (2 <i>E</i> ,6 <i>E</i> ,10 <i>S</i> ,11 <i>R</i> ,14 <i>S</i> ,15 <i>S</i> ,18 <i>S</i>)-236
Table S11. The Gibbs free energy profiles for reprotonation sequences mediated by hydroxyl oxygen and carbonyl oxygen of serine, progressing from state 2 to IM3 37

Table S12. Cartesian coordinates of the intermediates and transition states for reprotonatio	n
sequences mediated by hydroxyl oxygen and carbonyl oxygen of serine, progressing from	n
state 2 to IM3	7
References	0

Supplemental Materials and Methods

1.1. General

Oligonucleotide synthesis and DNA sequencing were performed by Tsingke (Beijing, China). The plasmid preparation kit I (D6943-02) was obtained from Omega Bio-tek (Norcross, GA, USA), and the ClonExpress II One Step Cloning Kit was purchased from Vazyme Biotech Co., Ltd. (Nanjing, China). All commercial chemicals were acquired from Sigma (Saint Louis, MO, USA), Takara (Otsu, Japan), Adamas-beta (Shanghai, China), or Sinopharm Chemical Reagent (Shanghai, China). Semipreparative HPLC was conducted using a ZORBAX SB-C18 column (10 \times 250 mm, 5 μm). The 1H, $^{13}C,$ and 2D NMR were recorded on an Agilent DD2 (Santa Clara, CA, USA) 600 MHz NMR spectrometer. The NMR spectra were referenced to solvent signals with resonances at $\delta_{\rm H}$ 7.16 ppm, $\delta_{\rm C}$ 128.06 ppm in C₆D₆, and $\delta_{\rm H}$ 7.26 ppm, $\delta_{\rm C}$ 77.1 ppm in CDCl₃. Circular dichroism (CD) spectra were recorded on a Chirascan circular dichroism spectrometer using methanol as the solvent. Highresolution electron ionization mass spectrometry (HR-EI-MS) measurements were obtained using a Waters GCT Premier mass spectrometer. All fermentation biomass was collected using an Avanti JXN-26 centrifuge (Beckman Coulter, USA). Gas chromatography-mass spectrometry (GC-MS) analyses were performed on a Shimadzu GC-2010 Plus connected to a Shimadzu GCMS-QP2010 SE gas chromatograph-mass spectrometer with a DB-5 ms column (30 m \times 0.25 µm \times 0.25 mm, Shimadzu, Japan).

1.2. Sequence alignment and structure-function relationships of BFTPSs

Protein BLAST analyses were conducted using the Swiss-Prot database at <u>http://www.ncbi.nlm.nih.gov/BLAST</u>. ClustalW was employed to generate a multiple sequence alignment, which was then analyzed and visualized using ESPript 3.0 (<u>https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi</u>). The candidate gene *EvAS* was identified in the genome of *Emericella variecolor* NBRC 32302 (GenBank accession number: LC113889), as retrieved from the NCBI protein database (Table S1).¹ The *EvAS* gene was codon-optimized and synthesized by Tsingke (Beijing, China).

1.3. Structural analysis of EvAS-TC domain

Predictive modeling of the terpene cyclase (TC) domain of EvAS was performed using AlphaFold2.² Based on the crystal structures of the fungal sesterterpene synthases NfSS (PDB ID: 8yla) and PbSS (PDB ID: 8yl9),³ three Mg²⁺ ions and PPi groups from these structures were incorporated into the EvAS-TC model. The active site of EvAS-TC was analyzed using POVME,⁴ and amino acids within 5 Å of the active site were selected. Excluding amino acids involved in Mg²⁺ coordination from conserved motifs, eight key residues were identified: I66, S85, F89, F187, W188, S303, N307, and W310.

1.4. Plasmids construction and site-directed mutagenesis

The gene encoding *EvAS* was subjected to codon optimization and synthesis before being cloned into shuttle vectors (pXW55) designed for *Saccharomyces cerevisiae* (*S. cerevisiae*). The gene was then expressed in *S. cerevisiae* strain BJ5464.⁵ Putative active sites in the catalytic pocket were targeted for mutagenesis using the pXW55-wt plasmid. Table S8 lists the primers used for constructing the mutation libraries of EvAS. Mutations were

introduced into the *EvAS* gene within the pXW55 vector via site-directed mutagenesis using PCR. The PCR reaction system is as follows:

•	
pYET-XW55-EvAS-wt	< 50 ng
Primer F	0.2 μΜ
Primer R	0.2 μΜ
PrimeSTAR MAX DNA Polymerase	5 µL
ddH2O	4.6 µL
Total	10µL

PCR amplification was conducted using PrimeSTAR® MAX DNA Polymerase (Takara) in a three-step reaction, using the following program: 98 °C, 30 s; (98 °C, 10 s; 60 °C, 15 s; 72 °C, 55 s) × 30 cycles; 72 °C, 5 min. After amplification, the DNA was combined with 2 μ L of 6x DNA Loading Buffer and analyzed by electrophoresis on a 1% agarose gel containing DuRed nucleic acid dye. The gel was run at 125 V for 40 minutes. After electrophoresis, the gel was imaged to verify the presence of the target bands. To enhance amplification, the PCR reaction volume was increased to 50 μ L while maintaining the same conditions as the 10 μ L reaction. Subsequently, the PCR products were digested with a plasmid template, purified, and subjected to homologous recombination. Plasmid sequencing confirmed the successful incorporation of the desired mutations. Subsequently, the plasmid containing the mutated *EvAS* genes were transformed into *E. coli* DH10b.

1.5. Transformation of S. cerevisiae expressing wild-type EvAS and its variants

The reconstructed plasmids pXW55-EvAS and its variants were introduced into *S. cerevisiae* strain BJ5464.⁵ The procedure for *S. cerevisiae* strain BJ5464 homologous recombination using the Yeast Transformation II Kit (ZYMO RESEARCH) is as follows: i) Thaw the competent cells at room temperature; ii) Add $0.2-1 \mu g$ (up to 5 μg) of the reconstructed plasmids to 50 μ L of competent cells, then add 500 μ L of EZ 3 solution and mix thoroughly by vortexing; iii) Incubate at 30°C for 45 minutes, gently vortexing every 2–3 minutes during incubation; iv) Spread the transformation mixture evenly on the agar plates and incubate at 30°C for 2–4 days. After plating, colonies were picked for protein overexpression, and then cultured in 5 mL of uracil-dropout medium (20 g/L glucose, 5.0 g/L casamino acids, 0.02 g/L adenine, 6.7 g/L YNB, 0.02 g/L tryptophan, pH 7.5) at 30°C with shaking at 220 rpm for 48 hours. Subsequently, 1 mL of the culture was transferred to a 250 mL flask containing 50 mL of YPD medium (20 g/L tryptone, 10 g/L yeast extract, 20 g/L glucose, pH 7.5), and fermentation proceeded at 30°C with shaking at 220 rpm for 3 days.

1.6. Metabolites analysis by GC-MS

After centrifugation to collect the cell pellets from the small-scale culture, the cells were disrupted with acetone and sonicated for 45 minutes. The resulting cell extract was then concentrated under vacuum. The residues were reconstituted in a mixture of water and ethyl acetate. The ethyl acetate-soluble fraction was evaporated under vacuum to yield crude extracts. These extracts, dissolved in ethyl acetate at a concentration of 1 mg/mL, were analyzed using GC-MS. The GC-MS analysis was performed using a DB-5ms column (30 m \times 0.25 mm i.d., 0.25 µm film thickness, Shimadzu) under the following conditions. The inlet pressure was set to 110 kPa, and the injection volume was 1 µL. The sample was injected at 60 °C in split mode. The column temperature was initially increased at a rate of 25 °C/min to 280 °C, then further increased at 10 °C/min to 310 °C, where it was held isothermally for 6

minutes. The flow rate of helium carrier gas was maintained at 1.77 mL/min. The mass spectrometry (MS) settings were as follows: source temperature of 200 °C, transfer line temperature of 250 °C, and electron energy of 0.4 kV.

1.7. Isolation and purification of compounds 1 and 2

After a 10 L fermentation of *S. cerevisiae* expressing EvAS-WT, the biomass was collected by centrifugation at 4500 rpm for 10 minutes, yielding 240 g. The biomass was then subjected to three 45-minute ultrasonication treatments with acetone at room temperature, followed by extraction with ethyl acetate. The ethyl acetate extract was concentrated under vacuum, producing a crude extract weighing 0.8 g. This crude extract was fractionated using a silica gel column, resulting in fractions A–D. Fraction A was further purified using semipreparative HPLC with 100% acetonitrile on a ZORBAX SB-C18 column, leading to the isolation of compounds 1 (7.0 mg) and 2 (3.0 mg).

Approximately 25 g (wet weight) of biomass was obtained from the 1 L fermentation of *S. cerevisiae* expressing EvAS-S85N. The biomass was subjected to three 45-minute ultrasonication treatments with acetone at room temperature, followed by extraction with ethyl acetate. The resulting ethyl acetate extract was concentrated under vacuum, yielding 90 mg of crude extract. This crude extract was then fractionated using a silica gel column with hexane as the eluent, producing three fractions (Fr. 1–3). Fraction 1 was further purified by semipreparative HPLC on a ZORBAX SB-C18 column with isocratic elution of 100% acetonitrile, resulting in the isolation of compound 2 (0.9 mg).

1.8. Computational details for DFT calculations

The conformational analysis of compound **2** was performed using the MMFF94 molecular force field and a random search approach in SYBYL X 2.1 software. All conformers within a 10 kcal/mol energy range were identified and further optimized using the B3LYP/6-31G(d) level in the gas phase with Gaussian 09.⁶ Conformers with a population exceeding 0.1% were then subjected to electronic circular dichroism (ECD) and specific optical rotation calculations. The ECD spectra were computed using the B3LYP/6-31G(d,p) method in a methanol environment. The simulated ECD curves were weighted according to the Boltzmann distribution of individual conformers. The specific optical rotations were calculated at the B3LYP/6-311G(d,p) level in chloroform using the PCM model at different wavelengths. The calculated specific optical rotation values were then averaged according to the Boltzmann distribution theory and relative Gibbs free energy.⁷

The molecular geometries of compound **2**, with a truncated serine, were optimized using density functional theory (DFT) at the B3LYP/6-31G(d) level. Frequency calculations at the same level of theory were performed to classify all stationary points as minima or transition states. Intrinsic reaction coordinate (IRC) analysis confirmed that all stationary points were smoothly connected. Single-point energies were computed using the mPW1PW91/6-311+G(d,p) method. Gibbs free energies for discussion were derived by adding gas-phase Gibbs free energy corrections obtained at the B3LYP/6-31G(d) level. All calculations were conducted using Gaussian 09.⁶

1.9. Molecular dynamic simulations

Starting structures and system setup

The protein structures of the TC domains of NfSS and EvAS were predicted using AlphaFold2 (Fig. S18).² The predicted structure of NfSS was highly consistent with its crystal structure (PDB ID: 8yla), with a root-mean-square deviation (RMSD) of 0.581 Å for structure superposition and a TM-score of 0.956.8 PROCHECK results indicated that the EvAS model, predicted using AlphaFold2, had a high score (Fig. S19). Consequently, this model was deemed suitable for further studies of EvAS. The TC domain of the EvAS model was reconstructed with the PPi group and a coordination shell of three Mg²⁺ ions, based on the crystal structure of NfSS (sequence similarity: 35.6%; identity: 19.4%). The models of EvAS, EvAS-S85A, EvAS-S85N, EvAS-S85D, and EvAS-S85Y were reconstructed in the same manner. According to the proposed reaction mechanism for astellifadiene (1) in EvAS (Fig. S2),¹ intermediates IM2 and 2 were docked into EvAS using AutoDock Vina.⁹ A semiflexible docking approach was employed to thoroughly sample conformations, accommodate flexibility, and investigate ligand-binding modes. Side chains of residues I66, S85, F89, F187, W188, S303, N307, and W310 were treated as flexible. The search grid box ($25 \times 25 \times$ 25 Å³) was centered on the substrate-binding site, with an exhaustiveness setting of 64 and default options for other parameters. Finally, nine potential poses were identified from the docking results. The most rational and low-energy conformation was selected as the initial configuration for molecular dynamics simulations (MD). The protein and ions were parameterized using the Amber ff14SB¹⁰ force field, and water molecules were assigned the TIP3P¹¹ model. Ligand force field parameters were generated with the GAFF force field,¹² with partial atomic charges derived from restrained electrostatic potential (RESP)¹³ calculations based on HF/6-31G(d) in Gaussian 09.6 The complexes were solvated in a truncated octahedral water box, extending 10.0 Å in each dimension, with Na⁺ ions added to neutralize the system. Initial coordinates and topology files were generated using the tleap program in AMBER20.

MD simulations

MD simulations of apoproteins and receptor-ligand complexes were conducted with the AMBER20 package.¹⁴ Initially, all atoms of the protein, ligand, and Mg²⁺ were fixed, with only the water molecules free; subsequently, the protein backbone, ligand, and Mg²⁺ were restrained. The system underwent routine minimization, leading to the formation of a protein-ligand complex with preliminary solvent relaxation. The complex was then gradually heated from 0 to 300 K under the NVT ensemble for 50 ps, followed by 100 ps of density equilibration under constant pressure without restraints. Finally, MD simulations were performed for 2 × 100 ns at 300 K, using the SHAKE algorithm to constrain covalent bonds involving hydrogen and the Particle Mesh Ewald (PME) method for long-range electrostatic interactions, with computations accelerated by GPU in the Amber 20 PEMED package.¹⁴

1.10. Structural elucidation of compounds 1 and 2.

GC-MS analysis of compound 1 identified characteristic ion fragments at m/z 109, 161, 203, and 325 (Fig. S27A), along with a molecular ion peak at m/z 340, confirming its classification as a sesterterpene. The ¹H, ¹³C, and HSQC NMR spectra (Figs. S4–S6, Table S2) displayed distinct resonances for five methyl groups, closely resembling those in astellifadiene synthesized by EvAS,¹ thereby confirming that compound 1 is astellifadiene.

GC-MS analysis of the extract from the transformant containing the *EvAS* gene identified a new metabolite, compound **2**, with an m/z of 340 (Fig. S27B). Based on the mass spectrum, we hypothesized that compound **2** is a novel sesterterpene hydrocarbon.

Compound **2** was isolated as colorless oil, $[\alpha]_D{}^{30} + 152.0$ (c 1.25, CHCl₃). The molecular formula of compound **2** was determined to be $C_{25}H_{40}$ from its HR-EI-MS data (*m/z* 340.3124 [M]⁺; calculated for $C_{25}H_{40}{}^+$, 340.3130). The ¹H and ¹³C NMR spectra of **2** in C₆D₆ (Figs. S8–S9, Table S3) showed signals consistent with two olefinic methines, an exomethylene, and five methyl groups, which are typical of a sesterterpene core scaffold. The presence of six degrees of unsaturation and six olefinic carbons in compound **2** suggests a tricyclic ring system.

The COSY spectrum of 2 revealed four spin systems of H-1/H-2, H-4/H-5/H-6, H-8/H-9/H-10/H-14/H-18/H-17/H-16, and H-12/H-13 (Fig. S11). In the HMBC spectrum, key correlations from the methyl signals were observed, as follows: H_3 -20 (δ 1.47) to C-2, C-3, and C-4; H₃-21 (δ 1.45) to C-6, C-7, and C-8; H₃-22 (δ 0.85) to C-10, C-11, C-1, and C-12; H₃-23 (δ 0.87) to C-13, C-14, C-15, and C-16; H₃-25 (δ 1.70) to C-18, C-19, and C-24 (Fig. S12). These cross signals confirmed the connections of C-3 to C-2, C-4, and C-20; C-7 to C-6, C-8, and C-21; C-11 to C-1, C-10, C-12, and C-22; C-15 to C-13, C-14, C-16 and C-23; and C-19 to C-18, C-24, and C-25. Furthermore, the HMBC correlations of H-24a (8 4.77) and H-24b (8 4.70) to C-18 and C-19 established the connections of C-18 to C-19, which defined the planar structure of **2** as a type B sesterterpene with a 5/6/11 tricyclic system (Fig. 2B). Comparative analysis of the ¹H and ¹³C NMR spectroscopic data in CDCl₃ of 2 with those of C1 produced by AtTPS06 from Arabidopsis thaliana¹⁵ suggested structural similarities between them (Table S4). The relative stereochemistry of 2 was determined mainly by NOESY correlations (Fig. S13). The configurations of $\Delta^{2,3}$ and $\Delta^{6,7}$ double bonds were established as 2E,6E by the correlations of H-2 and H-4, as well as H-6 and H-8. The relative configurations of 10S*,11R*,14S*,15S*,18S* were determined from the correlations between H-10 and H-23/H-18, H-18 and H-23, and H-14 and H-22/H-25. The absolute configuration of compound 2 was confirmed using time-dependent density functional theory (TD-DFT) to estimate its theoretical ECD curve at the B3LYP/6-31G(d,p) level. The simulated ECD spectrum matched the experimental spectrum, verifying the stereochemical assignments of 2E,6E,10S,11R,14S,15S,18S for compound 2 (Fig. S17). Thus, the absolute configuration of compound 2 was confirmed as 2E.6E.10S.11R.14S.15S.18S-2, an enantiomer of C1. Unfortunately, the specific optical rotation of the A. thaliana compound C1 was not reported in the literature, as only 0.6 mg of the compound was isolated, which precluded its measurement. Therefore, a direct comparison of optical rotations could not be made. To further support our assignment, we calculated the optical rotation of compound 2 at different wavelengths using the B3LYP/6-311G(d,p) level in chloroform with the PCM model. The

overall calculated optical rotation is positive (Table S5), closely matching the experimental

value. These results confirm the absolute configuration of compound **2**, identifying it as the previously uncharacterized sesterterpene astellifatriene.

1.11. Protein sequence of EvAS (accession number: LC113889)

MEFKYSTLIDPEMYETEGLCDGIPVRYHNNPELEEIDCLRCHEHWRENVGPLGVYKG GLADQWNGISIAIPEALPDRLGVVSYASEFAFVHDDVIDIAQHGNEQNDDLRVGFEQ MIDAGAIKYSTSGKRALQSYIAKRMLSIDRERAIISLRAWLEFIEKTGRQEERRFNNEK EFLKYRIYDVGMLFWYGLLTFAQKITIPENELTTCHELAIPAYRHMALLNDLVSWEK ERASSIALGKDYCINFIFVAMEESGISEDEAKERCREEIKLATVDYLRVFDEAKDRIDL SHDTMLYLESLLYSMSGNVVWGLQSPRYYTDAKFSQRQLDWIKNGLPLEVRLEDRV FGLSPSEDRVTHQAVIENGLPESGLGKNGNSSNGVDVNKALLSAVLHEHLKGHAVF KMSDHEVKVKASNGRSLDTKVLQAPYEYITGLPSKRLREQAIDAMNVWFRVPAEKL DLIKSITTILHNASLMLDDVEDGSELRRGNPSTHTIFGLSQTINSANYQLVRALERVQK LEDSESLLVFTEELRNLYIGQSMDLYWTGNLICPTMNEYFHMVECKTGGLFRLFTRL MSLHSTSAVKVDPTTLSTRLGIYFQTRDDYKNLVSTEYTKQKGYCEDLEEGKFSLPLI HLIQAMPDNHVLRNILTQWRVTRKVTLAQKQVVLGLMEKSGSLKFTRETLASLYSG LEKSFTELEEKFGTENFQLKLILQFLRTE

1.12. DNA sequence of codon-optimized EvAS (opt)

ATGGAATTCAAGTACTCCACTCTGATCGACCCGGAAATGTACGAAACCGAAGGT CTGTGTGACGGTATCCCAGTTCGCTACCACAACAATCCGGAACTGGAAGAAATC GACTGCCTGCGTTGCCACGAACACTGGCGTGAGAACGTTGGTCCGCTGGGTGTTT ACAAAGGTGGTCTGGCAGACCAGTGGAACGGTATCTCTATCGCGATTCCAGAAG GACGACGTTATCGACATCGCACAGCATGGTAACGAACAGAACGACGATCTGCGT GTTGGTTTCGAACAGATGATCGATGCGGGGTGCAATCAAATACTCTACCTCCGGTA AACGTGCTCTGCAGTCTTACATCGCTAAACGTATGCTGTCTATCGACCGTGAACG TGCGATCATCTCTCTGCGTGCTTGGCTGGAATTCATCGAAAAGACCGGTCGTCAA GAAGAACGTCGTTTCAACAACGAGAAAGAATTCTTGAAATACCGTATCTACGAT GTTGGTATGCTGTTCTGGTACGGTCTTCTGACTTTCGCTCAGAAAATCACCATTCC GGAGAACGAACTGACTACCTGCCACGAACTGGCGATTCCGGCATATCGTCACAT GGCGTTGCTGAACGACCTGGTTTCTTGGGAGAAAGAACGTGCATCTAGCATCGC GCTGGGTAAAGACTACTGCATCAACTTCATCTTCGTTGCTATGGAAGAATCTGGT ATCAGCGAAGACGAAGCGAAAGAACGTTGCCGTGAAGAAATCAAACTGGCGAC CGTTGACTACCTGCGTGTGTTCGACGAAGCGAAAGACCGTATCGACCTGTCTCAC GACACTATGCTGTACCTGGAAAGCCTGCTGTACTCCATGTCTGGTAACGTTGTTT GGACTGGATCAAGAACGGTTTGCCGCTGGAAGTGCGTCTGGAAGATCGTGTGTT CGGTCTGAGTCCGTCTGAAGACCGTGTTACTCACCAGGCAGTAATCGAGAATGG CCTGCCAGAATCTGGTCTGGGTAAGAACGGTAACTCTTCCAACGGTGTTGACGTT AACAAAGCGCTGCTGTCTGCTGTACTGCACGAACACCTGAAAGGTCACGCGGTA TTCAAGATGTCTGATCACGAAGTGAAGGTTAAAGCTTCTAACGGTCGTAGCCTGG ACACTAAAGTTCTGCAGGCGCCATACGAATACATCACCGGTCTGCCGTCTAAACG TCTGCGTGAACAGGCGATCGATGCTATGAACGTTTGGTTCCGTGTTCCAGCGGAG AAACTGGACCTGATCAAATCCATCACCACCATCTTGCACAACGCGTCTCTGATGC TGGACGACGTTGAAGACGGTTCTGAACTGCGTCGTGGTAATCCATCTACTCACAC CATCTTCGGTCTTAGCCAGACCATCAACTCTGCGAACTACCAGCTGGTTCGTGCA CTGGAACGCGTTCAGAAACTGGAAGACTCTGAAAGCTTGCTGGTGTTCACTGAA GAACTGCGTAACCTGTACATCGGTCAGTCTATGGACCTGTACTGGACTGGTAACC TGATCTGCCCGACCATGAACGAATACTTCCACATGGTTGAATGCAAGACCGGTG GTCTGTTCCGTCTCTTTACCCGTCTGATGTCTCTGCACTCCACCTCTGCAGTTAAA GTTGATCCGACCACTCTGTCCACTCGTCTGGGTATCTACTTCCAGACTCGTGACG ACTACAAGAACCTGGTATCTACTGAGTACACCAAACAGAAAGGCTACTGTGAAG ATCTGGAAGAAGGCAAATTCTCTCTGCCGCTGATCCACCTGATCCAGGCAATGCC AGATAACCACGTTCTGCGTAACATTCTGACTCAGTGGCGTGTTACTCGTAAAGTA ACTCTGGCGCAGAAACAGGTTGTACTCGGTCTGATGGAGAAGTCCGGTAGCCTG

AAATTCACTCGTGAAACTCTGGCTAGCCTGTACTCTGGCCTGGAAAAAAGCTTCA CCGAACTGGAAGAGAAATTCGGCACTGAGAACTTCCAGCTGAAACTGATTCTGC AGTTCTTGCGTACTGAA

SUPPORTING FIGURES

Figure S1. Schematic diagram of the cyclization patterns correlated with representative sesterterpenes catalyzed by bifunctional terpene synthases (BFTPSs) from fungi. Their cyclization patterns were correlated with the initial cyclization mode of a polyprenyl diphosphate, defined as Type A and Type B. Following pyrophosphate dissociation, the carbocation at C1 selectively engages with the IV and V double bonds in Type A, while targeting the III and IV double bonds in Type B.¹⁶

Figure S2. Proposed reaction mechanism for the generation of 1.¹

Figure S3. HR-EI-MS spectrum of 1.

Figure S4. ¹H NMR (600 MHz, C₆D₆) spectrum of 1.

Figure S5. 13 C NMR (150 MHz, C₆D₆) spectrum of 1.

Figure S6. HSQC NMR (600 MHz, C₆D₆) spectrum of 1.

Figure S7. HR-EI-MS spectrum of 2.

Figure S8. ¹H NMR (600 MHz, C₆D₆) spectrum of 2.

Figure S9. ¹³C NMR (150 MHz, C_6D_6) spectrum of 2.

Figure S10. HSQC NMR (600 MHz, C_6D_6) spectrum of 2.

Figure S11. $^{1}H-^{1}H$ COSY NMR (600 MHz, $C_{6}D_{6}$) spectrum of 2.

Figure S12. HMBC NMR (600 MHz, C₆D₆) spectrum of 2.

Figure S13. NOESY NMR (600 MHz, C_6D_6) spectrum of 2.

Figure S14. ¹H NMR (600 MHz, CDCl₃) spectrum of 2.

Figure S15. ¹³C NMR (150 MHz, CDCl₃) spectrum of 2.

Figure S16. The optimized lowest energy conformers for (2*E*,6*E*,10*S*,11*R*,14*S*,15*S*,18*S*)-**2** at the B3LYP/6-31G(d).

Figure S17. Experimental and calculated (B3LYP/6-31G(d,p)) ECD spectra of 2.

Figure S18. Protein models of TC domains of NfSS and EvAS predicted using AlphaFold2. The predicted NfSS-TC is similar with the reported crystal structure (8yla) (TM-score 0.956). The RMSD calculations of the NfSS-TC crystal structure (PDB entry 8yla) was superimposed on the heavy chain of the AlphaFold model of NfSS-TC via the C α atoms of 250 residues.

Figure S19. The PROCHECK results of EvAS-TC model indicate the good quality of the model predicted using AlphaFold2.

Figure S20. The structure of isolated compounds 1–2 and GC-MS profiles of crude extracts obtained from EvAS-WT, and its variants.

	60		70	80	90	100
EvAS	YKGGLADQ	YAVGCINPVV	WNGISIAIPEAI	LPDRLGVVSYAS	EFAFVHDDV	ID IAQHG
EvSS	FKGTLGNP		FNLLSLVIPECI	LPDRLSIVGFAN	ELAFIHDDV	TD IVQYG
VcrA	YRGGLGHP		WSGMSIAIPEAI	LPERLGIVSYAN	ELAFLHDDV	TD IAKYYQG
AcOS	YAGLLGPD		FSFITGAVPECH	LPDRMEIVAYAI	EFGFMHDDV	ID TDVN
NnNS	ATRNKDVSS		GNFTALCACEAI	LSDRLALTTYM	EFGFMHDDV	IE YAENKDE
FgMS	FRGALGPR		HNFICLTLPECI	LPERLEIVSYAN	EFAFLHDDI	TD VESAETV
AcldAS	FYGCTGGDG		HNLASLGLPESI	LPDRTYDFMRYI	EFAFLHDDI	NQPRGASQT
1	50 1	60	170 18	30 190	20	0
EvAS	SLRAWLEFI	EKT.GRQEER	RFNNEKEFLKYF	I Y D V G M I F W Y G	LLTFAQKIT	IPENEL TT
EvSS	TIKAWAKFV	DYG.GRQETT	RFTSEKEYTEYF	I Q D I G L W F W Y G	LLSFAMALD	VPEHER.EM
VcrA	SLKAWSTFL	EKA.GRQEDY	RFKSEDDYLKYF	V H D V G M I F W Y G	LLTFAQAIT	IPENEL DT
AcOS	VAKSWASGV	RHSSRRKEDT	NFKALEQYIPYF	A L D V G Y M L W H G	LVTFGCAIT	IPNEEE EE
NnNS	CLRLWREMS	HVFVQIR.DM	QFTELNDYLKFF	V V D A G C F W T M S	LLCFSMDFT	LNSSEE ER
FgMS	AMNAWATFI	NTGAGCAHDT	NFKSLDEYLHYF	A T D V G Y M F W H A	ALIIFGCAIT	IPEHEI EL
AcldAS	FLKATQRYH	NFN.NLRKDF	STYTWDQWCRRF	W E D G D S Y A F L A	ASIPYFCGLD	LTQKDFDET
	270	280	290	300	310	320
EvAS	EEIKLATVD	YLRVFDEAKD	RI.DLSHDTMLY	LESLLYSMSGN	VVWGLQSPR	YYTDAK
EvSS	ETAKTLAAD	YLKIVEEYKA	RD.DISLDSRKY	IESWLYTISGN	IVWSFICPR	YNSSGS
VcrA	REIQKATVD	YLRVFEEVKA	RD.DLSPDTKRY	LESVLYSMSGN	VVWSFHSPR	YYTDAS
AcOS	KRIRLECAN	YLRNVKETNA	RA.DVSDELKRY	INVMQYTLSGN	AAWSTNCPR	YNGPTK
NnNS	KEILAREEK	YCKAKEDLEA	NG.SMSDKITQW	ILELLDLVTAGN	FAWSTNCPR	YRLGAEDAY
FgMS	ARNKIEVAK	CLQVTKETRE	RK.DVSQDLKDY	LELLDLVTAGN	AIWSTQCRR	YDMTAP
AcldAS	GKIKGWETK	FLDAKTEFLA	SHPDAPLDFRKY	LYHMLFGVSGN	VFWHGTNPP	RYALWMNFA

Figure S21. Amino acid sequence alignments of Type B BFTPSs.

Figure S22. Scatter diagrams of the conformations of the EvAS-WT/**IM2** and EvAS-WT/**2** complexes. Scatter plots of the conformations of the EvAS-WT/**IM2** complex are presented, showing the distances from C19 to W188 (A, d_1) and from H24 to S303 (B, d_2). And scatter plots display the distances from C3 to the S85 carbonyl oxygen (C, d_3) and from C3 to the S85 hydroxyl oxygen (D, d_4) for all conformations of the EvAS-WT/**2** complex.

Figure S23. The Gibbs free energy profiles (in kcal/mol) for reprotonation sequence mediated by carbonyl oxygen of serine, progressing from state 2 to IM3, computed using the mPW1PW91/6-311+G(d,p)//B3LYP/6-31G(d) method relative to 2_S-O_H are shown in red.¹⁷⁻²⁰

Figure S24. Conversion of **2_S-O_H** to **IM3_S-O** from IRC calculations (The red numbers denote interatomic distances (Å), while the blue numbers signify the carbon atom's sequential order).

Figure S25. Conversion of **2_S=O_H** to **IM3_S=O** from IRC calculations (The red numbers denote interatomic distances (Å), while the blue numbers signify the carbon atom's sequential order).

Figure S26. The RMSD profiles of the protein backbones of EvAS-WT/IM2, and EvAS-WT/2, during 100 ns (x 2) molecular dynamics simulations.

Figure S27. Mass spectra of (A) astellifadiene (1) and (B) astellifatriene (2) from the transformants.

SUPPORTING TABLES

No.	Protein	Accession	Species	Products	Ref, year
				Ophiobolin F,	
1	AcOS	A1C8C3.1	Aspergillus clavatus	Ophiobolane 1, Ophiobolane 2,	²¹ , 2013
				Clavaphyllen	
2	Au8003	QIH97826.1	Aspergillus ustus	Ophiobolin F	²² , 2016
3	BmOS	MW798226	Bipolaris maydis	Ophiobolin F	²³ , 2021
4	AuOS	MW798208	Aspergillus ustus	Ophiobolin F	²³ , 2021
5	PfVS	MW798216	Pestalotiopsis fici	Clavaphyllene, Variculatriene A, β -Geranylfarnesene	²³ , 2021
6	EvVS	LC063849	Emericella variecolor	Variediene, (2 <i>E</i>)- α -cericerene	²⁴ , 2015
7	EvAS	LC113889	Emericella variecolor NBRC 32302	Astellifadiene	¹ , 2016
8	BmTS1	EMD84919	Bipolaris maydisATCC48331	Bm1	²⁵ , 2017
9	BmTS2	EMD93209	Bipolaris maydisATCC48331	Bm2	²⁵ , 2017
10	BmTS3	EMD93704	Bipolaris maydisATCC48331	Bm3	²⁵ , 2017
11	CfBS	MW798209	Colletotrichum fioriniae	Bm3	²³ , 2021
12	MpBS	MW798229	Macrophomina phaseolina	Bm3	²³ , 2021
13	PbTS1	LC274619	Phoma betae PS-13	Pb1	²⁵ , 2017
14	BtcAco	N4V6D4.1	Colletotrichum orbulare	Pb1	²⁶ , 2018
15	ChPS	MW798213	Colletotrichum higginsianum	Pb1	²³ , 2021
16	CsPS	MW798219	Colletotrichum siamense	Pb1	²³ , 2021
17	CoFS	MW798210	Colletotrichum orbiculare	Pb1, Fusaproliferene	²³ , 2021
18	CiGS	MW798200	Colletotrichum incanum	Pb1, β -Geranylfarnesene	²³ , 2021
19	FgMS	AQY56777	Fusarium graminearum	Mangicdien, Variecoltetraene	²⁷ , 2017
20	NfSS	EAW16201	Neosartorya fischeri	Sesterfisherol	²⁸ , 2015
21	AaSS	MW798204	Alternaria alternata	Sesterfisherol	²³ , 2021
22	CiSS	MW798201	Colletotrichum incanum	Sesterorbiculene	²³ , 2021
23	CoSS	MW798211	Colletotrichum orbiculare	Sesterorbiculene	²³ , 2021
24	CgSS	MW798218	Colletotrichum gloeosporioides	Sesterorbiculene	²³ , 2021
25	ChVS	MW798212	Colletotrichum higginsianum	(-)-Variculatriene B	²³ , 2021

Table S1.	The	bifunction	al terpene	e synthas	es charac	eterized	from	fungi	and	their	produc	cts.
-----------	-----	------------	------------	-----------	-----------	----------	------	-------	-----	-------	--------	------

26	PoVS	MW798215	Pyricularia oryzae	(-)-Variculatriene B	²³ , 2021
27	LmVS	MW798221	Lophiostoma macrostomum	(-)-Variculatriene B	²³ , 2021
28	CsVS	MW798223	Colletotrichum sublineola	(-)-Variculatriene B	²³ , 2021
29	PoVS	MW798227	Pyricularia oryzae	(-)-Variculatriene B	²³ , 2021
30	TtPS	MW798214	Thermothielavioides terrestris	Preasperterpenoid A	²³ , 2021
31	PvPS	LC228602	Penicillium verruculosum	Preasperterpenoid A	²⁹ , 2017
32	AsTC	MK140602	Talaromyces wortmannii	Preasperterpenoid A	³⁰ , 2019
33	TvPS	MW798225	Talaromyces verruculosus	Preasperterpenoid A	²³ , 2021
34	PaSS	MW798222	Penicillium arizonense	Sesterbrasiliatriene	²³ , 2021
35	PbSS	LC228601	Penicillium brasilianum	Sesterbrasiliatriene	²⁹ , 2017
36	ChBS	MW798232	Colletotrichum higginsianum	Brassiteraene A,	²³ , 2021
37	768S	MW798202	Tymosentoria hrevis	Sesterevisene	²³ 2021
38	L035	MW708202	Aspargillus nigar	Gerenvilfornesol	23 2021
20	AIIOS DeCS	WW 798203	Asperginus niger	Geranylfamesol	²³ , 2021
39 40	Pgus D-ES	MW 798200	Penicilium griseojuivum	Geranyllamesol	⁻² , 2021
40	PgrS	MW 798217	Pyricularia grisea	Geranyllarnesol	²³ , 2021
41	TaGS	MW798220	Thielavia arenaria	Geranylfarnesol	²³ , 2021
42	AaGS	MW798231	Aspergillus aculeatus	Geranylfarnesol	²³ , 2021
43	CsSS	MW685620	Cytospora schulzeri 12,565	Schultriene	³¹ , 2022
44	NnNS	MW685621	Nectria nigrescens 12,199	Nigtetraene	³¹ , 2022
45	EvSS	LC073704	Emericella variecolor	Stellata-2,6,19-triene	³² , 2015
46	EvQS	LC155210	Emericella variecolor	Quannulatene	³³ , 2016
47	AcldAS	CEL06489.1	Aspergillus calidoustus CBS121601	Asperterpenol A	³⁴ , 2020
48	AuAS	MW387950	Aspergillus ustus 094102	Aspergildiene A, Aspergilols A–D	³⁵ , 2021
49	FoFS	MW446505	Fusarium oxysporum	Fusoxypenes A-C, (-)- astellatene	³⁶ , 2021
- 0	AtAS	ATEG_03568			^{36, 37} , 2021,
50	(StTA)	(KX449366)	Aspergillus terreus	Preaspterpenacid I	2017
51	BsPS	NA	Bipolaris sorokiniana	Preterpestacin I,	³⁸ , 2021
				Aspergiltriene,	
52	AcAS	NA	Aspergillus calidoustus	Aspergildienes A–D,	³⁹ , 2022
53	AaTPS1	XP_018386201	Alternaria alternata MB- 30	sesteraltererol	⁴⁰ , 2023
54	AaTPS2	XP_018380014	Alternaria alternata MB- 30	preterpestacin I	⁴⁰ , 2023
55	PsTA	NA	Penicillium herquei TJ403- A1	Penisentene	⁴¹ , 2022
56	VrcA	XP_020054773.1	E. variecolor NBRC 32302	Variecoladiene	⁴² , 2024
57	EmES	WWS34622.1	Emericellasp	Emerindanol A and B	⁴³ , 2024

58	PaFS	A2PZA5.1	Phomopsis amygdali	Fusicocca-2,10(14)-diene	⁴⁴ , 2007
59	AbFS	AB465604	Alternaria brassicicola	Fusicocca 2,10(14)-diene	⁴⁵ , 2008
60	CgDS	P9WEV7.1	Colletotrichum gloeosporioides ES026	(1 <i>R</i>)- <i>&</i> -Araneosene (5 <i>R</i> ,12 <i>R</i> ,14 <i>S</i>)-dolasta-1(15),8- diene	⁴⁶ , 2018
61	CpPS	NA	Clitopilus passeckerianus	Premutilin	⁴⁷ , 2018
62	PaPS	NA	Phomopsis amygdali	Phomopsene	⁴⁸ , 2009
63	PcCS	LC411963	Penicillium chrysogenum	Penichrysol	⁴⁹ , 2018
64	PrDS	W6QAE7.1	Penicillium roqueforti	Penichrysol	⁵⁰ , 2018
65	DvVS	ON911568	Didymosphaeria variabile 17020	Variediene, Neoflexibilene, Neovariediene	⁵¹ , 2022
66	TndC	NA	Aspergillus flavipes	Talarodiene	⁵² , 2022
67	TlnA	NA	Talaromyces stipitatus	Talarodiene, Talarodiene B.	⁵³ , 2024
68	AfAS	BK065787	Aspergillus fumigatiaffinis	Asperfumene	⁵⁴ , 2024
69	MpMS	EKG20455.1	Macrophomina phaseolina	Macrophomene	55, 2022
70	TvTS	KUL85185.1	Talaromyces verruculosus	Talaropentaene	55, 2022
71	CgCS	A0A8H4CUY8.1	Colletotrichum gloeosporioides	Colleterpenol	55, 2022

NA indicates not available.

Table S2. Comparison of ¹H (600 MHz) and ¹³C (150 MHz) NMR (in benzene- d_6) data of **1** to those of astellifadiene (500 MHz, in benzene- d_6) in the literature.¹

astellifadiene (1)

			()	
Pos	$\delta_{\rm tr}$ mult (<i>L</i> in Hz) 1	δα 1	$\delta_{ m H}$ mult (J in Hz),	$\delta_{ m C}$,
1 05.	$\sigma_{\rm H}$ mult (5 m Hz), 1	υ(, Ι	astellifadiene	astellifadiene
1	1.18, dd (15.3, 6.7);	39.7	1.18, dd (15.1, 6.7);	39.7
1	2.17, m	57.1	2.17, dd (15.1, 12.9)	57.1
2	1.88, m	35.3	1.88, m	35.2
3	1.51, m	36.5	1.51, m	36.5
1	1.29, m;	26.4	1.29, m;	26.4
-	1.53, m	20.4	1.53, m	20.4
5	1.28, m;	30.7	1.28, m;	30.7
5	1.36, m	37.1	1.36, m	39.1
6	0.90, m;	20 0	0.90, m;	38.8
0	2.20, m	50.0	2.19, brd (13.9)	50.0
7	-	33.6	-	33.5
8	1.43, m;	36.4	1.43, m;	36 /
0	2.84, dd (13.7, 8.3)	50.4	2.83, dd (13.5, 8.4)	50.4
9	5.38, m	118.4	5.37, brt (8.4)	118.4
10	-	145.1	-	145.0
11	-	42.0	-	42.0
10	2.07, td (13.6, 5.1);	245	2.06, td (13.9, 5.1);	24.5
12	0.90, m	34.5	0.88, m	34.3
12	1.58, m;	267	1.58, m;	267
15	1.63, m	30.7	1.63, td (12.9, 3.9)	30.7
14	2.42, d (11.4)	53.2	2.42, d (11.2)	53.1
15	-	44.8	-	44.8
16	1.34, m; 1.51, m	39.7	1.32, m; 1.49, m	39.7
17	1.48, m; 2.02, m	29.3	1.49, m; 2.01, m	29.2
18	2.72, m	45.7	2.72, td (10.7, 7.6)	45.7
19	-	148.4	-	148.3
20	0.90, d (6.9)	19.7	0.88, d (6.7)	19.7
21	0.88, s	30.9	0.88, s	30.9
22	1.20, s	30.2	1.20, s	30.2
23	0.91, s	19.4	0.91, s	19.4
24	4.85, brs;	110.0	4.85, brs;	110.2
24	4.88, brs	110.2	4.88, brs	110.2

25	1.68, s	19.9	1.67, s	19.9

Table S3. 1D and 2D NMR Data of **2**.

─¹H-¹H COSY
✓ Key HMBC

🛌 Key NOESY

Pos.	$\delta_{\mathrm{H}^{\mathrm{a}}}$ mult (J in Hz)	$\delta_{\mathrm{C}}{}^{b}$	$COSY (^{1}H - ^{1}H)$	HMBC	NOESY
1a	1.74, m	30.1	2	12, 10, 2, 3	
1b	2.15, m	39.1	2	22, 12, 2, 3	
2	5.04, d (8.2)	125.0	1	3, 1, 4, 20	4a, 4b
3	-	132.5	-	-	
4a	1.94, m	20.7	5a, 5b	20, 5, 2, 3	2
4b	2.15, m	39.7	5a, 5b	20, 5, 2, 3	2
5a	2.00, m	26.2	6, 4a, 4b	6, 3, 7	
5b	2.26, qd (4.4, 12.8)	20.5	6, 4a, 4b	4, 6, 3, 7	
6	4.93, dd (3.7, 11.4)	124.5	5a, 5b	21, 5, 4, 8	8a, 8b
7	-	137.7	-	-	
8a	1.87, m	42.0	9b	21, 9, 10, 7, 6	6
8b	2.00, m	42.0	9a, 9b	6, 7	6
9a	1.21, m	24.2	8b, 10	10, 8, 14, 7	
9b	1.01, m	24.5	8a, 8b	10, 8, 14, 7	
10	1.64, m	39.8	9a, 14	22, 9, 1, 8, 15, 14	18, 23
11	-	39.1	-	-	
12a	2.00, m	247	13a, 13b	-	
12b	1.01, m	34.7	13a, 13b	22, 13, 15	
13a	1.51, m	26.2	12a, 12b	23, 12, 15, 14	
13b	1.43, m	30.3	12a, 12b	23, 12, 16, 15, 14	
14	1.58, t (11.3)	49.8	18, 10	23, 13, 10, 15, 18, 19	22, 25
15	-	43.9	-	-	
16a	1.42, m	40.4	17a	23, 15, 18, 14	
16b	1.21, m	40.4	17b	23, 17, 13, 15	
17a	2.00, m	20.7	16a	15, 18, 14, 19	
17b	1.46, m	30.7	16b	19	
18	2.69, td (5.2, 10.9)	47.5	17a, 17b, 14	25, 17, 10, 14, 24, 19	10, 23
19	-	148.6	-	-	
20	1.47, s	16.7	-	4, 3, 2	
21	1.45, s	16.9	-	8, 7, 6	
22	0.85, s	21.2	-	12, 1, 10, 11	14
23	0.87, s	18.0	-	13, 16, 15, 14	10, 18
24a	4.77, d (2.4)	110 5	-	25, 17, 18, 19	
24b	4.70, dd (1.3, 2.5)	110.5	-	25, 17, 18, 19	
25	1.70, s	19.1	-	18, 24, 19	14
	^a Recorded at 600 M	Hz in C ₆ D ₆	. ^b Recorded at 150 M	$Hz in C_6 D_6.$	

Pos.	$\delta_{ m H}$ mult (<i>J</i> in Hz), astellifatriene (2)	$\delta_{\rm C},$ astellifatriene (2)	$\delta_{\rm H}$ mult (J in Hz), C1	$\delta_{\rm C}, { m C1}$
1	1.67, m; 2.10, dd (8.2, 16.5)	38.8	1.67, dd (16.6, 1.9); 2.11, dd (8.2, 16.6)	38.7
2	4.89, d (8.3)	124.8	4.89, d (8.2)	124.6
3	-	132.6	-	132.5
4	1.91, m; 2.18, m	39.4	1.93, o; 2.19, d (11.9)	39.2
5	2.02, m; 2.26, m	26.0	2.02, o; 2.26, dddd (12.9, 12.9, 12.9, 4.5)	25.8
6	4.79, dd (11.5, 3.9)	124.1	4.79, dd (12.9, 4.5)	124.0
7	-	138.0	-	137.8
8	1.70, m; 1.82, dd (12.9, 7.6)	41.7	1.70, dd (12.9, 12.9); 1.83, dd (12.9, 8.3)	41.5
9	0.96, m; 1.10, m	24.0	0.95, m; 1.10, m	23.8
10	1.53	39.5	1.53	39.4
11	-	38.9	-	38.8
12	1.00, m; 1.90, m	34.5	1.00, ddd (14.1, 4.3, 2.5); 1.91, o	34.3
13	1.43, m; 1.52 m	36.0	1.43, o; 1.51, o	35.9
14	1.55, m	49.6	1.55, 0	49.4
15	-	43.8	-	43.6
16	1.21, m; 1.43, m	40.2	1.21, ddd (10.9, 10.9, 10.9); 1.43, o	40.1
17	1.41, m; 2.00, m	30.5	1.40, o; 2.00, o	30.4
18	2.65, ddd (10.5, 10.5, 5.0)	47.3	2.66, ddd (10.8, 10.8, 5.3)	47.2
19	-	148.8	-	148.7
20	1.49, s	16.7	1.49, s	16.5
21	1.44, s	16.8	1.44, s	16.7
22	0.82, s	21.2	0.82, s	21.0
23	0.87, s	18.0	0.87, s	17.9
24	4.59, brs; 4.68, brs	110.1	4.60, dd (2.3, 1.3); 4.68, d (2.2)	109.9
25	1.72, s	19.1	1.72, s	18.9

Table S4. Comparison of ¹H (600 MHz) and ¹³C (150 MHz) NMR (in CDCl₃) data of astellifatriene (2) to those of C1 (900 MHz, in CDCl₃) in the literature.¹⁵

Table <mark>S</mark>	85. N	Measured	specific	rotatio	on <mark>of</mark>	compound	2	comput	ted (Bolt	zmann-av	ver	aged and
relative	free	e energies	comput	ed at	<mark>b3ly</mark>	p/6-311g(d,j)	level)	specific	rotation	at	different
waveler	ngths											

Wavelength Conformers	589 nm	546 nm	436 nm	405 nm
2-A (0.9%)	163.2	194.6	338.7	411.8
2-B (5.8%)	152.4	182.4	322.4	395.1
2-C (0.3%)	63.8	74.0	113.4	129.2
2-D (93.0%)	56.2	66.0	108.3	128.5
Boltzmann-averaged specific rotation	62.7	73.9	122.8	146.5
Mirrored Boltzmann- averaged specific rotation	-62.7	-73.9	-122.8	-146.5

	Peak area of G	C-MS analysis	Relative production (%)				
products	1	2	1	2	total		
EvAS-WT	101065 ± 5575	56781±4372	100%	56.2%	156.2%		
I66A	5106±861	14102±2352	5.1%	13.9%	19%		
S85A	0	25143±9388	0	24.9%	24.9%		
S85N	0	187919±17532	0	185.9%	185.9%		
S85L	0	0	0	0	0		
S85Y	0	0	0	0	0		
S85H	0	0	0	0	0		
S85D	0	0	0	0	0		
F89A	0	0	0	0	0		
F187A	0	0	0	0	0		
W188A	0	0	0	0	0		
W310A	0	0	0	0	0		
S303A	0	0	0	0	0		
N307A	0	0	0	0	0		

Table S6. Relative production of the products from EvAS, and its variants. The calculation was based on GC-MS analysis. All data represent the mean of n = 3 biologically independent samples and error bars show standard deviation.

Table S7. Pocket volumes of EvAS and its variants predicted by POVME.⁴

TC-models	volume (Å ³)
EvAS-WT	302.4 ± 17.0
EvAS-S85A	244.2 ± 11.3
EvAS-S85N	230.1 ± 19.2
EvAS-S85D	88.8 ± 24.9
EvAS-S85Y	22.8 ± 8.2
EvAS-S85L	80.9 ± 25.1
EvAS-S85H	90.9 ± 29.6
EvAS-I66A	71.7 ± 21.3
EvAS-F89A	138.8 ± 36.1
EvAS-F187A	70.8 ± 17.3
EvAS-W188A	143.3 ± 22.2
EvAS-S303A	77.8 ± 16.2
EvAS-N307A	98.9 ± 28.8
EvAS-W310A	83.6 ± 15.0

Table S8.]	Primers	for	mutation	in	this	study.
-------------	---------	-----	----------	----	------	--------

	Variants	Primers
	I66A-F	AAGGTGGTCTGGCAGACCAGTGGAACGGTGCATCTATC
	S85A-F	TCTGGGTGTTGTTAGCTACGCTGCAGAATTCGCGTTCG
	S85N-F	TCTGGGTGTTGTTAGCTACGCTAACGAATTCGCGTTCG
	S85L-F	TCTGGGTGTTGTTAGCTACGCTCCGAATTCGCGTTCG
	S85Y-F	TCTGGGTGTTGTTAGCTACGCT <i>TAC</i> GAATTCGCGTTCG
	S85H-F	TCTGGGTGTTGTTAGCTACGCTCACGAATTCGCGTTCG
Forward	S85D-F	TCTGGGTGTTGTTAGCTACGCTGATGAATTCGCGTTCG
	F89A-F	TCTGGGTGTTGTTAGCTACGCTTCCGAATTCGCG <i>GCA</i> GT
	F187A-F	ACCGTATCTACGATGTTGGTATGCTGGCATGGTACGG
	W188A-F	ACCGTATCTACGATGTTGGTATGCTGTTCGCATACGGTCT
	W310A-F	GTACCTGGAAAGCCTGCTGTACTCCATGTCTGGTAACGTTGTTGCAGG
	S303A-F	GTACCTGGAAAGCCTGCTGTACGCAATGTCTGGTAACGTTGTTTGGGG
	N307A-F	GTACCTGGAAAGCCTGCTGTACTCCATGTCTGGTGCAGTTGTTTGGGG
	I66A-R	CTGGTCTGCCAGACCACCTTTGTAAACACCCCAGCGGACCA
D	S85A-R	CGTAGCTAACAACACCCAGACGGTCCGGCAAAGCTTCTG
Keverse	F187A-R	ACCAACATCGTAGATACGGTATTTCAAGAATTCTTTCTCGTTGTT
	S303A-R	ACAGCAGGCTTTCCAGGTACAGCATAGTGTCGTGAGAC

Table S9. Energy analysis for the conformers of (2E,6E,10S,11R,14S,15S,18S)-2.

conformers	Total Energy (Hartree)
2-A (0.9%)	-976.695215
2-B (5.8%)	-976.695881
2-C (0.3%)	-976.693488
2-D (93.0%)	-976.700851

Table S10. Cartesian coordinates for the conformers of (2E,6E,10S,11R,14S,15S,18S)-2.

2-A				2-B						2-С			2-D			
С	-1.54406	2.202258	-0.27275	С	1.693633	2.142574	0.35005	С	1.955309	2.016489	0.452277	С	-2.08382	2.078977	-0.20094	
С	-2.82202	2.01088	0.083626	С	2.944141	1.928577	-0.08252	С	3.072418	2.048139	-0.29045	С	-2.51983	1.501926	-1.33273	
С	-2.59632	-1.24213	-0.23541	С	2.561663	-1.29339	0.152194	С	2.754602	-1.22588	-0.74099	С	-2.38598	-1.47007	-0.06748	
С	-0.27407	-1.8533	0.76945	С	0.177846	-1.78026	-0.78001	С	0.14063	-1.7817	-0.77503	С	-0.06806	-1.57615	1.094241	
С	0.228694	-0.40088	0.371161	С	-0.26742	-0.32577	-0.32454	С	-0.33727	-0.36799	-0.21623	С	0.348079	-0.24487	0.341869	
С	-0.2309	0.690246	1.373764	С	0.196632	0.793658	-1.2946	С	0.236084	0.828332	-1.03304	С	-0.10464	1.054902	1.063481	
С	-0.4511	2.113926	0.791134	С	0.541617	2.16662	-0.65135	С	0.605569	2.117404	-0.2475	С	-0.60173	2.181806	0.105674	
С	-4.03824	1.821763	-0.7891	С	4.191408	1.65395	0.722093	С	4.463461	1.630509	0.091669	С	-3.9213	1.073226	-1.67606	
С	-4.21992	0.324263	-1.2321	С	4.313694	0.14031	1.127472	С	4.765869	0.20354	-0.47696	С	-4.08654	-0.48088	-1.55447	
С	-3.79184	-0.638	-0.14462	С	3.792658	-0.77066	0.037541	С	3.786751	-0.83741	0.028691	С	-3.63048	-0.98651	-0.20201	
С	0.252938	-2.27655	2.159649	С	-0.41275	-2.15373	-2.15925	С	0.002819	-1.85233	-2.31257	С	0.477712	-1.60454	2.539961	
С	-1.09566	2.468652	-1.68882	С	1.330742	2.3443	1.801321	С	1.922554	1.815754	1.947343	С	-2.98264	2.619109	0.887066	
С	-4.70395	-0.73135	1.054045	С	4.657046	-0.89455	-1.19315	С	4.040475	-1.31065	1.441033	С	-4.5933	-0.78667	0.942412	
С	-1.83861	-1.96059	0.851902	С	1.731499	-1.936	-0.9295	С	1.615679	-2.13283	-0.35594	С	-1.62236	-1.73965	1.205251	
Η	-0.25658	-0.16511	-0.58159	Н	0.244287	-0.14023	0.625241	Н	0.047895	-0.29646	0.810313	Н	-0.17559	-0.26	-0.62054	
С	0.191661	-2.8913	-0.29293	С	-0.28042	-2.82407	0.279784	С	-0.68386	-2.96379	-0.16243	С	0.463451	-2.82387	0.327465	
С	2.126823	-1.43287	-1.0508	С	-2.16909	-1.33517	1.110264	С	-2.53515	-1.46605	0.654757	С	2.293108	-1.49602	-0.82809	
С	1.759615	-0.45391	0.107239	С	-1.79405	-0.34621	-0.03556	С	-1.89072	-0.30635	-0.15643	С	1.871334	-0.27988	0.048598	
Н	2.227646	-0.88846	1.000581	Н	-2.28014	-0.75689	-0.93059	Н	-2.24455	-0.45528	-1.18702	Н	2.376693	-0.43692	1.012237	
С	3.651449	-1.22982	-1.13039	С	-3.69018	-1.10922	1.209691	С	-4.02073	-1.06534	0.617705	С	3.801707	-1.22856	-0.99579	
С	3.842343	0.29783	-0.9986	С	-3.86445	0.419047	1.065676	С	-4.009	0.453505	0.891195	С	3.899909	0.296767	-1.22825	
С	2.577832	0.830683	-0.21431	С	-2.59193	0.953156	0.301485	С	-2.61018	0.974908	0.371692	С	2.597561	0.935335	-0.61052	
Ċ	3.02584	1.720935	0.937617	С	-3.0115	1.839712	-0.8617	С	-2.83457	2.144356	-0.58069	С	2.945257	2.113951	0.285122	
Ċ	3.428159	3.118522	0.522281	С	-3.6187	1.182083	-2.08076	С	-3.02412	3.477753	0.106092	С	3.647946	1.834549	1.59544	
C	3.158416	1.324408	2.208364	Ċ	-2.93502	3.173423	-0.77533	C	-2.9731	2.036144	-1.90689	C	2.70996	3.371964	-0.10732	
C	1.507971	-1.04542	-2.41396	Ċ	-1.52745	-0.97884	2.470569	C	-2.07539	-1.52047	2.130216	C	1.636233	-1.50786	-2.22734	
C	1 685854	-2 84766	-0.65171	C	-1 7625	-2 75296	0.68245	C	-2 20254	-2 77541	-0.06747	C	1 94984	-2 78216	-0.06344	
Н	-3 00616	1 841295	1 146065	н	3 070664	1 811399	-1 16045	н	2 944656	2 225656	-1 36182	н	-1 76138	1 178441	-2 04911	
Н	-2 06843	-1 12837	-1 18182	н	2 067981	-1 16388	1 114681	Н	2.911030	-0.85453	-1 76557	Н	-1 82485	-1 61424	-0.99029	
Н	0.483066	0 769584	2 200442	н	-0 56465	0 96491	-2 0663	Н	-0 48563	1 096534	-1 81021	Н	0 718701	1 445456	1 670921	
Н	-1 18321	0.382941	1 818898	н	1 092849	0.45806	-1 82757	н	1 14375	0 524759	-1 55421	Н	-0.90992	0.829904	1 771468	
Н	0.488758	2 506533	0 391909	н	-0 34975	2 588675	-0.18093	н	-0 1796	2 373222	0.471925	н	-0.38626	3 15303	0 570669	
н	-0 71182	2.300333	1 634304	н	0.792091	2.300075	-0.10095	н	0.63512	2.973222	-0 97187	н	-0.0243	2 151844	-0.82364	
H	-0.71102	2.707943	-0 23321	н	5.068162	1 938738	0 127347	н	4 604725	1 629512	1 177647	н	-4 65775	1 565125	-1.03258	
Н	-4 00151	2.142017	-1 69078	н	4 234239	2 258153	1 635927	н	5 20961	2 323824	-0.32019	н	-4 17264	1.303123	-2 70719	
н	-5.26741	0.170753	-1.528/15	н	5 362742	-0.07325	1.055727	н	5 79766	-0.06557	-0.32017	н	-5.13838	-0 733	-1 74972	
н	-3.20741	0.170755	-1.52845	н Н	3 725657	-0.07323	2 038612	н Н	4 724006	0.253881	-0.20874	и Н	-3.13838	-0.733	-1.74972	
Ц	0.02408	1 5/1083	2 031316	и П	0 152/1	1 /0881	2.030012	и П	0.6121/0	1 10/32	-1.37227 2 82755	и П	0 1/0551	0.73001	3 112623	
н	-0.18263	-1.5+703 -3.2/102	2.751510	н	-0.152+1	-3.11680	-2.91978	н	0.012147	-1.10+32	-2.62735	н	0.149331	-0.75001	3.062884	
н	1 3/05/09	-2 30316	2.440314	н Н	-0.00307	-2 25233	-2.49132	н Н	-1 03357	-2.83823	-2.07580	и Н	1 57084	-2.49509	2 581886	
п П	0.5287	2 108800	2.109337	и П	-1.30221	2 202475	1 028005	и П	1 258050	-1.703+ 2.627727	-2.03088	и П	2 8066	2 100647	2.381880	
п Ц	-0.5267	5.400099 1.601/5/	-1./440/	п u	0.611075	1 56802	2 155211	п ц	1.336039	2.02/727	2.4209	п u	-2.8000	2.109047	1.0440//	
п П	-0.42098	2 5/1/2	-2.03232	и П	2 2022	2 228888	2.155511	и П	2.017140	1 702/27	2.21/804	и П	-4.04033	2.551555	1.060042	
11 Ц	-1.9300 5.69974	2.34142	-2.39103	11 11	5 622075	2.330000	0.02122	11 Ц	<i>2.31/143</i> <i>4</i> 115702	0.46025	2.40002	п П	-2.70390 5.40761	1 40050	0.707567	
п Ц	-3.000/4	-1.11302	0.732407	п u	<i>J</i> .052075	-1.52072	1 06258	п ц	4.115/95	-0.40955	2.142037	п u	-3.46701	1.05220	0.797307	
п П	-4.31739	-1.39403	1.651901	и П	4.211195	-1.52000	-1.90336	и П	5.001568	-1.90942	1.010433	и П	4.10243	-1.05559	1.911124	
н Ц	-7.00313 _7.07704	-2 02719	0.851806	и П	1 00/2/J	-3 01005	-1.0+320	и Ц	1 617512	-1.04203 _7.76577	1. 7 22390	и П	-7.24044 _1 20021	.230034	1 56157	
п ц	-2.07294	-5.05/16	1.820600	п u	1.920173	-5.01905	-0.96577	п u	1.01/313	-2.20322	0.751526	п u	-1.00004	-2.707	2.002582	
п u	-2.1/10/	-1.39410	1.027007 0.07010	п บ	2.03/9/2	-1.JJYU/ 2 Q1020	-1.70438 0 1042	П U	1.000081 0.4614	-3.130	0.1/525	П U	-1.770UI	-1.00049	2.003382 0.016802	
11 Ц	-0.0039	-3.8930	1 20712	11 11	-0.03907	-3.62606	-0.1003	11 Ц	-0.4014	-3.00002	-0.7430	п П	0.275571	-3./11/2	0.540890	
п ц	-0.40009	-2.73239	-1.20/12	п u	0.540961 4 12114	-2./1121	1.1//013 2.120924	п u	-0.50517	-5.10004	0.040203	п u	-0.15001	-2.90807	-0.3/909	
п ц	4.0910//	-1.05223	-2.03000	п u	-4.12114	-1.49002	2.139624	п u	-4.03407	-1.02043	0.2912	п u	4.231040	-1.01045	-1.80908	
п	4.13343	-1./434	-0.28933	п	-4.1911/	-1.02852	0.581502	п	-4.42981	-1.20099	-0.3813	П	4.520998	-1.30/04	-0.07232	
П 11	4./0/21/ 2.011/27	0.340333	-0.40030	H	-4./8038	0.072200	0.332933	H TT	-4.8339/	0.90130	0.382823	H TT	4.803330	0./13/80	-0.//849	
H	3.91143/	0.//1312	-1.98396	H	-3.935/8	0.9064/4	2.043/5/	H	-4.12296	0.058448	1.9011/4	Н	3.95415/	0.534881	-2.29576	
П	1.77//37	1.43//33	-0.90343	П	-2.0102/	1.3/0889	1 20040	П тт	-2.03082	1.337703	1.233231	П 11	1.702/44	1.319303	-1.43200 1 457017	
H TT	2.381081	3.0398// 2.704170	0.0/9113	H	-4.4203	0.483243	-1.80646	H	-2.12263	5./09169 1.274706	0.0010//	H	4.31918/	1.180666	1.43/81/	
П 11	3.8004/4 4.214444	3./041/8 2.001404	1.30842/	H	-4.04132	1.928034	-2./000	H TT	-3.23/34	4.2/4/90		H TT	3.774438 2.000511	2./0185	2.001/34	
H	4.214444	3.091494	-0.24436	H	-2.8///8	0.000416	-2.04332	H	-5.8402	3.429181 2.002702	0.840418	H	2.989311	1.52/50/	2.312094	
H	3.343083	1.999184	2.96822	H	-5.29278	5.821569	-1.5/199	H	-3.20626	2.903782	-2.51918	H	5.00/629 2.212722	4.225941	0.496712	
H	2.8968/	0.320982	2.54/12	H	-2.31336	5.009142	0.09/035	H	-2.86/29	1.094801	-2.45/65	H	2.212/82	3.39392	-1.04/91	
H	1./88413	-0.03327	-2./2421	H	-1./8131	0.036507	2.795714	H	-2.52596	-0.60286	2.0/2333	H	1.864156	-0.6013	-2.7978	
H	1.808036	-1./3436	-3.18809	H	-1.89483	-1.06//6	5.241336 2.4(2122	H	-2.57788	-2.55015	2.043349	H	2.016668	-2.36027	-2.80388	
H TT	0.413644	-1.09507	-2.419/3	H	-0.43637	-1.05423	2.403123	H	-0.99856	-1.0/302	2.239812	H	0.54/323	-1.60102	-2.19017	
H	1.889299	-3.36333	-1.460/6	H	-1.95/82	-3.4/462	1.488156	H	-2.64256	-3.03838	0.452286	H	2.195365	-3.6/089	-0.661/6	
H	2.286104	-3.1/195	0.20/50/	Н	-2.39231	-3.061/3	-0.16349	Н	-2.65354	-2./54/6	-1.069/3	H	2.576205	-2.83679	0.83/948	

Table S11. The Gibbs free energy profiles for reprotonation sequences mediated by hydroxyl oxygen and carbonyl oxygen of serine, progressing from state 2 to IM3.

	Thermal correction to Gibbs Free Energy (B3LYP/6-31G(d))	Total energy/Hartree (mPW1PW91/6-311+G(d,p))	Imaginary Freq
2_S-O_H	0.654343	-1300.86511	none
TS1	0.649553	-1300.850884	-785.23
IM3_S-O	0.657684	-1300.869387	none
2_S=O_H	0.655674	-1300.85144	none
TS2	0.650079	-1300.842604	-983.87
IM3_S=O	0.655953	-1300.85996	none

Table S12. Cartesian coordinates of the intermediates and transition states for reprotonation sequences mediated by hydroxyl oxygen and carbonyl oxygen of serine, progressing from state 2 to IM3.

	2_S-O_H				TS1				IM3_S-O			
С	-5.63892	-2.10518	-0.09275	С	-6.01483	-1.88204	-0.62277	С	-3.46528	-3.25746	-1.25337	
С	-4.24144	-1.50916	-0.32674	С	-4.70773	-1.20056	-1.03881	С	-3.40328	-2.00633	-2.1452	
0	-4.07073	-0.48175	0.65852	0	-3.99437	-0.7798	0.154804	0	-2.45389	-1.06406	-1.65473	
Η	-4.15821	-1.0987	-1.34142	Η	-4.90665	-0.32966	-1.67386	Н	-4.40383	-1.55176	-2.21194	
Н	-3.48661	-2.29151	-0.20409	Н	-4.05783	-1.89317	-1.57632	Н	-3.0987	-2.28757	-3.15731	
C	1.308043	3.124288	-0.55073	C	0.902534	3.023442	-0.55865	C	-0.25216	2.612609	-1.43872	
C	0.448726	2.719949	-1.50272	C	0.094036	2.51554	-1.51312	C	-1.40315	1.842245	-1.00186	
C	-1.252/1	0.552698	0.324002	C	-1.12145	0.33024	0.218564	C	-1.41413	1.588493	0.648069	
C	0./11555	-0.04522	1.331308	C	0.909555	-0.0120/	0.46200	C C	1.000014	1.102080	0.11476	
C	2 355593	1 326611	0.480937	C	2 372195	1 476669	0.40299	C	1.449408	0.527005	-0.89553	
C	2.555555	2 330026	-0 24701	C	2.372195	2 4803	-0 34268	C	0.912626	1.945031	-0.89555	
C	-0.94113	3.224995	-1.78739	C	-1.34284	2.854316	-1.79693	C	-2.80397	2.467511	-1.29285	
C	-2.03239	2.169322	-1.3959	C	-2.30863	1.658434	-1.50987	C	-3.68328	1.994096	-0.12607	
С	-1.86827	1.725796	0.043245	С	-2.17465	1.183493	-0.06291	С	-2.78755	2.162285	1.108564	
С	1.321844	-0.61554	2.971133	С	1.466338	-0.47132	2.972816	С	2.185575	1.975158	2.138601	
С	1.113331	4.33876	0.326895	С	0.525432	4.152902	0.370709	С	-0.18182	4.08448	-1.29404	
С	-2.25016	2.738787	1.097545	С	-2.75206	2.097885	1.009497	С	-2.78702	3.604249	1.638812	
С	-0.64828	0.132967	1.647324	С	-0.49302	0.077489	1.550484	С	-0.19815	2.025181	1.478653	
С	0.465255	-2.16326	1.217514	С	0.787569	-2.15647	1.263799	С	0.855876	-0.09937	2.535349	
С	0.558219	-2.57827	-0.2607	С	0.967512	-2.62596	-0.19087	С	0.518907	-1.47824	1.937409	
С	1.87297	-2.10523	-0.94492	С	2.253539	-2.06598	-0.86572	С	1.482281	-1.91598	0.796237	
C	2.629365	-1.11463	-0.00988	C	2.90065	-0.97824	0.043515	C	2.355847	-0.70372	0.356052	
C	2.9/2815	-3.1687	-1.15032	C	3.450372	-3.03018	-1.01199	C	2.606333	-2.91924	1.136213	
C	4.2/8159	-2.33854	-1.30668	C	4.6/331	-2.08669	-1.18322	C	3.6530/	-2./0/83	0.001023	
C	5.98515 1 516114	-0.89034	-0.73092	C	4.238903	-0.0384/	-0.0/128	C C	0.6212	-1.31821	-0.0/02/	
C	5 14091	-1.31042	-2.32040	C	5 325455	-1.55804	-2.2774	C	4 580672	-2.32922	-0.34001	
C	5.451667	-1.00645	1.413115	C C	5.674381	-0.55004	1.501138	C C	5.423373	0.028503	0.103047	
C	5.899673	0.644142	-0.38374	C	5.989092	1.073627	-0.34929	C	4.946224	-0.36118	-2.30164	
Н	1.14268	4.074265	1.392417	Н	0.680028	3.875811	1.421519	Н	0.847718	4.430244	-1.15563	
Н	1.936813	5.047425	0.166194	Н	1.179297	5.015178	0.184971	Н	-0.51442	4.504853	-2.26002	
Η	0.180852	4.87583	0.136913	Н	-0.50562	4.495213	0.258734	Н	-0.83724	4.488422	-0.52221	
Η	-2.25735	2.32057	2.106769	Н	-2.79991	1.610999	1.98784	Н	-2.10922	3.736372	2.487259	
Η	-1.55689	3.588257	1.095203	Н	-2.14303	3.001789	1.119976	Н	-2.51282	4.34175	0.875373	
Η	-3.24626	3.151943	0.892931	Η	-3.76469	2.416033	0.740657	Н	-3.79325	3.864525	1.98373	
Η	2.2956	-1.11703	2.997223	Н	2.484257	-0.86924	3.039729	Н	3.13868	1.438974	2.187819	
Н	1.460752	0.403054	3.346076	Н	1.491412	0.566895	3.31805	Н	2.352984	2.908614	1.589839	
H	0.667856	-1.14083	3.678601	H	0.84876	-1.0388	3.6/9//9	H	1.921179	2.255428	3.164912	
H	0.9/0196	-2.26059	-2.91225	H	1.40/442	-2.3/38	-2.83966	H	0.039986	-3.35375	0.077278	
п Ц	0.8/1/88	-0.02075	-2.24/43	п ц	1.100100	-0.72809 1 22454	-2.2309	п ц	-0.08193	-1.82497	-0.78405	
H	2.390013	-3.81846	-0.26776	н	2.742338	-1.22434	-0.10366	н	3 04427	-2.94939	2 113686	
Н	2.781812	-3.81721	-2.01337	Н	3.336082	-3.72583	-1.85104	Н	2.250442	-3.9541	1.187096	
Н	5.110275	-2.8098	-0.77549	Н	5.538893	-2.45807	-0.62408	Н	4.672134	-2.72235	0.398243	
Н	4.588274	-2.26629	-2.35374	Н	4.994272	-2.02378	-2.22803	Н	3.606517	-3.50374	-0.74807	
Н	3.844327	-0.21611	-1.58366	Н	4.047854	-0.0222	-1.54244	Н	2.799233	-1.5038	-1.61684	
Н	2.899157	-1.70347	0.878032	Н	3.201988	-1.50452	0.960062	Н	2.986722	-0.46829	1.222575	
Η	1.052411	0.282282	-0.36988	Н	1.219652	0.234437	-0.41978	Н	0.530071	0.116733	-0.31693	
Η	1.744651	1.823857	1.689875	Н	1.798014	1.896265	1.678557	Н	2.299467	2.499255	-0.4177	
Η	3.321133	1.124303	1.399531	Η	3.40662	1.419412	1.192638	Н	2.820652	1.191987	-1.45966	
Η	2.897651	1.786317	-1.13767	Н	2.670165	1.993012	-1.25274	Н	0.62846	1.019258	-2.53881	
Н	3.381634	3.014371	0.019975	Н	2.986536	3.313695	-0.13579	Н	1.427944	2.615384	-2.72886	
H	0.741938	1.857076	-2.10368	H	0.516624	1.75192	-2.16883	Н	-1.36786	0.849319	-1.45135	
H	-1.03332	-0.0926/	-0.5268	H	-0./614/	-0.26501	-0.61862	H	-1.4941	0.499305	0.695715	
Н U	-3.2308/	0.042169	0.4//0/4	н u	-2.9/843	0.07422	0.00196	н u	-3.13223	1.509276	0.26486	
п Н	-1.93423	1.303077 2.614564	-2.00034 _1 57707	п Ч	-2.0030 _3 3376	0.0300/2 1 9711/1	-2.19/40 _1 7005	п Ц	-3.93830 -4 61814	0.938094	-0.20480 -0.06010	
H	-1.14512	4.162847	-1.37292	Н	-1.67466	3,777987	-1.7223	Н	-2.76217	3.560319	-1.32198	
Н	-1.06582	3.436773	-2.8578	Н	-1.4666	3.110218	-2.85765	Н	-3.15967	2.123206	-2.26804	
Н	1.197388	-2.7576	1.777124	Н	1.542766	-2.66328	1.875283	Н	1.77774	-0.20377	3.119479	
Н	-0.51018	-2.46393	1.62438	Н	-0.17567	-2.51654	1.649586	Н	0.085206	0.173122	3.26692	
Н	0.459388	-3.66993	-0.3321	Н	0.969233	-3.72343	-0.20845	Н	0.523408	-2.21826	2.748078	
Н	-0.3011	-2.17171	-0.81233	Н	0.090032	-2.33319	-0.78454	Н	-0.51147	-1.47477	1.558551	
Н	-0.49131	1.030293	2.255284	Н	-0.43163	1.037811	2.078061	Н	0.10437	3.040641	1.193484	
Η	-1.3438	-0.49564	2.224122	Н	-1.18151	-0.53449	2.156365	Н	-0.54799	2.132671	2.5127	

Н	6.761134	1.015779	0.165415	Η	6.801547	1.547101	0.195952	Н	5.859591	0.161057	-2.57473
Н	5.693814	1.121726	-1.3388	Н	5.753791	1.493407	-1.32469	Н	4.35707	-0.76493	-3.12231
H	6.394715	-0.63357	1.82294	Н	6.570157	-0.07407	1.909839	H	6.365665	0.435981	-0.27366
H U	4.66/512	-0.81024	2.136266	H U	4.862494	-0.402/1	2.226092	H U	4.905672	0.834133	0.640264
п Н	-5 43277	-2.09734	0 587195	п Н	-4 72488	-0.35429	0 71774	п Н	-2 62266	-0.73807	-0.68623
C	-6.70656	-1.04103	-0.10141	C	-6.85493	-0.95592	0.253512	C	-3.81715	-2.90124	0.187486
0	-6.44462	0.141068	0.333764	0	-6.30641	-0.11352	0.985668	0	-3.41226	-1.85453	0.717101
Н	-5.86093	-2.88335	-0.82878	Н	-6.56206	-2.19942	-1.51707	Н	-4.17528	-3.98215	-1.66824
Ν	-7.92819	-1.28741	-0.52081	Ν	-8.18854	-1.10229	0.216345	Ν	-4.57347	-3.78795	0.868214
Η	-8.63762	-0.56123	-0.47364	Η	-8.7591	-0.53632	0.832596	Η	-4.79198	-3.60011	1.838064
Η	-8.19684	-2.19672	-0.87543	Н	-8.64664	-1.7838	-0.3713	Η	-4.917	-4.64131	0.453268
H	-5.66452	-2.57089	0.902409	H	-5.78756	-2.78458	-0.04114	Н	-2.47742	-3.73646	-1.24159
	2_	_S=O_H				TS2			I	M3_S=O	
С	-5.46693	-0.82453	0.559363	С	-5.84544	-0.55635	0.051904	С	-5.55334	-1.60799	0.814209
C	-4.67255	-2.05298	0.260227	C	-4.9616	-1.63887	0.611528	C	-4.28976	-2.42747	0.578434
O C	-3.42758	-2.00786	-0.07421	0	-3.70496	-1.5254	0.676718	0	-3.26078	-1.90459	0.145941
C O	-5.83399	-0.03968	-0./4591		-5./855/	-0.50/1	-1.50263		-0.02/0	-0.90887	-0.4/503
Н	-6.37013	-1.08066	1.121711	H H	-6.87938	-0.68104	0.390954	Н	-6.35876	-2.20865	-0.21110
Н	-6.61442	-0.57935	-1.29812	Н	-6.35702	-1.3411	-1.92973	Н	-6.56114	-1.62015	-1.12261
Н	-4.95167	0.024722	-1.38812	Н	-4.74559	-0.6199	-1.82744	Н	-5.15425	-0.55389	-1.02585
С	0.605737	3.096782	-0.24026	С	0.457631	2.998543	-0.18748	С	0.427261	3.048089	0.225445
С	-0.11586	2.644671	-1.28136	С	-0.38768	2.493415	-1.11014	С	-0.37368	2.540359	-0.87132
С	-1.43171	-0.00291	0.178775	С	-1.24632	0.040461	0.492996	С	-1.12054	1.086788	-0.47204
С	0.685771	-0.92046	1.39701	С	0.975484	-0.80744	1.539519	С	0.560383	-0.47994	0.877448
C	1.557447	0.020871	0.468005	C	1.740761	0.065046	0.464592	C	1.777199	0.260661	0.204301
C	1.94384	1.382993	1.093897	C	2.166204	1.475329	0.942072	C	2.274707	1.513719	0.957412
C C	1.988483	2.539891	0.051561	C C	1.913182	2.5/01//	-0.13463	C	1.886491	2.8/9904	0.23/632
C	-1.30339	2.903901	-1.00195	C	-1.60939	2.710707	-1.23919	C	-1.55652	2 446395	-1.33249
C	-2.26694	1.029478	-0.02105	C	-2.37955	0.823499	0.386762	C	-2.63357	1.377685	-0.67592
C	1.218808	-0.94716	2.847541	C	1.647929	-0.74263	2.929136	C	0.811897	-0.77872	2.374782
С	0.134972	4.138465	0.747915	С	0.072347	4.013514	0.863201	С	-0.1802	3.721277	1.396119
С	-2.88803	1.838512	1.107296	С	-2.90279	1.592062	1.592455	С	-3.43663	1.796955	0.564912
С	-0.79719	-0.41866	1.493212	С	-0.47825	-0.26844	1.738164	С	-0.74875	0.368983	0.831659
С	0.741957	-2.40708	0.883558	С	0.973662	-2.32368	1.121214	С	0.361017	-1.88579	0.184313
C	0.983848	-2.62089	-0.62065	C	1.064928	-2.63709	-0.38305	C	0.902625	-2.0478	-1.24839
C	2.212775	-1.83496	-1.16079	C	2.225748	-1.88832	-1.1006	C	2.3769	-1.58128	-1.42421
C C	2.723414	-0.83919	-0.07002	C C	2.840099	-0.82/44	-0.14293	C C	2.855100	-0.80908	-0.13113
C	2.303138 4.631172	-2.04238	-1.40/31	C	3.490280 4 60009	-2.7071	-1.43633	C	2.40144 4 780102	-2.03988	-1.4/3/
C	4.039454	-0.28667	-0.68566	C	4.078794	-0.30815	-0.92824	C	4.333903	-0.53273	-0.4156
C	1.810051	-1.15763	-2.49088	C	1.677179	-1.29564	-2.41949	C	2.467273	-0.75429	-2.7285
С	5.033642	0.361111	0.263109	С	5.165586	0.402026	-0.13885	С	5.197375	-0.15427	0.776074
С	5.408944	-0.37498	1.529818	С	5.690245	-0.25276	1.119358	С	5.116964	-0.99893	2.027133
С	5.602244	1.533966	-0.04274	С	5.677608	1.559258	-0.57632	С	6.040093	0.88583	0.701096
Η	0.189011	3.767098	1.780064	Н	0.35799	3.678036	1.868651	Η	0.399571	3.545337	2.308106
Н	0.796222	5.014166	0.705112	Н	0.620596	4.9488	0.688742	Н	-0.11128	4.806102	1.19925
H	-0.88305	4.492254	0.566899	H	-0.99226	4.257539	0.875999	H	-1.23223	3.483059	1.551372
н ц	-2.8/510	1.30264	2.060502	н ц	-2.9345	0.9/40/1	2.49482	н ц	-3.3054/	1.092555	1.390907
Н	-3 92268	2.779040	0.867227	Н	-3.91087	1 975978	1 40489	H	-4 50387	1 811787	0.318796
Н	2.269299	-1.25576	2.878886	Н	2.69959	-1.04208	2.871333	Н	1.739805	-1.33917	2.529742
Н	1.142543	0.026566	3.341156	Н	1.61039	0.257448	3.371959	Н	0.856533	0.123778	2.994861
Н	0.651926	-1.66829	3.449934	Н	1.152466	-1.43046	3.625455	Н	-0.00587	-1.39285	2.769189
Η	1.442391	-1.92108	-3.18751	Н	1.237728	-2.1011	-3.02017	Η	2.082312	-1.35687	-3.55928
Η	1.006114	-0.42321	-2.36054	Η	0.888934	-0.55074	-2.25256	Η	1.860938	0.160774	-2.69489
Н	2.644227	-0.6492	-2.98295	Н	2.450076	-0.8231	-3.03213	Н	3.489584	-0.46471	-2.98829
Н U	3.651804 3.480420	-3.36925	-0.59783	H	3./33815	-3.37989	-0.60615	H	3.271798	-3.447	-0.7387
п u	5.480459	-3.20837	-2.5457	п u	5.500955	-3.331/9	-2.55029	п u	5.33/130	-3.14399	-2.45240
H	4 965672	-1.93737	-0.85882	H	4 815496	-1.90129	-1.10023	H	5 399059	-2.47093	-0.41314 -1 97011
Н	3.807703	0.451379	-1.46064	Н	3.750651	0.381725	-1.7134	Н	4.434018	0.273769	-1.15155
Н	3.061861	-1.46836	0.75861	Н	3.278624	-1.40147	0.688895	Н	2.82713	-1.54874	0.659441
Н	0.926007	0.270788	-0.38925	Н	1.022511	0.244899	-0.34197	Н	1.415277	0.619296	-0.76458
Н	1.225252	1.660172	1.875229	Н	1.623014	1.760452	1.850584	Н	1.924029	1.556195	1.991616
Η	2.915992	1.315358	1.590814	Н	3.225585	1.487199	1.210705	Η	3.367464	1.548182	0.997424
Η	2.457938	2.182715	-0.87064	Н	2.239965	2.201199	-1.11292	Η	2.296519	2.851109	-0.77549
Н	2.634007	3.337087	0.440551	Н	2.539489	3.440646	0.09748	Н	2.360155	3.684841	0.810457
H	0.369567	1.934962	-1.95355	H	0.03759	1.826046	-1.86212	H	0.280341	2.312162	-1.71486
Н U	-1.02434	-0.4/004	-0./1803	H	-0.92247	-0.4491	-0.42335	H	-0./9864	0.404784	-1.31221
п Н	-2.97083 -2.15277	-1.08412 0.882212	-0.00882 _2 16342	н ц	-3.03000 _7 <u>4</u> 3357	-0.42134 0.674126	0.433842 _1 76877	н ц	-3.03031	0.428041 2 00476	-1.02308 _2 7179
Н	-2.13377	1.901212	-2.10342	H	-2. 1 3332 -3.75868	1.632104	-1.10011	H H	-2.40420	2.00470 2.937873	-2.7470
Н	-1.97363	3.717335	-0.99395	Н	-2.22608	3.493757	-0.56401	Н	-1.92028	4.078855	-0.54477
Н	-1.67934	3.216126	-2.64876	Н	-2.11527	3.045206	-2.25577	Н	-1.22316	4.091933	-2.16192
Н	1.542245	-2.92226	1.427847	Н	1.824205	-2.80599	1.616409	Н	0.852806	-2.6371	0.81409
Н	-0.18038	-2.92391	1.182945	Н	0.085825	-2.81279	1.544266	Н	-0.7042	-2.14226	0.196333
Н	1.100874	-3.69593	-0.81182	Н	1.169643	-3.72234	-0.51014	Н	0.793554	-3.09808	-1.54765
H	0.088475	-2.32409	-1.18353	H	0.113552	-2.38378	-0.87109	H	0.263877	-1.48644	-1.94343
H TT	-0.83002	0.437516	2.175685	H	-0.45617	0.640616	2.352551	H	-0.75639	1.079182	1.668625
н	-1.37349 6.351045	-1.21428 1.992738	0.598033	п Н	6.487323	2.062289	2.33289 -0.05391	п Н	-1.37880 6.700469	1.150098	1.523027
				**							

Η	5.348773	2.074549	-0.95168	Η	5.314998	2.040771	-1.48162	Н	6.119113	1.495276	-0.19668
Η	6.243326	0.116876	2.037911	Η	6.568577	0.275477	1.500848	Н	5.889613	-0.71325	2.746321
Η	4.571114	-0.4205	2.238244	Η	4.936984	-0.26095	1.918696	Н	4.144589	-0.89547	2.526617
Η	5.704359	-1.41272	1.328812	Η	5.976369	-1.29849	0.94926	Н	5.24243	-2.06637	1.807277
Η	-7.14003	1.316051	-0.19866	Η	-7.18144	0.777323	-1.9852	Н	-7.66779	-0.03517	0.142867
Ν	-5.23027	-3.24607	0.260662	Ν	-5.51954	-2.78459	1.001099	Ν	-4.36173	-3.75066	0.866784
Η	-6.20144	-3.37756	0.51344	Η	-6.51934	-2.93072	0.976109	Н	-5.20299	-4.18836	1.210613
Η	-4.68056	-4.06679	0.02262	Η	-4.93279	-3.53542	1.346694	Н	-3.5463	-4.32875	0.713829
Η	-4.85758	-0.16005	1.178672	Η	-5.4858	0.405487	0.427053	Н	-5.29343	-0.82432	1.534515

References

- 1. Y. Matsuda, T. Mitsuhashi, S. Lee, M. Hoshino, T. Mori, M. Okada, H. Zhang, F. Hayashi, M. Fujita and I. Abe, *Angew. Chem. Int. Ed.*, 2016, **55**, 5785-5788.
- 2. P. Cramer, *Nat Struct Mol Biol*, 2021, **28**, 704-705.
- 3. M. Ma, M. Xu, H. Xu, Z. Lei, B. Xing, J. S. Dickschat and D. Yang, *Angew. Chem. Int. Ed.*, 2024, **63**, e202405140.
- 4. J. R. Wagner, J. Sorensen, N. Hensley, C. Wong, C. Zhu, T. Perison and R. E. Amaro, *J Chem Theory Comput*, 2017, **13**, 4584-4592.
- 5. P. Wang, X. Gao and Y. Tang, *Curr Opin Chem Biol*, 2012, **16**, 362-369.
- G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT., 2016.
- L.-L. Sun, W.-S. Li, J. Li, H.-Y. Zhang, L.-G. Yao, H. Luo, Y.-W. Guo and X.-W. Li, J. Org. Chem., 2021, 86, 3367-3376.
- 8. Y. Zhang and J. Skolnick, Proteins, 2004, 57, 702-710.
- 9. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, *J. Comput. Chem.*, 2009, **30**, 2785-2791.
- Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. A. Kollman, *J. Comput. Chem.*, 2003, 24, 1999–2012.
- 11. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, **79**, 926-935.
- 12. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, *J. Comput. Chem.*, 2004, **25**, 1157-1174.
- 13. C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem., 1993, 97, 10269-10280.
- D. A. Case, K. Belfon, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. I. Cheatham, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, G. Giambasu, M. K. Gilson, H. Gohlke, A. W. Goetz, R. Harris, S. Izadi, S. A. Izmailov, K. Kasavajhala, A. Kovalenko, R. Krasny, T. Kurtzman, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, K. M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, A. Onufriev, F. Pan, S. Pantano, R. Qi, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, N. R. Skrynnikov, J. Smith, J. Swails, R. C. Walker, J. Wang, L. Wilson, R. M. Wolf, X. Wu, Y. Xiong, Y. Xue, D. M. York, P. A. Kollman, AMBER 2020, University of California, San Francisco. 2020.
- 15. Q. Chen, J. Li, Z. Liu, T. Mitsuhashi, Y. Zhang, H. Liu, Y. Ma, J. He, T. Shinada, T. Sato, Y. Wang, H. Liu, I. Abe, P. Zhang and G. Wang, *Plant Commun.*, 2020, 1, 100051.
- 16. A. Minami, T. Ozaki, C. Liu and H. Oikawa, Nat. Prod. Rep., 2018, 35, 1330-1346.
- 17. H. Sato, K. Saito and M. Yamazaki, Front Plant Sci., 2019, 10, 802.
- 18. K. A. Taizoumbe, B. Goldfuss and J. S. Dickschat, Angew. Chem. Int. Ed., 2024, 63, e202318375.

- Y. Luo, X. Ma, Y. Qiu, Y. Lu, S. Shen, Y. Li, H. Gao, K. Chen, J. Zhou, T. Hu, L. Tu, H. Zhao, D. Li, F. Leng, W. Gao, T. Jiang, C. Liu, L. Huang, R. Wu and Y. Tong, *Angew. Chem. Int. Ed.*, 2023, **62**, e202313429.
- J. Y. Liu, F. L. Lin, K. A. Taizoumbe, J. M. Lv, Y. H. Wang, G. Q. Wang, G. D. Chen, X. S. Yao, D. Hu, H. Gao and J. S. Dickschat, *Angew. Chem. Int. Ed.*, 2024, e202407895.
- 21. R. Chiba, A. Minami, K. Gomi and H. Oikawa, Org. Lett., 2013, 15, 594-597.
- 22. H. Chai, R. Yin, Y. Liu, H. Meng, X. Zhou, G. Zhou, X. Bi, X. Yang, T. Zhu, W. Zhu, Z. Deng and K. Hong, *Sci. Rep.*, 2016, **6**, 27181.
- 23. R. Chen, Q. Jia, X. Mu, B. Hu, X. Sun, Z. Deng, F. Chen, G. Bian and T. Liu, *Proc. Natl. Acad. Sci. U. S. A.*, 2021, **118**, e2023247118.
- 24. B. Qin, Y. Matsuda, T. Mori, M. Okada, Z. Quan, T. Mitsuhashi, T. Wakimoto and I. Abe, *Angew. Chem. Int. Ed.*, 2016, **55**, 1658-1661.
- K. Narita, H. Sato, A. Minami, K. Kudo, L. Gao, C. Liu, T. Ozaki, M. Kodama, X. Lei, T. Taniguchi, K. Monde, M. Yamazaki, M. Uchiyama and H. Oikawa, *Org. Lett.*, 2017, 19, 6696-6699.
- 26. L. Gao, K. Narita, T. Ozaki, N. Kumakura, P. Gan, A. Minami, C. Liu, X. Lei, K. Shirasu and H. Oikawa, *Tetrahedron Lett.*, 2018, **59**, 1136-1139.
- G. Bian, Y. Han, A. Hou, Y. Yuan, X. Liu, Z. Deng and T. Liu, *Metab. Eng.*, 2017, 42, 1-8.
- 28. Y. Ye, A. Minami, A. Mandi, C. Liu, T. Taniguchi, T. Kuzuyama, K. Monde, K. Gomi and H. Oikawa, *J. Am. Chem. Soc.*, 2015, **137**, 11846-11853.
- 29. T. Mitsuhashi, J. Rinkel, M. Okada, I. Abe and J. S. Dickschat, *Chemistry*, 2017, 23, 10053-10057.
- 30. J. H. Huang, J. M. Lv, Q. Z. Wang, J. Zhou, Y. J. Lu, Q. L. Wang, D. N. Chen, X. S. Yao, H. Gao, and D. Hu, *Org. Biomol. Chem.*, 2019, **17**, 248-251.
- L. Jiang, H. Yang, X. Zhang, X. Li, K. Lv, W. Zhang, G. Zhu, C. Liu, Y. Wang, T. Hsiang, L. Zhang and X. Liu, *Appl. Microbiol. Biotechnol.*, 2022, 106, 6047-6057.
- 32. Y. Matsuda, T. Mitsuhashi, Z. Quan and I. Abe, Org. Lett., 2015, 17, 4644-4647.
- 33. M. Okada, Y. Matsuda, T. Mitsuhashi, S. Hoshino, T. Mori, K. Nakagawa, Z. Quan, B. Qin, H. Zhang, F. Hayashi, H. Kawaide and I. Abe, *J. Am. Chem. Soc.*, 2016, **138**, 10011-10018.
- 34. Z. Quan and J. S. Dickschat, Org. Lett., 2020, 22, 7552-7555.
- 35. J. Guo, Y. S. Cai, F. Cheng, C. Yang, W. Zhang, W. Yu, J. Yan, Z. Deng and K. Hong, *Org. Lett.*, 2021, **23**, 1525-1529.
- L. Jiang, X. Zhang, Y. Sato, G. Zhu, A. Minami, W. Zhang, T. Ozaki, B. Zhu, Z. Wang, X. Wang, K. Lv, J. Zhang, Y. Wang, S. Gao, C. Liu, T. Hsiang, L. Zhang, H. Oikawa and X. Liu, *Org. Lett.*, 2021, 23, 4645-4650.
- 37. K. D. Clevenger, J. W. Bok, R. Ye, G. P. Miley, M. H. Verdan, T. Velk, C. Chen, K. Yang, M. T. Robey, P. Gao, M. Lamprecht, P. MP. Thomas, M. N. Islam, J. M. Palmer, C. C. Wu, N. P. Keller, and N. L. Kelleher, *Nat. Chem. Biol.*, 2017, 13, 895-901.
- 38. L. Jiang, G. Zhu, J. Han, C. Hou, X. Zhang, Z. Wang, W. Yuan, K. Lv, Z. Cong, X. Wang, X. Chen, L. Karthik, H. Yang, X. Wang, G. Tan, G. Liu, L. Zhao, X. Xia, X. Liu, S. Gao, L. Ma, M. Liu, B. Ren, H. Dai, R. J. Quinn, T. Hsiang, J. Zhang, L. Zhang and X. Liu, *Appl. Microbiol. Biotechnol.*, 2021, **105**, 5407-5417.
- 39. Z. Quan, A. Hou, B. Goldfuss and J. S. Dickschat, Angew. Chem. Int. Ed., 2022, 61, e202117273.
- 40. D. Li, M. Yang, R. Mu, S. Luo, Y. Chen, W. Li, A. Wang, K. Guo, Y. Liu and S. Li, *Chin. Chem. Lett.*, 2023, **34**, 107469.
- Y. Qiao, Q. Xu, Z. Huang, X. Chen, X. Ren, W. Yuan, Z. Guan, P. Li, F. Li, C. Xiong, H. Zhu, C. Chen, L. Gu, Y. Zhou, C. Qi, Z. Hu, J. Liu, Y. Ye and Y. Zhang, *Org. Chem. Front.*, 2022, 9, 5808-5818.

- 42. D. Yan, J. Arakelyan, T. Wan, R. Raina, T. K. Chan, D. Ahn, V. Kushnarev, T. K. Cheung, H. C. Chan, I. Choi, P. Y. Ho, F. Hu, Y. Kim, H. L. Lau, Y. L. Law, C. S. Leung, C. Y. Tong, K. K. Wong, W. L. Yim, N. S. Karnaukhov, R. Y. C. Kong, M. V. Babak and Y. Matsuda, *Acta Pharm. Sin. B.*, 2024, **14**, 421-432.
- 43. S. Z. Liu, W. J. Wang, Q. P. Liu, M. Yao, L. X. Liao, S. B. Gao, Y. Yu and X. L. Yang, *Org. Lett.*, 2024, **26**, 4475-4479.
- 44. T. Toyomasu, M. Tsukahara, A. Kaneko, R. Niida, W. Mitsuhashi, T. Dairi, N. Kato, and T. Sassa, *Proc. Natl. Acad. Sci. U. S. A.*, 2007, **104**, 3084-3088.
- 45. A. Minami, N. Tajima, Y. Higuchi, T. Toyomasu, T. Sassa, N. Kato and T. Dairi, Bioorg. *Med. Chem. Lett.*, 2009, **19**, 870-874.
- 46. G. Bian, J. Rinkel, Z. Wang, L. Lauterbach, A. Hou, Y. Yuan, Z. Deng, T. Liu and J. S. Dickschat, *Angew. Chem. Int. Ed.*, 2018, **57**, 15887-15890.
- 47. M. Xu, M. Jia, Y. J. Hong, X. Yin, D. J. Tantillo, P. J. Proteau and R. J. Peters, *Org. Lett.*, 2018, **20**, 1200-1202.
- 48. T. Toyomasu, A. Kaneko, T. Tokiwano, Y. Kanno, Y. Kanno, R. Niida, S. Miura, T. Nishioka, C. Ikeda, W. Mitsuhashi, T. Dairi, T. Kawano, H. Oikawa, N. Kato, and T. Sassa, *J. Org. Chem.*, 2009, **74**, 1541-1548.
- 49. T. Mitsuhashi, T. Kikuchi, S. Hoshino, M. Ozeki, T. Awakawa, S. P. Shi, M. Fujita and I. Abe, *Org. Lett.*, 2018, **20**, 5606-5609.
- T. Shiina, K. Nakagawa, Y. Fujisaki, T. Ozaki, C. Liu, T. Toyomasu, M. Hashimoto, H. Koshino, A. Minami, H. Kawaide and H. Oikawa, *Biosci. Biotechnol. Biochem.*, 2019, 83, 192-201.
- L. Jiang, K. Lv, G. Zhu, Z. Lin, X. Zhang, C. Xing, H. Yang, W. Zhang, Z. Wang, C. Liu, X. Qu, T. Hsiang, L. Zhang and X. Liu, *Synth. Syst. Biotechnol.*, 2022, 7, 1142-1147.
- 52. P. Zhang, G. Wu, S. C. Heard, C. Niu, S. A. Bell, F. Li, Y. Ye, Y. Zhang and J. M. Winter, *Org. Lett.*, 2022, **24**, 7037-7041.
- 53. F. Li, S. Lai, W. Yuan, Z. Chen, Z. Guan, C. Chen, H. Zhu, Y. Zhou, J. M. Winter, Z. Xiang, J. Liu, Y. Ye and Y. Zhang, *Org. Lett.*, 2024, **26**, 1734-1738.
- 54. J.-Y. Liu, F.-L. Lin, K. A. Taizoumbe, J.-M. Lv, Y.-H. Wang, G.-Q. Wang, G.-D. Chen, X.-S. Yao, D. Hu, H. Gao and J. S. Dickschat, *Angew. Chem. Int. Ed.*, e202407895.
- 55. H. Tao, L. Lauterbach, G. K. Bian, R. Chen, A. W. Hou, T. Mori, S. Cheng, B. Hu, L. Lu, X. Mu, M. Li, N. Adachi, M. Kawasaki, T. Moriya, T. Senda, X. H. Wang, Z. X. Deng, I. Abe, J. S. Dickschat and T. G. Liu, *Nature*, 2022, **606**, 414-419.