Electronic Supplementary Information

Cross-conjugated vinylogous annulation of π-CF₃-allyl Pd-complexes with 4methyl-3-trifluoroacetyl-quinolones

Chiliveru Priyanka,^{a,b} Desagoni Madhu,^{a,b} Palivela Siva Gangadhar,^{b,c} LingamalluGiribabu,^{b,c} and Nagender Punna^{*,a,b}

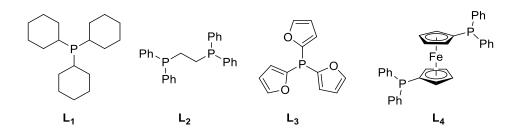
^aDepartment of Fluoro & Agro chemicals CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. ^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002. Polymers and ^cFunctional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India. **Email: nagenderpunna@iict.res.in**

entry	Table of Contents	Page No.
1	General information	S2
2	Methods and Instrumentation	S2
3	Optimization of the reaction conditions	S3
4	Figure S1: Emission spectra of phenanthridone derivatives 4 in DCM	S6
	solvent by exciting at ~345 nm	
5.	Figure S2: Fluorescence decay curves of investigated compounds in	S 6
	dichloromethane solvent.	
6	Table S3. Optical and emission properties of phenanthridone	S7
	derivatives 4.	
7	Figure S3: Isodensity (0.02) plots of FMOs using the B3LYP method	S7
	6-31G(d,p) & molecular electrostatic potential maps (ESP)	
8	Figure S4: Cyclic voltammogrammes of investigated compounds in	S8
	dichloromethane solvent using 0.1 M TBAP	
9	Experimental procedures and characterization data of compounds	S8
10	Gram scale reaction of 3a & 4a	S30
11	X-ray analysis data of 3a	S31
12	References	S32
13	¹ H NMR and ¹³ C NMR and ¹⁹ Fspectral copies of compounds	S34

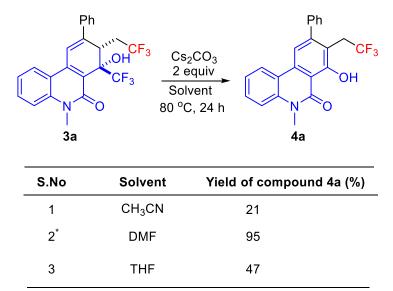
1. General information:

All the reactions were performed in an oven-dried glass apparatus, the air and moisturesensitive reactions were carried out under an inert atmosphere (nitrogen) using freshly distilled anhydrous solvents. Commercially available reagents were used as such without further purification. All reactions were monitored by thin-layer chromatography on silica plates using UV-light and anisaldehyde for visualization. Column chromatography was performed on silica gel (100-200 mesh) using hexanes and ethyl acetate as eluent. ¹H NMR was recorded in CDCl₃ on 500 MHz and 400 MHz,¹³C NMR was recorded on 125 MHz, 100 MHz and 75 MHz and ¹⁹F NMR was recorded on 377 MHz. Chemical shifts were reported in δ (ppm) relative to TMS as an internal standard and *J* values were given in Hz (hertz). Multiplicity is indicated as, s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. δ 7.26 and δ 1.56 are corresponding to CDCl₃ and moisture respectively in ¹H NMR, δ 77.16 is related to CDCl₃ in ¹³C NMR. FT-IR spectra were recorded on Alpha (Bruker) Infrared Spectrophotometer. High resolution mass spectra (HRMS) [ESI⁺] were obtained using a TOF or a double-focusing spectrometer.

2. Methods and Instrumentation

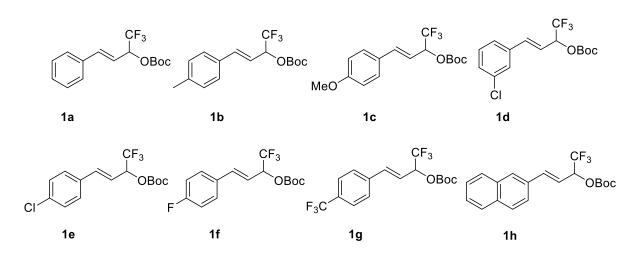

Both differential pulse and cyclic voltammetric measurements were performed by using CHI instruments model CHI 620C potentiostat as detailed in our previous reports. UV-visible spectra were recorded with a Shimadzu spectrophotometer (Model UV-3600). Concentration of the samples used for these measurements ranged from about 5 x 10^{-5} M. Steady-state fluorescence spectra were measured by using Fluorolog-3 spectrofluorometer (Fluoro Log3 model, JobinYvon) as detailed in our previous reports. Fluorescence lifetime measurements were carried on a picosecond time-correlated single photon counting (TCSPC) setup (Fluoro Log3-Triple Illuminator, IBH Horiba JobinYvon) employing a picosecond light emitting diode laser (NanoLED, $\lambda ex = 370$ nm) as the excitation source.

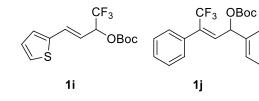
We have adopted Gaussian 09 quantum chemical software on personal computer for full geometry optimization of all sensitizers. For further calculations we have used B3LYP hybrid functional and 6-31 G (d,p) basis set as input. Ground state properties such as optimized energy structures, frontier molecular orbitals (FMO) were performed by Density Functional Theory (DFT) in the gas phase. Time Dependent Density Functional Theory (TD-DFT) were used for calculating the excited state properties like percentage of molecular contribution, oscillatory strength, singlet transition energy in the tetrahydrofuran solvent.¹⁻⁴

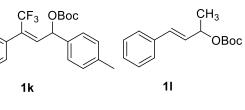

$\bigcirc \frown$	CF ₃ OBoc +	O CF ₃ Pd(0) Solvent O Base, 80 °C		ОН CF ₃ CF ₃ +	Ph CF ₃ OH
	1 2		3a		4a
Entry	Pd-Source	Base	Solvent	3a/4a (%)	dr of 3a
1	PdCl ₂	Cs_2CO_3	CH ₃ CN	55/4	> 20:1
2	Pd(OAc) ₂	Cs_2CO_3	CH ₃ CN	50/8	> 20:1
3	Pd(PPh ₃) ₄	Cs ₂ CO ₃	CH ₃ CN	83/10	> 20:1
4	Pd ₂ (dba) ₃ .CHCl ₃ /L ₁	Cs_2CO_3	CH ₃ CN	29/3	> 20:1
5	Pd ₂ (dba) ₃ .CHCl ₃ /L ₂	Cs_2CO_3	CH₃CN	44/6	> 20:1
6	Pd ₂ (dba) ₃ .CHCl ₃ /L ₃	Cs_2CO_3	CH₃CN	18/0	> 20:1
7	Pd ₂ (dba) ₃ .CHCl ₃ /L ₄	Cs_2CO_3	CH₃CN	33/5	> 20:1
8	Pd(PPh ₃) ₄	DBU	CH ₃ CN	-	-
9	Pd(PPh ₃) ₄	K ₂ CO ₃	CH ₃ CN	43/0	> 20:1
10	Pd(PPh ₃) ₄	NaOEt	CH ₃ CN	11/0	> 20:1
11	Pd(PPh ₃) ₄	Cs_2CO_3	DCE	31/0	> 20:1
12	Pd(PPh ₃) ₄	Cs_2CO_3	PEG-400	-	-
13	$Pd(PPh_3)_4$	Cs_2CO_3	THF	15/0	> 20:1
14	Pd(PPh ₃) ₄	Cs ₂ CO ₃	DMF	9/82	> 20:1
15	Pd(PPh ₃) ₄	Cs ₂ CO ₃	Toulene	-	-
16 ^b	Pd(PPh ₃) ₄	Cs ₂ CO ₃	CH ₃ CN	24/0	> 20:1
17 ^c	Pd(PPh ₃) ₄	Cs ₂ CO ₃	CH ₃ CN	-	_

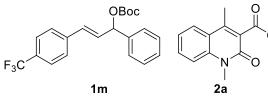
3. Table S1: Optimization of the reaction conditions.^{*a*}

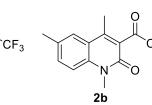
^aExperiments were carried out using **1a** (0.24 mmol), **2a** (0.2 mmol), base (2 equiv) and the Pd source (5 mol %) and the ligand (10 mol%) in 1.0 mL of solvent at 80 °C. isolated yields. ^b Reaction at 40 °C. ^cReaction at RT

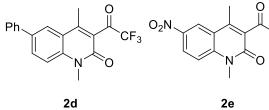

3.1 Table S2: Study of solvent effect:

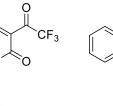


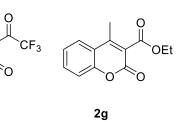

* Reaction completed in 4 h


To know the solvent effect in the conversion of compound **3a** to compound **4a**, several reactions have been attempted in different solvents in the presence of 2 equiv Cs_2CO_3 . Here, the reaction in the presence of acetonitrile furnishes desired aromatized product **4** in 21% yield, whereas DMF is giving excellent yield (95%). Next, the reaction in the THF solvent afforded the corresponding product in 47% yield. All these results indicate that the slightly acidic nature of acetonitrile is the reason for low conversion to get the desired product and previous literature supports that the trifluoromethyl group could be eliminated easily in DMF solvent.^{5,6}

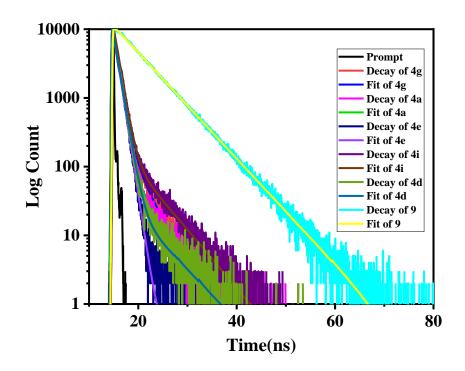

Starting materials CF₃-allylcarbonates and 1,4-dimethyl-3-(2,2,2-trifluoroacetyl)quinolin-2(1H)-ones were reported in previousarticles:^{7,8,9,10}

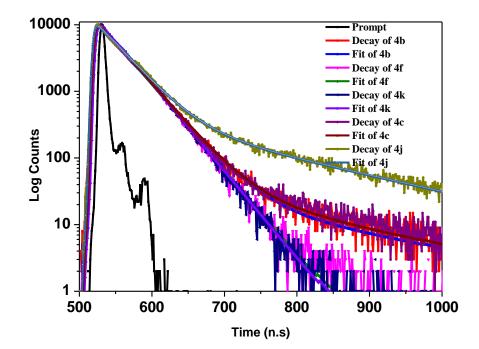



Ν


в'n

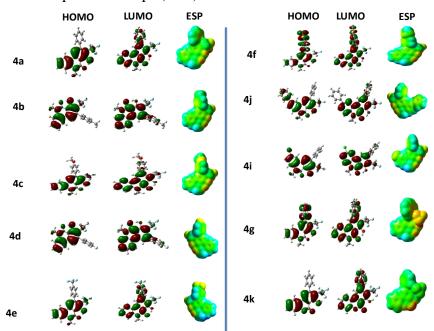
2f



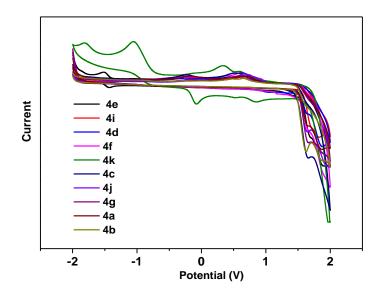


4. Figure S1: Fluorescence decay curves of investigated compounds in dichloromethane solvent.

5. Figure S2: Fluorescence decay curves of investigated compounds in dichloromethane solvent.

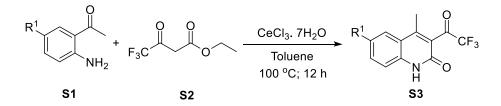

S6

Entry	λmax nm (logε, M−1cm−1)ª	λmax nm (emission) ^b	τ , ns ^c	Quantum Yield ^d
4 a	344 (4.10)	405	0.92 (95.88)	0.52
4b	361 (4.11) 345 (4.31) 361 (4.32)	462 405 462	4.68 (4.12) 0.15 (3.52) 0.97 (94.40) 5.84 (2.08)	0.62
4c	344 (4.12) 361 (4.09)	406 460	0.14 (3.70) 0.95 (93.61) 5.32 (2.69)	0.60
4d	344 (4.39) 361 (4.80)	405 463	0.15 (3.52) 0.97 (94.41) 5.84 (2.08)	0.63
4e	345 (4.22) 361 (4.24)	405 463	0.93 (100)	0.57
4 f	344 (4.38) 361 (4.39)	404 463	0.94 (100)	0.63
4 g	349 (4.20) 365 (4.22)	404 465	0.93 (89.90) 3.34 (10.10)	0.46
4h	340 (4.07) 354 (4.11)	405 432	0.11 (3.20) 0.92 (96.80)	0.40
4 i	349 (4.27) 366 (4.30)	405 465	0.94 (91.06) 5.18 (8.94)	0.59
4j	349 (4.43) 365 (4.44)	404 460	0.93 (83.22) 4.97 (16.78)	0.74


6. Table S3. Optical and emission properties of phenanthridone derivatives 4.

^aSolvent: DCM, Error limits: λ_{max} , ± 1 nm, $\epsilon \pm 10\%$. ^bError limits: λ_{em} , ± 1 nm. ^cError limits $\tau \sim 10\%$. ^d ϕ , $\pm 0.01\%$.

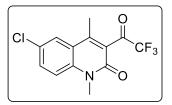
7. Figure S3: Isodensity (0.02) plots of FMOs using the B3LYP method 6-31G(d,p), and molecular electrostatic potential maps (ESP).


8. Figure S4: Cyclic voltammogrammes of investigated compounds in dichloromethane solvent using 0.1 M TBAP.

9. Experimental procedures and characterization data of compounds:

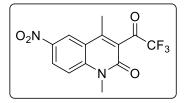
9.1 General procedure for the synthesis of substituted 4-methyl quinolones (method A):

In an oven-dried round bottom flask, 2-amino acetophenones **S1**(10.0 mmol, 1.0 equiv), ethyl 4,4,4-trifluoromethyl-acetoacetate **S2** (13.0 mmol 1.3 equiv), and CeCl₃·7H₂O (40 mol %, 0.4 equiv) were taken in toluene (5 mL). The reaction was heated at 120 °C (oil bath temperature) for 24 h, under a nitrogen atmosphere. The progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure, the obtained solid was washed with *n*-hexane, followed by ice-cold water (20 mL), and filtered. The separated solid product was dried and purified by column chromatography using n-hexane/ethyl acetate as an eluent to afford 3-(2,2,2-trifluoroacetyl) quinolin-2(1*H*)-ones. The data of compound **S3** were reported in previous literature.⁸



To the stirred solution of compound **S3** (0.40 mmol) in 10 ml DMF was added NaH (60% in mineral oil, 0.48 mmol) portion-wise at 0 °C. To this reaction mixture, alkyl halide (0.60 mmol)

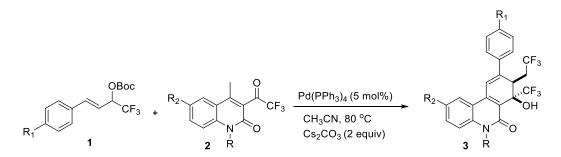
was added dropwise, and then warmed to room temperature. The progress of the reaction was monitored by TLC, after completion of the starting material, the reaction mixture was quenched with saturated NH₄Cl solution and the organic layer was extracted with ethyl acetate, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was further purified by column chromatography (using 8:2 hexane/ethyl acetate solvent system) to afford the pure product 2.⁸



6-Chloro-1,4-dimethyl-3-(2,2,2-trifluoroacetyl)quinolin-2(1H)-one (2c)

Following the general method (6-chloro-4-methyl-3-(2,2,2-trifluoroacetyl)quinolin-2(1*H*)-one **S3c** (115.60 mg, 0.40 mmol), NaH (19.20 mg, 0.48 mmol), methyl iodide (85.16 mg, 0.6 mmol) and 3 mL DMF were used. compound **2c** was obtained as a white solid, yield 92% (111.51 mg), mp: 150-152 °C;¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 2.4 Hz, 1H), 7.63 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.37 (d, *J* = 9.0 Hz, 1H), 3.70 (s, 3H), 2.42 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 186.4 (q, *J* = 38.6 Hz), 158.9, 146.7, 138.5, 132.6, 128.8, 127.4, 125.9, 121.4, 116.3, 115.3 (q, *J* = 291.1 Hz), 29.4, 15.8;¹⁹F NMR (377 MHz, CDCl₃) δ -76.27 (s, 3F);**HRMS** (ESI) m/z [M + H]⁺calcd for C₁₃H₁₀ClF₃NO₂, 304.0352, found 304.03481.

1,4-Dimethyl-6-nitro-3-(2,2,2-trifluoroacetyl)quinolin-2(1H)-one (2e)

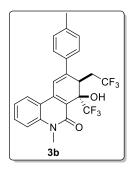


Following the general method (4-methyl-6-nitro-3-(2,2,2-trifluoroacetyl)quinolin-2(1*H*)-one **S3e** (60 mg, 0.20 mmol), NaH (19.20 gm, 0.48 mmol), methyl iodide (85.16 mg, 0.6 mmol) and 3 mL DMF were used) compound **2e** was obtained as a white solid, yield 82% (51.5 mg),

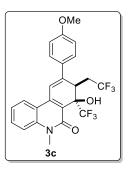
mp: 136-138 °C;¹H NMR (500 MHz, CDCl₃) δ 8.75 (d, J = 2.5 Hz, 1H), 8.53 (dd, J = 9.3, 2.5 Hz, 1H), 7.55 (d, J = 9.3 Hz, 1H), 3.78 (s, 3H), 2.54 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 185.7 (q, J = 39.1 Hz), 159.1, 147.5, 143.8, 142.7, 128.2, 127.0, 122.6, 120.1, 115.7, 115.2 (q, J = 291.0 Hz), 29.9, 15.9; ¹⁹F NMR (377 MHz, CDCl₃) δ –76.25 (s, 3F); HRMS (ESI) m/z [M + H]⁺calcd for C₁₃H₁₀F₃N₂O₄, 315.0593, found 315.05892.

9.2 General procedure for synthesis of CF₃-7, 8-dihydrophenanthridin-6(5*H*)-one (method B):

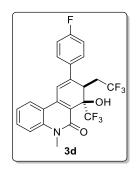
General reaction:


To a stirred solution of CF₃-allyl carbonate **1** (0.24 mmol) in 1 mL of acetonitrile was added 1,4-dimethyl-3-(2,2,2-trifluoroacetyl)quinolin-2(1*H*)-one **2** (0.2 mmol) at room temperature. Then, 5 mol % of Pd(PPh₃)₄ and Cs₂CO₃ (0.4 mmol) were added to the reaction mixture and stirred at 80 °C (oil bath temperature) for 3-6 h. The reaction progress was monitored by TLC. After completion of the reaction, mixture was diluted with water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product 7-hydroxy-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8-dihydrophenanthridin-6(5*H*)-one **3**. The characterization data of **3** are summarized below.

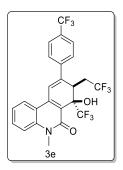
7-Hydroxy-5-methyl-9-phenyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3a)


Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3a** was obtained as off-white solid, yield 83% (75.2 mg);mp: 168-170 °C;¹**H NMR** (**400 MHz, CDCl₃**) δ 9.33 (s, 1H), 8.09 (dd, J = 8.2, 1.3 Hz, 1H), 7.74 (m, 1H), 7.62 – 7.57 (m, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.51 – 7.40 (m, 4H), 7.20 (s, 1H), 3.81 (s, 3H), 3.75 (dd, J = 9.7, 3.3 Hz, 1H), 3.18 (m, 1H), 2.24 – 2.09 (m, 1H);¹³C NMR (**126 MHz, CDCl₃**) δ 163.1, 149.7, 142.9, 140.1, 138.5, 132.4, 129.7, 128.9, 128.9 (q, J = 274.6 Hz), 126.8, 126.6 (q, J = 260.0 Hz), 125.4, 123.5, 117.9, 117.4, 115.4, 113.4, 76.68 (q, J = 28.4 Hz), 35.9, 33.9 (q, J = 29.4 Hz), 29.9;¹⁹F NMR (**377 MHz, CDCl₃**) δ –61.94 (s, 3F), –79.92 (s, 3F);**IR (KBr)**: 3051, 1632, 1589, 751 cm⁻¹;**HRMS(ESI**): calcd for C₂₃H₁₈F₆NO₂ [M + H]⁺: 454.1236, found: 454.1230.

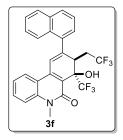
7-Hydroxy-5-methyl-9-(*p*-tolyl)-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3b)


Following the general procedure **B**, **1b** (75.9 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3b** was obtained as off-white solid, yield 81% (75.67 mg); mp: 223-225 °C;¹H **NMR (400 MHz, CDCl₃)** δ 9.32 (s, 1H), 8.09 (dd, J = 8.2, 1.2 Hz, 1H), 7.76 – 7.69 (m, 1H), 7.52 – 7.48 (m, 3H), 7.42 (m, 1H), 7.29 (s, 1H), 7.27 (s, 1H), 7.18 (s, 1H), 3.81 (s, 3H), 3.73 (dd, J = 9.6, 3.3 Hz, 1H), 3.25 – 3.10 (m, 1H), 2.42 (s, 3H), 2.15 (m, 1H);¹³C NMR (126 MHz, CDCl₃) δ 163.1, 149.7, 143.1, 140.1, 140.0, 135.6, 132.4, 129.7, 128.8 (q, J = 250.1 Hz), 126.7, 126.6 (q, J = 255.4 Hz), 125.4, 123.4, 118.0, 116.5, 115.3, 113.2, 76.5 (q, J = 27.7 Hz), 35.9, 33.9(q, J = 29.4 Hz), 29.9, 21.5;¹⁹F NMR (471 MHz, CDCl₃) δ –61.89 (s, 3F), –79.93 (s, 3F); IR (KBr): 3050, 1630, 1582, 752 cm⁻¹;HRMS (ESI): calcd for C₂₄H₂₀F₆NO₂ [M + H]⁺: 468.1393, found: 468.1395

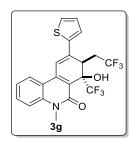
7-Hydroxy-9-(4-methoxyphenyl)-5-methyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8-dihydrophenanthridin-6(5*H*)-one (3c)


Following the general procedure **B**, **1c** (79.7 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3c** was obtained as off-white solid, yield 82% (79.23 mg);mp: 218-216 °C;¹**H NMR(400 MHz, CDCl₃)** δ 9.33 (s, 1H), 8.09 (dd, J = 8.2, 1.2 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.56 (d, J = 8.9 Hz, 2H), 7.51 (d, J = 8.0 Hz, 1H), 7.42 (m, 1H), 7.14 (s, 1H), 6.99 (d, J = 8.9 Hz, 2H), 3.88 (s, 3H), 3.81 (s, 3H), 3.72 (dd, J = 9.6, 3.3 Hz, 1H), 3.18 (m, 1H), 2.19 – 2.07 (m, 1H);¹³C NMR(101 MHz, CDCl₃) δ 163.1, 161.0, 149.3, 143.2, 140.1, 132.3, 130.8, 129.2 (q, J = 251.9 Hz), 128.2, 127.8 (q, J = 274.7 Hz), 125.4, 123.4, 118.0, 115.4, 115.3, 114.4, 112.9, 77.5 (q, J = 32.4 Hz), 55.5, 35.9, 34.1 (q, J = 29.3 Hz), 29.9;¹⁹F NMR (376 MHz, CDCl₃) δ –61.87 (s, 3F), –79.93 (s, 3F);**IR (KBr):** 3053, 1631, 1580, 753 cm⁻¹; **HRMS (ESI)**: calcd for C₂₄H₂₀F₆NO₃ [M + H]⁺: 484.1342, found: 484.1336

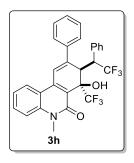
9-(4-Fluorophenyl)-7-hydroxy-5-methyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3d)


Following the general procedure **B**, **1f** (76.8 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3d** was obtained as off-white solid, yield 76% (71.6 mg); mp: 208-210 °C;¹**H NMR** (**500 MHz, CDCl₃**) δ 9.32 (s, 1H), 8.07 (dd, J = 8.2, 1.0 Hz, 1H), 7.74 (ddd, J = 8.5, 7.2, 1.4 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.52 (d, J = 8.3 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.18 – 7.14 (m, 3H), 3.81 (s, 3H), 3.68 (dd, J = 9.9, 3.2 Hz, 1H), 3.19 (m, 1H), 2.21 – 2.08 (m, 1H);¹³C NMR (**101 MHz, CDCl₃**) δ 163.7 (d, J = 250.3 Hz), 163.0, 148.6, 142.7, 140.1, 134.8, 132.5,129.3 (q, J = 291.7 Hz), 128.6 (d, J = 8.3 Hz), 126.4 (q, J = 291.1 Hz), 125.3, 123.5, 117.9, 117.3, 116.1 (d, J = 21.8 Hz), 115.4, 113.4, 76.4 (q, J = 28.1 Hz), 36.2, 33.9 (q, J = 29.3 Hz), 29.9;¹⁹**F NMR (377 MHz, CDCl₃)** δ –61.91 (s, 3F), –79.87 (s, 3F), –111.34 (s, F);**IR (KBr):** 3052, 1629, 1579, 754 cm⁻¹;**HRMS (ESI)**: calcd for C₂₃H₁₇F₇NO₂ [M + H]⁺: 472.1142, found: 472.1134

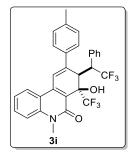
7-Hydroxy-5-methyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-9-(4-(trifluoromethyl)phenyl)-7,8-dihydrophenanthridin-6(5*H*)-one (3e)


Following the general procedure **B**, **1g** (88.8 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3e** was obtained as off-white solid, yield 71% (74.0 mg);mp: 208-210 °C;¹**H NMR** (**500 MHz, CDCl**₃) δ 9.31 (s, 1H), 8.08 (dd, J = 8.2, 1.1 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.74 – 7.68 (m, 4H), 7.54 (d, J = 8.3 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.24 (s, 1H), 3.82 (s, 3H), 3.71 (dd, J = 10.2, 3.2 Hz, 1H), 3.20 (m, 1H), 2.18 (m, 1H);¹³C NMR (**101 MHz, CDCl**₃) δ 162.9, 148.1, 142.3, 142.1, 140.1, 131.3 (q, J = 32.8 Hz), 132.7, 127.0, 126.6 (q, J = 261.6 Hz), 126.4 (q, J = 291.6 Hz), 125.9 (q, J = 3.4 Hz), 125.3, 124.0 (q, J = 271.9 Hz), 123.6, 119.4, 117.8, 115.5, 113.9, 76.6 (q, J = 28.6 Hz), 35.9, 33.9 (q, J = 29.3 Hz), 30.0;¹⁹F NMR (**376 MHz, CDCl**₃) δ –61.90 (s, 3F), –62.72 (s, 3F), –79.79 (s, 3F); **IR (KBr):** 3051, 1632, 1581, 752 cm⁻¹;**HRMS (ESI)**: calcd for C₂₄H₁₇F₉NO₂ [M + H]⁺: 522.1110, found: 522.1110

7-Hydroxy-5-methyl-9-(naphthalen-1-yl)-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8-dihydrophenanthridin-6(5*H*)-one (3f)

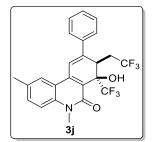

Following the general procedure **B**, **1h** (84.5 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3f** was obtained as off-white solid, yield 70% (70.4 mg);mp: 258-260 °C;¹**H NMR** (**400 MHz, CDCl**₃) δ 9.45 (s, 1H), 8.30 (d, J = 8.2 Hz, 1H), 7.99 – 7.88 (m, 3H), 7.74 (m, 1H), 7.62 – 7.52 (m, 5H), 7.41 (t, J = 7.6 Hz, 1H), 7.24 (s, 1H), 3.84 (s, 3H), 3.76 (dd, J = 8.6, 3.0 Hz, 1H), 3.26 (m, 1H), 2.43 – 2.18 (m, 1H);¹³C NMR (**101 MHz, CDCl**₃) δ 163.2, 147.3, 142.4, 140.2, 137.2, 134.4, 132.4, 131.0, 130.2 (q, J = 255.5 Hz), 129.5, 129.0, 126.9,126.54 (q, J = 276.4 Hz), 126.2, 126.1, 125.4, 125.3, 125.1, 123.6, 121.5, 118.1, 115.4, 113.1, 76.5 (q, J = 28.2 Hz), 38.9, 33.3 (q, J = 29.9 Hz), 29.9;¹⁹F NMR (**471 MHz, CDCl**₃) δ –62.83 (s, 3F), -80.01 (s, 3F);**IR (KBr):** 3055, 1639, 1575, 755 cm⁻¹;**HRMS (ESI**): calcd for C₂₇H₂₀F₆NO₂ [M + H]⁺: 504.1393, found: 504.1389

7-Hydroxy-5-methyl-9-(thiophen-2-yl)-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3g)

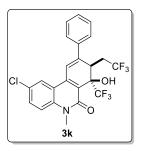

Following the general procedure **B**, **1i** (73.9 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3g** was obtained as off-white solid, yield 72% (66.1 mg);mp: 180-182 °C;¹**H NMR** (**400 MHz, CDCl**₃) δ 9.37 (s, 1H), 8.04 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.73 (m, 1H), 7.50 (d, *J* = 8.1 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.38 (d, *J* = 3.6 Hz, 1H), 7.24 (s, 1H), 7.13 (dd, *J* = 5.1, 3.8 Hz, 1H), 3.80 (s, 3H), 3.67 (dd, *J* = 9.3, 3.4 Hz, 1H), 3.24 (m, 1H), 2.29 – 2.13 (m, 1H);¹³C **NMR (101 MHz, CDCl**₃) δ 162.9, 142.9, 142.6, 142.0, 140.0, 132.5, 131.8 (q, *J* = 251.5 Hz), 128.5, 128.1, 127.5, 125.4, 123.5, 123.4 (q, *J* = 291.5 Hz), 117.8, 115.3, 114.4, 112.9, 76.3 (q, *J* = 28.1 Hz), 36.7, 34.1 (q, *J* = 29.6 Hz), 29.9;¹⁹F **NMR (471 MHz, CDCl**₃) δ –61.81 (s, 3F), -80.10 (s, 3F);**IR (KBr):** 3042, 1638, 1575, 750 cm⁻¹;**HRMS (ESI**): calcd for C₂₁H₁₆F₆NO₂S [M + H]⁺: 460.0800, found: 460.0799

7-Hydroxy-5-methyl-9-phenyl-8-(2,2,2-trifluoro-1-phenylethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3h)

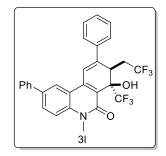
Following the general procedure **B**, **1j** (90.75 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3h** was obtained as off-white solid, yield 55% (58.2 mg);mp: 204-206 °C;¹**H NMR** (**400 MHz, CDCl₃**) δ 9.67 (s, 1H), 7.70 – 7.65 (m, 3H), 7.61 – 7.56 (m, 1H), 7.54 (m, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.29 (d, *J* = 8.5 Hz, 1H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.11 (t, *J* = 3.7 Hz, 3H), 6.72 (t, *J* = 7.7 Hz, 2H), 6.57 (t, *J* = 7.4 Hz, 1H), 4.81 (qd, *J* = 11.6, 2.2 Hz, 1H), 4.18 (d, *J* = 2.2 Hz, 1H), 3.67 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 162.3, 144.4, 142.8, 139.5, 139.4, 131.9, 131.8, 130.3, 129.4, 129.3 (q, *J* = 280.7 Hz),129.1, 127.2, 127.0, 126.8, 126.4 (q, *J* = 251.1 Hz), 124.8, 122.9, 122.2, 117.4, 114.8, 113.8, 76.4 (q, *J* = 28.2 Hz), 47.4 (q, *J* = 27.6 Hz), 39.7, 29.6;¹⁹F NMR (471 MHz, CDCl₃) δ –64.12 (s, 3F), –80.37 (s, 3F); IR (KBr): 3053, 1640, 1583, 749 cm⁻¹; HRMS (ESI): calcd for C₂₉H₂₂F₆NO₂ [M + H]⁺: 530.1549, found: 530.1548


7-Hydroxy-5-methyl-9-(*p*-tolyl)-8-(2,2,2-trifluoro-1-phenylethyl)-7-(trifluoromethyl)-7,8-dihydrophenanthridin-6(5*H*)-one (3i)

Following the general procedure **B**, **1k** (94.1 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3i** was obtained as off-white solid, yield 50% (54.3 mg);mp: 196-198 °C;¹H NMR (**400 MHz, CDCl₃**) δ 9.67 (s, 1H), 7.67 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.57 (dd, *J* = 8.3, 2.3 Hz, 3H), 7.33 (d, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 1H), 7.24 – 7.22 (m, 1H), 7.10 (d, *J* = 7.5 Hz, 2H), 7.08 (s, 1H), 6.72 (m, 2H), 6.59 – 6.54 (m, 1H), 4.80 (qd, *J* = 11.7, 2.2 Hz, 1H), 4.17

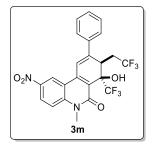

(d, J = 2.3 Hz, 1H), 3.67 (s, 3H), 2.45 (s, 3H);¹³C NMR (126 MHz, CDCl₃) δ 162.3, 144.4, 142.9, 139.7, 139.4, 136.7, 131.9, 131.7, 130.3, 129.8, 128.54 (q, J = 292.2 Hz), 127.2, 127.0, 126.7, 126.60 (q, J = 279.7 Hz), 124.8, 122.8, 121.3, 117.51, 114.7, 113.6, 76.2 (q, J = 27.8 Hz), 47.4 (q, J = 27.2 Hz), 39.7, 29.6, 21.5;¹⁹F NMR (376 MHz, CDCl₃) δ –64.05 (s, 3F), – 80.36 (s, 3F); IR (KBr): 3047, 1638, 1582, 748 cm⁻¹;HRMS (ESI): calcd for C₃₀H₂₄F₆NO₂ [M + H]⁺: 544.1706, found: 544.1709

7-Hydroxy-2,5-dimethyl-9-phenyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3j)

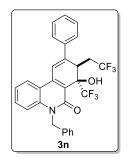

Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2b** (56.6 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3j** was obtained as off-white solid, yield 83% (77.5 mg); mp: 191-193 °C;¹**H NMR** (**400 MHz, CDCl**₃) δ 9.41 (s, 1H), 7.84 (s, 1H), 7.61 (d, *J* = 7.0 Hz, 2H), 7.55 (dd, *J* = 8.7, 1.4 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.41 (d, *J* = 8.7 Hz, 1H), 7.19 (s, 1H), 3.77 (s, 3H), 3.73 (dd, *J* = 9.7, 3.2 Hz, 1H), 3.26 – 3.09 (m, 1H), 2.53 (s, 3H), 2.16 (m, 1H);¹³C NMR (**101 MHz, CDCl**₃) δ 162.9, 149.5, 142.6, 138.6, 138.2, 133.7, 133.2, 129.6, 129.5 (q, *J* = 277.9 Hz), 128.9, 126.8, 126.6 (q, *J* = 264.1 Hz), 125.0, 117.9, 117.5, 115.3, 113.3, 77.5 (q, *J* = 31.5 Hz), 35.9, 33.9 (q, *J* = 29.4 Hz), 29.9, 21.2;¹⁹F NMR (**471 MHz, CDCl**₃) δ –61.95 (3F, s), –79.88 (3F, s);**IR** (**KBr**): 3053, 1642, 1584, 753 cm⁻¹;**HRMS (ESI**): calcd for C₂₄H₂₀F₆NO₂ [M + H]⁺: 468.1393, found: 468.1387

2-Chloro-7-hydroxy-5-methyl-9-phenyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3k)

Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2c** (60.6 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3k** was obtained as off-white solid, yield 69% (67.2 mg);mp: 222-224 °C;¹**H NMR** (**400 MHz, CDCl₃**) δ 9.16 (s, 1H), 8.02 (d, *J* = 2.3 Hz, 1H), 7.67 (dd, *J* = 9.1, 2.3 Hz, 1H), 7.60 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.52 – 7.43 (m, 4H), 7.08 (s, 1H), 3.79 (s, 3H), 3.75 (dd, *J* = 9.5, 3.3 Hz, 1H), 3.15 (m, 1H), 2.16 (m, 1H);¹³**C NMR (101 MHz, CDCl₃**) δ 162.7, 150.3, 141.9, 138.6, 138.2, 132.4, 129.9, 129.3 (q, *J* = 276.9 Hz), 129.3, 129.1, 128.7, 126.8, 126.5 (q, *J* = 261.5 Hz), 124.8, 119.0, 116.8, 114.6, 77.5 (q, *J* = 35.0 Hz), 35.9, 33.9 (q, *J* = 29.5 Hz), 30.1;¹⁹**F NMR (376 MHz, CDCl₃**) δ –61.93 (3F, s), –79.94 (3F, s);**IR (KBr):** 3047, 1645, 1575, 747 cm⁻¹; **HRMS (ESI**): calcd for C₂₃H₁₇ClF₆NO₂ [M + H]⁺: 488.0847, found: 488.0853


7-Hydroxy-5-methyl-2,9-diphenyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3l)

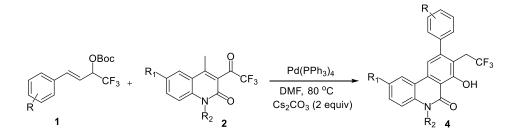
Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2d** (69.0 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3l** was obtained as yellow solid, yield 71% (75.1 mg);mp: 194-196 °C;¹H NMR (**400 MHz, CDCl₃**) δ 9.32 (s, 1H), 8.21 (d, *J* = 2.0 Hz, 1H), 7.95 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.60 (ddd, *J* = 8.7, 5.2, 3.5 Hz, 3H), 7.56 – 7.52 (m, 2H), 7.51 – 7.42 (m, 4H), 7.26 (s, 1H), 3.85 (s, 3H), 3.76 (dd, *J* = 9.6, 3.3 Hz, 1H), 3.19 (m, 1H), 2.20 (m, 1H);¹³C NMR (**101 MHz, CDCl₃**) δ 162.9, 149.9, 142.9, 139.8, 139.3, 138.5, 136.8, 131.6, 129.7, 129.3, 129.0, 128.1, 127.4, 126.8, 126.40 (q, *J* = 274.3 Hz), 126.6 (q, *J* = 264.8 Hz), 123.5, 118.2, 117.3, 115.9, 113.8, 76.45 (d, *J* = 26.8 Hz), 36.0, 33.9 (q, *J* = 29.6 Hz), 30.0;¹⁹F NMR (**376**)


MHz, CDCl₃) δ –61.93 (s, 3F), –79.89 (s, 3F);**IR (KBr):** 3054, 1643, 1578, 750 cm⁻¹; **HRMS** (**ESI**): calcd for C₂₉H₂₂F₆NO₂ [M + H]⁺: 530.1549, found: 530.1549.

7-Hydroxy-5-methyl-2-nitro-9-phenyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3m)

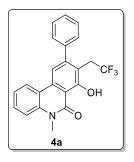
Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2e** (62.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3m** was obtained as off-white solid, yield 51% (50.8 mg);mp: 122-124 °C;¹**H NMR** (**400 MHz, CDCl**₃) δ 8.98 (d, J = 2.4 Hz, 1H), 8.75 (s, 1H), 8.55 (dd, J = 9.3, 2.5 Hz, 1H), 7.65 – 7.58 (m, 3H), 7.52 (m, 3H), 7.18 (s, 1H), 3.86 (s, 3H), 3.80 (dd, J = 9.2, 3.5 Hz, 1H), 3.13 (m, 1H), 2.20 (m, 1H);¹³C NMR (**101 MHz, CDCl**₃) δ 163.1, 151.5, 143.8, 143.3, 142.9, 137.8, 132.4, 130.3, 129.2, 129.2 (q, J = 275.7 Hz), 128.0 (q, J = 270.5 Hz), 126.9, 126.6, 121.6, 117.6, 116.2, 115.5, 76.8 (q, J = 33.1 Hz), 36.0, 33.8 (q, J = 29.5 Hz), 30.6;¹⁹F NMR (**376 MHz, CDCl**₃) δ –61.88 (s, 3F), –80.04 (s, 3F);**IR (KBr**): 3053, 1648, 1584, 752 cm⁻¹;**HRMS** (**ESI**): calcd for C₂₃H₁₇F₆N₂O₄ [M + H]⁺: 499.1087, found: 499.1088

5-Benzyl-7-hydroxy-9-phenyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-7,8dihydrophenanthridin-6(5*H*)-one (3n)

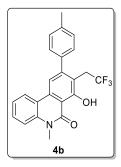


Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2f** (69.0 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **3n** was obtained as off-white solid, yield 73% (77.2 mg); mp: 188-190 °C;¹H NMR (**500 MHz, CDCl**₃) δ 9.32 (s, 1H), 8.09 (d, *J* = 7.3 Hz, 1H), 7.63 – 7.59 (m, 2H), 7.59 – 7.56

(m, 1H), 7.48 (m, 3H), 7.42 (d, J = 8.4 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.29 (d, J = 7.3 Hz, 1H), 7.23 (m, 3H), 5.63 (d, J = 41.4 Hz, 2H), 3.78 (dd, J = 9.5, 3.3 Hz, 1H), 3.29 – 3.11 (m, 1H), 2.34 – 2.12 (m, 1H);¹³**C NMR (101 MHz, CDCl₃)** δ 165.7, 161.9, 150.7, 140.7, 136.9, 135.9, 134.1, 130.3, 129.1, 128.9, 128.7 (q, J = 275.9 Hz), 128.6, 128.0, 127.6, 126.5, 126.1 (q, J =278.4 Hz), 124.1, 123.7, 119.8, 116.4, 113.6, 109.1, 77.5 (q, J = 33.4 Hz), 46.0, 30.7 (q, J =30.9 Hz);¹⁹**F NMR (471 MHz, CDCl₃)** δ –61.86 (s, 3F), –80.08 (s, 3F);**IR (KBr):** 3047, 1647, 1585, 751 cm⁻¹;**HRMS (ESI)**: calcd for C₂₉H₂₂F₆NO₂ [M + H]⁺: 530.1549, found: 530.1549


9.3 General procedure for synthesis of CF₃-7-hydroxy-phenanthridin-6(5*H*)-one (method C):

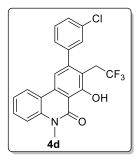
General reaction:


To a stirred solution of CF₃-allyl carbonate **1** (0.24 mmol) in 1 mL of *N*,*N*-dimethylformamide was added 1,4-dimethyl-3-(2,2,2-trifluoroacetyl)quinolin-2(1*H*)-one **2** (0.2 mmol) at room temperature. Then, 5 mol % of Pd(PPh₃)₄ and Cs₂CO₃ (0.4 mmol) were added to the reaction mixture and stirred at 100 °C (oil bath temperature) for 4-6 h. The reaction progress was monitored by TLC. After completion of the reaction, mixture was diluted with cold water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product 7-hydroxy-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)-one **4**. The characterization data of **4** are summarized below.

7-Hydroxy-5-methyl-9-phenyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5H)-one (4a)

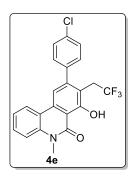

Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4a** was obtained as white solid, yield 82% (62.8mg); mp: 214-216 °C;¹**H NMR** (**400 MHz, CDCl**₃) δ 13.98 (s, 1H), 8.24 – 8.15 (m, 1H), 7.60 (s, 1H), 7.57 (m, 1H), 7.51 – 7.41 (m, 4H), 7.35 (m, 2H), 7.33 – 7.30 (m, 1H), 3.80 (s, 3H), 3.63 (q, *J* = 10.5 Hz, 2H);¹³C **NMR (101 MHz, CDCl**₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, *J* = 279.2 Hz), 124.1, 123.6, 119.6, 115.4, 114.8, 113.5, 109.3, 30.7 (q, *J* = 30.7 Hz), 29.5;¹⁹F NMR (**376 MHz, CDCl**₃) δ –63.69 (s, 3F); **IR (KBr):** 3095, 1630, 1582, 750 cm⁻¹;**HRMS (ESI)**: calcd for C₂₂H₁₇F₃NO₂ [M + H]⁺: 384.1206, found: 384.1197

7-Hydroxy-5-methyl-9-(p-tolyl)-8-(2,2,2-trifluoroethyl)phenanthridin-6(5H)-one (4b)

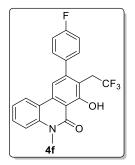

Following the general procedure **B**, **1b** (75.9 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4b** was obtained as off-white solid, yield 81 % (64.3 mg); mp: 206-208 °C;¹H NMR (**400 MHz, CDCl₃**) δ 13.96 (s, 1H), 8.20 (dd, J = 8.1, 1.3 Hz, 1H), 7.59 (s, 1H), 7.59 – 7.54 (m, 1H), 7.44 (dd, J = 8.5, 0.8 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.28 (d, J = 7.8 Hz, 2H), 7.25 – 7.22 (m, 2H), 3.81 (s, 3H), 3.64 (q, J = 10.5 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (**101 MHz, CDCl₃**) δ 165.3, 161.7, 150.2, 140.9, 135.5, 133.9, 133.2, 131.3, 128.9, 128.5, 126.1 (q, J = 280.0 Hz), 124.8, 124.2, 119.5, 115.3, 114.7, 113.4, 109.4, 30.7 (q, J = 31.0 Hz), 29.5, 21.1;¹⁹F NMR (**471 MHz, CDCl₃**) δ –63.65 (s, 3F); **IR (KBr):** 3098, 1635, 1583, 752 cm⁻¹; **HRMS** (**ESI**): calcd for C₂₃H₁₉F₃NO₂ [M + H]⁺: 398.1362, found: 398.1360

7-Hydroxy-9-(4-methoxyphenyl)-5-methyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)one (4c)

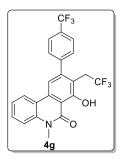
Following the general procedure **B**, **1c** (79.7 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4c** was obtained as white solid, yield 83% (68.6 mg);mp: 200-202 °C;¹**H NMR** (**500 MHz, CDCl**₃) δ 13.96 (s, 1H), 8.21 (dd, J = 8.1, 1.3 Hz, 1H), 7.59 (s, 1H), 7.57 (m, 1H), 7.46 – 7.43 (m, 1H), 7.34 – 7.30 (m, 1H), 7.27 (d, J = 8.7 Hz, 2H), 7.02 – 6.99 (m, 2H), 3.89 (s, 3H), 3.81 (s, 3H), 3.64 (q, J = 10.5 Hz, 2H);¹³**C NMR (126 MHz, CDCl**₃) δ 165.5, 161.6, 159.4, 150.1, 137.5, 133.8, 133.1, 130.2, 130.1, 126.2 (q, J = 278.9 Hz), 124.1, 123.6, 119.7, 115.4, 115.1, 113.9, 113.7, 109.2, 55.5, 30.8 (q, J = 30.5 Hz), 29.5;¹⁹**F NMR (376 MHz, CDCl**₃) δ –63.62 (3F, s);**IR(KBr):** 3096, 1645, 1581, 754 cm⁻¹;**HRMS (ESI**): calcd for C₂₃H₁₉F₃NO₃ [M + H]⁺: 414.1312, found: 414.1308


9-(3-Chlorophenyl)-7-hydroxy-5-methyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)one (4d)

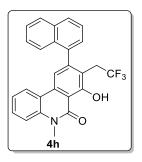
Following the general procedure **B**, **1d** (80.6 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4d** was obtained as white solid, yield 79% (65.9 mg); mp: 222-224 °C;¹H NMR (**400 MHz, CDCl**₃) δ 14.02 (s, 1H), 8.24 – 8.09 (m, 1H), 7.59 – 7.53 (m, 2H), 7.44 – 7.39 (m, 3H), 7.36 – 7.29 (m, 2H), 7.25 – 7.22 (m, 1H), 3.78 (s, 3H), 3.61 (q, *J* = 10.4 Hz, 2H);¹³C


NMR (**126 MHz, CDCl**₃) δ 165.3, 161.7, 148.6, 142.4, 137.5, 134.4, 134.0, 130.4, 129.8, 129.1, 128.2, 127.2, 126.0 (q, J = 279.1 Hz), 124.0, 123.6, 119.4, 115.4, 114.6, 113.2, 109.5, 30.7 (q, J = 30.7 Hz), 29.5; ¹⁹**F NMR (376 MHz, CDCl**₃) δ –63.71 (3F, s);**IR (KBr):** 3093, 1640, 1582, 753 cm⁻¹; **HRMS (ESI)**: calcd for C₂₂H₁₆ClF₃NO₂ [M + H]⁺: 418.0816, found: 418.0811

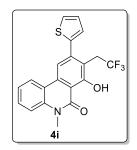
9-(4-Chlorophenyl)-7-hydroxy-5-methyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)one (4e)


Following the general procedure **B**, **1e** (80.6 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4e** was obtained as white solid, yield 77% (64.2 mg); mp: 211-213 °C;¹H NMR (**400 MHz, CDCl₃**) δ 14.01 (s, 1H), 8.19 (d, *J* = 7.3 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.50 – 7.41 (m, 3H), 7.36 – 7.31 (m, 1H), 7.28 (m, 2H), 3.80 (s, 3H), 3.60 (q, *J* = 10.4 Hz, 2H);¹³C NMR (**101 MHz, CDCl₃**) δ 165.4, 161.7, 149.0, 139.1, 137.5, 134.1, 134.0, 130.4, 130.3, 128.8, 126.0 (q, *J* = 279.3 Hz), 124.0, 123.7, 119.5, 115.5, 114.7, 113.3, 109.5, 30.7 (q, *J* = 31.1 Hz), 29.6;¹⁹F NMR (**376 MHz, CDCl₃**) δ –63.71 (3F, s);**IR (KBr):** 3092, 1643, 1579, 749 cm⁻¹;**HRMS (ESI)**: calcd for C₂₂H₁₆ClF₃NO₂ [M + H]⁺: 418.0806, found: 418.0800

9-(4-Fluorophenyl)-7-hydroxy-5-methyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)one (4f)

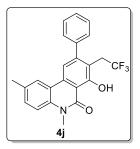

Following the general procedure **B**, **1f** (76.8 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4f** was obtained as white solid, yield 76% (60.9 mg);mp: 201-203 °C;¹H NMR (**400 MHz, CDCl₃**) δ 14.00 (s, 1H), 8.21 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.36 – 7.29 (m, 3H), 7.20 – 7.14 (m, 2H), 3.81 (s, 3H), 3.60 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (**101 MHz, CDCl₃**) δ 165.3, 162.6 (d, *J* = 247.3 Hz), 161.6, 149.2, 137.4, 136.6, 133.8, 130.7 (d, *J* = 8.0 Hz), 130.3, 126.1 (q, *J* = 279.0 Hz), 123.9, 123.6, 119.4, 115.6, 115.4, 115.3, 114.9, 113.4, 109.3, 30.7 (q, *J* = 30.9 Hz), 29.5;¹⁹F NMR (**377 MHz, CDCl₃**) δ –69.31 (3F, s), –119.18 (1F, s); **IR (KBr):** 3097, 1640, 1585, 755 cm⁻¹; **HRMS (ESI**): calcd for C₂₂H₁₆F₄NO₂ [M + H]⁺: 402.1112, found: 402.1114

7-Hydroxy-5-methyl-8-(2,2,2-trifluoroethyl)-9-(4-(trifluoromethyl)phenyl)phenanthridin-6(5*H*)-one (4g)

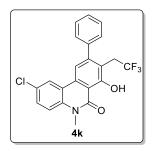

Following the general procedure **B**, **1g** (88.8 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4g** was obtained as white solid, yield 75% (67.7 mg);mp: 226-228 °C;¹H NMR (**400 MHz, CDCl₃**) δ 14.06 (s, 1H), 8.20 (dd, J = 8.2, 1.2 Hz, 1H), 7.76 (s, 1H), 7.74 (s, 1H), 7.60 (m, 1H), 7.56 (s, 1H), 7.48 (m, 3H), 7.37 – 7.32 (m, 1H), 3.82 (s, 3H), 3.59 (q, J = 10.4 Hz, 2H); ¹³C NMR (**126 MHz, CDCl₃**) δ 165.4, 161.8, 148.7, 144.4, 137.6, 134.1, 131.9 (q, J = 32.1 Hz), 130.5, 129.4, 129.1 (q, J = 278.3 Hz), 125.8 (q, J = 251.2 Hz), 125.6, 124.1, 123.7, 119.4, 115.5, 114.5, 113.1, 109.7, 31.0 (q, J = 31.1 Hz), 29.6;¹⁹F NMR (**377 MHz, CDCl₃**) δ –62.71 (s, 3F), –65.31 (s, 3F);**IR (KBr):** 3092, 1642, 1587, 747 cm⁻¹;**HRMS (ESI)**: calcd for C₂₃H₁₆F₆NO₂ [M + H]⁺: 452.1080, found: 452.1093.

7-Hydroxy-5-methyl-9-(naphthalen-1-yl)-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)one (4h)

Following the general procedure **B**, **1h** (84.5 mg, 0.24 mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4h** was obtained as white solid, yield 72% (62.4 mg);mp: 240-242 °C; ¹H NMR (**400 MHz, CDCl**₃) δ 14.06 (s, 1H), 8.15 (dd, J = 8.2, 1.3 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.68 (s, 1H), 7.61 – 7.55 (m, 2H), 7.53 – 7.49 (m, 1H), 7.49 – 7.45 (m, 2H), 7.39 (m, 2H), 7.32 – 7.27 (m, 1H), 3.84 (s, 3H), 3.72 (m, 1H), 3.11 (m, 1H);¹³C NMR (**126 MHz, CDCl**₃) δ 165.5, 161.7, 148.5, 137.6, 134.1, 133.6, 131.6, 130.3, 129.6, 128.6, 128.5, 127.5, 126.7, 126.2, 125.9 (q, J = 279.2 Hz), 125.5, 125.4, 124.2, 123.6, 119.6, 116.3, 115.4, 114.3, 109.6, 31.2 (q, J = 31.1 Hz), 29.6;¹⁹F NMR (**377 MHz, CDCl**₃) δ –64.38 (s, 3F);**IR** (**KBr**): 3093, 1637, 1584, 749 cm⁻¹;**HRMS (ESI**): calcd for C₂₆H₁₈F₃NO₂ [M + H]⁺: 434.1362, found: 434.1356

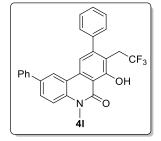

7-Hydroxy-5-methyl-9-(thiophen-2-yl)-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)-one (4i)

Following the general procedure **B**, **1i** (73.9 mg, 0.24mmol), **2a** (53.8 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4i** was obtained as white solid, yield 78% (60.7 mg); mp: 228-230 °C;¹H NMR (**400 MHz, CDCl**₃) δ 14.00 (s, 1H), 8.23 (dd, J = 8.1, 1.1 Hz, 1H), 7.76 (s, 1H), 7.62 – 7.55 (m, 1H), 7.47 – 7.42 (m, 2H), 7.38 – 7.31 (m, 1H), 7.17 (ddd, J = 8.5, 4.2, 2.4 Hz, 2H), 3.83 – 3.74 (m, 5H); ¹³C NMR (**126 MHz, CDCl**₃) δ 165.3, 161.9, 142.4, 141.2, 137.5, 133.8, 130.4, 127.8, 127.6, 126.7, 126.2 (q, J = 278.9 Hz), 124.1, 123.7, 119.4, 115.6, 115.4, 114.6, 109.6, 31.1 (q, J = 30.9 Hz), 29.5; ¹⁹F NMR (**376 MHz, CDCl**₃) δ –63.25 (3F, s); **IR (KBr):** 3092,

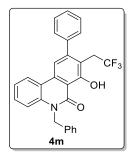

1675, 1577, 752 cm⁻¹; **HRMS** (**ESI**): calcd for $C_{20}H_{15}F_3NO_2S$ [M + H]⁺: 390.0770, found: 390.0774

7-Hydroxy-2,5-dimethyl-9-phenyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5H)-one (4j)

Following the general procedure **B**, **1a** (72.5 mg, 0.24mmol), **2b** (56.62 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL CH₃CN were used. Compound **4j** was obtained as off-white solid, yield 65 % (51.6 mg);mp: 220-222 °C;¹H NMR (**400 MHz, CDCl₃**) δ 14.06 (s, 1H), 7.99 (s, 1H), 7.58 (s, 1H), 7.51 – 7.43 (m, 3H), 7.40 – 7.31 (m, 4H), 3.79 (s, 3H), 3.63 (q, *J* = 10.5 Hz, 2H), 2.44 (s, 3H);¹³C NMR (**101 MHz, CDCl₃**) δ 165.3, 161.7, 150.2, 140.8, 135.4, 133.8, 133.2, 131.3, 128.9, 128.5, 127.9, 126.1 (q, *J* = 278.9 Hz), 124.1, 119.5, 115.3, 114.6, 113.4, 109.4, 30.7 (q, *J* = 30.6 Hz), 29.5, 21.1;¹⁹F NMR (**376 MHz, CDCl₃**) δ –63.70 (s, 3F);**IR (KBr):** 3089, 1631, 1580, 751 cm⁻¹; **HRMS (ESI)**: calcd for C₂₃H₁₉F₃NO₂ [M + H]⁺:398.1362 , found: 398.1358

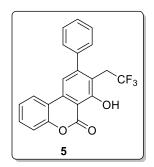

2-Chloro-7-hydroxy-5-methyl-9-phenyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)-one (4k)

Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2c** (60.61 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4k** was obtained as off-white solid, yield 72 % (72.1 mg);mp: 248-250 °C;¹H NMR (**400 MHz, CDCl**₃) δ 13.88 (s, 1H), 8.15 (d, *J* = 2.3 Hz, 1H), 7.52 (s, 1H), 7.51 – 7.44 (m, 4H), 7.38 – 7.32 (m, 3H), 3.78 (s, 3H), 3.64 (q, *J* = 10.4 Hz, 2H); ¹³C NMR (**101 MHz, CDCl**₃) δ 165.3, 161.6, 148.9, 139.0, 137.4, 134.0, 133.9, 130.3, 130.2, 126.0 (q, *J* = 279.9 Hz), 123.9,

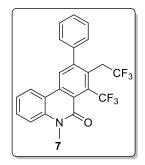

123.6, 121.7, 119.4, 115.4, 114.6, 113.2, 109.4, 30.8 (q, J = 30.6 Hz), 29.46;¹⁹F NMR (376 MHz, CDCl₃) δ –63.63 (s, 3F);**IR** (**KBr**): 3093, 1633, 1582, 756 cm⁻¹;**HRMS** (**ESI**): calcd for C₂₂H₁₆ClF₃NO₂ [M + H]⁺:418.0816 , found: 418.0825.

7-Hydroxy-5-methyl-2,9-diphenyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5H)-one (4l)

Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2d** (69.02 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4l** was obtained as yellow solid, yield 63 % (57.8 mg); mp: 238-240 °C;¹**H NMR** (**400 MHz, CDCl**₃) δ 14.00 (s, 1H), 8.37 (d, J = 2.0 Hz, 1H), 7.79 (dd, J = 8.7, 2.0 Hz, 1H), 7.66 (s, 1H), 7.65 – 7.61 (m, 2H), 7.52 – 7.49 (m, 1H), 7.50 – 7.45 (m, 4H), 7.44 (m, 1H), 7.40 – 7.34 (m, 3H), 3.83 (s, 3H), 3.64 (q, J = 10.5 Hz, 2H);¹³**C NMR (126 MHz, CDCl**₃) δ 165.5, 161.7, 148.5, 137.6, 134.1, 133.6, 131.6, 130.3, 128.7, 128.6, 127.5, 126.7, 126.2, 125.93 (q, J = 279.2 Hz), 125.5, 125.4, 124.2, 123.6, 119.6, 115.4, 114.3, 109.6, 31.2 (q, J = 31.1 Hz), 29.6;¹⁹**F NMR (376 MHz, CDCl**₃) δ –63.64 (s, 3F);**IR (KBr):** 3089, 1631, 1580, 751 cm⁻¹;**HRMS (ESI**): calcd for C₂₈H₂₁F₃NO₂ [M + H]⁺: 460.1519 , found: 460.1518

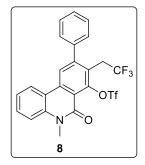

5-Benzyl-7-hydroxy-9-phenyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5H)-one (4m)

Following the general procedure **B**, **1a** (72.5 mg, 0.24 mmol), **2e** (69.02 mg, 0.2 mmol), Pd(PPh₃)₄ (11.5 mg, 5 mol%), Cs₂CO₃ (130 mg, 0.4 mmol) and 1 mL DMF were used. Compound **4m** was obtained as off-white solid, yield 68% (62.4 mg);mp: 216-218 °C;¹**H NMR** (**400 MHz, CDCl₃**) δ 13.94 (s, 1H), 8.22 (dd, J = 8.2, 1.3 Hz, 1H), 7.64 (s, 1H), 7.52 – 7.48 (m, 1H), 7.48 – 7.44 (m, 2H), 7.43 – 7.40 (m, 1H), 7.37 (m, 1H), 7.36 – 7.33 (m, 3H), 7.32 (m,


1H), 7.30 – 7.26 (m, 4H), 5.65 (s, 2H), 3.66 (q, J = 10.5 Hz, 2H);¹³C NMR (101 MHz, CDCl₃) δ 165.7, 161.9, 150.7, 140.7, 136.9, 135.9, 134.1, 130.3, 129.1, 128.9, 128.7, 128.0, 127.6, 126.5, 126.1 (q, J = 278.4 Hz), 124.1, 123.7, 119.9, 116.4, 114.9, 113.6, 109.1, 46.1, 30.7 (q, J = 30.9 Hz);¹⁹F NMR (376 MHz, CDCl₃) δ –63.64 (s, 3F);IR (KBr): 3094, 1638, 1586, 753 cm⁻¹;HRMS (ESI): calcd for C₂₈H₂₁F₃NO₂ [M + H]⁺: 460.1519, found: 460.1522

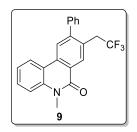
7-hydroxy-9-phenyl-8-(2,2,2-trifluoroethyl)-6*H*-benzo[*c*]chromen-6-one (5)

Following the general procedure **A**, **1a** (72.5 mg, 0.24 mmol), **2g** (46.4 mg, 0.2 mmol), Pd(PPh₃)₄(11.5 mg, 5 mol%) and 1 mL CH₃CN were used. Compound **5** was obtained as white solid, yield 26% (23.09 mg);mp: 195-197 °C;¹**H NMR (400 MHz, CDCl₃)** δ 11.98 (s, 1H), 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.54 – 7.46 (m, 5H), 7.41 (dd, J = 8.3, 1.1 Hz, 1H), 7.37 – 7.31 (m, 3H), 3.62 (q, J = 10.3 Hz, 2H);¹³C NMR (101 MHz, CDCl₃) δ 165.6, 161.9, 153.2, 150.9, 139.9, 134.5, 131.1, 128.7, 128.6, 128.4, 125.8 (q, J = 278.9 Hz), 125.4, 123.5, 118.1, 117.9, 116.5, 114.3, 105.1, 30.8 (q, J = 31.1 Hz);¹⁹F NMR (376 MHz, CDCl₃) δ –63.64 (s, 3F);**IR** (**KBr**): 3093,1693, 1584, 752 cm⁻¹;**HRMS (ESI**): calcd for C₂₁H₁₄F₃O₃ [M + H]⁺: 371.0890, found: 371.0901.

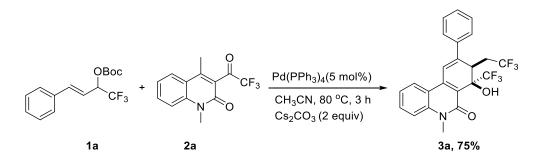

9.4 General procedure for the synthesis of5-methyl-9-phenyl-8-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)phenanthridin-6(5*H*)-one (7)

To a stirred solution of **3a** (100 mg, 0.22 mmol) in 1 mL of dichloromethane was added triflic acid (99.36 mg, 3 equiv) at 0 °C and allowed to stirrer in room temperature 24 h. The reaction

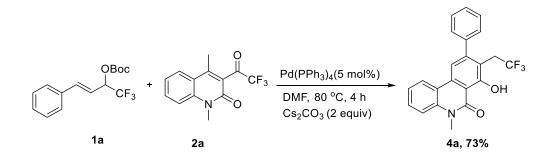
progress was monitored by TLC. After completion of the reaction, reaction mixture was quenched with aq. NaHCO₃ and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product **8** white in color with yield 51% (48.8 mg);mp: 192-194 °C;¹**H NMR (400 MHz, CDCl**₃) δ 8.29 (s, 1H), 8.18 – 8.14 (m, 1H), 7.62 – 7.56 (m, 1H), 7.52 (s, 1H), 7.50 (s, 1H), 7.48 (d, *J* = 6.9 Hz, 1H), 7.41 (d, *J*= 8.3 Hz, 1H), 7.38 – 7.31 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 1H), 3.98 (q, *J* = 10.0 Hz, 2H), 3.80 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 159.7, 148.9, 140.0, 138.9, 134.8, 130.9 (d, *J* = 260.7 Hz), 130.9, 129.3, 129.0, 128.9, 128.6, 128.5, 127.3, 125.2 (q, *J* = 270.2 Hz), 124.9 (q, *J* = 278.5 Hz), 123.9, 122.7, 117.7, 115.1, 30.6, 35.6 (q, *J* = 31.4 Hz);¹⁹F NMR (377 MHz, CDCl₃) δ -62.36 (s, 3F), -65.38 (s, 3F); **IR (KBr):** 1671, 1570, 756 cm⁻¹;**HRMS (ESI)**: calcd for C₂₃H₁₆F₆NO [M + H]⁺: 436.1131, found: 436.1127


9.5 General procedure for the synthesis of 5-methyl-6-oxo-9-phenyl-8-(2,2,2-trifluoroethyl)-5,6-dihydrophenanthridin-7-yl trifluoromethanesulfonate (8)

To a stirred solution of **4a** (100 mg, 0.22 mmol) in 1mL of dichloromethane was added pyridine (3 equiv) and triflic anhydride (99.36 mg, 1.5 equiv) at 0 °C and allowed to stirrer in room temperature for 6 h. The reaction progress was monitored by TLC. After completion of the reaction, reaction mixture was quenched with cold water and extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product which is white solid with yield 60% (68.0 mg);mp: 200-202 °C;¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.21 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.56 – 7.48 (m, 3H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.35 (m, 2H), 7.32 – 7.29 (m, 1H), 3.83 (s, 3H), 3.72 (q, *J* = 9.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150.3, 140.7, 137.5, 133.9, 130.3, 128.9, 128.5, 127.9, 126.1 (q, MHz, CDCl₃) δ 165.5, 161.6, 150


J = 278.7 Hz), 124.1, 123.6, 120.5, 119.6, 115.4, 114.9, 113.5, 109.3, 30.7 (q, J = 31.0 Hz), 29.5;¹⁹F NMR (376 MHz, CDCl₃) δ –64.09 (s, 3F), –73.39 (s, 3F); IR (KBr): 1642, 1573, 761 cm⁻¹;HRMS (ESI): calcd for C₂₃H₁₆F₆NO₄S [M + H]⁺:516.0699 , found: 516.0698

9.6 General procedure for the synthesis of 5-methyl-9-phenyl-8-(2,2,2-trifluoroethyl)phenanthridin-6(5*H*)-one (9)

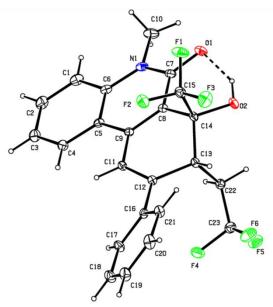


To a stirred solution of **9** (51 mg, 0.1 mmol) in 1mL of ethanol:water (4:1) was added sodiumcarbonate (20.58 mg, 2equiv) at room temperature. Then, Pd(PPh₃)₄ (5.72mg, 5 mol%) was added to the reaction mixture and stirred at 80 °C (oil bath temperature) for 8h. The reaction progress was monitored by TLC. After completion of the reaction, reaction mixture was extracted with ethyl acetate (3 X 15 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product which is white solid with yield 85% (31.2 mg);mp: 170-172 °C;¹H NMR (500 MHz, CDCl₃) δ 8.65 (s, 1H), 8.23 (dd, *J* = 8.1, 1.1 Hz, 1H), 8.17 (s, 1H), 7.56 (m, 1H), 7.53 – 7.46 (m, 3H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.39 – 7.36 (m, 2H), 7.32 – 7.28 (m, 1H), 3.84 (s, 3H), 3.53 (q, *J* = 10.6 Hz, 2H);¹³C NMR (126 MHz, CDCl₃) δ 161.3, 147.8, 140.2, 138.5, 133.1, 131.5, 130.1, 129.2, 128.7, 128.3, 128.1, 125.8 (q, *J* = 277.3 Hz), 124.9, 124.0, 123.6, 122.7, 118.9, 115.3, 36.8 (q, *J* = 29.5 Hz), 30.2;¹⁹F NMR (376 MHz, CDCl₃) δ -69.33 (s, 3F);IR (KBr):1689, 1570, 737 cm⁻¹;HRMS (ESI): calcd for C₂₂H₁₇F₃NO [M + H]⁺: 368.1257, found: 368.1248.

10. Gram scale reaction of 3a & 4a.

To a stirred solution of compound **1a** (1.4 gm, 4.5 mmol) in 10 mL CH₃CN, were added **2a** (1 gm, 3.7 mmol), Pd(PPh₃)₄ (214.7 mg, 5 mol%) and Cs₂CO₃ (2.4 gm, 7.4 mmol) at room temperature and raised the temperature to 80 °C (oil bath). The reaction progress was monitored by TLC. After completion of the reaction, mixture was diluted with cold water and extracted with ethyl acetate (3 X 25 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product **3a** (yield 75%, 1.3 gm).

To a stirred solution of compound **1a** (1.4 gm, 4.5 mmol) in 10 mL DMF, were added **2a** (1 gm, 3.7 mmol), Pd(PPh₃)₄ (214.7 mg, 5 mol%) and Cs₂CO₃ (2.4 gm, 7.4 mmol)at room temperature and raised the temperature to 80 °C (oil bath). The reaction progress was monitored by TLC. After completion of the reaction, mixture was diluted with cold water and extracted with ethyl acetate (3 X 25 mL). Combined organic layers were dried over sodium sulphate and concentrated on rotary evaporation. The obtained crude product was purified by flash column chromatography on silica gel 100-200 mesh using (hexane/ethyl acetate) to obtain the pure product **4a** (yield 73%, 1.03 gm).


11. X-ray analysis data of 3a

X-ray Crystallography.

X-ray data for the compound **3a** was collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-III detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs.¹¹ The structure was solved using intrinsic phasing method and further refined with the SHELXL¹² program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. The O-H atoms were located in the difference Fourier map and its positions and isotropic displacement parameters were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms].

Crystal structure determination of 3a:

Crystal Data for $C_{23}H_{17}NO_2F_6$ (*M* =453.38 g/mol): monoclinic, space group $P2_1/n$ (no. 14), a = 11.4138(11) Å, b = 11.2940(11) Å, c = 15.5406(13) Å, $\beta = 97.968(3)^{\circ}$, V = 12.5406(13) Å, $\beta = 12.5406(13)$ Å, β 1984.0(3) Å³, Z = 4, T = 294.15 K, μ (MoK α) = 0.135 mm⁻¹, Dcalc = 1.518 g/cm³, 21908 reflections measured (4.474° $\leq 2\Theta \leq 56.628°$), 4904 unique ($R_{int} = 0.0515$, $R_{sigma} = 0.0489$) which were used in all calculations. The final R_1 was 0.0546 (I > 2 σ (I)) and wR_2 was 0.1442 (all data). CCDC 2360628 deposition number contains the supplementary crystallographic data for this which be obtained free of charge paper can at https://www.ccdc.cam.ac.uk/structures/

Figure caption: ORTEP diagram of KA1169 compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

12. References:

1. Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute With A Continuum. A Direct Utilization of AB Initio Molecular Potentials For The Prevision of Solvent Effects. *J. Chem. Phys.*, **1981**,*55*, 117–129.

2. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J.Ab Initio Study of Solvated Molecules: A New Implementation of The Polarizable Continuum Model. *Chem. Phys. Lett.*, **1996**, *255*, 327–335.

3. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. cclib: A Library for Package-Independent Computational Chemistry Algorithms. *J. Comput. Chem.*, **2008**, *29*, 839–845.

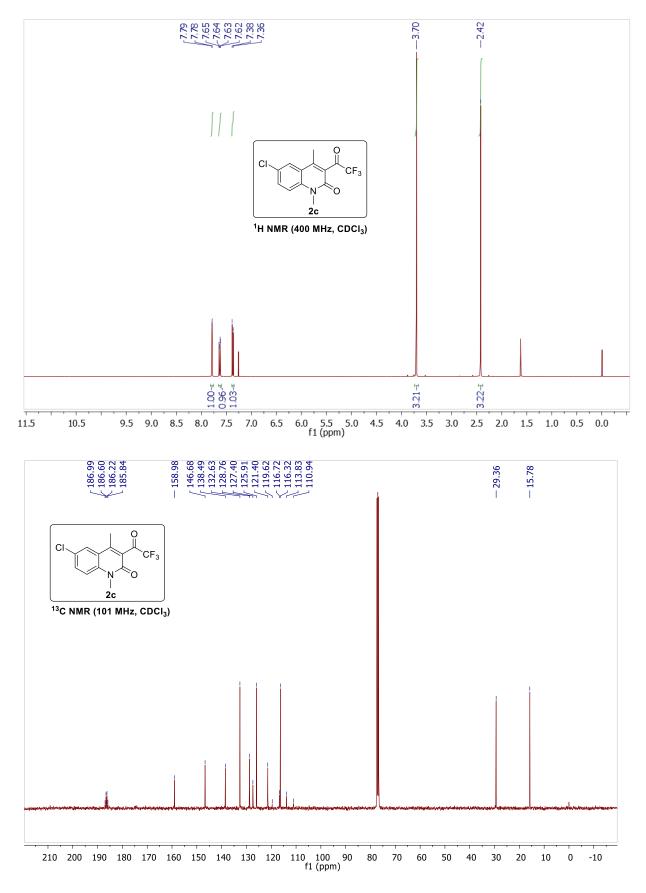
4. Dennington, R.; Keith, T.; Millam, J. Gaussview, version 5, Semichem Inc., Shawnee Mission KS, **2009**.

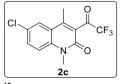
5. Heravi, M. M.; Ghavidel, M.; Mohammadkhani, L. Beyond a solvent: triple roles of dimethylformamide in organic chemistry. *RSC Adv.*, **2018**, *8*, 27832-27862.

6. Surya Prakash, g. k.; Zhang, Z.; Wang, F.; Munoz, S.; Olah, G. A. Nucleophilic Trifluoromethylation of Carbonyl Compounds: Trifluoroacetaldehyde Hydrate as a Trifluoromethyl Source. *J. Org. Chem.* **2013**, *78*, 3300–3305.

7. Priyanka, C.; Subbarao, M.; Nagender, P. Palladium-catalyzed ortho-vinylation of β -naphthols with α -trifluoromethyl allyl carbonates: One-pot access to naphtho[2,1-b]furans. *Org. Biomol. Chem.*, **2021**,*19*, 8241-8245.

Madhu, D.; Jetti, V. R.; Narsaiah, B.; Nagender, P. 3-Trifluoroacetyl-quinolin-2(1*H*)-ones as Carbonyl and Acid Surrogates in the Passerini-/Ugi-TypeReaction. *J. org. chem.* 2022, 87, 5, 2301-2314.

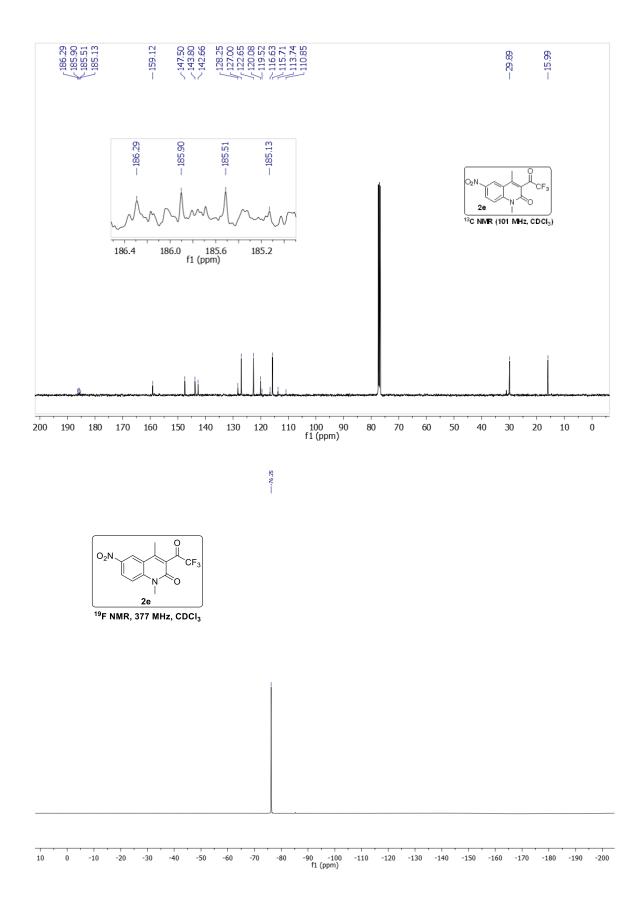

9. Zhao, Q. K.; Wu, X.; Yang, F.; Yan, P. C.; Xie, J. H.; Zhou, Q. L. Catalytic asymmetric hydrogenation of 3-ethoxycarbonyl quinolin-2-ones and coumarins. *Org. Lett.* **2021**, *23*, 9, 3593-3598.

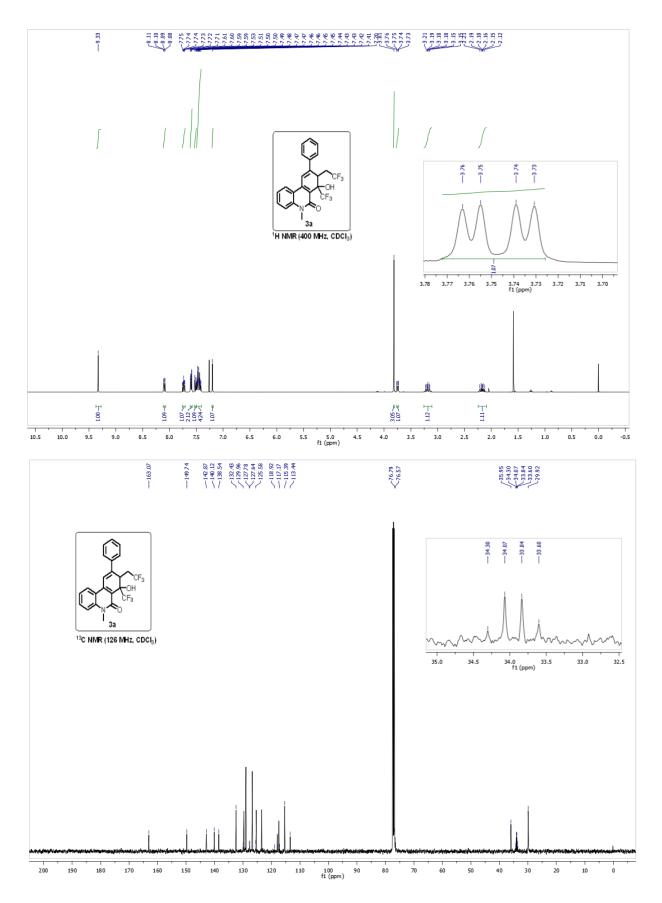

10. Wang, W.; Xiong, Q.; Gong, L.; Wang, Y.; Liu, J.; Lan, Y.; Zhang, X. Org. Lett. **2020**, 22, 14, 5479–5485.

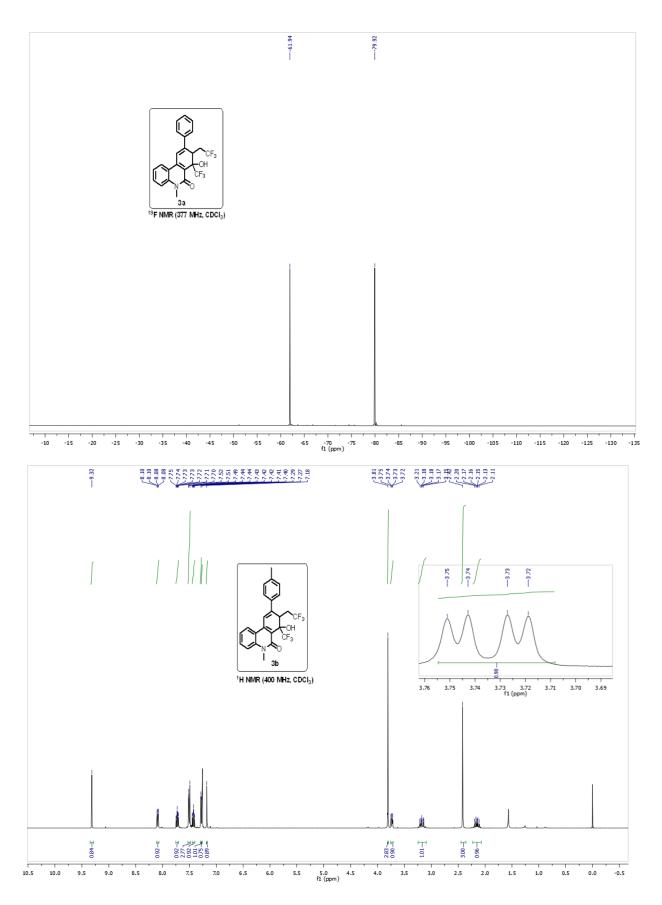
11. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

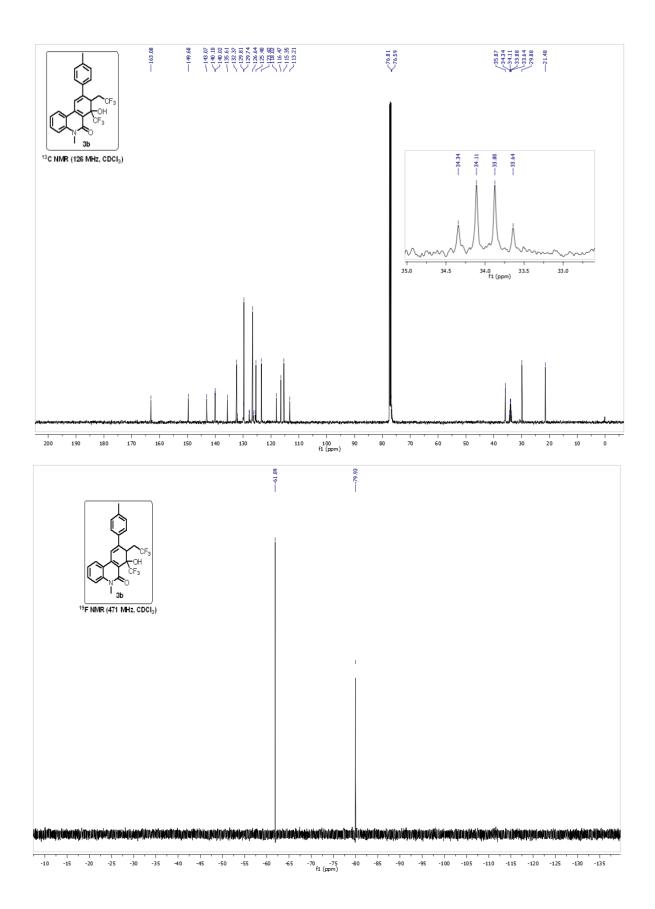
12. Sheldrick G. M. (2015). ActaCrystallogr C71: 3-8.

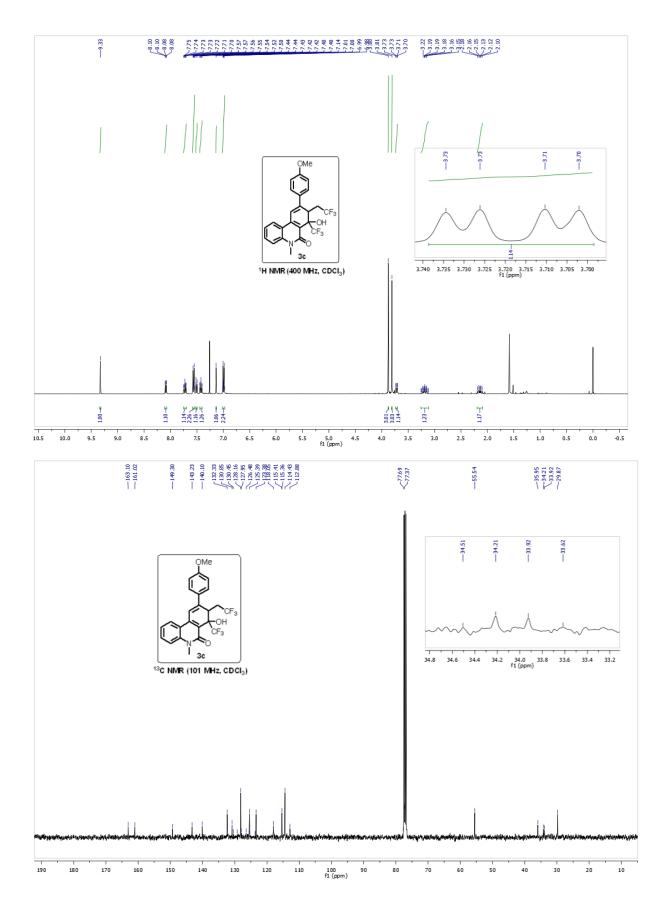
13. ¹H NMR, ¹³C NMR and ¹⁹F spectral copies of compound

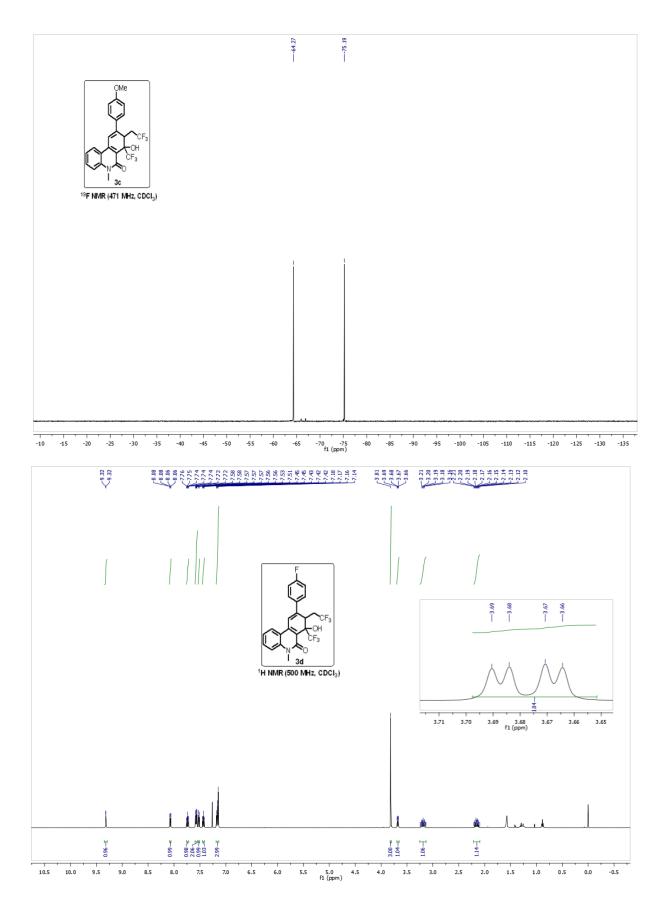


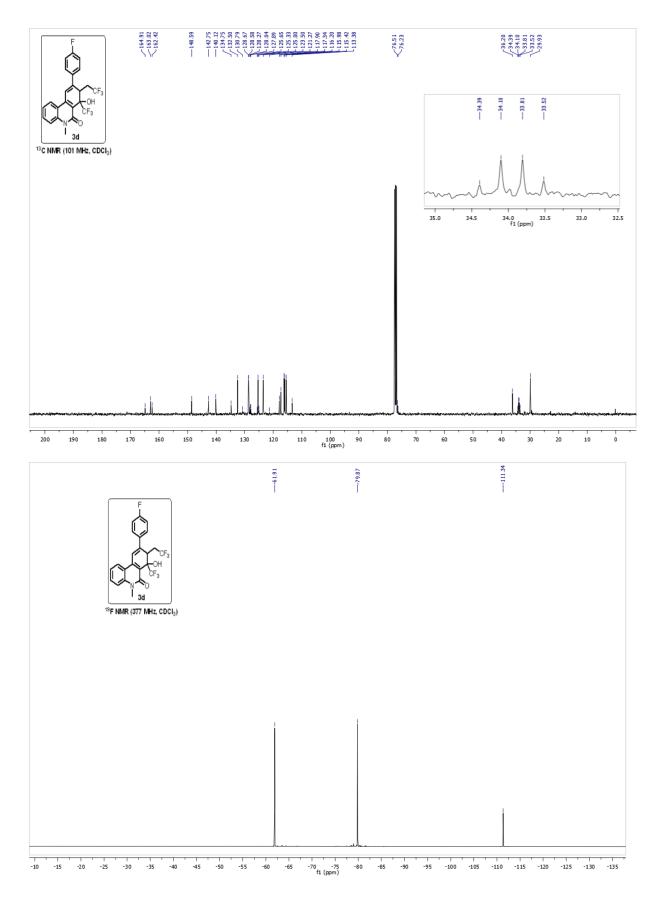


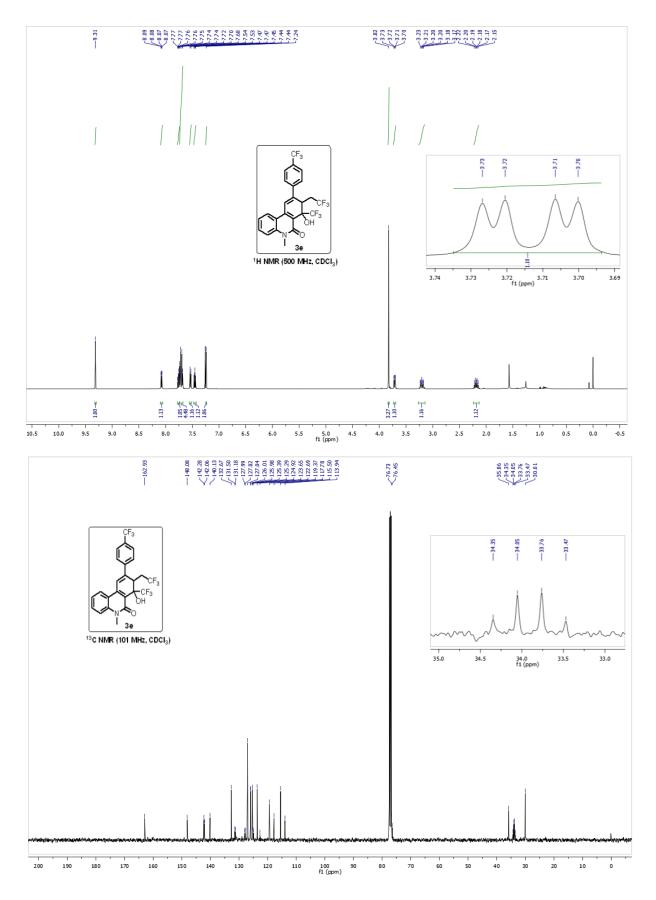

----76.27

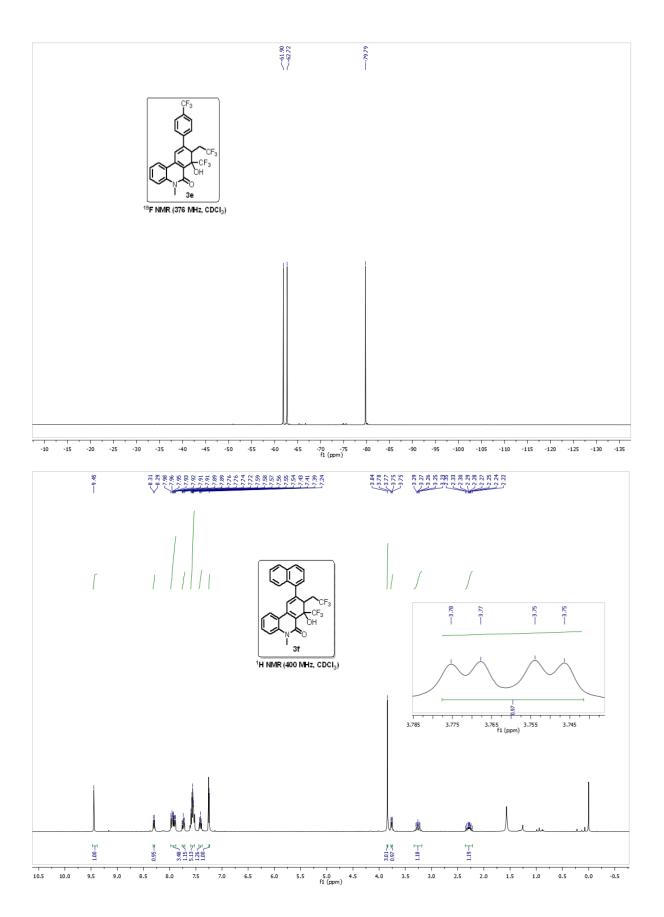

¹⁹F NMR, 377 MHz, CDCI₃

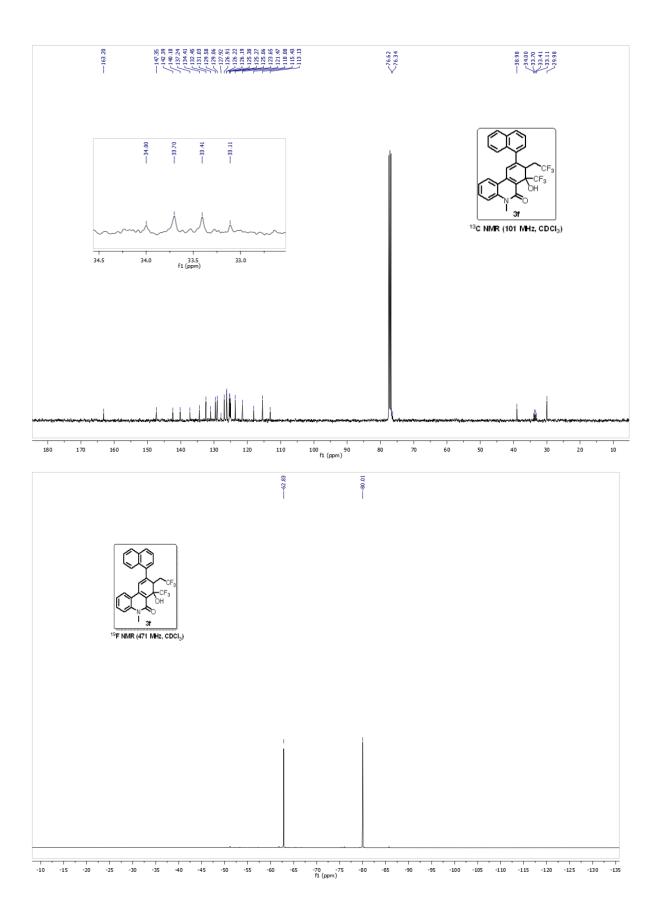


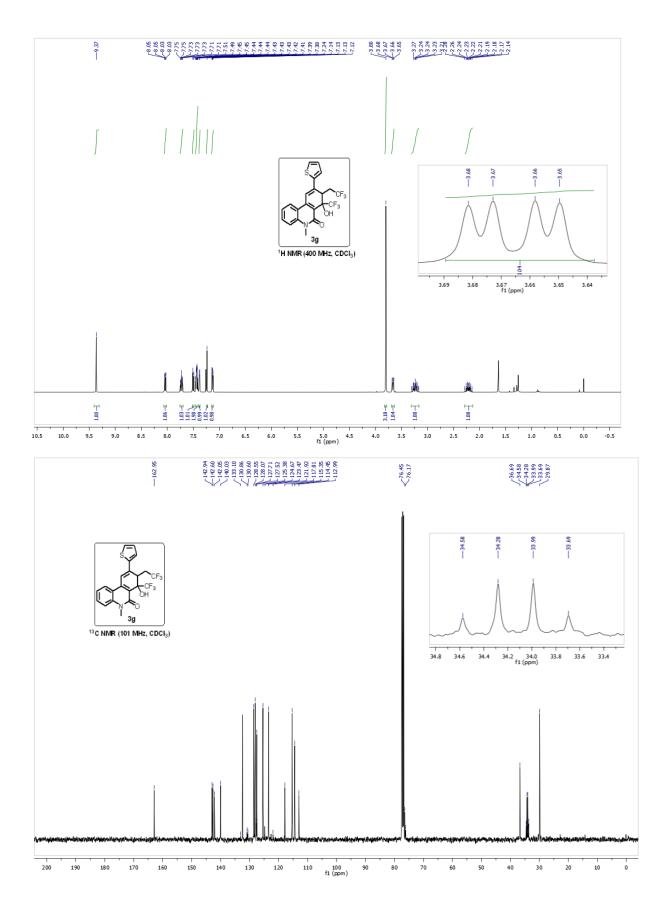


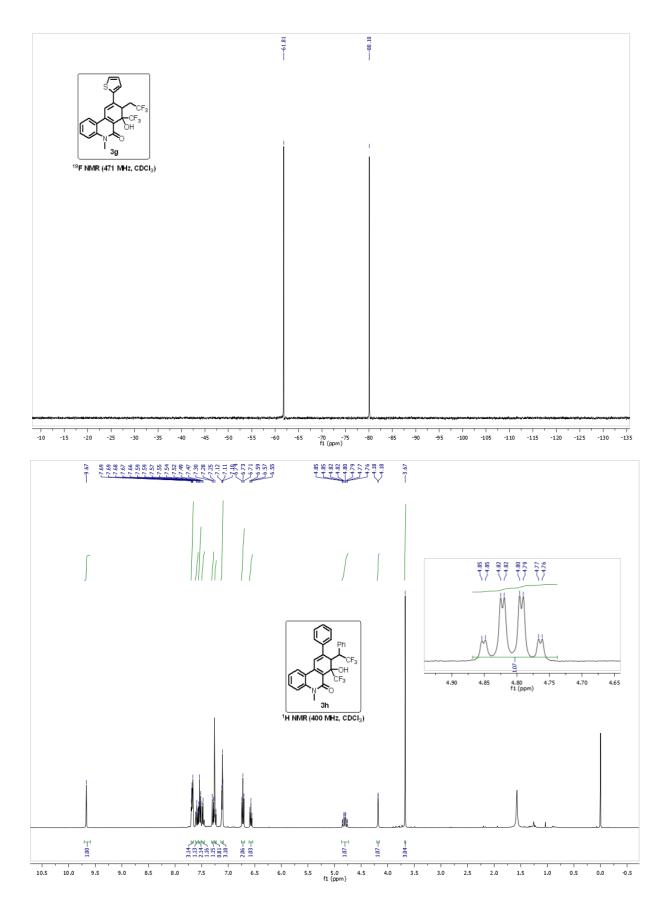


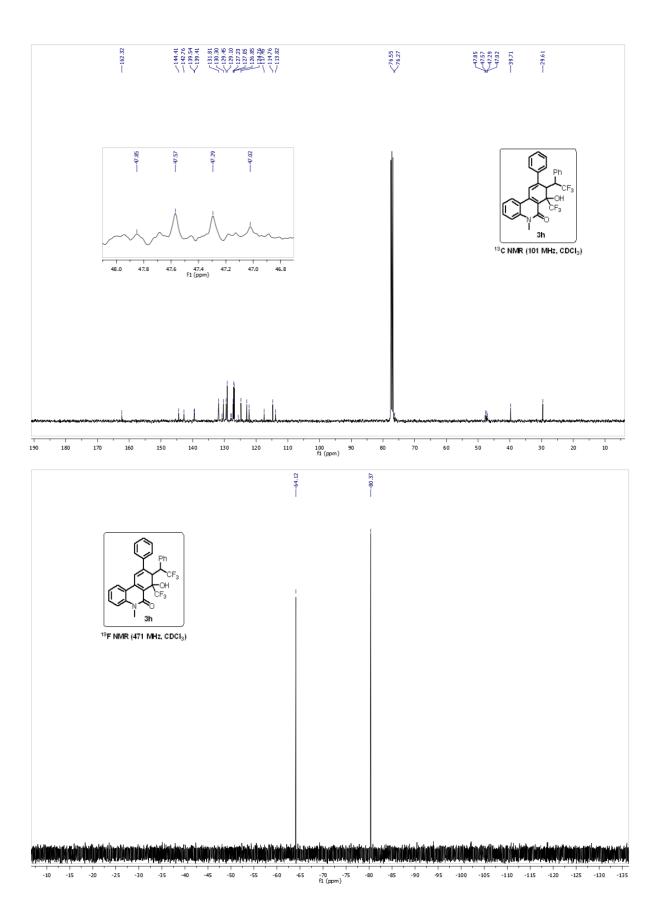


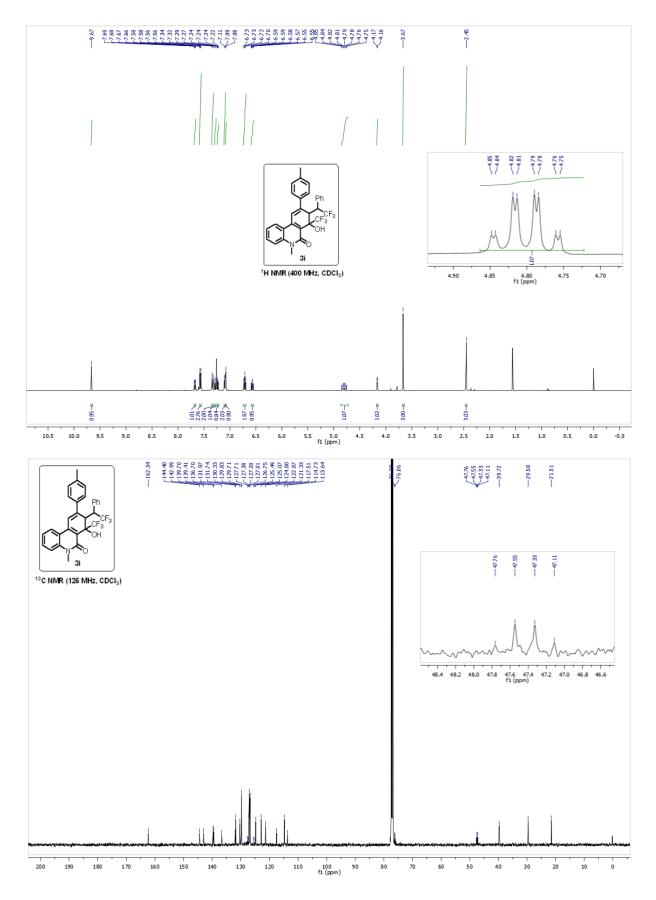


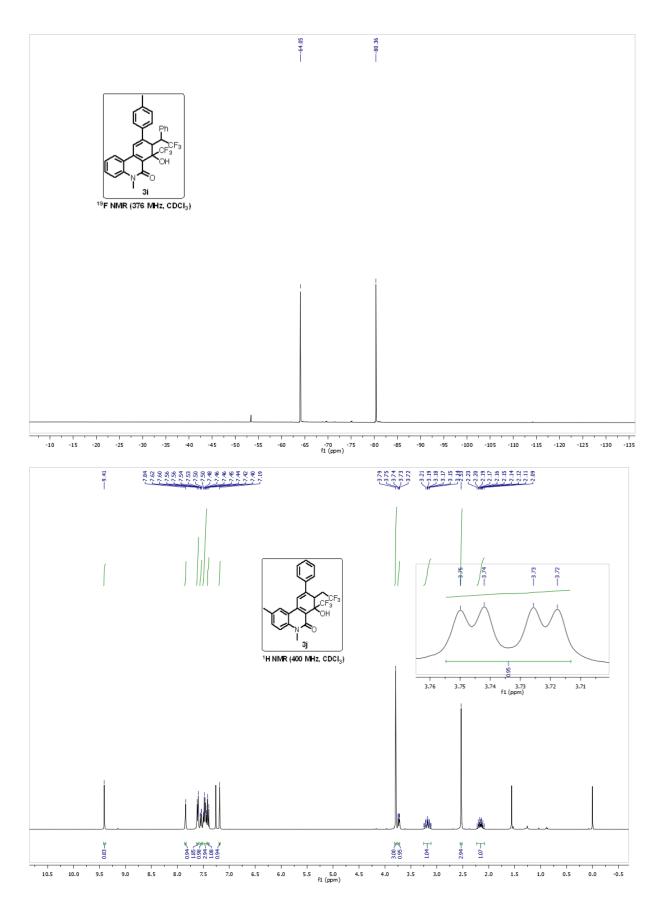


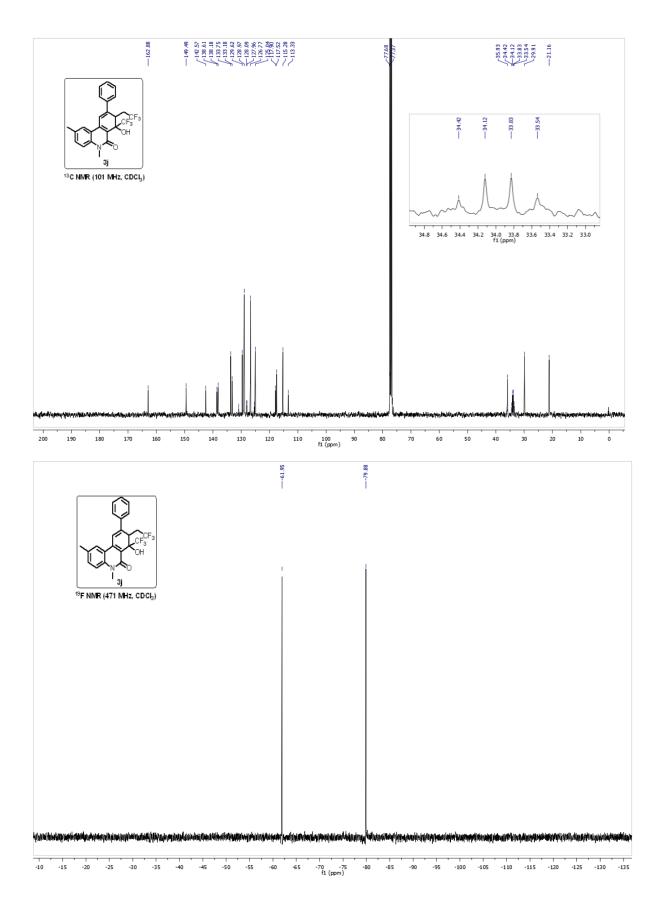


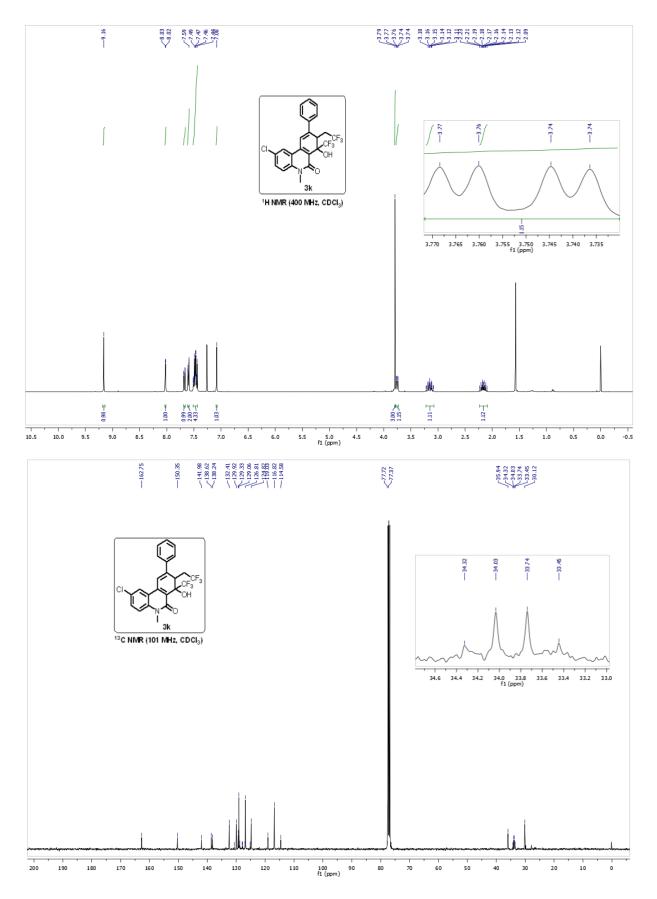


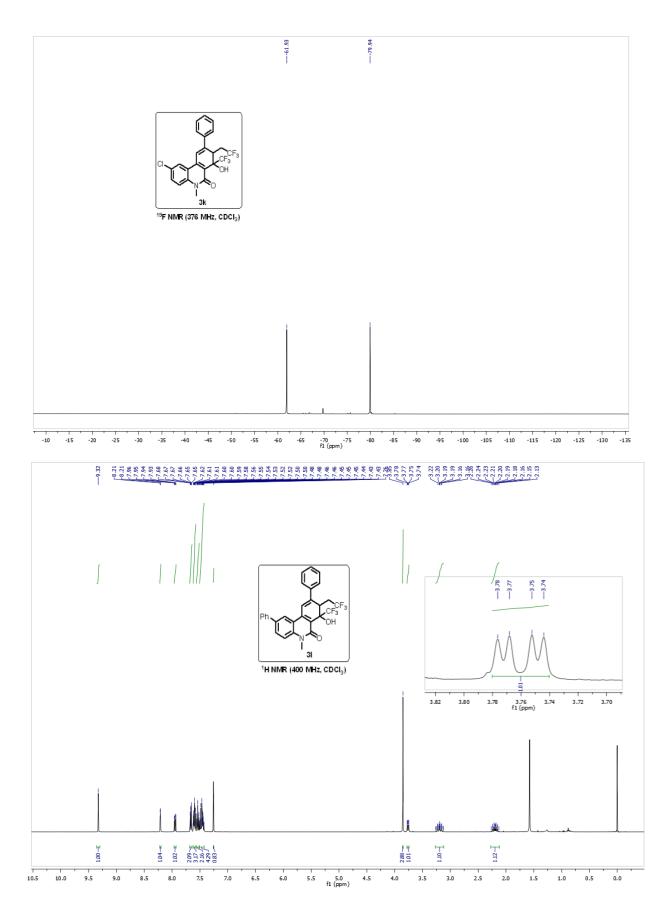


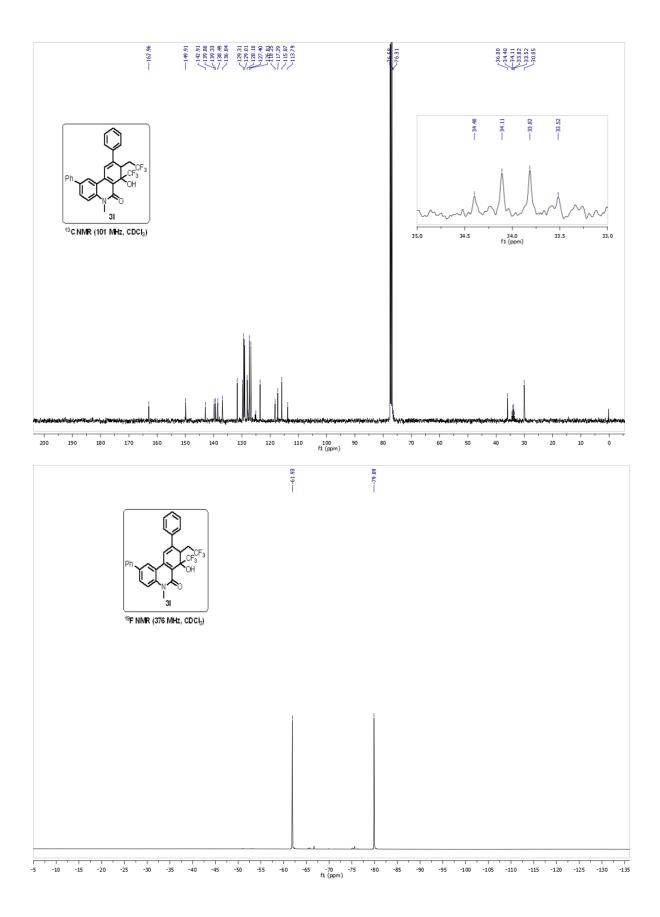




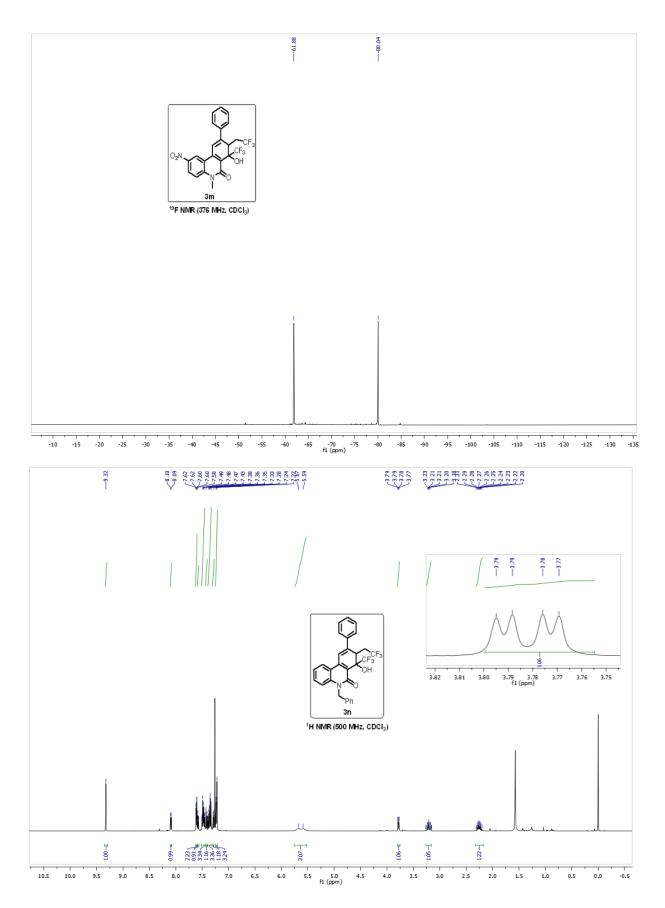


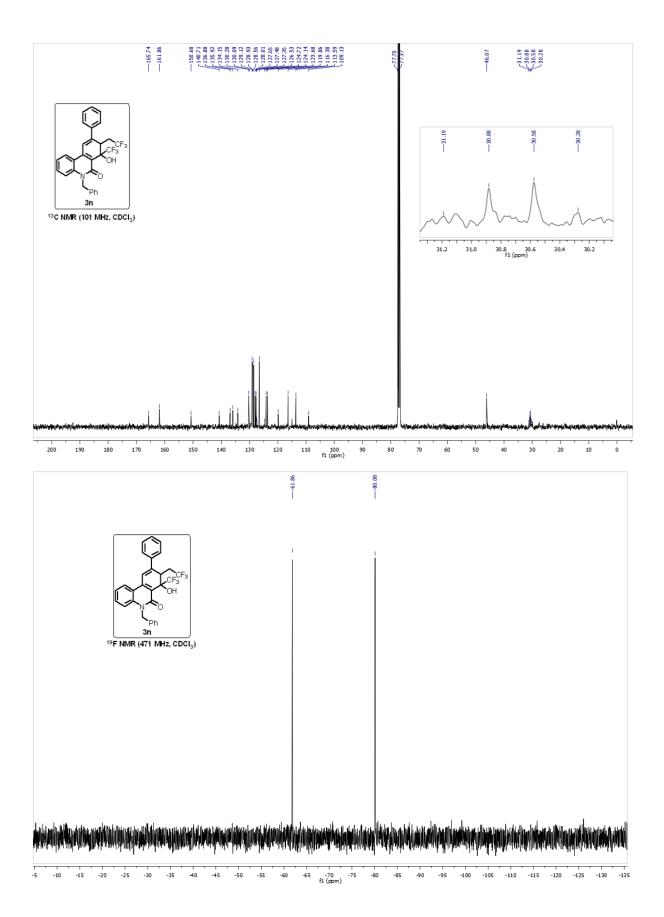


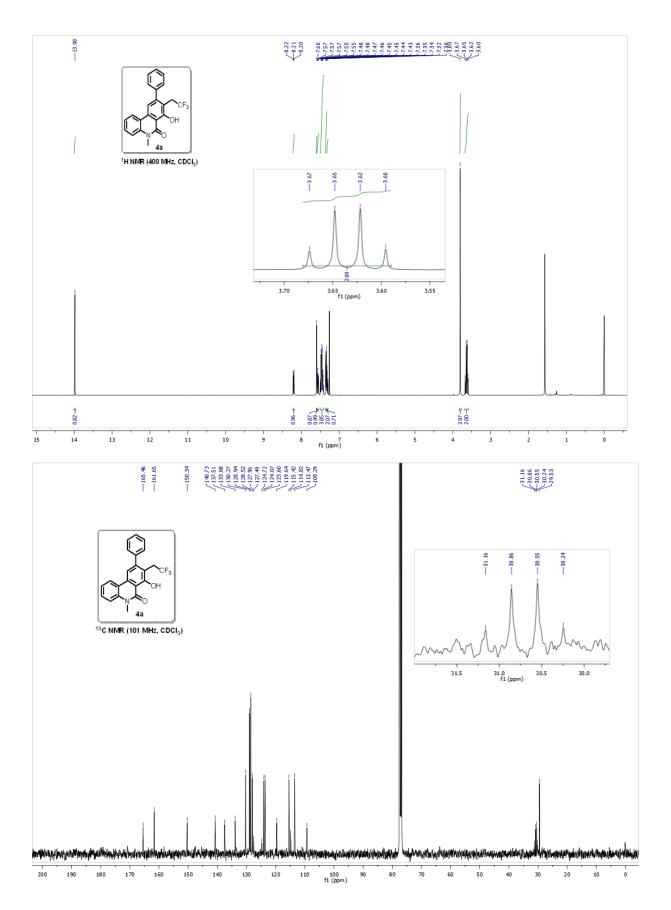


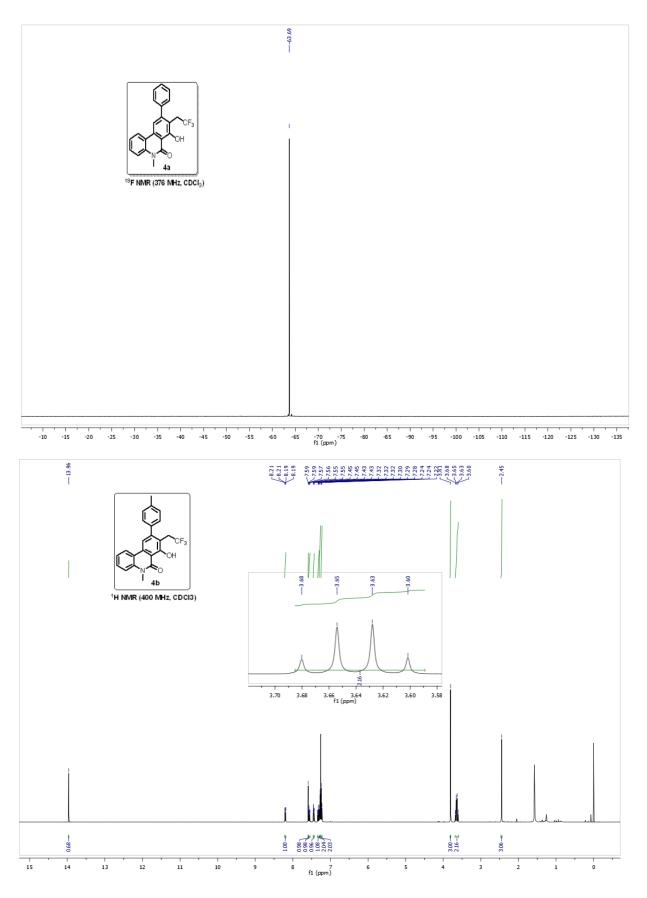


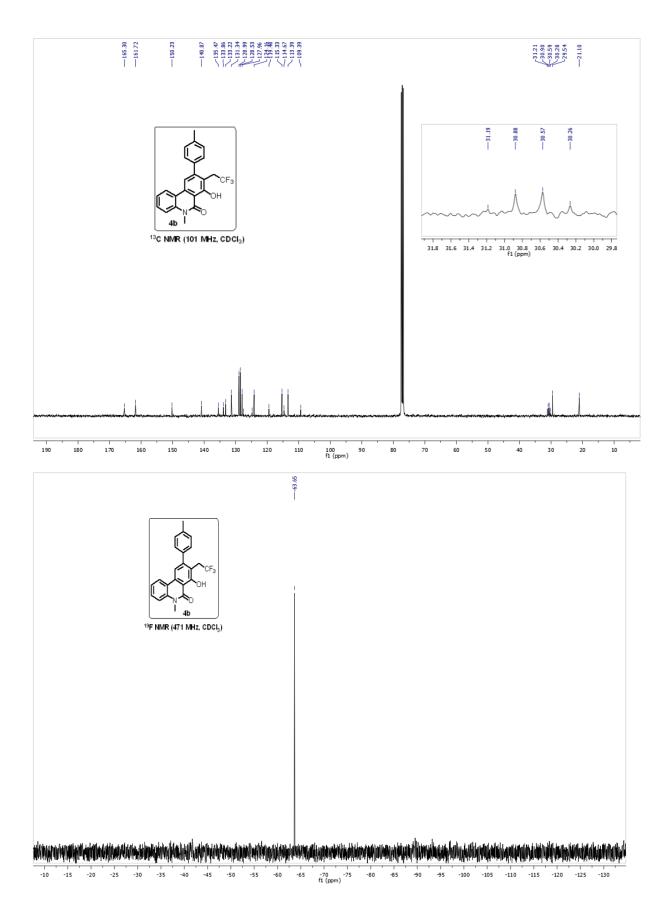


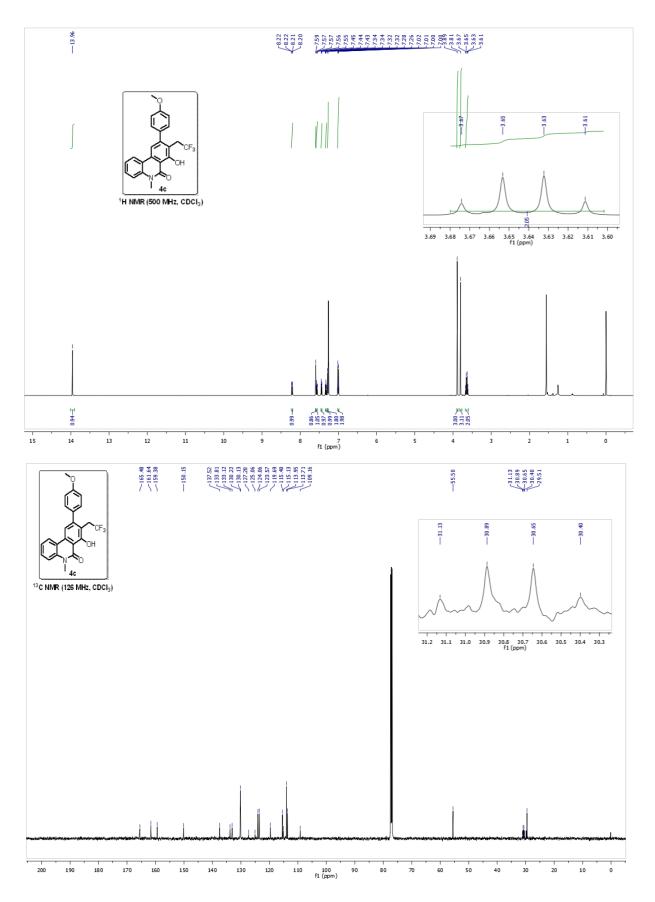


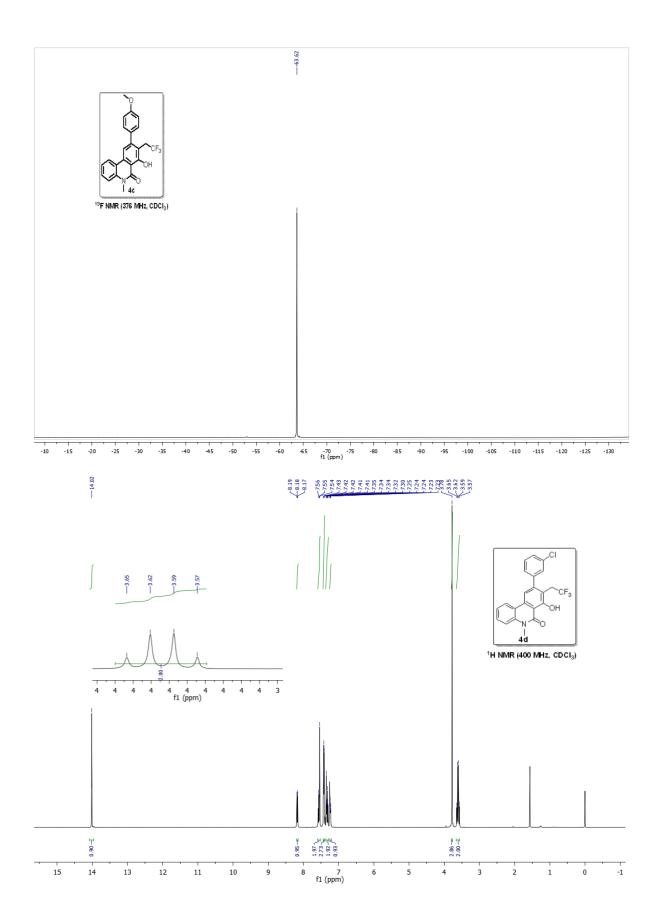


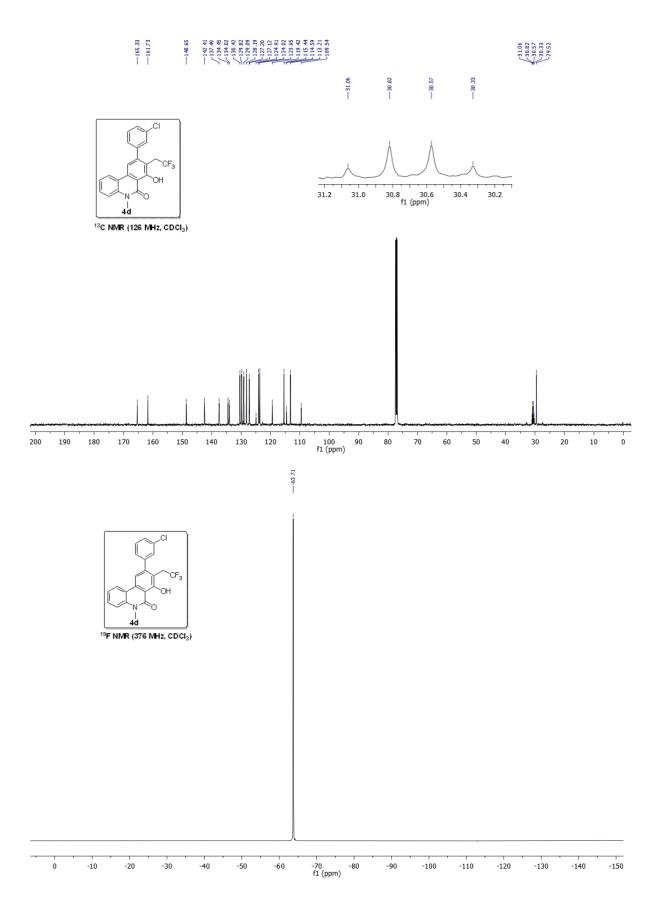


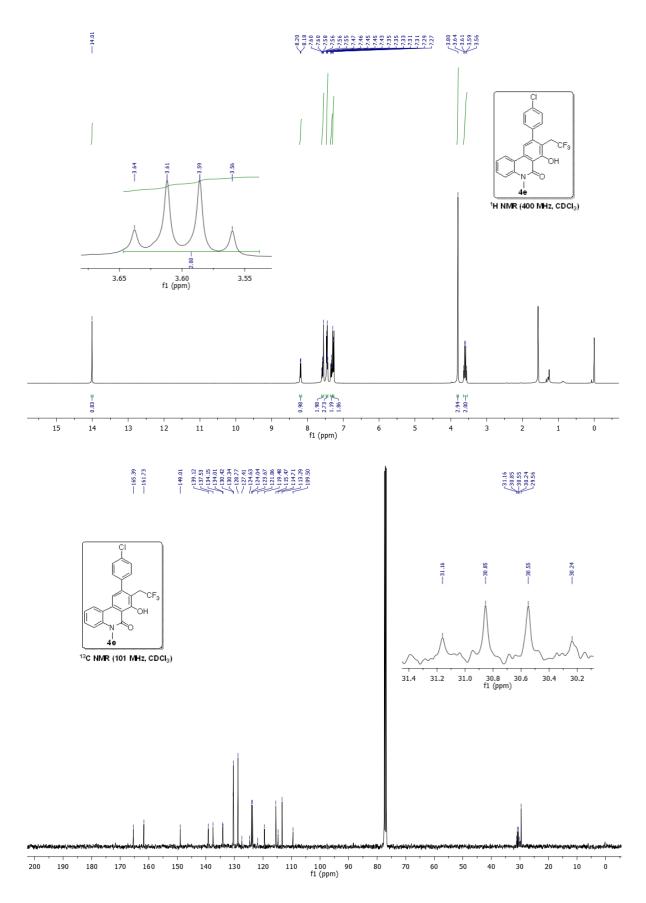


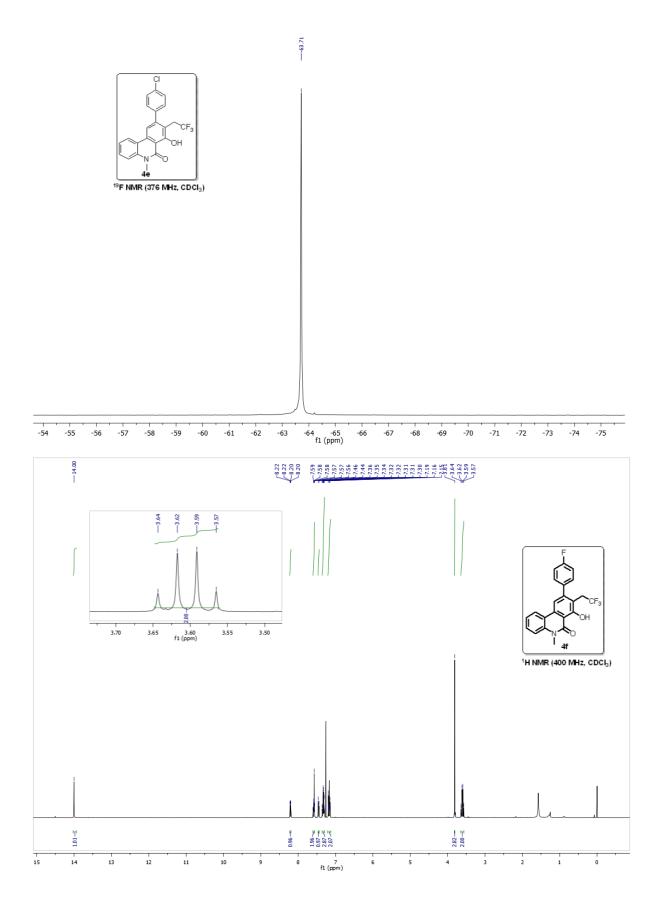


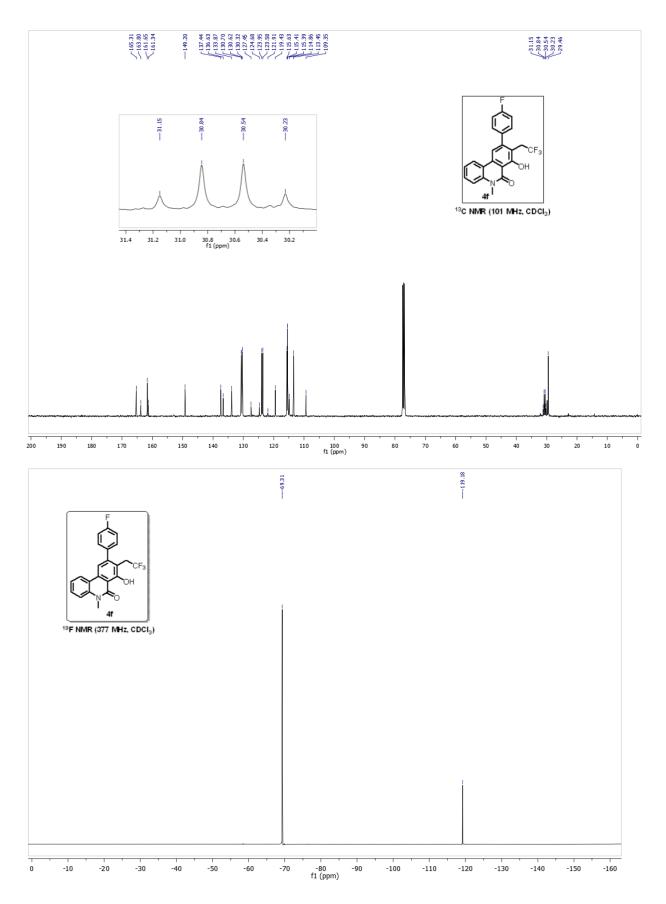


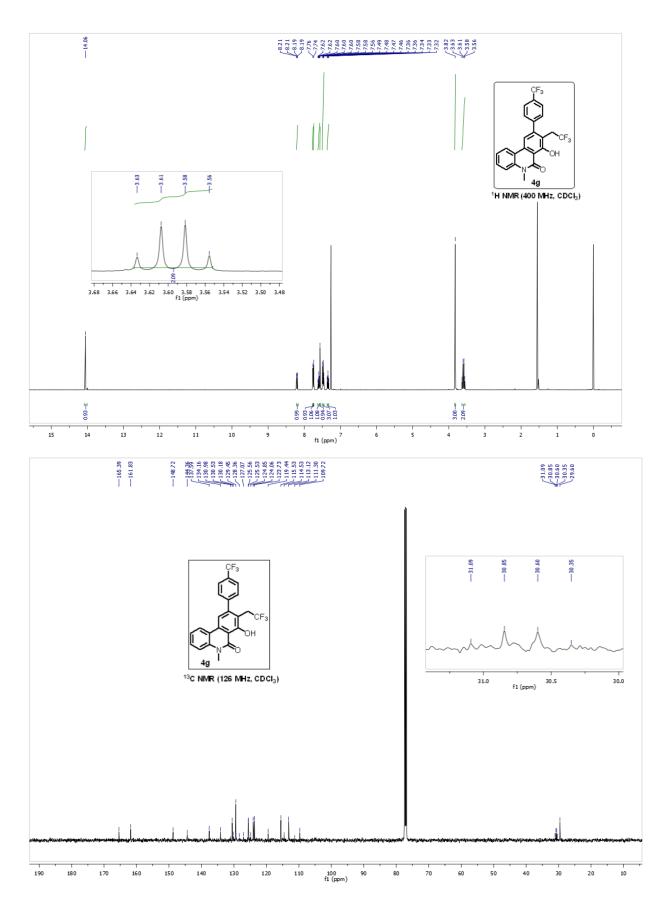


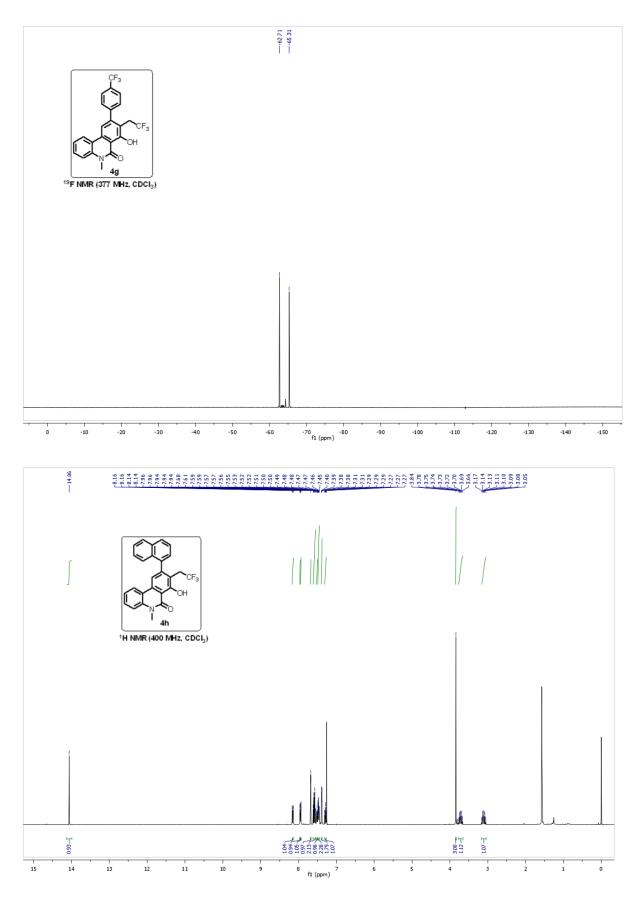


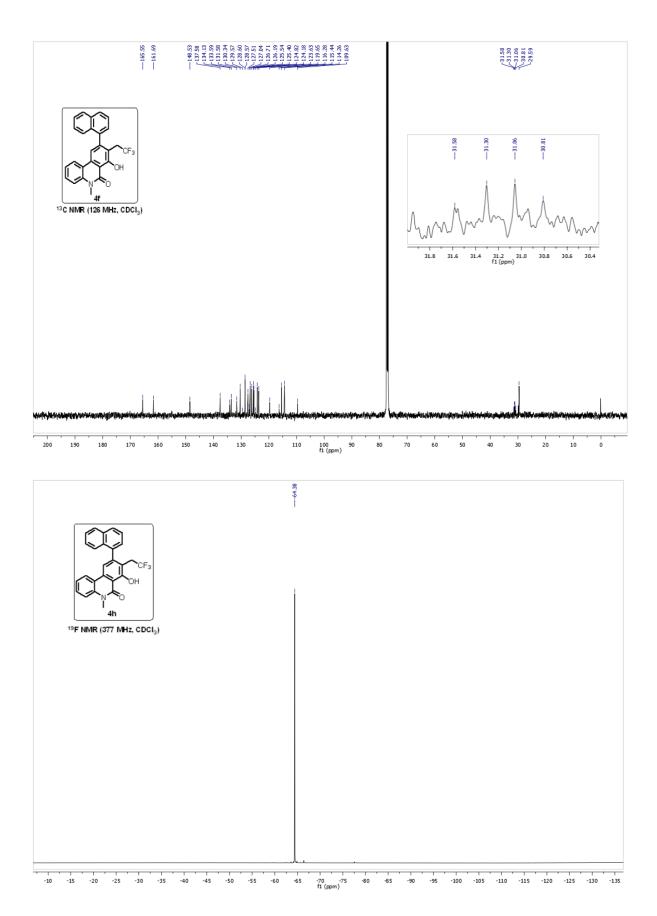


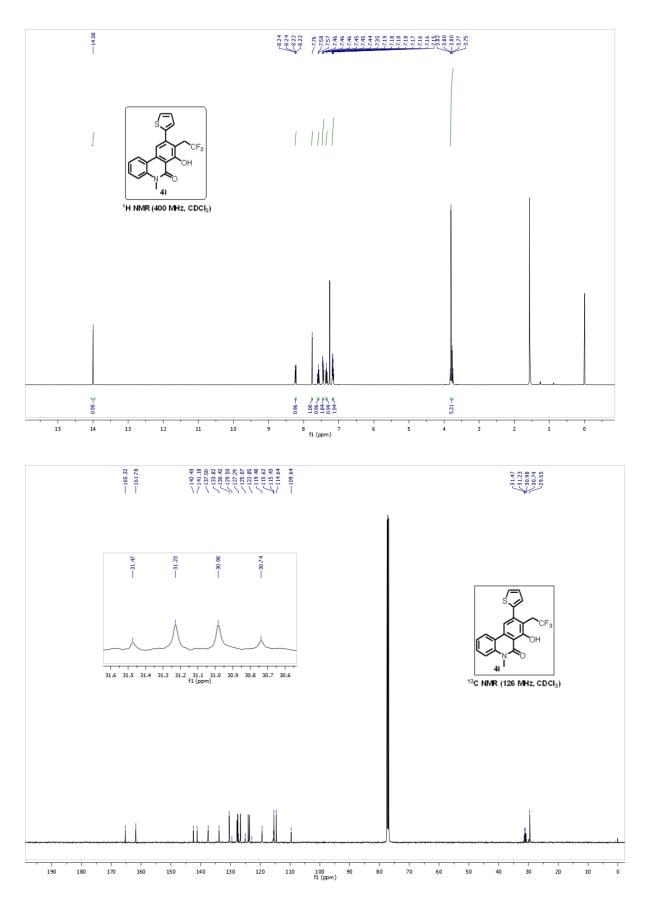


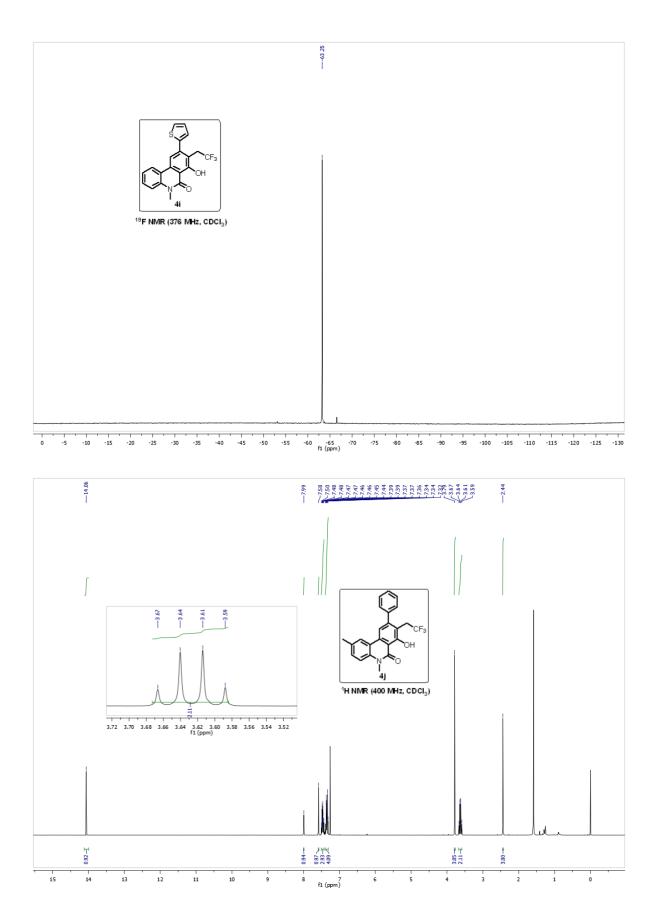


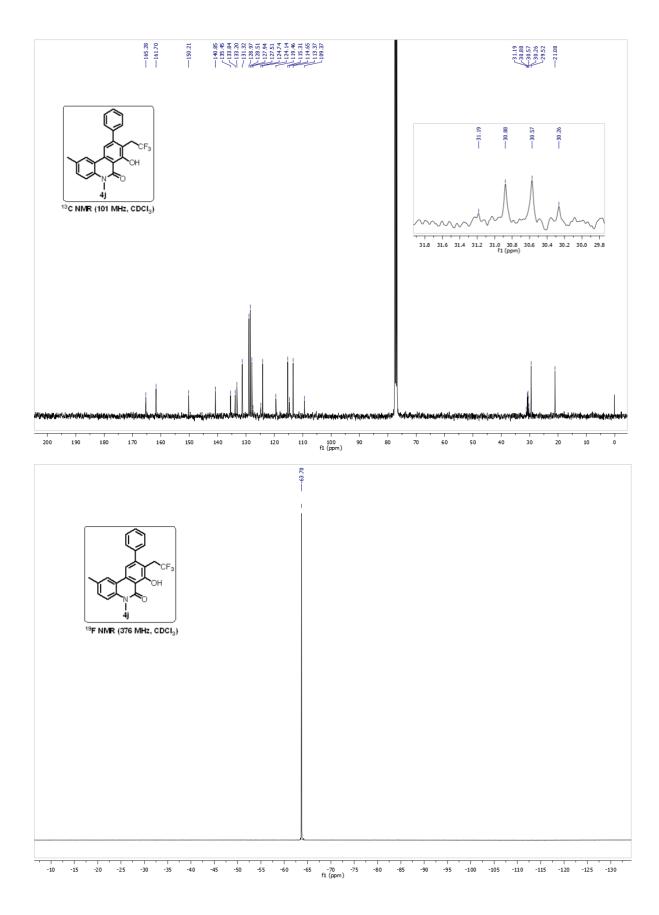


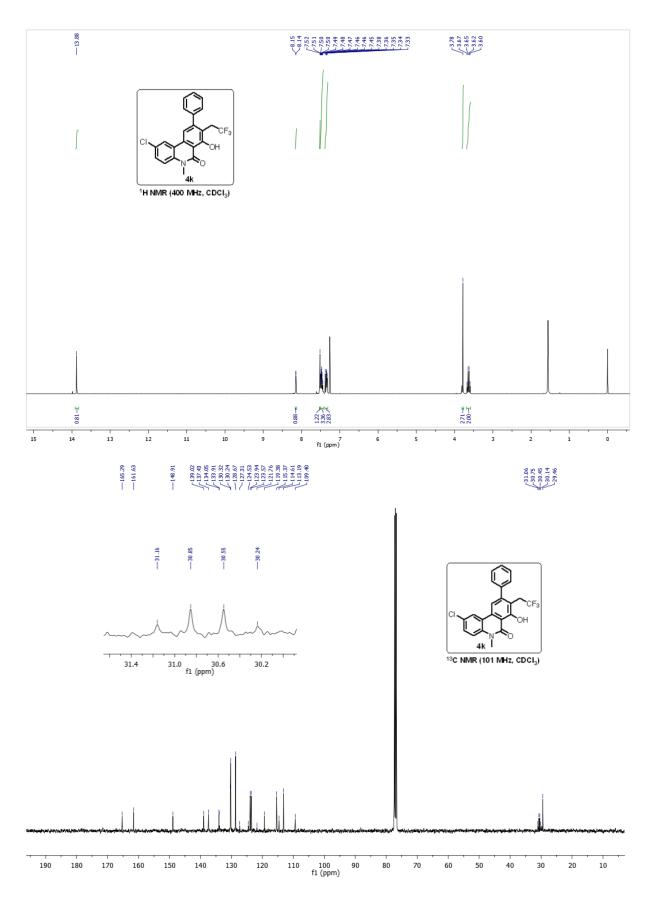


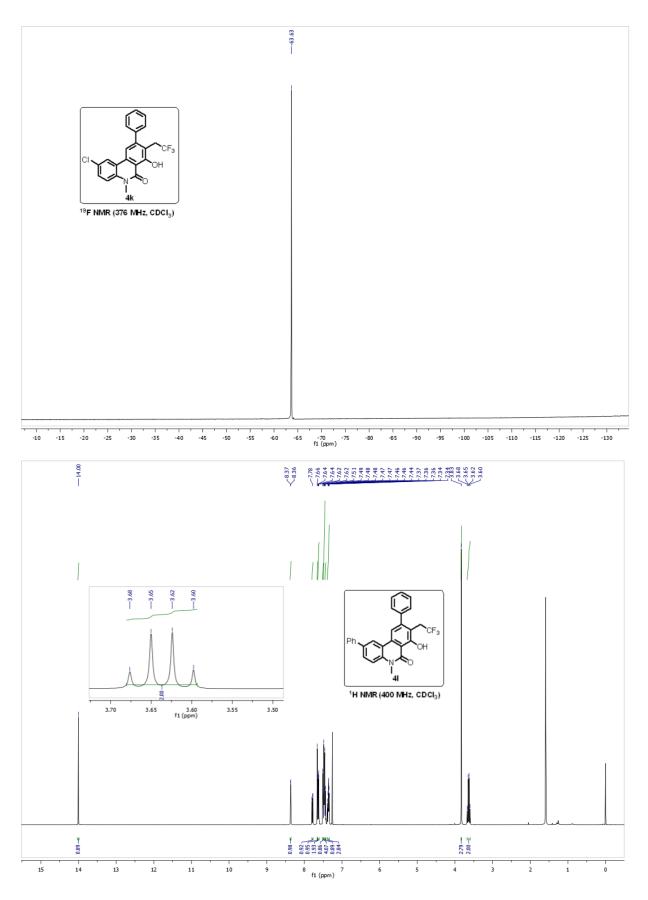


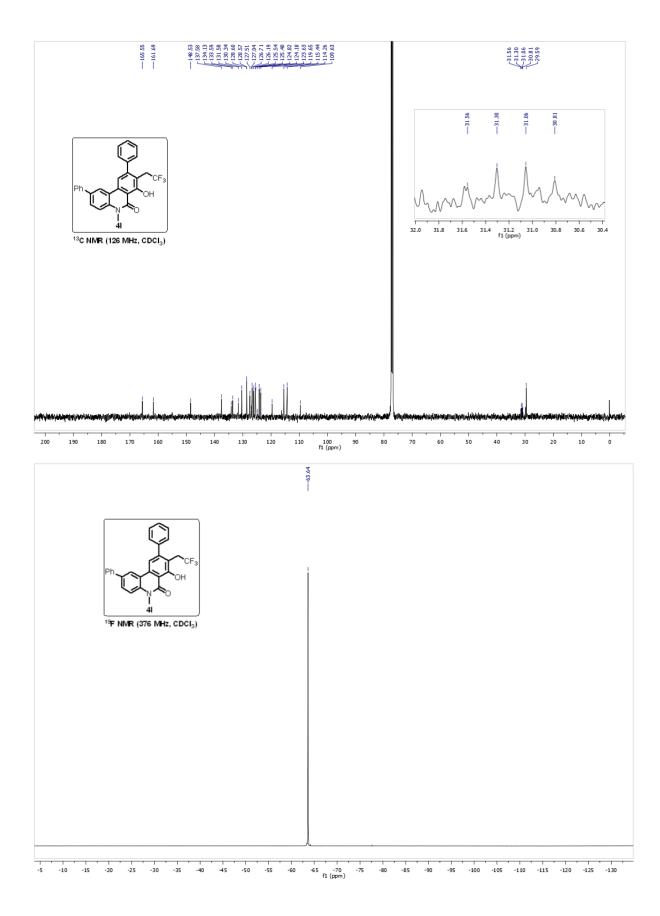


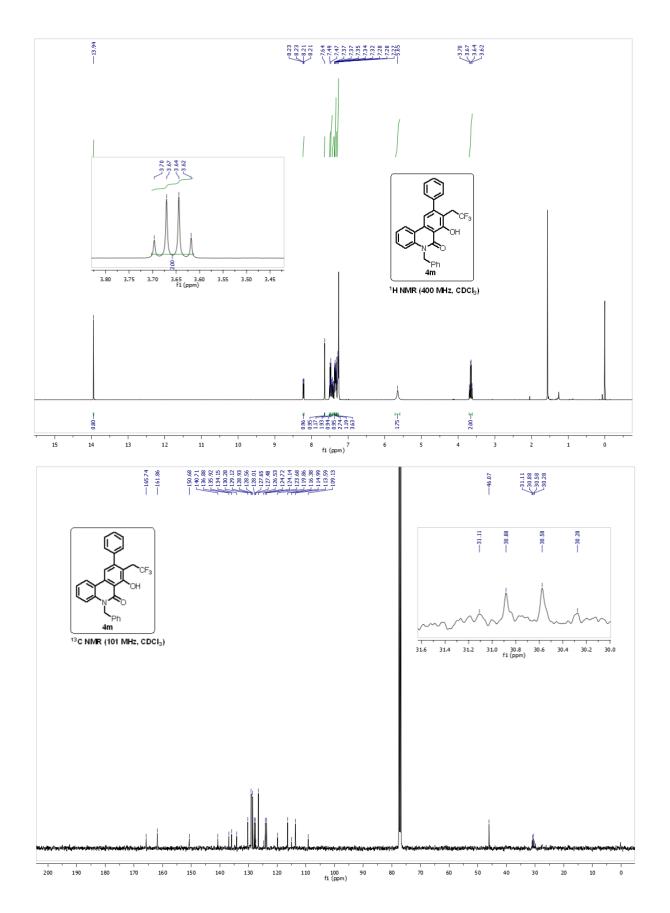


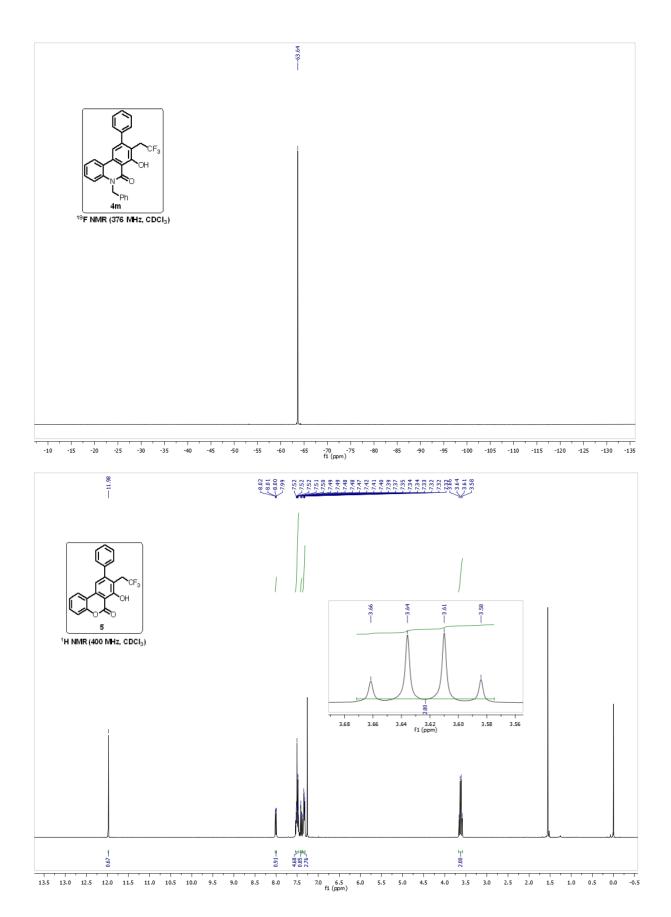


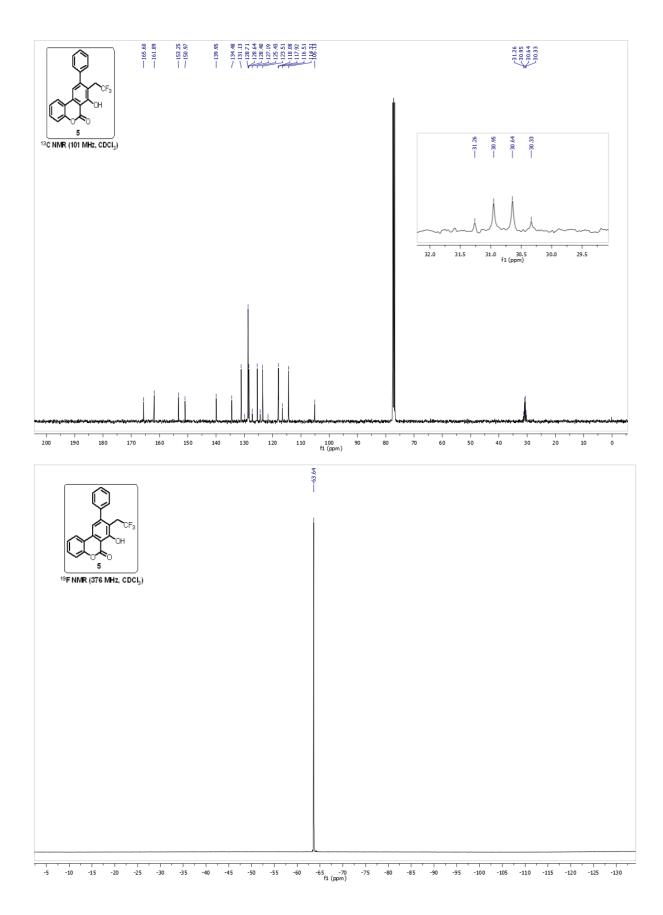


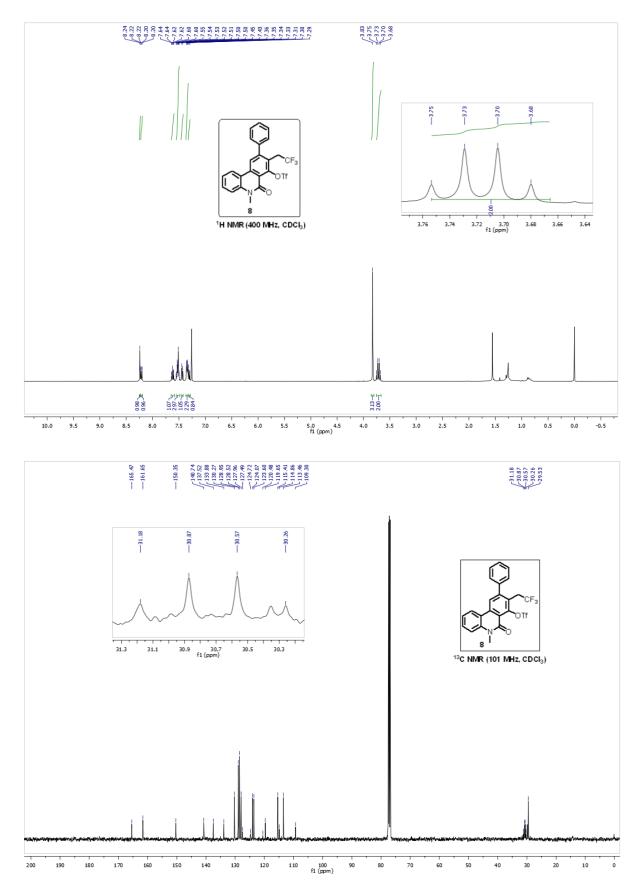


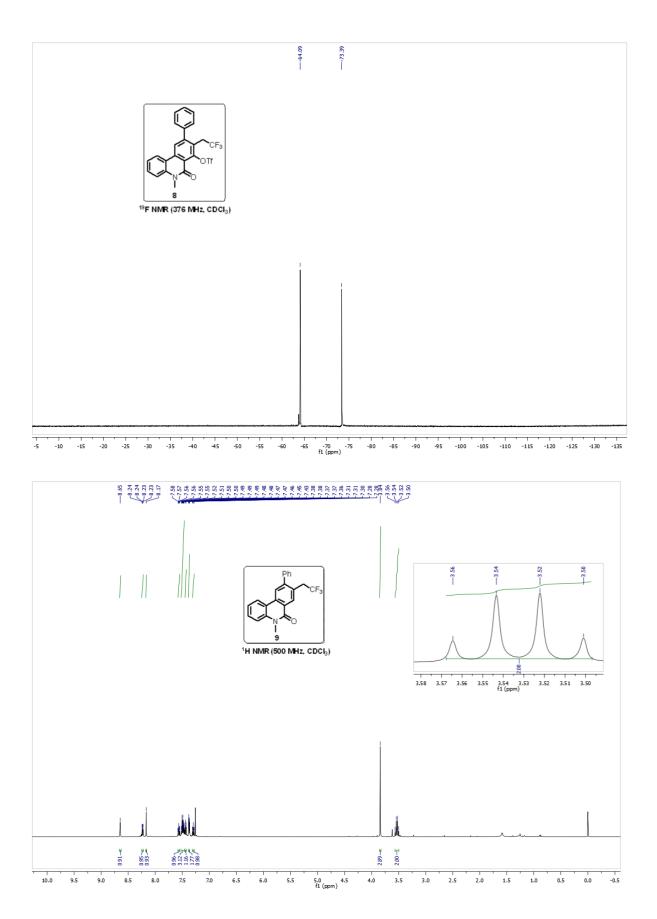


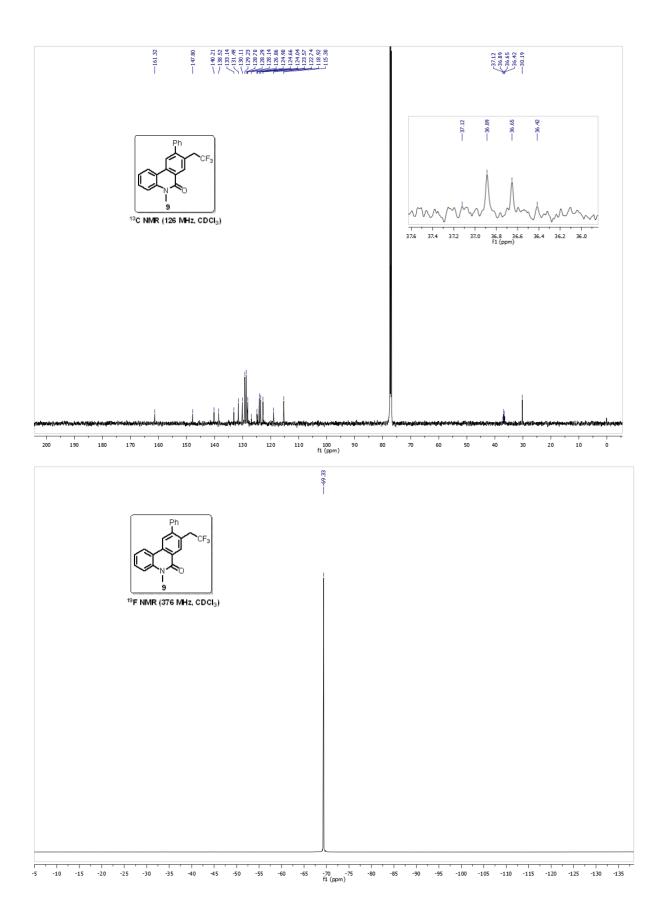


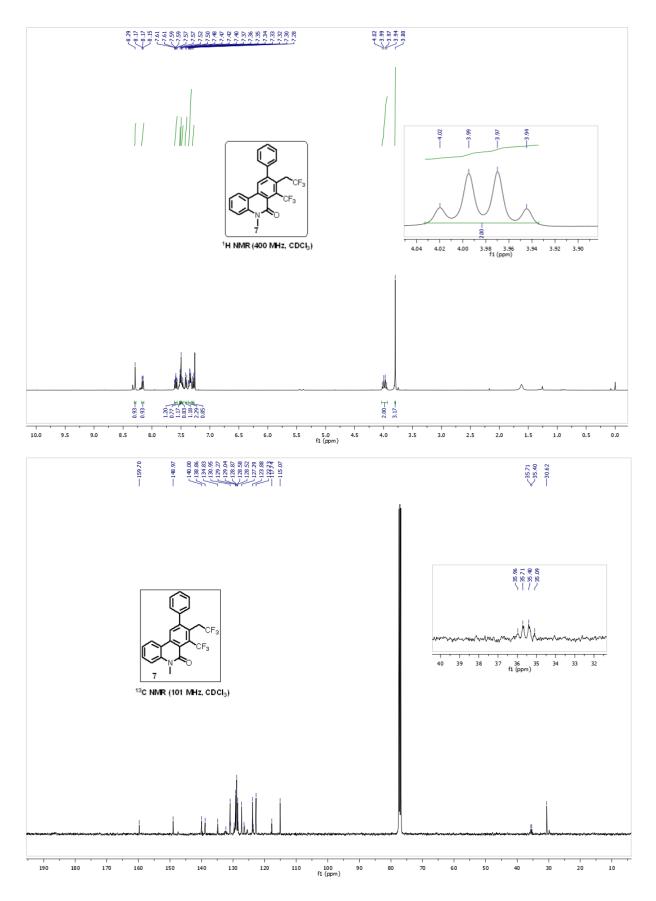


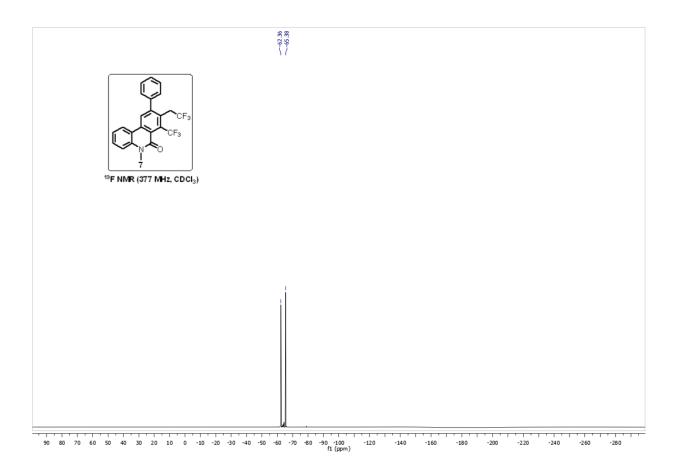

S75











S83

