Supporting Information

for

Metal ion driven formation of 2*H*-silolides and -germolides

Chenghuan Liu,^a Marc Schmidtmann,^a Thomas Müller*^a

Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11

D-26129 Oldenburg, Federal Republic of Germany, European Union

Table of Contents.

Experimental Part	S-2
Details of X-ray Analysis	S-17
Computational Details	S-23
References	S-32

Experimental Part

General. All manipulations of air- and moisture-sensitive compounds were carried out under an argon 5.0 or nitrogen 5.0 atmosphere using Schlenk techniques or a standard glove box (Braun Unilab). Glassware was dried in an oven at T = 120 °C and evacuated prior to use. The solvents THF, diethylether and *n*-hexane were dried over sodium and distilled under a nitrogen atmosphere. Benzene-d₆ and THF-d₈ were stored over molecular sieves (4 Å) after drying over potassium. All used standard chemicals were obtained from commercial suppliers and used as delivered if not mentioned otherwise. Dipotassiumsilacyclopentadienediide K₂[**1**]^[S1], Dipotassiumgermacyclopentadienediide K₂[**9**]^[S1], and PhC(N*t*Bu)₂SiCl (**2**)^[S2] were prepared according to modified literature procedures.

NMR spectroscopy. NMR spectra were recorded on Bruker Avance DRX 500 and Bruker Avance III 500 spectrometers. ¹H NMR spectra were calibrated against the residual proton signal of the solvent as internal reference (Benzene-d₆: δ ¹H(C₆D₅H) = 7.16; THF-d₈: δ ¹H(OC₄D₇H) = 1.72, 3.58; and ¹³C{¹H} NMR spectra by using the central line of the solvent signal (Benzene-d₆: δ ¹³C (C₆D₆) = 128.06; THF-d₈: δ ¹³C(OC₄D₈) = 25.31, 67.21. ²⁹Si and ¹²⁵Te NMR spectra were calibrated against an external standard (δ ²⁹Si(Me₂SiHCI) = 11.1 versus tetramethylsilane (TMS) and δ ¹²⁵Te(Ph₂Te₂) = 422.0 versus dimethyltelluride (Me₂Te)). The ²⁹Si{¹H} NMR inverse gated spectra were recorded with a relaxation delay D1 = 10 s.

Mass spectrometry: Mass spectra were recorded on a Waters Q-Tof Premier (ESI-MS) and Thermo Scientific DFS (CI-/EI-MS). The used method for each compound is given in the experimental part.

[K(18-c-6)(Et₂O)]**[3].** A solution of PhC(N*t*Bu)₂SiCl (0.3 mmol, 0.089 g) and 18-c-6 (0.3 mmol, 0.079 g) in THF (6 mL) was slowly added to a solution of K₂**[1]** (0.3 mmol) in THF (10 mL) at -80 °C. The reaction mixture was stirred for 0.5 h at -80 °C and was allowed to warm to room temperature over 3 hours. The solvent was removed under vacuum. The residue was re-dissolved in Et₂O (4 mL) and the filtrate was kept at +5 °C for one night to afford yellow crystals of [K(18-c-6)(Et₂O)]**[3]**. Yield: 164 mg (0.17 mmol, 57%).

NMR spectra recorded in C_6D_6 at 305 K.

¹H NMR (499.9 MHz, 305.0 K, C₆D₆): δ = 0.52(s, 9 H, Si(CH₃)₃), 0.75 (s, 9 H, Si(CH₃)₃), 1.11 (t, 6 H, Et₂O), 1.47 (s, 9 H, tBu), 3.16 (s, 24H, 18-c-6), 3.28 (q, 4 H, Et₂O), 6.98-7.09 (m, 5 H, Ph), 7.28 (d, 1 H, Ph), 7.45-7.49 (m, 4 H, Ph), 7.85 (m, 1 H, Ph). (some protons of phenyl are overlapped by residual proton signals of the solvent C₆D₆).

¹³C{¹H} NMR (125.8 MHz, 305.0 K, C₆D₆): δ = 4.9, 6.4 (Si(*C*H₃)₃), 15.6 (Et₂O), 32.5 (C<u>Me₃</u>), 53.9 (<u>C</u>Me₃), 65.9 (Et₂O), 70.1 (18-c-6), 123.1, 123.1, 126.3, 127.4, 128.9, 130.0, 131.3, 132.3, 132.4 (CH of Ph), 135.4 (C^{1/4}), 137.1 (C^{1/4}), 143.9 (C of amidinate-phenyl), 145.7 (C^{2/3}), 146.6 (C^{2/3}), 149.2 (Ph<u>C</u>(N*t*Bu)₂), 150.2, 150.4 (C of silole-phenyl). ²⁹Si{¹H} NMR (99.4 MHz, 305.0 K, C₆D₆): δ = -15.1, -12.7, (SiMe₃), 48.3 (SiN₂), 58.9 (SiC₂).

EA: C/H/N [%] calculated for C₅₃H₈₅KN₂O₇Si₄: 62.80/8.45/2.76; found: 62.74/8.63/2.68.

MS (70 eV, EI): m/z (%) = 1012.24

[K(THF)₃][**3**]. A solution of PhC(N*t*Bu)₂SiCl (**2**) (0.3 mmol, 0.089 g) in THF (6 mL) was slowly added to a solution of K₂[**1**] (0.3 mmol) in THF (10 mL) at -80 °C. The reaction mixture was stirred for 0.5 h at -80 °C and was allowed to warm to room temperature over 3 hours. The solvent was removed under vacuum. The residue was re-dissolved in mixed solution of THF and *n*-hexane (0.5:2 mL) and the filtrate was kept at +5 °C for one night to afford pale yellow crystals of [K(THF)₃][**3**]. Yield: 133 mg (0.16 mmol, 53%).

NMR spectra for [K(THF)₃][**3**] recorded in d₈-THF at 305 K.

¹H NMR (499.9 MHz, 305.0 K, d₈-THF): δ = 0.03 (s, 9 H, Si(CH₃)₃), 0.11 (s, 9 H, Si(CH₃)₃), 1.25 (s, 18 H, tBu), 6.78-6.82 (m, 4H, Ph), 6.86-6.90 (m, 10H, Ph), 7.69 (m, 1H, Ph).

¹³C{¹H} NMR (125.8 MHz, 305.0 K, d₈-THF): δ = 4.4, 6.0, (Si(*C*H₃)₃), 32.2 (C*Me*₃), 54.3 (*C*Me₃), 123.3, 123.4, 125.6, 125.8, 126.4, 128.0, 128.3, 128.7, 128.9, 129.5, 129.8, 130.3, 131.5 (CH of Ph),131.9 (C^{1/4}), 131.9 (C^{1/4}), 136.6 (C^q of amidinate-phenyl), 141.6 (C^{2/3}), 143.1 (C^{2/3}), 149.2 (Ph*C*(N*t*Bu)₂), 151.9 (C^q of silole-phenyl).

²⁹Si{¹H} NMR (99.4 MHz, 305.0 K, d₈-THF): δ = -15.1, -12.7, (SiMe₃), 35.6 (SiN₂), 70.5 (SiC₂).

EA: C/H/N [%] calculated for C₄₉H₇₅KN₂O₃Si₄: 66.01/8.48/3.14; found: 65.88/8.73/3.35.

HR-MS (ESI): m/z calculated for C49H75KN2O3Si4: 890.4492; found: 890.4489

Figure S1b. ¹³C{¹H} NMR (125.8 MHz, 305.0 K, C₆D₆) spectrum of [K(18-c-6)(Et₂O)][3].

Figure S1d. ²⁹Si{¹H} NMR (99.4 MHz, 305.0 K, d₈-THF) spectrum of [K(THF)₃][**3**].

Synthesis of [K(18-c-6)][11]:

[K(18-c-6)][11]. A solution of PhC(N*t*Bu)₂SiCl (0.3 mmol, 0.089 g) and 18-c-6 (0.3 mmol, 0.079 g) in Et₂O (6 mL) was slowly added to a solution of K₂[9] (0.3 mmol) in Et₂O (10 mL) at -80 °C. The reaction mixture was stirred for 0.5 h at -80 °C and was allowed to warm to room temperature over 3 hours. The solvent was removed under vacuum. The residue was re-dissolved in n-hexane (2 mL) and was kept at room temperature for one night to afford yellow crystals of [K(18-c-6)][11]. Yield: 18 mg (0.1 mmol, 33%)

NMR spectra recorded in C_6D_6 at 305 K.

¹H NMR (499.9 MHz, 305.0 K, C₆D₆): δ = 0.50 (s, 18H, SiMe₃), 1.36 (s, 18H, tBu), 2.56 (s, 3H, Me), 2.62 (s, 3H, Me), 7.20-7.21 (m, 2H, Ph), 7.48-7.49 (m, 2H, Ph). (one phenyl proton is overlapped by residual proton signals of the solvent C₆D₆, protons of 18-c-6 are overlapping with those of Et₂O).

¹³C{¹H} NMR (125.8 MHz, 305.0 K, C₆D₆): δ = 4.6 (SiMe₃), 18.8 (Me), 23.6 (Me), 32.6 (C<u>Me₃</u>), 53.5 (<u>C</u>Me₃), 69.5 (Si<u>C</u>Si), 70.0 (18-c-6), 131.0 ,133.9, 137.4 (CH of Ph), 148.4 (GeC-<u>C</u>), 153.1 (C of amidinate-phenyl), 154.5 (Ph-<u>C</u>), 163.6 (Ge=C-<u>C</u>), 210.2 (Ge=<u>C</u>-Si).

²⁹Si{¹H} NMR (99.4 MHz, 305.0 K, C₆D₆): δ = -12.0 (SiMe₃), 29.2 (SiN₂).

EA: C/H/N [%] calculated for $C_{39}H_{71}GeKN_2O_6Si_3$: 54.47/8.32/3.26; found: 54.42/8.25/3.35.

HR-MS (EI): m/z calculated for C₃₉H₇₁GeKN₂O₆Si₃: 860.3469; found: 860.3473.

([#]unknown impurities).

Figure S2c. $^{29}Si\{^{1}H\}$ NMR (99.4 MHz, 305.0 K, $C_{6}D_{6})$ spectrum of [K(18-c-6)][11].

Synthesis of *bis*silicontelluride [K(18-c-6)][7]:

[K(18-c-6)][7]: THF (5 mL) was added to the mixture of $[K(18-c-6)(Et_2O)]$ [3] (122 mg, 0.12 mmol) and Te powder (32 mg, 0.24 mmol) at room temperature. The reaction was kept stirring for overnight. After that, the solvent was removed and the residue was extract by Et₂O (8 mL). The solvent was removed, and the residue was washed with *n*-hexane (3 x 4 mL) to afford a dark powder. Dark single crystals suitable for XRD investigations were obtained by recrystallization from Et₂O solution at room temperature. Yield: 100 mg (0.08 mmol, 70%)

NMR spectra recorded in d₈-THF at 305 K.

¹H NMR (499.9 MHz, 305.0 K, d₈-THF): δ = 0.17 (s, 18H, SiMe₃), 1.42 (s, 18H, tBu), 3.68 (s, 24H, 18-c-6), 6.82-6.85 (m, 2H, Ph), 6.88-6.91 (m, 8H, Ph), 7.39-7.43 (m, 1H, Ph), 7.47-7.49 (m, 2H, Ph), 7.52-7.55 (m, 1H, Ph), 7.59 (d, 1H, Ph).

¹³C{¹H} NMR (125.8 MHz, 305.0 K, d₈-THF): δ = 4.5 (C of SiMe₃), 33.1, 56.1 (C of *t*Bu), 71.2 (18-c-6), 125.5, 126.9, 128.3, 128.5, 129.5, 130.3, 130.6, 130.7, 130.9 (CH of Ph), 133.9 (C^{1/4}), 145.8 (C^{2/3}), 153.7 (C of amidinate), 164.0 (C of amidinate-phenyl), 170.4 (C of silole-phenyl).

²⁹Si{¹H} NMR (99.4 MHz, 305.0 K, d₈-THF): δ = -0.7 (SiC₂), -9.9, -10.0 (SiMe₃), -32.2 (SiN₂).

¹²⁵Te{¹H} NMR (157.8 MHz, 305.0 K, d₈-THF): δ = -802.00 (TeSi (silole)), -1233.96 (TeSi (silylene)).

EA: C/H/N [%] calculated for $C_{49}H_{75}KN_2O_6Si_4Te_2$: 49.26/6.33/2.34; found: 48.98/6.52/2.13.

HR-MS (ESI): m/z calculated for C₄₉H₇₅KN₂O₆Si₄Te₂+Na: 1221.2362; found: 1221.2349.

S11

Figure S3d. ¹²⁵Te{¹H} NMR (157.8 MHz, 305.0 K, d₈-THF) spectrum of [K(18-c-6)][7].

Synthesis of the dimeric Cu-silylene silolide Cu₂[8]₂:

Cu₂[**8**]₂: THF (5 mL) was added to the mixture of [K(18-c-6)(Et₂O)][**3**] (152 mg, 0.12 mmol) and Cul (29 mg, 0.15 mmol) at room temperature. The reaction was kept stirring for overnight. After that, the solvent was removed and the residue was extract by Et₂O (8 mL). The solvent was removed, and the residue was washed with *n*-hexane (3 x 2 mL) to afford the pale brown solid. The solid was re-dissolved in mixed solution of THF and *n*-hex (0.5:2 mL) and the filtrate was kept at +5 °C for overnight to afford yellow crystals Cu₂[**8**]₂ (Yield: 112 mg (53%)).

NMR spectra recorded in C_6D_6 at 305 K.

¹H NMR (499.9 MHz, 305.0 K, C₆D₆): δ = 0.50 (s, 36H, SiMe₃), 1.25 (s, 36H, tBu), 7.42 (m, 5H, Ph), 7.51 (m, 7H, Ph) (one phenyl proton is overlapped by residual proton signals of the solvent C₆D₆, protons of 18-c-6 are overlapping with those of Et₂O).

¹³C{¹H} NMR (125.8 MHz, 305.0 K, C₆D₆): δ = 4.7 (SiMe₃), 32.0 (C*Me*₃), 54.3 (*C*Me₃), 124.8, 125.4, 129.9, 130.1, 130.6, 132.1, 133.5 (CH of Ph), 141.0 (C of amidinate-phenyl), 145.6 (SiC-*C*), 146.3 (C of amidinate), 153.0 (Si=C-*C*), 165.3 (Si=*C*-Si). C of Si-C-Si and some of C of phenyl could not be assigned due to the bad signal to noise ratio.

²⁹Si{¹H} NMR (99.4 MHz, 305.0 K, C₆D₆): δ = -5.8 (SiMe₃), 15.1 (SiC₂), 238.9(SiN₂).

An accurate combusting analysis of $Cu_2[\mathbf{8}]_2$ could not be obtained as a small amount of a by-product of unknown structure co-crystallized and could not be separated.

Figure S4b. ¹³C{¹H} NMR (125.8 MHz, 305.0 K, d₈-THF) spectrum of Cu₂[**8**]₂ (*Et₂O, [#]18-c-6, ⁺n-hexane).

Figure S4c. $^{29}\text{Si}\{^{1}\text{H}\}$ NMR (99.4 MHz, 305.0 K, C_6D_6) spectrum of $Cu_2[\textbf{8}]_2.$

Reference compounds pertinent to the discussion:

Figure S5: NMR spectroscopic and structural data of silicon tellurides pertinent to the discussion. ^[S3-S5]

Figure S6: Selected NMR spectroscopic and structural data of Cu(I) complexes of amidinate stabilized silylenes.^[S6, S7]

Details of single crystal X-ray diffraction analysis

Single crystal X-ray data were measured on a Bruker AXS Apex II diffractometer (Mo-K α radiation, $\lambda = 0.71073$ Å, Kappa 4 circle goniometer, Bruker Apex II detector). The crystal was kept at 100.0 K during data collection. Absorption corrections based on symmetry-related measurements (multi-scan) were performed with the program SADABS. ^[S8] The structures were solved with the program SHELXS and refined with SHELXL.^[S9] Pertinent data are summarized in Tables S1-S5. CCDC-2368314 (S1), CCDC-2368318 (S2), CCDC-2368313(S3), CCDC-2368316 (S4), CCDC-2368315 (S5), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge CB2 1EZ, UK [Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk]. The crystallographic data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/ quoting the CCDC numbers 2368313-2368316 and 2368318.

Table S1.

Name
CCDC
Empirical formula
Formula weight
Temperature (K)
Wavelength (Å)
Crystal system
Space group
a (Å)
b (Å)
c (Å)
α (deg)
β (deg)
γ (deg)
V (Å3)
Z
D (calc) (Mg/m3)
μ (mm-1)
F(000)
θ range (°)
Index ranges
Ref.collected
Independent reflections
Completeness to θ (°)
Goodness-of-fit on F ²
Final R indices [I >2σ(I)]
R indices (alldata)
$\Delta \rho_{max}$, min(e.Å ⁻³)

[K(THF)₃]3·THF·hexane 2368314 $C_{57.67}H_{93}KN_2O_{4.66}Si_4$ 1040.42 100(2) 0.71073 Triclinic P-1 10.2492(5) 13.0948(7) 23.2301(13) 103.325(2) 91.573(2) 93.515(2) 3025.3(3) 2 1.142 0.212 1131 1.602, 30.034 -14,14; -18,18; -32,32 193642 17724 (R(int) = 0.0534) (30.03)100% 1.122 $R_1 = 0.0641$ $wR_2 = 0.1607$ $R_1 = 0.0737$ $wR_2 = 0.1672$ 0.991, -0.477

Table S2.

Name
CCDC
Empirical formula
Formula weight
Temperature (K)
Wavelength (Å)
Crystal system
Space group
a (Å)
b (Å)
c (Å)
α (deg)
β (deg)
γ (deg)
V (Å3)
Z
D (calc) (Mg/m3)
μ (mm-1)
F(000)
θ range (°)
Index ranges
Ref.collected
Independent reflections
Completeness to θ (°)
Goodness-of-fit on F ²
Final R indices [I >2σ(I)]
R indices (alldata)
$\Delta \rho_{max}, min(e.Å^{-3})$

[K(18-C-6)(Et ₂	₂ O)]3Et ₂ O
2368318	
C ₅₄ H _{87.50} KN ₂ O	7.25 Si 4
1032.21	
100(2)	
0.71073	
Triclinic	
P-1	
14.3502(6)	
29.6584(12)	
31.1403(12)	
64.5446(16)	
87.8632(17)	
80.4353(17)	
11791.8(8)	
8	
1.163	
0.22	
4468	
1.265, 34.971	
-23,23; -47,47	7; -50,50
664021	
103614 (R(int)) = 0.0476)
(34.97)100.00	%
1.098	
$R_1 = 0.0618$	$wR_2 = 0.1443$
$R_1 = 0.0781$	$wR_2 = 0.1524$
1.979, -1.122	

Table S3.

Name CCDC **Empirical formula** Formula weight Temperature (K) Wavelength (Å) Crystal system Space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å3) Ζ D (calc) (Mg/m3) µ (mm-1) F(000) θ range (°) Index ranges Ref.collected Independent reflections Completeness to θ (°) Goodness-of-fit on F² Final R indices $[I > 2\sigma(I)]$ R indices (alldata) $\Delta \rho_{\text{max}}, \min(e.\text{\AA}^{-3})$

[K(18-C-6)][11] 2368313 C₃₉H₇₁GeKN₂O₆Si₃ 859.93 200(2) 0.71073 Triclinic P-1 12.4586(4) 13.0885(4) 17.1275(6) 95.5876(14) 95.5032(14) 115.7735(12) 2473.14(14) 2 1.155 0.816 920 1.749 ,30.034 -17,17; -18,18; -24,24 137762 14466 (R(int) = 0.0359) (30.03)100.00% 1.069 $R_1 = 0.0376$ $wR_2 = 0.0984$ $R_1 = 0.0494$ $wR_2 = 0.1075$ 0.577, -0.305

Table S4.

[K(18-C-6)][7]

Name CCDC **Empirical formula** Formula weight Temperature (K) Wavelength (Å) Crystal system Space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å3) Ζ D (calc) (Mg/m3) μ (mm-1) F(000) θ range (°) Index ranges Ref.collected Independent reflections Completeness to θ (°) Goodness-of-fit on F² Final R indices $[I > 2\sigma(I)]$ R indices (alldata) $\Delta \rho_{max}, min(e.Å^{-3})$

[K(18-C-6)]7 2368316 $C_{49}H_{75}KN_2O_6Si_4Te_2$ 1194.798 100 0.71073 Monoclinic P 21/c 21.6369(8) 11.8608(4) 22.6135(9) 90 103.4752(1) 90 5643.6(4) 4 1.406 1.237 2440.083 1.85, 34.97 -34,34; -19,19; -36,36 387403 24788 (R(int) = 0.0381) (34.97)100.00% 1.048 $R_1 = 0.0287$ $wR_2 = 0.0620$ $R_1 = 0.0334$ $wR_2 = 0.0643$ 1.103, -0.854

Table S5.

Name CCDC **Empirical formula** Formula weight Temperature (K) Wavelength (Å) Crystal system Space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å3) Ζ D (calc) (Mg/m3) µ (mm-1) F(000) θ range (°) Index ranges Ref.collected Independent reflections Completeness to θ (°) Goodness-of-fit on F² Final R indices $[I > 2\sigma(I)]$ R indices (alldata) $\Delta \rho_{max}, min(e.Å^{-3})$

Cu₂[8]₂ 2368315 $C_{74}H_{102}Cu_2N_4Si_8\\$ 1399.39 100(2) 0.71073 Monoclinic P2₁/n 14.1025(13) 17.5632(17) 15.1034(15) 90 101.596(3) 90 3664.5(6) 2 1.268 0.755 1488 1.800, 40.249 -25,25; -31,31; -27,27 264268 23058 (R(int) = 0.0439) (40.25)100.00% 1.003 $R_1 = 0.0253$ $wR_2 = 0.0680$ $R_1 = 0.0309$ w $R_2 = 0.0710$ 0.595, -0.519

Computational Details

All quantum chemical calculations were carried out using the Gaussian16 package.^[S10] The natural bond orbital (NBO)^[S11] analysis was done with the program NBO 7.0.^[S12] The molecular structure optimization were performed using the M06-2X functional^[S13] along with the 6-311+G(d,p) basis set. The effect of the solvent benzene (dielectric constant = 2.274)^[S14] on the energies has been considered using the SCIPCM model.^[S15] Every stationary point was identified by a subsequent frequency calculation either as minimum (Number of imaginary frequencies (NIMAG): 0) or transition state (TS) (NIMAG: 1). The 1H-tetrolide/2H-tetrolide rearrangement has been computed first using a set of model compounds (Table S7). In this case, intrinsic reaction coordinate (IRC)-type of calculations^[S16] verified the connections between transition states and corresponding minima. The stationary points were then optimized for the real molecules (Tables S8 – S11). The optimized molecular structures of all compounds are given in cartesian coordinates in a separate file, readable by the Mercury program distributed by CCDC. Silicon NMR chemical shift calculations were performed using the GIAO method as implemented in the Gaussian 16 program, the M06L functional and a 6-311G(2d,p) basis set for molecular structures optimized at the M06-2X/6-311+G(d,p) level of theory [S17, S18] The calculated isotropic Si chemical shieldings were transferred to the tetramethylsilane (TMS) scale by using the calculated Si shielding for TMS (PG: Td) obtained for the same model chemistry (σ (Si) = 362.17, see Table S11).

Interestingly, the optimization of the structure of the isolated anion [3]⁻ leads to pyramidalization of the silicon centre and localisation of the silole ring, in contrast to the experimental finding (see structure of $[K(18-C-6)Et_2O)]$ [3]). The delocalized structure of [3]⁻ with silicon in a trigonal planar coordination environment was obtained only with inclusion of solvent effects during the structure optimization (see Figure S7 and Table S6)).

Figure S7. Optimized molecular structure of $[3]^-$ (a) applying the PCM model for the solvent benzene (at SCIPCM/M062X/6-311+G(d,p)) and (b) as isolated molecule (at M062X/6-311+G(d,p)).

Table S6. Selected atom distances and angles of optimized structures of [**3**]⁻ applying the PCM model for the solvent benzene and as isolated molecule. For comparison data of the sc-XRD analysis of [K(18-c-6)Et₂O][**3**] is given as well.

	SCIPCM/M062X/6-		M062X/6-311+G(d,p)	sc-XRD
	311+G(d,p)			[K(18-C-6)Et ₂ O)]
				[3]
	Bond length (pm)		Bond length (pm)	Bond length (pm)
C1-C2	142.39	C1'-C2'	139.53	143.32
C2-C3	141.94	C2'-C3'	144.25	142.00
C3-C4	142.13	C3'-C4'	139.47	143.25
Si1-C1	181.51	Si1'-C1'	185.94	181.69
Si1-C4	181.66	Si1'-C4'	186.00	181.19
Si1- Si2	234.16	Si1'- Si2'	236.80	233.37
	Angle (°)		Angle (°)	Angle (°)
Σα (Si1)	359.6	Σα (Si1')	313.4	359.8

Cpd	E [o u]	C [a u]	ΔE	ΔG
	E [a.u]	G [a.u]	(kJ·mol⁻¹)	(kJ·mol⁻¹)
[10M] ⁻	-3684.45948	-3684.06779	0	0
[TS1M] ⁻	-3684.39980	-3684.00900	157	154
[IN2M] ⁻	-3684.46562	-3684.07289	-16	-13
[TS2M] ⁻	-3684.43363	-3684.04265	68	66
[IN3M] ⁻	-3684.44244	-3684.05343	45	38
[TS3M] ⁻	-3684.42797	-3684.03452	83	87
[11M] ⁻	-3684.458616	-3684.067543	2	1

Table S7. Calculation of the reaction coordinate of the rearrangement $[10M]^- \rightarrow [11M]^-$ (M062X/6-311+G(d,p).

Figure S8. Reaction coordinate of the rearrangement $[10M]^- \rightarrow [11M]^- (M062X/6-311+G(d,p))$.

Figure S9. Reaction coordinate of the rearrangement $[10]^- \rightarrow [11]^-$ (SCIPCM/M062X/6-311+G(d,p)//M062X/6-311+G(d,p)).

Figure S10. Energy difference of the ion pairs [K(18-c-6)][10] and [K(18-c-6)][11](SCIPCM/M062X/6-311+G(d,p)//M062X/6-311+G(d,p)).

Cpd	Model	E [a.u]	G [a.u]	ΔE	ΔG	E ^{sol} [a.u]	∆E ^{sol} (kJ·mol⁻¹)	∆G ^{sol} (kJ·mol ⁻¹)
						(single point)	(single point)	(single point)
[10]-	M06-2X/6-311+G(d,p)	-4112.00933	-4111.40419	0	0			
	M06-2X(SCIPCM)/6-311+G(d,p)					-4112.04522	0	0
[T \$1] ⁻	M06-2X/6-311+G(d,p)	-4111.99194	-4111.38420	46	52			
[131]	M06-2X(SCIPCM)/6-311+G(d,p)					-4112.02739	47	53
[IN2]-	M06-2X/6-311+G(d,p)	-4112.00297	-4111.39666	17	20			
	M06-2X(SCIPCM)/6-311+G(d,p)					-4112.03859	17	20
[TS2] ⁻	M06-2X/6-311+G(d,p)	-4111.98035	-4111.37496	76	77			
[132]	M06-2X(SCIPCM)/6-311+G(d,p)					-4112.01591	77	78
[IN3] ⁻	M06-2X/6-311+G(d,p)	-4111.99266	-4111.39164	44	33			
[[113]	M06-2X(SCIPCM)/6-311+G(d,p)					-4112.03010	40	29
[TS3]-	M06-2X/6-311+G(d,p)	-4111.97516	-4111.37070	90	88			
[135]	M06-2X(SCIPCM)/6-311+G(d,p)					-4112.01170	88	86
[11]-	M06-2X/6-311+G(d,p)	-4112.00897	-4111.40498	1	-2			
[±1]	M06-2X(SCIPCM)/6-311+G(d,p)					-4112.04518	0	-3

Table S8. Calculation of the reaction coordinate of the rearrangement $[10]^- \rightarrow [11]^-$ (see also Figure S9)

Cpd	Method	E [a.u]	G [a.u]	ΔE (kJ·mol⁻¹)	∆G (kJ·mol⁻¹)	E ^{sol} [a.u] (single point)	∆E ^{sol} (kJ·mol ⁻¹) (single point)	∆G ^{sol} (kJ·mol⁻¹) (single point)
[K(18-c-6)]	M06-2X/6-311+G(d,p)	-5634.84234	-5633.88629	0	0			
[10]	M06-2X(SCIPCM)/6-311+G(d,p)					-5634.85838	0	0
[K(18-c-6)]	M06-2X/6-311+G(d,p)	-5634.86781	-5633.91211	-67	-68			
[11]	M06-2X(SCIPCM)/6-311+G(d,p)					-5634.87687	-49	-50

Table S9. Energy difference of the ion pairs [K(18-c-6)][10] and [K(18-c-6)][11] (see also Figure S10)

Table S10. Reaction coordinate of the rearrangement $[3]^- \rightarrow [8]^-$ (SCIPCM/M062X/6-311+G(d,p)//M062X/6-311+G(d,p)).

Cpd	method	E [a.u]	G [a.u]	∆E (kJ·mol ⁻¹)	∆G (kJ·mol⁻¹)	E ^{sol} [a.u] (single point)	ΔE ^{sol} (kJ·mol⁻¹) (single point)	ΔG ^{sol} (kJ·mol ⁻¹) (single point)
[3]-	M06-2X/6-311+G(d,p)	-2707.94339	-2707.23932	0	0			
ູງ	M06-2X(SCIPCM)/6-311+G(d,p)					-2707.97903	0	0
[SiIN2]-	M06-2X/6-311+G(d,p)	-2707.92944	-2707.21989	37	51			
[SIINZ]	M06-2X(SCIPCM)/6-311+G(d,p)					-2707.96435	39	54
[SIIN3]-	M06-2X/6-311+G(d,p)	-2707.9311	-2707.22839	32	29			
[2002]	M06-2X(SCIPCM)/6-311+G(d,p)					-2707.96576	35	32
[8]-	M06-2X/6-311+G(d,p)	-2707.93541	-2707.22858	21	28			
[0]	M06-2X(SCIPCM)/6-311+G(d,p)					-2707.97129	20	27
1		1	1		1	1	1	

2nd order perturbation analysis of the conjugation in 2H-germolide [11]⁻

Figure S11 summarises the results of the 2nd order perturbation analysis of 2*H*-germolide [**11**]⁻. At the top, the delocalization of electron density from the π (GeC1) NBO (occupation 1.69 e) into the 3p(Si) NBO (occupation 0.31 e) is shown.

At the bottom, the delocalization of electron density from the π (GeC1) NBO (occupation 1.69 e) into the π^* (C2C3) NBO (occupation 0.24 e) is shown.

Both delocalizations are connected with substantial 2^{nd} order perturbation energies (E(2) = 1.96 eV and E(2) = 1.93 eV) and lead to the π (GeC1) NLMO with contribution mainly from C1(65%), but also significant contributions from orbitals of Ge (18%), Si (7%), C2 (4%), C3 (3%).

In summary, the strongly polarized GeC1 π -bond (78% C) is delocalized to the exocyclic SiN2 unit and to the endocyclic C=C π -bond, suggesting contributions from the resonance structures shown in Scheme S1.

Figure S11: Results of the 2nd order perturbation analysis of 2*H*-germolide [**11**]⁻ indicating the π -delocalization between π (Ge-C1) and π *(C2C3) (bottom)and the σ */ π hyperconjugation between π (Ge-C1) and σ *(SiN2)(top) (at M06-2X/6-311+G(d,p), isodensity value 0.04).

Scheme S1: Possible resonance structures for the 2H-germolide [11]⁻.

	Model	δ ²⁹ Si (Si1)	δ ²⁹ Si (Si2)	δ ²⁹ Si (SiMe ₃)
$[K][3] \begin{tabular}{c c} & K & & & \\ Ph & SiMe_3 & & \\ Ph & SiMe_3 & N & \\ & SiMe_3 & N & \\ & & & Hau & Ph \\ & & & & [K][3] \end{tabular}$	M06L/6-311G(2d,p) M06-2X/6-311+G(d,p)	66.04	44.55	-13.85 -13.65
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	M06L/6-311G(2d,p) M06-2X(SCIPCM)/6- 311+G(d,p)	75.43	32.81	-11.48 -16.13
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\$	M06L/6-311G(2d,p) M06-2X/6-311+G(d,p)	47.00	72.40	-12.83 -14.99
$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	M06L/6-311G(2d,p) M06-2X/6-311+G(d,p)		38.03	-10.78 -14.61

Table S11. Calculated Si NMR chemical shifts for silolides and germolides.

(a) For the difference between the molecule structure of [3] in dependence of the solvent see Table S6.

Reference

- [S1] Z. Dong, C. R. W. Reinhold, M. Schmidtmann and T. Müller, *Organometallics*, 2018, 37, 4736–4743.
- [S2] C.-W. So, H. W. Roesky, J. Magull and R. B. Oswald, *Angew. Chem., Int. Ed.,* 2006, 45, 3948-3950
- [S3] M. K. Bisai, V. S. V. S. N. Swamy, T. Das, K. Vanka, R. G. Gonnade and S. S. Sen, *Inorg. Chem.*, **2019**, *58*, 10536-10542.
- [S4] M. Ghosh , P. Panwaria , S. Tothadi , A. Das and S. Khan, *Inorg. Chem.*, 2020, 59 , 17811-17821.
- [S5] C. Liu, M. Schmidtmann and T. Müller, *Dalton Trans.*, 2024, DOI: 10.1039/D4DT01112K.
- [S6] G. Tan, B. Blom, D. Gallego and M. Driess, *Organometallics*, **2014**, *33*, 363-369.
- [S7] S. Khan, S. K. Ahirwar, S. Pal, N. Parvin and N. Kathewad, Organometallics, 2015, 34, 5401-5406.
- [S8]. G. M. Sheldrick, SADABS V2014/4, University of Göttingen, Germany, 2014.
- [S9]. G. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3–8.
- [S10]. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian, Inc., Wallingford CT*, **2016**.
- [S11] A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* **1988**, *88*, 899-926.
- [S12] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C.
 M. Morales, P. Karafiloglu, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2018.
- [S13] Y. Zhao, N. E. Schultz and D. G. Truhlar, J. Chem. Theory Comput., 2006, 2, 364– 382.

- [S14] Wohlfahrt, C. 2 Pure Liquids: Data: Datasheet from Landolt-Börnstein Group IV Physical Chemistry Volume 6: "Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures" in Springer Materials.
- [S15] G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 114110.
- [S16] K. Fukui, Acc. Chem. Res. 1981, 14, 363.
- [S17] Y. Zhao, D. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- [S18] W. Deng, J. R. Cheeseman, M. J. Frisch, J. Chem. Theory and Comput. 2006, 2, 1028.