Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information (ESI)

Broadband Emission in Alkali Halides Triggered by Sb³⁺ Doping

Yanyan Li,^{a,b} Mircea Cotlet,^c Ido Hadar,^d and Peijun Guo ^{a,b,*}

- a. Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, United States
- b. Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, United States
- c. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
- d. Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

Email: peijun.guo@yale.edu

Experimental Section

Materials. Sodium chloride (NaCl, >99.5%, TCl), potassium chloride (KCl, ACS reagent, 99.0-100.5%, Sigma-Aldrich), rubidium chloride (RbCl, 99.8% trace metals basis, Sigma-Aldrich), Antimony(III) chloride (SbCl₃, ≥99.95% trace metals basis, Sigma-Aldrich), formic acid (88%, Sigma-Aldrich), dimethyl sulfoxide (99.9%, SuperDry, J&K Scientific), and toluene (anhydrous, 99.8%, Sigma-Aldrich) were all procured from commercial venders and used without further purification.

Synthesis of Sb³⁺-**doped NaCl, KCl, and RbCl single crystals.** Sb³⁺-doped NaCl single crystals were synthesized using a slow evaporation technique. Typically, 0.6 mmol NaCl and 0.18 mmol SbCl₃ were dissolved in a mixture of formic acid and dimethyl sulfoxide, and the solution was stirred at 100 °C until it became clear. Then, the solution was filtered with a 0.22 μ m polytetrafluoroethylene (PTFE) syringe, and the filtered solution was injected into vials and sealed with a paraffin film with small holes. The solution was then filtered using a 0.22 μ m polytetrafluoroethylene (PTFE) filter. The filtered solution was injected into vials, sealed with paraffin film with small holes, and placed in a sealed container with dimethyl sulfoxide. Single crystals were obtained by maintaining the solution at 100 °C for 48 hours. The preparation of Sb³⁺-doped KCl and RbCl single crystals followed the same procedures, with KCl and RbCl substituting NaCl. To synthesize different dopant ratios of 10%, 20%, and 40% Sb³⁺-doped NaCl crystals, 0.06, 0.12, and 0.24 mmol SbCl₃ were added to the precursor solution, respectively, while keeping the other conditions constant.

Characterization. Powder X-ray diffraction (PXRD) data of Sb^{3+} -doped ACl (A = Na, K, and Rb) sing crystals were obtained by using a Rigaku SmartLab X-ray diffractometer with Cu Ka radiation $(\lambda = 1.5418 \text{ Å})$. The scanning electron microscopy (SEM) images and the energy dispersive spectroscopy (EDS) elemental mapping of samples were obtained by using a scanning electron microscope (Hitachi SU8230). Photoluminescence and time-resolved (PL) PL (TRPL) measurements were conducted by excitation wavelength of 320 nm using a fs Yb:KGW laser (Pharos, Light Conversion). PL spectra was captured by a Si EMCCD (Andor iXon Life 888), and time-resolved PL was collected by a streak camera (Hamamatsu C10910 with the Slow sweep unit; M10913). For the temperature-dependent PL and TRPL measurements, samples were mounted in a helium cryostat (DE-204SF, Advanced Research Systems) under vacuum. PL excitation (PLE) measurements of samples were performed by using Horiba Nanolog Fluorescence Spectrometer for UV-VIS-NIR (400-1750nm). The photoluminescence quantum yield (PLQY) of our samples was measured using an Edinburgh FLS1000 fluorimeter with an integrating sphere.

Figure S1. SEM image and EDS elemental mappings of NaCl:Sb³⁺ single crystal.

Figure S2. SEM image and EDS elemental mappings of KCl:Sb³⁺ single crystal.

Figure S3. SEM image and EDS elemental mappings of RbCl:Sb³⁺ single crystal.

Figure S4. TRPL spectra of NaCl:Sb³⁺ measured on a 10 ns time scale at 295K and 7K.

Figure S5. TRPL 2D mapping of KCl:Sb³⁺ measured at room temperature.

Figure S6. TRPL spectra of KCl:Sb³⁺ measured on a 10 ns time scale at 295K and 7K.

Figure S7. TRPL 2D mapping of RbCl:Sb³⁺ measured at room temperature.

Figure S8. TRPL spectra of RbCl:Sb³⁺ measured on a 10 ns time scale at 295K and 7K.

Figure S9. Comparison of PL spectra of KCl:Sb³⁺ measured at 295K and 7K.

Figure S10. Comparison of PL spectra of RbCl:Sb³⁺ measured at 295K and 7K.

Figure S11. TRPL 2D mapping of NaCl:Sb³⁺ measured at 7K.

Figure S12. TRPL 2D mapping of KCl:Sb³⁺ measured at 7K.

Figure S13. Comparison of TRPL spectra of KCl:Sb³⁺ measured on a 10 μ s time scale at 295K and 7K.

Figure S14. TRPL 2D mapping of RbCl:Sb³⁺ measured at 7K.

Figure S15. Comparison of TRPL spectra of RbCl:Sb³⁺ measured on a 10 μ s time scale at 295K and 7K.

Figure S16. Comparison of PXRD patterns of NaCl:Sb³⁺ doped with different contents of Sb³⁺.

Figure S17. Powder XRD pattern (blue "+") of (a)10% Sb³⁺-doped NaCl, (b) 20% Sb³⁺-doped NaCl, (c) 30% Sb³⁺-doped NaCl, and (d) 40% Sb³⁺-doped NaCl single crystal with Rietveld refinement fits (green lines) using GSAS-II and their difference map (cyan lines).

Figure S18. Comparison of PL spectra of NaCl:Sb³⁺ doped with different contents of Sb³⁺.

Figure S19. Photoluminescence quantum yield (PLQY) measurement of a) NaCl: 10% Sb³⁺, b) NaCl: 20% Sb³⁺, c) NaCl: 30% Sb³⁺, and d) NaCl: 40% Sb³⁺.

Samples	Unit cell <i>a</i> (Å)	Unit cell volume (Å ³)
10% Sb ³⁺ : NaCl	5.59821	175.448
20% Sb ³⁺ : NaCl	5.61914	177.423
30% Sb ³⁺ : NaCl	5.61839	177.352
40% Sb ³⁺ : NaCl	5.61794	177.309

Table S1. Unit cell parameters of refinement of the Sb³⁺: NaCl with different Sb3+ concentrations.

Samples	Atomic ratio of Sb (%)
20% Sb ³⁺ : NaCl	0.29
30% Sb ³⁺ : NaCl	0.43
40% Sb ³⁺ : NaCl	1.24
30% Sb ³⁺ : KCl	0.54
30% Sb ³⁺ : RbCl	0.74

Table S2. EDS results of Sb^{3+} -doped ACl (A = Na, K, and Rb) single crystals.