Supporting Information

One-pot Transfer Hydrogenation and Reductive Amination of Polyenals

Juntao Yang, Miaomiao Tian, Junbiao Chang * and Bingxian Liu *

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Email: liubingxian@htu.edu.cn

Table of Contents

1. General Information	S2
2. General Procedure: Synthesis of Substrates	S2
3. Experimental Section	S10
4. Mechanistic Studies	S17
5. References	S26
6. Characterization Data	S28
7. NMR Spectrum and HRMS Data	S44

1. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All the reactions were carried out under nitrogen atmosphere using standard Schlenk technique. The ¹H NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 or 565 MHz. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane, and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), m (multiplet), brs (broad singlet), etc. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). The coupling constants *J* were given in Hz. High resolution mass spectra were obtained on an Agilent Q-TOF 6540 spectrometer and model Orbitrap Explories MX. Column chromatography was performed on silica gel (200-300 mesh). Reactions were heated by metal sand bath (WATTCAS, LAB-500).

Unless otherwise noted, all other compounds have been reported in the literature or are commercially available.

2. General Procedure: Synthesis of Substrates

The substrates $(1f-1q)^1$, $(1d, 1e, 1s-1u)^2$ and $(1aa-1af)^3$ were prepared according to the literature.

General Procedure A¹

Unless otherwise mentioned in the following specific substrates, the general procedure is: to a 100 mL dried Schlenk flask with a stir bar was added α,β unsaturated aldehydes **A** (1.0 equivalent, 3 mmol), (triphenylphosphoranylidene) acetaldehyde **B** (1.2 equivalents, 3.6 mmol) and dry toluene (20 mL) under N₂ atmosphere. The reaction mixture was stirred at 90°C for 24 hours. Upon completion, cool down the reaction mixture down to room temperature. After which the reaction mixture was filtered through a plug of silica eluting, and then the filtrate was concentrated under reduced pressure and the resulting crude material was purified by flash column chromatography to afford the product **C**.

General Procedure B²

Unless otherwise mentioned in the following specific substrates, the general

procedure is: to a 250 mL dried round-bottom flask with a stir bar was added (1,3dioxolan-2-yl)methyl-triphenylphosphonium bromide **E** (2.5 equivalents, 7.5 mmol, 3.23 g), lithium methoxide (2.6 equivalents, 7.8 mmol, 296.4 mg) and anhydrous tetrahydrofuran (THF) (60 mL) at room temperature. The suspension was heated to reflux stirred for 30 minutes, changing color from off-white to light orange/pink. The compound **D** (1.0 equivalent, 3.0 mmol) in 20 mL of dry THF solution was added dropwise over 30 - 60 min. The reaction mixture was refluxed for 24 h. The reaction suspension was then cooled to room temperature, at which point 10% aqueous hydrochloric acid (HCl) was added. Stirring was continued for 1 hour in order to hydrolyze the intermediate acetals (mixture of E- and Z-stereoisomers) to the all-trans configuration. The organic layer was extracted with CH_2Cl_2 (30 mL x 3) and the combined fractions were washed with water, sat. aqueous sodium bicarbonate solution and brine, and then dried over Na₂SO₄. Solvent was removed by rotary evaporation and the product was purified by silica gel column chromatography to afford the product **F**.

General Procedure C³

Unless otherwise mentioned in the following specific substrates, the general procedure is: to a 50 mL dried Schlenk flask with a stir bar was gradually added olefine aldehyde **G** (2.0 mmol), acetone **H** (2.0 mL), EtOH (10.0 mL) and 1 mL NaOH aqueous (6 mol/L) at room temperature. The mixture was then allowed to warm to 40 $^{\circ}$ C and stirred for 10 h, and monitored by TLC until full conversion to the product was observed. The mixture was concentrated to remove the redundant acetone and extracted with ethyl acetate. The organic extracts were combined, concentrated and the residue was purified by silica gel column chromatography to afford the product **I**.

(2E,4E)-5-phenylpenta-2,4-dienal (1d). (According to the general procedure B). Eluent: PE/EA = 20:1, yellow oil (435 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 9.63 (dd, J = 7.9, 0.9 Hz, 1H), 7.56 - 7.48 (m,

2H), 7.43 - 7.33 (m, 3H), 7.32 - 7.24 (m, 1H), 7.08 - 6.97 (m, 2H), 6.34 - 6.23 (m, 1H). The analytical data are consistent with those reported in the literature.²

(1e). (2E,4E)-5-(4-methoxyphenyl)penta-2,4-dienal (1e). (According to the general procedure **B**). Eluent: PE/EA = 20:1, light yellow solid (504 mg, 89%, m.p. 73 – 74 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, J = 8.0 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.29 – 7.20 (m, 1H), 6.97 (d, J = 15.5 Hz, 1H), 6.93 – 6.83 (m, 3H), 6.28 – 6.17 (m, 1H), 3.84 (s, 3H). The analytical data are consistent with those reported in the literature.⁴

(2E,4E)-5-(p-tolyl)penta-2,4-dienal (**1f**). (According to the general procedure **A**). Eluent: PE/EA = 10:1, yellow solid (109 mg, 21%, m.p. 97 – 99 °C). ¹H NMR (400 MHz, CDCl₃)

δ 9.64 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.34 – 7.28 (m, 1H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.07 – 6.97 (m, 2H), 6.28 (dd, *J* = 15.2, 8.0 Hz, 1H), 2.40 (s, 3H). The analytical data are consistent with those reported in the literature.⁴

 $F_{3}C$ (2E,4E)-5-(4-(trifluoromethyl)phenyl)penta-2,4-dienal (**1g**). $F_{3}C$ (According to the general procedure **A**). Eluent: PE/EA = 15:1, yellow semi-solid (260 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 9.64 (d, J = 7.9 Hz, 1H), 7.66 – 7.56 (m, 4H), 7.32 – 7.23 (m, 1H), 7.12 – 6.98 (m, 2H), 6.32 (dd, J = 15.2, 7.9 Hz, 1H). The analytical data are consistent with those reported in the literature.⁴

^F (2E,4E)-5-(4-fluorophenyl)penta-2,4-dienal (**1h**). (According to the general procedure **A**). Eluent: PE/EA = 15:1, yellow solid (212 mg, 40%, m.p. 81 – 82 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.63 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.32 – 7.21 (m, 1H), 7.09 (t, *J* = 8.5 Hz, 2H), 7.03 – 6.88 (m, 2H), 6.28 (dd, *J* = 15.2, 8.0 Hz, 1H). The analytical data are consistent with those reported in the literature.⁴

NMR (400 MHz, CDCl₃) δ 9.60 (d, J = 7.9 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.25 – 7.19 (m, 1H), 6.97 – 6.92 (m, 2H), 6.26 (dd, J = 15.2, 7.9 Hz, 1H). The analytical data are consistent with those reported in the literature.⁴

(2E,4E)-5-(3-(trifluoromethyl)phenyl)penta-2,4-dienal(**1j**). (According to the general procedure **A**). Eluent: PE/EA =

15:1, yellow oil (224 mg, 33%). ¹H NMR (400 MHz,

CDCl₃) δ 9.65 (d, *J* = 8.0 Hz, 1H), 7.74 (s, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.28 (ddd, *J* = 15.2, 8.8, 1.4 Hz, 1H), 7.12 – 6.99 (m, 2H), 6.33 (dd, *J* = 15.2, 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 151.1, 140.4, 136.4, 132.8, 131.6 (q, *J* = 32.2 Hz, 1C), 130.6, 129.6, 128.0, 126.1 (q, *J* = 3.7 Hz, 1C), 124.2 (q, *J* = 3.8 Hz, 1C), 123.9 (q, *J* = 270.8 Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.87. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₂H₁₀F₃O⁺ 227.0678, Found: 227.0678.

$$(2E,4E)-5-(2-methoxyphenyl)penta-2,4-dienal$$
(1k).
(According to the general procedure B). Eluent: PE/EA = 15:1,
yellow viscous oil (469 mg, 83%). ¹H NMR (400 MHz, CDCl₃)

 δ 9.58 (d, *J* = 8.0 Hz, 1H), 7.52 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.40 – 7.22 (m, 3H), 7.08 – 7.00 (m, 1H), 6.99 – 6.93 (m, 1H), 6.92 – 6.88 (m, 1H), 6.23 (dd, *J* = 15.1, 8.0 Hz, 1H), 3.88 (s, 3H). The analytical data are consistent with those reported in the literature.⁵

(2E,4E)-5-(2-chlorophenyl)penta-2,4-dienal (11). (According to the general procedure A). Eluent: PE/EA = 10:1, white solid (202 mg, 35%, m.p. 86 – 88 °C). ¹H NMR (400 MHz, CDCl₃) δ

9.55 (d, J = 7.9 Hz, 1H), 7.59 - 7.54 (m, 1H), 7.38 - 7.28 (m, 2H), 7.24 - 7.15 (m,

3H), 6.94 – 6.85 (m, 1H), 6.20 (dd, J = 15.3, 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.65, 151.7, 137.9, 134.5, 133.7, 132.6, 130.6, 130.3, 128.5, 127.25, 127.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₀ClO⁺ 193.0415, Found: 193.0414.

(2E,4E)-5-(2-bromophenyl)penta-2,4-dienal (1m). (According to the general procedure A). Eluent: PE/EA = 10:1, white solid (140 mg, 20%, m.p. 82 – 83.5 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, J = 7.9 Hz, 1H), 7.68 – 7.58 (M, 2H), 7.41 (d, J = 15.5 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.23 – 7.16 (m, 1H), 7.01 – 6.91 (M, 1H), 6.35 – 6.25 (M, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.65, 151.6, 140.5, 135.4, 133.6, 132.6, 130.8, 128.7, 127.9, 127.3, 125.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₀BrO⁺ 236.9910, Found: 236.9908.

(2E,4E)-5-(furan-2-yl)penta-2,4-dienal (1n). (According to the general procedure A). Eluent: PE/EA = 20:1, brown solid (202 mg, 45%, m.p. 86 – 89 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 1.8 Hz, 1H), 7.18 (dd, J = 15.1, 11.0 Hz, 1H), 6.88 (dd, J = 15.3, 11.0 Hz, 1H), 6.76 (d, J = 15.4 Hz, 1H), 6.53 (d, J = 3.4 Hz, 1H), 6.46 (dd, J = 3.4, 1.8 Hz, 1H), 6.24 (dd, J = 15.1, 8.0 Hz, 1H). The analytical data are consistent with those reported in the literature.⁶

(E)-5,5-diphenylpenta-2,4-dienal (**10**). (According to the general procedure **A**). Eluent: PE/EA = 20:1, brown viscous oil (170 mg, 24%). ¹H NMR (400 MHz, CDCl₃) δ 9.55 (d, *J* = 8.0 Hz, 1H),

7.57 - 7.52 (m, 3H), 7.46 - 7.40 (m, 5H), 7.36 - 7.28 (m, 3H), 7.03 (d, J = 11.4 Hz, 1H), 6.45 - 6.36 (m, 1H). The analytical data are consistent with those reported in the literature.⁷

(2E,4Z)-6,6,6-trifluoro-5-phenylhexa-2,4-dienal (**1p**). (According to the general procedure A). Eluent: PE/EA = 100:3, yellow oil (435 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, J = 7.7 Hz, 1H), 7.51 - 7.43 (m, 3H), 7.35 - 7.29 (m, 2H), 7.09 - 6.95 (m, 2H), 6.45 - 7.29 (m, 2H), 7.09 - 6.95 (m, 2H), 76.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 144.6, 139.0 (q, J = 30.3 Hz, 1C),

137.0, 130.8, 130.3 (q, J = 5.9 Hz, 1C), 129.8, 129.75, 128.9, 123.0 (q, J = 272.0 Hz, 1C). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.88. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₂H₁₀F₃O⁺ 227.0678, Found: 227.0678.

$$(2E,4E,6E)-7-\text{phenylhepta-2,4,6-trienal} (1r). (According to the general procedure B). Eluent: PE/EA = 15:1, dark yellow solid (471 mg, 85%, m.p. 108 – 111 °C). 1H NMR (400 MHz, CDCl3) δ
9.59 (d, *J* = 8.0 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.39 – 7.27 (m, 3H), 7.18 (dd, *J* = 15.2, 11.2 Hz, 1H), 6.95 – 6.77 (m, 3H), 6.61 – 6.51 (m, 1H), 6.19 (dd, *J* = 15.2, 7.9 Hz, 1H). The analytical data are consistent with those reported in the literature.²$$

(2E,4E,6E,8E)-9-phenylnona-2,4,6,8-tetraenal (1s). (According to the general procedure **B**). Eluent: PE/EA = 10:1, yellow solid (570) 1s mg, 90%, m.p. 125 – 128 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.57 (d, J = 7.9 Hz, 1H), 7.47 - 7.40 (m, 2H), 7.37 - 7.31 (m, 2H), 7.29 - 7.24 (m, 1H),7.15 (dd, J = 15.1, 11.3 Hz, 1H), 6.89 (dd, J = 15.4, 10.8 Hz, 1H), 6.80 – 6.60 (m, 3H), 6.47 (dt, J = 14.7, 11.5 Hz, 2H), 6.17 (dd, J = 15.1, 7.9 Hz, 1H). The analytical data are consistent with those reported in the literature.²

$$(2E,4E,6E,8E,10E)-11-phenylundeca-2,4,6,8,10-pentaenal (1t).$$
(According to the general procedure **B**). Eluent: PE/EA = 10:1,
yellow solid (355 mg, 50%, m.p. 157 – 160 °C). ¹H NMR (400
MHz, CDCl₃) δ 9.57 (d, J = 8.0 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.36 – 7.29 (m, 2H),
7.27 – 7.22 (m, 1H), 7.15 (dd, J = 15.1, 11.3 Hz, 1H), 6.88 (dd, J = 15.5, 10.8 Hz, 1H),
6.74 (dd, J = 14.7, 11.1 Hz, 1H), 6.65 (d, J = 15.5 Hz, 1H), 6.62 – 6.35 (m, 5H), 6.16

(dd, J = 15.1, 8.0 Hz, 1H). The analytical data are consistent with those reported in the literature.²

7.28 (m, 4H), 6.99 - 6.84 (m, 2H), 6.26 (d, J = 15.5 Hz, 1H), 2.32 (s, 3H). The analytical data are consistent with those reported in the literature.³

(3E,5E)-6-(4-(trifluoromethyl)phenyl)hexa-3,5-dien-2-one (1ab). (According to the general procedure C). Eluent: PE/EA = 20:1, light yellow solid (185 mg, 39%, m.p. 55 - 57 °C). ¹H

NMR (400 MHz, CDCl₃) δ 7.66 – 7.54 (m, 4H), 7.34 – 7.25 (m, 1H), 7.01 – 6.91 (m, 2H), 6.32 (d, J = 15.5 Hz, 1H), 2.34 (s, 3H). The analytical data are consistent with those reported in the literature.⁸

(3E,5E)-6-(4-fluorophenyl)hexa-3,5-dien-2-one (**1ac**). (According to the general procedure C). Eluent: PE/EA = 20:1, yellow oil (214 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.49 -7.42 (m, 2H), 7.32 - 7.22 (m, 1H), 7.10 - 7.02 (m, 2H), 6.91 (d, J = 15.6 Hz, 1H), 6.85 - 6.74 (m, 1H), 6.25 (d, J = 15.5 Hz, 1H), 2.32 (s, 3H). The analytical data are

consistent with those reported in the literature.⁹

(3E,5E)-6-(4-chlorophenyl)hexa-3,5-dien-2-one (1ad). (According to the general procedure C). Eluent: PE/EA =10:1, yellow solid (120 mg, 29%, m.p. 80 – 81 °C). ¹H NMR

(400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.36 – 7.31 (m, 2H), 7.31 – 7.23 (m, 1H), 6.95 - 6.79 (m, 2H), 6.27 (d, J = 15.5 Hz, 1H), 2.33 (s, 3H). The analytical data are consistent with those reported in the literature.⁸

(3E,5E)-6-(4-bromophenyl)hexa-3,5-dien-2-one (1ae). (According to the general procedure C). Eluent: PE/EA = 10:1, yellow solid (161 mg, 32%, m.p. 104 – 105 °C). ¹H

NMR (400 MHz, CDCl₃) δ 7.53 – 7.47 (m, 2H), 7.37 – 7.32 (m, 2H), 7.31 – 7.23 (m, 1H), 6.93 – 6.81 (m, 2H), 6.28 (d, *J* = 15.5 Hz, 1H), 2.33 (s, 3H). The analytical data are consistent with those reported in the literature. The analytical data are consistent with those reported in the literature.⁸

(3E,5E)-6-(4-methoxyphenyl)hexa-3,5-dien-2-one (1af). (According to the general procedure C). Yellow solid (325 mg, 80%, m.p. 101 – 103 °C). ¹H NMR (400 MHz, CDCl₃)

 δ 7.46 – 7.40 (m, 2H), 7.33 – 7.24 (m, 1H), 6.92 – 6.87 (m, 3H), 6.81 – 6.73 (m, 1H), 6.22 (d, *J* = 15.5 Hz, 1H), 3.84 (s, 3H), 2.31 (s, 3H). The analytical data are consistent with those reported in the literature.⁸

3. Experimental Section

(1) Optimization of the reaction conditions.

Table S1: Screening of various additives for optimizing the reaction conditions ofsynthesis of 3aa.^a

		Dh	RuCl ₂ (cod) additives		Ph
\checkmark	\sim \sim $0 + H_2 N_2$	-Pn	Solvent, 120 °C, 1	11 h	H
1a	2	2a			3aa
Entry	Cat. (10 mol%)	Add	litive	Solvent	Yield ^b of
					3aa (%)
1	RuCl ₂ (cod)	Cs ₂ C	CO ₃ (1.0 equiv)	iPrOH	32
2	RuCl ₂ (cod)	Cs_2	CO ₃ (0.5 equiv)	iPrOH	48
3	RuCl ₂ (cod)	Cs_2	CO ₃ (0.2 equiv)	iPrOH	59
4	RuCl ₂ (cod)	Cs_2	CO ₃ (0.1 equiv)	iPrOH	23
5	RuCl ₂ (cod)	Na ₂	CO ₃ (1.0 equiv)	iPrOH	57
6	RuCl ₂ (cod)	Na ₂	CO ₃ (0.5 equiv)	iPrOH	38
7	RuCl ₂ (cod)	Na ₂	CO ₃ (0.2 equiv)	iPrOH	37
8	RuCl ₂ (cod)	K ₂ C	O ₃ (1.5 equiv)	iPrOH	40

9	RuCl ₂ (cod)	K ₂ CO ₃ (1.0 equiv)	iPrOH	21
10	RuCl ₂ (cod)	Ag ₂ CO ₃ (1.0 equiv)	iPrOH	11
11	RuCl ₂ (cod)	CH ₃ ONa (1.0 equiv)	iPrOH	39
12	RuCl ₂ (cod)	HCOONa (1.0 equiv)	iPrOH	59
13	RuCl ₂ (cod)	KOH (1.0 equiv)	iPrOH	52
14	RuCl ₂ (cod)	KOH (0.5 equiv)	iPrOH	61

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), RuCl₂(cod) (10 mol%), solvent (1.0 mL), 120 °C,11 h. ^bisolated yields.

Table S2: Screening of ligands for optimizing	g the reaction conditions of synthesis
of 3aa. ^a	

			RuCl ₂ (cod) Ligand, additive	$ \land \land / $	∕Ph
		$O + H_2N - Ph$	Solvent, 120 °C, 11 h	~ ~ ~	N H
	1a	2a		3aa	
Entry	Cat. (x mol%)	Ligand	Additive	Solvent	Yield ^g of
					3aa (%)
1 ^b	RuCl ₂ (cod)	$L_1(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	trace
2 ^b	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	Cs ₂ CO ₃ (0.2 equiv)	iPrOH	71
3 ^b	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	95
4 ^b	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	Na ₂ CO ₃ (1.0 equiv)	iPrOH	65
5 ^b	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	KOH (0.5 equiv)	iPrOH	38
6 ^c	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	92
7 ^c	RuCl ₂ (cod)	$L_2(10 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	80
8 ^c	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (0.5 equiv)	iPrOH	55
9°	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (1.5 equiv)	iPrOH	67
10^{ce}	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	85
11 ^{cf}	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	50
12 ^c	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	H ₂ O	n.d.
13 ^d	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	61
14		$L_2(20 \text{ mol}\%)$	HCOONa (1.0 equiv)	iPrOH	n.d.
15 ^b	RuCl ₂ (cod)	$L_2(20 \text{ mol}\%)$		iPrOH	trace
16 ^b	RuCl ₂ (cod)	L ₃ (20 mol%)	Cs ₂ CO ₃ (0.2 equiv)	iPrOH	n.r.
17 ^b	RuCl ₂ (cod)	$L_4(20 \text{ mol}\%)$	Cs ₂ CO ₃ (0.2 equiv)	iPrOH	n.r.
18 ^b	RuCl ₂ (cod)	L ₅ (20 mol%)	Cs ₂ CO ₃ (0.2 equiv)	iPrOH	n.r.
19 ^b	RuCl ₂ (cod)	$L_6(20 \text{ mol}\%)$	Cs ₂ CO ₃ (0.2 equiv)	iPrOH	trace
20 ^b	RuCl ₂ (cod)		Na ₂ CO ₃ (1.0 equiv)	C ₂ H ₅ OH	46
21 ^b	RuCl ₂ (cod)		Na ₂ CO ₃ (1.0 equiv)	DCM/	trace
				<i>i</i> PrOH (1:1)	

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), solvent (1.0 mL), 120 °C,11 h. ^bRuCl₂(cod) (10 mol%). ^cRuCl₂(cod) (5 mol%). ^dRuCl₂(cod) (2 mol%). ^e**1a** (0.1 mmol), **2a** (0.12 mmol). ^f**1a** (0.15 mmol), **2a** (0.1 mmol). ^gisolated yields. n.d. = not detected, n.r. = no reaction.

Table S3:	Screening of other	conditions for	or optimizing (the reaction	conditions of
synthesis	of 3aa. ^a				

_	\checkmark	+ H ₂ N-Ph	RuCl ₂ (cod) PCy ₃ , HCOC <i>i</i> PrOH, <i>T</i> (°C), t (h)	N Pr H
	1a	2a			3aa
	Entry	Ligand (x mol%)	<i>T</i> (°C)	<i>t</i> (h)	Yield ^b of 3aa
					(%)
	1	PCy ₃ (20 mol%)	90	11	39
	2	PCy ₃ (20 mol%)	100	11	66
	3	PCy ₃ (20 mol%)	110	11	81
	4	PCy ₃ (20 mol%)	120	9	80
	5	PCy ₃ (20 mol%)	120	11	95
	6	PCy ₃ (20 mol%)	120	13	91
	7	PCy3 (20 mol%)	120	15	85
	8	PCy ₃ (10 mol%)	120	11	65
	9	PCy ₃ (30 mol%)	120	11	93
	10	PCy ₃ (50 mol%)	120	11	73

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), $RuCl_2(cod)$ (10 mol%), HCOONa (0.1 mmol), solvent (1.0 mL). ^bisolated yields.

(2) General procedures for the synthesis of products 3.

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), HCOONa (1.0 equivalent, 0.1 mmol, 6.8 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **1** (1.0 equivalent, 0.1 mmol), **2** (1.5 equivalents, 0.15 mmol) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 11 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3** (**3aa** – **3va**).

(3) Synthesis of product 3aaa.

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), HCOOH (4.0 equivalent, 0.4 mmol, 18.4 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **1aa** (1.0 equivalent, 0.1 mmol), **2a** (1.5 equivalents, 0.15 mmol) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 11 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3aaa**.

(4) General procedures for the synthesis of products 4.

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), HCOONa (2.0 equivalents, 0.2 mmol, 13.6 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **1** (1.0 equivalent, 0.1 mmol) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced

pressure, the residue was purified by flash-column chromatography to afford 4 (4a - 4h).

(5) Synthesis of product 3qa.

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), and Cs₂CO₃ (20 mol%, 0.02 mmol, 6.5 mg) were charged into a reaction tube, and then to which were added **1q** (1.0 equivalent, 0.1 mmol, 13.2 mg), **2a** (1.5 equivalents, 0.15 mmol, 14.0 mg) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 100 °C heated by metal sand bath for 11 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3qa** (20.0 mg, 95% yield).

(6) Scale-up experiment.

A mixture of RuCl₂(cod) (5 mol%, 0.25 mmol, 70 mg), HCOONa (1.0 equivalent, 5.0 mmol, 340 mg), PCy₃ (20 mol%, 1.0 mmol, 280.4 mg) were charged into an ovendried flask with a stir bar, and then to which were added **1a** (1.0 equivalent, 5.0 mmol, 550.8 mg), **2a** (1.5 equivalents, 7.5 mmol, 698.5 mg) and dry *i*PrOH (50 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 11 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography using PE/ EA =50:1 to afford **3aa** (832 mg, 87% yield). [RuCl₂(cod) (2 mol%), (337 mg, 35% yield)].

(7) Synthesis of product 5a.¹⁰

To an ice-cooled solution of **3aa** (1.0 equivalent, 0.1 mmol, 19.1 mg), DMAP (20 mol%, 0.02 mmol, 2.4 mg) and Et₃N (2.0 equivalents, 0.2 mmol, 20.2 mg) in THF (1.0 mL) was added 3-methylbenzoyl chloride (1.1 equivalents, 0.11 mmol, 17.0 mg), and the mixture was stirred at 90 °C heated by metal sand bath for 3 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **5a**.

(8) Synthesis of product 5b.¹¹

To a 25 mL dried Schlenk flask with a stir bar was added **3aa** (1.0 equivalent, 0.1 mmol, 19.1 mg), 4-methylbenzenesulfonyl chloride (1.0 equivalent, 0.1 mmol, 19.1 mg) and dry CH₂Cl₂ (1.0 mL) at 0°C under N₂ atmosphere, followed by a slight excess of TEA (1.4 equivalents, 0.14 mmol, 14.2 mg) and the reaction was stirred 5h at room temperature. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **5b**.

(9) Synthesis of product 5c.¹²

A mixture of **3aa** (1.0 equivalent, 0.2 mmol, 38.2 mg), K_2CO_3 (3.0 equivalents, 0.6 mmol, 82.9 mg), n-Octyl Bromide (2.4 equivalents, 0.48 mmol, 92.7 mg), and CH₃CN (2.0 mL) was stirred under N₂ at 120 °C for about 24h. After the solvent was

removed under reduced pressure, the crude product was purified by flash-column chromatography to afford **5c**.

(10) Synthesis of product 3xr.

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), Cs₂CO₃ (20 mol%, 0.02 mmol, 6.5 mg) were charged into a reaction tube, and then to which were added **1x** (1.0 equivalent, 0.1 mmol, 20 mg), **2r** (1.5 equivalents, 0.15 mmol, 25.7 mg) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 100 °C heated by metal sand bath for 11 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3xr**.

Using the general procedure as above described. Isolated yield: 56%, ee: 98%. The ee value was determined by HPLC (chiralpak IG, n-hexane/*i*PrOH 98:2, flow rate = 0.5 mL/min).

-	Cmitti		Cmrul	LIIMOwsl	LIINOJ	70
1	10.641	MM	0.6104	962. 33264	26.27483	47.0589
2	11.807	MM	0.7705	1082.62280	23.41745	52.9411

#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.697	MM	0.4430	20. 28605	7.63252e-1	0.9772
2	11.579	MM	0.7640	2055. 59473	44.84539	99.0228

(11) Synthesis of product int-1.¹³

To a 50 mL dried Schlenk flask with a stir bar was added anhydrous MgSO₄ (1.0 equivalent, 2.0 mmol, 240.7 mg), **1d** (1.0 equivalent, 2.0 mmol, 316.4 mg), **2a** (1.0 equivalent, 2.0 mmol, 186.3 mg) and anhydrous Et_2O (5.0 mL) under N₂ atmosphere, and the reaction was stirred 10 h at room temperature. Dissolved with CH₂Cl₂ (10.0 mL) and filtered out MgSO₄, then removed the solvent under reduced pressure, the residue was purified by neutral alumina column chromatography to afford **int-1** (hexane/EtOAc: 20/1).

4. Mechanistic Studies

A Control experiments

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), HCOONa (1.0 equivalent, 0.1 mmol, 6.8 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **1y** (1.0 equivalent, 0.1 mmol, 11.0 mg), **2a** (1.5 equivalents, 0.15 mmol, 14.0 mg) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The

reaction mixture was stirred at 120 °C heated by metal sand bath for 11 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3aa**.

(ii)

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), HCOONa (1.0 equivalent, 0.1 mmol, 6.8 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added 1z (1.0 equivalent, 0.1 mmol, 9.8 mg), 2a (1.5 equivalents, 0.15 mmol, 14.0 mg) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 11 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3za**.

B Deuterium labeling experiments

(iii)

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), DCOONa (1.0 equivalent, 0.1 mmol, 7.0 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **1w** (1.0 equivalent, 0.1 mmol, 20.9 mg), and dry CH₃CH₂OH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3qa-d** (20.1 mg, 96% yield). [¹H NMR analysis indicated 35%, 17% deuteration at the C(2), C(4) position, respectively.]

¹H NMR spectrum of the product deuterated **3qa-***d*

(iv-1)

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg) and DCOONa (1.0 equivalent, 0.1 mmol, 7.0 mg) were charged into a reaction tube, and then to which were added **1d** (1.0 equivalent, 0.1 mmol, 15.8 mg), **2a** (1.5 equivalents, 0.15 mmol, 14.0 mg) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3da**-*d*_x. [¹H NMR analysis indicated 24%, 13%, 15% deuteration at the C(2), C(4), C(6) position, respectively.]

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg) and DCOONa (2.0 equivalents, 0.2 mmol, 14.0 mg) were charged into a reaction tube, and then to which were added **1d** (1.0 equivalent, 0.1 mmol, 15.8 mg), **2a** (1.5 equivalents, 0.15 mmol, 14.0 mg) and dry *i*PrOH (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3da**-*d*'_{**x**}. [¹H NMR analysis indicated 41%, 25%, 22% deuteration at the C(2), C(4), C(6) position, respectively.]

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), HCOONa (2.0 equivalents, 0.2 mmol, 13.6 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **1d** (1.0 equivalent, 0.1 mmol, 15.8 mg), **2a** (1.5 equivalents, 0.15 mmol, 14.0 mg) and dry *i***PrOD-d**₈ (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3da-d**_y. [¹H NMR analysis indicated 61%, 95%, 61%, 95%, 76% deuteration at the C(2), C(3), C(4), C(5), C(6) position, respectively.]

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), DCOONa (2.0 equivalents, 0.2 mmol, 14.0 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **1d** (1.0 equivalent, 0.1 mmol, 15.8 mg), **2a** (1.5 equivalents, 0.15 mmol, 14.0 mg) and dry *i***PrOD-d**₈ (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the residue was purified by flash-column chromatography to afford **3da-d**_z. [¹H NMR analysis indicated 100%, 100%, 92%, 100%, 97% deuteration at the C(2), C(3), C(4), C(5), C(6) position, respectively.]

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), DCOONa (2.0 equivalents, 0.2 mmol, 14.0 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **int-1** (1.0 equivalent, 0.1 mmol, 23.3 mg) and *i***PrOD-d**₈ (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the crude product **3da-d**_n was obtained. [DMSO-d₆ analysis indicated 18% deuteration at the N position.]

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), DCOONa (2.0 equivalents, 0.2 mmol, 14.0 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg) were charged into a reaction tube, and then to which were added **int-1** (1.0 equivalent, 0.1 mmol, 23.3 mg) and *i***PrOD-d**₁ (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the crude product **3da-d**_m was obtained. [DMSO-d₆ analysis indicated 13% deuteration at the N position.]

A mixture of RuCl₂(cod) (5 mol%, 0.005 mmol, 1.4 mg), DCOONa (2.0 equivalents, 0.2 mmol, 14.0 mg), PCy₃ (20 mol%, 0.02 mmol, 5.6 mg), 4Å MS (100 mg) were charged into a reaction tube, and then to which were added **int-1** (1.0 equivalent, 0.1 mmol, 23.3 mg) and *i***PrOD-***d*₈ (1.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C heated by metal sand bath for 15 h. After the solvent was removed under reduced pressure, the crude product **3da-d**_p was obtained. [DMSO-d₆ analysis indicated 31% deuteration at the N position.]

5. References

(1) P. Kumar, N. Kaur, R. Kumar and P. Banerjee, α,β -Unsaturated Carbonyls for One-Pot Transition-Metal-Free Access to 3,6-Dihydro-2H-pyrans, *J. Org. Chem.*, 2022, **87**, 7167–7178.

(2) J. S. Meisner, D. F. Sedbrook, M. Krikorian, J. Chen, A. Sattler, M. E. Carnes, C. B. Murray, M. Steigerwald and C. Nuckolls, Functionalizing molecular wires: a tunable class of α,ω -diphenyl- μ,ν -dicyano-oligoenes, *Chem. Sci.*, 2012, **3**, 1007–1014. (3) I. M. Ferreira, E. B. Meira, I. G. Rosset and A. L. M. Porto, Chemoselective biohydrogenation of α,β - and $\alpha,\beta,\gamma,\delta$ -unsaturated ketones by the marine-derived fungus Penicillium citrinum CBMAI 1186 in a biphasic system, *J. Mol. Catal. B: Enzym.*, 2015, **115**, 59–65.

(4) J.-G. Zhao, X.-L. Zheng, S.-K. Tao, Y.-X. Zhu, J.-W. Yi, S.-B. Tang, R.-X. Li, H. Chen, H.-Y. Fu and M.-L. Yuan, Selective Rhodium-Catalyzed Hydroformylation of Terminal Arylalkynes and Conjugated Enynes to (Poly)enals Enabled by a π -acceptor Biphosphoramidite Ligand, *Org. Lett.*, 2021, **23**, 6067–6072.

(5) R. Singh and S. K. Ghosh, A dimethylsulfonium methylide mediated highly regioselective olefination of conjugated polyolefin 1,1-dioates to conjugated polyene-2-yl-malonates and their applications in Diels–Alder reactions, *Tetrahedron*, 2010, **66**, 2284-2292.

(6) I. Mandal, A. Mandal, M. A. Rahman and A. F. M. Kilbinger, Chain transfer agents for the catalytic ring opening metathesis polymerization of norbornenes, *Chem. Sci.*, 2022, **13**, 12469–12478.

(7) T.-J. Hu, M.-Y. Li, Q. Zhao, C.-G. Feng and G.-Q. Lin, Highly Stereoselective Synthesis of 1,3-Dienes through an Aryl to Vinyl 1,4-Palladium Migration/Heck Sequence, *Angew. Chem. Int. Ed.*, 2018, **57**, 5871–5875.

(8) X.-T. Wu, F. Xie, Z. Ling, L. Tang and W.-B. Zhang, Regio- and Enantioselective Copper-Catalyzed 1,4-Conjugate Addition of Trimethylaluminium to Linear α , β , γ , δ -Unsaturated Alkyl Ketones, *Adv. Synth. Catal.*, 2016, **358**, 2510–2518.

(9) C.-Y. Li, W.-K. Lu, B. Lu, W.-F. Li, X.-M. Xie and Z.-G. Zhang, Ru-Catalyzed Chemo- and Enantioselective Hydrogenation of 2,4-Pentadien-1-ones: Synthesis of Chiral 2,4-Pentadien-1-ols, *J. Org. Chem.*, 2019, **84**, 16086–16094.

(10) R. Katoono, H. Kawai, M. Ohkita, K. Fujiwarab and T. Suzuki, A C₃-symmetric chiroptical molecular propeller based on hexakis(phenylethynyl)benzene with a threefold terephthalamide: stereospecific propeller generation through the cooperative transmission of point chiralities on the host and guest upon complexation, *Chem. Commun.*, 2013, **49**, 10352–10354.

(11) C. Li, Y.-L. Huang, S. Cao, Y.-H. Luo, Y. Zhang and G. Yang, A robust and facile method for desulfonation to amines, *Org. Chem. Front.*, 2021, **8**, 6182–6186.

(12) Z.-P. Fan, X.-Y. Li, B. Sun, C.-L. Sun, Z.-F. Shi, X.-F. Shao and H.-L. Zhang, Constructing two-dimensional crossed molecular packing through branching chain engineering of amino-indenofluorene derivatives, *J. Mater. Chem. C.*, 2022, **10**, 8666–8673.

(13) J. C. K. Chu, D. M. Dalton and T. Rovis, Zn-Catalyzed Enantio- and Diastereoselective Formal [4 + 2] Cycloaddition Involving Two Electron-Deficient Partners: Asymmetric Synthesis of Piperidines from 1-Azadienes and Nitro-Alkenes, *J. Am. Chem. Soc.*, 2015, **137**, 4445–4452.

(14) P. Valenta, N. A. Drucker, J. W. Bode and P. J. Walsh, Simple One-pot Conversion of Aldehydes and Ketones to Enals, *Org. Lett.*, 2009, **11**, 2117-2119.

6. Characterization Data

n-butyl $\begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & &$

n-pentyl 3ca Ph N-decylaniline (**3ca**). Eluent: PE/EA = 100:3, brownishyellow oil (19.1 mg, 82%). ¹H NMR (600 MHz, CDCl₃) δ 7.23 - 7.16 (m, 2H), 6.71 (dd, J = 7.8, 6.6 Hz, 1H), 6.65 - 6.59 (m, 2H), 3.60 (s, 1H), 3.12 (t, J = 7.2 Hz, 2H), 1.67 - 1.60 (m, 2H), 1.45 - 1.39 (m, 2H), 1.36 - 1.27 (m, 12H), 0.91 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.7, 129.3, 117.2, 112.8, 44.1, 32.0, 29.75, 29.7, 29.6, 29.5, 27.3, 22.8, 14.25. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₈N⁺ 234.2216, Found: 234.2215.

Ph H N-(5-phenylpentyl)aniline (**3da**). Eluent: PE/EA = 50:1, light yellow oil (22.2 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2H), 7.24 – 7.15 (m, 5H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.61 (d, *J* = 7.9 Hz, 2H), 3.64 (s, 1H), 3.12 (t, *J* = 7.1 Hz, 2H), 2.65 (t, *J* = 7.7 Hz, 2H), 1.74 – 1.59 (m, 4H), 1.52 – 1.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 142.6, 129.4, 128.5, 128.4, 125.8, 117.3, 112.85, 44.0, 36.0, 31.4, 29.55, 26.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₂N⁺ 240.1747, Found: 240.1746.

N-(5-(4-methoxyphenyl)pentyl)aniline (**3ea**). Eluent: PE/EA = 50:1, light yellow oil (22.4 mg, 83%). ¹H NMR (600 MHz, CDCl₃) δ 7.20 – 7.17 (m, 2H), 7.13 – 7.08 (m,

2H), 6.86 - 6.83 (m, 2H), 6.73 - 6.68 (m, 1H), 6.62 - 6.58 (m, 2H), 3.80 (s, 3H), 3.65 (s, 1H), 3.11 (t, J = 7.1 Hz, 2H), 2.62 - 2.54 (m, 2H), 1.71 - 1.59 (m, 4H), 1.49 - 1.39 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 157.8, 148.5, 134.7, 129.4, 129.36, 117.3, 113.85, 113.8, 112.9, 55.4, 44.1, 35.05, 31.6, 29.5, 26.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₄NO⁺ 270.1852, Found: 270.1851.

(m, 1H), 6.63 - 6.58 (m, 2H), 3.59 (s, 1H), 3.12 (t, J = 7.1 Hz, 2H), 2.61 (t, J = 7.7 Hz, 2H), 2.34 (s, 3H), 1.72 - 1.59 (m, 4H), 1.52 - 1.40 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 139.5, 135.25, 129.35, 129.1, 128.4, 117.2, 112.8, 44.0, 35.5, 31.5, 29.6, 26.9, 21.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₄N⁺ 254.1903, Found: 254.1902.

7.29 (d, J = 8.0 Hz, 2H), 7.23 – 7.15 (m, 2H), 6.75 – 6.68 (m, 1H), 6.64 – 6.58 (m, 2H), 3.60 (s, 1H), 3.13 (t, J = 7.1 Hz, 2H), 2.70 (t, J = 7.7 Hz, 2H), 1.76 – 1.62 (m, 4H), 1.52 – 1.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 146.7, 129.4, 128.8, 128.2 (q, J = 32.1 Hz, 1C), 125.3 (q, J = 3.8 Hz, 1C), 124.5 (q, J = 270.0 Hz, 1C), 117.3, 112.8, 43.9, 35.8, 31.1, 29.5, 26.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.19. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₁F₃N⁺ 308.1621, Found: 308.1621.

N-(5-(4-fluorophenyl)pentyl)aniline (**3ha**). Eluent: PE/EA = 50:1, yellow oil (21.9 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.07 (m, 4H), 7.04 – 6.90

(m, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.9 Hz, 2H), 3.61 (s, 1H), 3.12 (t, J = 7.1 Hz, 2H), 2.61 (t, J = 7.7 Hz, 2H), 1.66 (p, J = 7.6 Hz, 4H), 1.50 – 1.38 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 241.5 Hz, 1C), 160.1, 148.5, 138.16 (d, J = 3.2 Hz, 1C), 129.8 (d, J = 7.7 Hz, 1C), 129.4, 117.3, 115.1 (d, J = 20.7 Hz, 1C), 112.85, 44.0, 35.15, 31.5, 29.5, 26.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.96. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₁FN⁺ 258.1653, Found: 258.1651.

^{Ph} N-(5-(4-chlorophenyl)pentyl)aniline (**3ia**). Eluent: PE/EA = 50:1, light yellow oil (24.3 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.21

-7.15 (m, 2H), 7.13 - 7.08 (m, 2H), 6.74 - 6.67 (m, 1H), 6.63 - 6.57 (m, 2H), 3.58 (s, 1H), 3.11 (t, J = 7.1 Hz, 2H), 2.63 - 2.58 (m, 2H), 1.71 - 1.59 (m, 4H), 1.49 - 1.38 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 141.0, 131.5, 129.9, 129.4, 128.5, 117.3, 112.8, 44.0, 35.3, 31.3, 29.5, 26.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₁ClN⁺ 274.1357, Found: 274.1357.

N-(5-(3-(trifluoromethyl)phenyl)pentyl)aniline (**3ja**). Eluent: PE/EA = 20:1, light yellow oil (20.0 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.33 (m,

4H), 7.22 – 7.15 (m, 2H), 6.74 – 6.67 (m, 1H), 6.64 – 6.57 (m, 2H), 3.61 (s, 1H), 3.12 (t, J = 7.1 Hz, 2H), 2.75 – 2.64 (m, 2H), 1.75 – 1.61 (m, 4H), 1.53 – 1.40 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 143.4, 131.9, 130.7 (q, J = 31.8 Hz, 1C), 129.4, 128.8, 125.2 (q, J = 3.7 Hz, 1C), 124.4 (q, J = 270.4 Hz, 1C), 122.8 (q, J = 4.0 Hz, 1C), 117.3, 112.8, 43.9, 35.8, 31.2, 29.5, 26.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.48. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₁F₃N⁺ 308.1621, Found: 308.1618.

N-(5-(2-methoxyphenyl)pentyl)aniline (**3ka**). Eluent: PE/EA = 50:1, light yellow oil (18.1 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.10 (m, 4H), 6.95 – 6.83 (m,

2H), 6.70 (tt, J = 7.3, 1.1 Hz, 1H), 6.65 – 6.57 (m, 2H), 3.84 (s, 3H), 3.60 (s, 1H), 3.13 (t, J = 7.1 Hz, 2H), 2.68 – 2.62 (m, 2H), 1.73 – 1.60 (m, 4H), 1.52 – 1.43 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.55, 148.6, 131.0, 129.9, 129.3, 127.0, 120.5, 117.2, 112.8, 110.4, 55.4, 44.05, 30.2, 29.7, 29.6, 27.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₄NO⁺ 270.1852, Found: 270.1852.

PhN-(5-(2-bromophenyl)pentyl)aniline(3ma).Eluent:BrPE/EA = 50:1, brown oil (19.8 mg, 62%).¹H NMR (400MHz, CDCl₃) δ 7.53 (dd, J = 7.9, 1.1 Hz, 1H), 7.24 –

7.14 (m, 4H), 7.09 – 7.02 (m, 1H), 6.73 – 6.66 (m, 1H), 6.63 – 6.58 (m, 2H), 3.65 (s, 1H), 3.13 (t, J = 7.1 Hz, 2H), 2.79 – 2.71 (m, 2H), 1.72 – 1.62 (m, 4H), 1.53 – 1.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 141.8, 132.9, 130.45, 129.4, 127.6, 127.5, 124.5, 117.3, 112.8, 44.0, 36.2, 29.85, 29.5, 27.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₁BrN⁺ 318.0852, Found: 318.0852.

 $N-(5-(furan-2-yl)pentyl)aniline (3na). Eluent: PE/EA = 50:1, light yellow oil (16.1 mg, 70%).¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.33 (dd, J = 1.9, 0.9 Hz, 1H), 7.23 – 7.15 (m, 2H), 6.71 (tt, J = 7.4, 1.1 Hz,

1H), 6.65 - 6.59 (m, 2H), 6.31 (dd, J = 3.2, 1.9 Hz, 1H), 6.03 - 5.97 (m, 1H), 3.58 (s, 1H), 3.13 (t, J = 7.1 Hz, 2H), 2.67 (t, J = 7.8 Hz, 2H), 1.78 - 1.61 (m, 4H), 1.53 - 1.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 148.6, 140.9, 129.3, 117.25, 112.8, 110.2, 104.9, 44.0, 29.4, 28.0, 27.98, 26.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₂₀NO⁺ 230.1539, Found: 230.1539.

N-(5,5-diphenylpentyl)aniline (**30a**). Eluent: PE/EA = 50:1, light yellow oil (26.5 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 4H), 7.26 – 7.22 (m, 4H), 7.21 –

7.13 (m, 4H), 6.72 - 6.65 (m, 1H), 6.59 - 6.54 (m, 2H), 3.91 (t, J = 7.8 Hz, 1H), 3.58 (s, 1H), 3.12 - 3.02 (m, 2H), 2.15 - 2.03 (m, 2H), 1.71 - 1.60 (m, 2H), 1.44 - 1.33 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 145.1, 129.35, 128.7, 128.6, 128.0, 127.9, 126.3, 117.3, 112.9, 51.4, 43.9, 35.6, 29.6, 25.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₆N⁺ 316.2060, Found: 316.2059.

 $\begin{array}{c} {}^{\mathsf{CF}_3} \\ {}^{\mathsf{Ph}} \\ {}^{\mathsf{Ph}$

Ph N-(3-phenylpropyl)aniline (**3qa**). Eluent: PE/EA = 20:1, yellow **3qa** oil (20.0 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 7.6 Hz, 2H), 7.25 - 7.15 (m, 5H), 6.71 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.9 Hz, 2H), 3.61 (s, 1H), 3.17 (t, J = 7.0 Hz, 2H), 2.76 (t, J = 7.6 Hz, 2H), 2.03 - 1.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 141.8, 129.4, 128.6, 128.5, 126.1, 117.3, 112.9, 43.55, 33.5, 31.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{18}N^+$ 212.1434, Found: 212.1431.

Ph $(-)_{3}$ Ph N-(7-phenylheptyl)aniline (**3ra**). Eluent: PE/EA = 50:2, **3ra** brownish-yellow oil (18.0 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.23 – 7.16 (m, 5H), 6.71 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.64 – 6.59 (m, 2H), 3.57 (s, 1H), 3.11 (t, *J* = 7.1 Hz, 2H), 2.63 (t, *J* = 7.7 Hz, 2H), 1.69 – 1.60 (m, 4H), 1.46 – 1.35 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 142.9, 129.3, 128.5, 128.4, 125.7, 117.2, 112.8, 44.1, 36.1, 31.6, 29.7, 29.4, 29.3, 27.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₂₆N⁺ 268.2060, Found: 268.2059.

Ph $(4 + 1)^{Ph}_{4}$ N-(9-phenylnonyl)aniline (**3sa**). Eluent: PE/EA = 100:3, light **3sa** yellow oil (18.9 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.26 (m, 2H), 7.22 - 7.14 (m, 5H), 6.72 - 6.66 (m, 1H), 6.64 - 6.58 (m, 2H), 3.59 (s, 1H), 3.11 (t, *J* = 7.1 Hz, 2H), 2.62 (t, *J* = 7.7 Hz, 2H), 1.67 - 1.56 (m, 4H), 1.45 -1.27 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 143.0, 129.35, 128.5, 128.4, 125.7, 117.2, 112.8, 44.1, 36.1, 31.6, 29.7, 29.65, 29.6, 29.5, 29.4, 27.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₃₀N⁺ 296.2373, Found: 296.2372.

Ph $(-)_{5}$ Ph N-(11-phenylundecyl)aniline (**3ta**). Eluent: PE/EA = 50:1, light **3ta** vellow oil (4.5 mg, 14%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.20 – 7.13 (m, 5H), 6.71 – 6.65 (m, 1H), 6.63 – 6.57 (m, 2H), 3.70 (s, 1H), 3.10 (t, *J* = 7.1 Hz, 2H), 2.63 – 2.56 (m, 2H), 1.65 – 1.58 (m, 5H), 1.43 – 1.26 (m, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 148.65, 143.1, 129.4, 128.5, 128.4, 125.7, 117.25, 112.9, 44.2, 36.1, 31.7, 29.7, 29.7, 29.65, 29.6, 29.5, 27.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₃₄N⁺ 324.2686, Found: 324.2682.

N-heptyl-4-methylaniline (**3ab**). Eluent: PE/EA = 100:1, brownish-yellow oil (18.5 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, *J* = 7.9 Hz, 2H), 6.61 – 6.50 (m, 2H), 3.46 (s, 1H), 3.09 (t, *J* = 7.2 Hz, 2H), 2.25 (s, 3H), 1.67 – 1.56 (m, 2H), 1.45 – 1.25 (m, 8H), 0.95 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 129.8, 126.4, 113.0, 44.5, 32.0, 29.8, 29.3, 27.3, 22.8, 20.5, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₂₄N⁺ 206.1903, Found: 206.1901.

 $\begin{array}{c} \text{Me} \underbrace{\begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$

4-fluoro-N-heptylaniline (**3ad**). Eluent: PE/EA = 100:1, yellow oil (17.1 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 6.93 – 6.84 (m, 2H), 6.57 – 6.49 (m, 2H), 3.47 (s, 1H),

3.06 (t, J = 7.1 Hz, 2H), 1.65 – 1.56 (m, 2H), 1.44 – 1.24 (m, 8H), 0.94 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8 (d, J = 232.8 Hz, 1C), 145.1 (d, J = 1.9 Hz, 1C), 115.7 (d, J = 22.3 Hz, 2C), 113.6 (d, J = 7.3 Hz, 2C), 44.9, 31.95, 29.7, 29.3, 27.3, 22.8, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -128.60. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₂₁FN⁺ 210.1653, Found: 210.1651.

4-chloro-N-heptylaniline (**3ae**). Eluent: PE/EA = 100:1, light yellow oil (16.9 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.7 Hz, 2H), 6.51 (d, *J* =

8.7 Hz, 2H), 3.60 (s, 1H), 3.07 (t, J = 7.3 Hz, 2H), 1.66 – 1.54 (m, 2H), 1.44 – 1.25 (m, 8H), 0.94 – 0.84 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 129.1, 121.65, 113.8, 44.2, 31.9, 29.6, 29.2, 27.2, 22.75, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₂₁ClN⁺ 226.1357, Found: 226.1355.

4-bromo-N-heptylaniline (3af). Eluent: PE/EA =50:1, light yellow oil (15.4 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 6.50 – 6.44 (m, 2H), 3.62 (s, 1H), 3.06 (t, J = 7.1 Hz, 2H), 1.64 –

1.57 (m, 2H), 1.42 – 1.27 (m, 8H), 0.92 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 132.0, 114.3, 108.65, 44.1, 31.9, 29.55, 29.2, 27.2, 22.8, 14.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₃H₂₁BrN⁺ 270.0852, Found: 270.0852.

N-heptyl-2-methylaniline (**3ag**). Eluent: PE/EA = 100:1, yellow oil (14.4 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.02 (m, 2H), 6.75 – 6.54 (m, 2H), 3.48 (s, 1H),

3.17 (t, J = 7.2 Hz, 2H), 2.15 (s, 3H), 1.73 - 1.63 (m, 2H), 1.47 - 1.27 (m, 8H), 0.98 - 1.270.82 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 130.1, 127.3, 121.8, 116.75, 109.8, 44.1, 32.0, 29.8, 29.3, 27.4, 22.8, 17.6, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₂₄N⁺ 206.1903, Found: 206.1902.

N-heptyl-3,5-dimethylaniline (3ah). Eluent: PE/EA =100:1, yellow oil (17.1 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 6.38 (s, 1H), 6.27 (s, 2H), 3.51 (s, 1H), 3.10 (t, J = 7.1 Hz, 2H), 2.26 (s, 6H), 1.69 – 1.56 (m, 2H), 1.50 – 1.23 (m, 8H), 0.97 - 0.87 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 138.95,

119.2, 110.8, 44.2, 32.0, 29.8, 29.3, 27.3, 22.8, 21.6, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₂₆N⁺ 220.2060, Found: 220.2059.

N-heptylnaphthalen-2-amine (**3ai**). Eluent: PE/EA =100:1, yellow oil (12.1 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 19.2, 8.3 Hz, 3H), 7.36 (t, J =

7.6 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 6.88 (dd, J = 8.7, 2.5 Hz, 1H), 6.81 (s, 1H), 3.78 (s, 1H), 3.22 (t, J = 7.1 Hz, 2H), 1.74 – 1.65 (m, 2H), 1.50 – 1.27 (m, 8H), 0.96 – 0.88 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 135.4, 129.0, 127.8, 127.5, 126.4,

126.0, 121.9, 118.1, 104.3, 44.2, 32.0, 29.6, 29.3, 27.35, 22.8, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₄N⁺ 242.1903, Found: 242.1903.

N-heptyl-1-methyl-1H-indol-4-amine (**3aj**). Eluent: PE/EA = 20:1, light yellow oil (9.7 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.09 (m, 1H), 6.93 (d, J = 3.2 Hz, 1H), 6.77 - 6.71 (m, 1H), 6.39 - 6.35 (m, 1H), 6.29 (d, J = 7.6 Hz, 1H), 3.90 (s, 1H), 3.75 (s, 3H), 3.27 (t, J = 7.2 Hz, 2H), 1.78 – 1.66 (m, 2H), 1.50 – 1.24 (m, 8H), 0.94 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 137.4, 126.5, 123.2, 99.4, 99.1, 96.9, 44.20, 33.2, 32.0, 29.8, 29.3, 27.4, 22.8, 14.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₅N₂⁺ 245.2012, Found: 245.2012.

N-(1-phenylpropyl)heptan-1-amine (**3ak**). Eluent: PE/EA = 6:1, colorless oil (12.5 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.21 (m, 5H), 3.56 – 3.42 (m, 1H), 2.53 – 2.37 (m, 2H), 1.85 – 1.73 (m, 1H), 1.72 – 1.59 (m, 1H),

1.56 - 1.37 (m, 3H), 1.27 (s, 8H), 0.86 (dt, J = 26.1, 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 128.4, 127.45, 126.9, 65.4, 48.0, 32.0, 31.1, 30.4, 29.4, 27.5, 22.75, 14.2, 11.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₈N⁺ 234.2216, Found: 234.2212.

^{Me} ^J ^J ^S ^S ^S ^S ^S ^S ^{N-heptyl-4-methylbenzenesulfonamide (**3al**). Eluent: PE/EA = 5:1, colorless oil (9.0 mg, 33%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 4.34 (t, *J* = 6.3 Hz, 1H), 2.96 – 2.88 (m, 2H), 2.43 (s, 3H), 1.53 – 1.10 (m, 10H), 0.85 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 137.0, 129.8, 127.2, 43.4, 31.8, 29.7, 28.9, 26.6, 22.7, 21.7, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₂₄NO₂S⁺ 270.1522, Found: 270.1522.}
^{Me} ^A ^{Bn} ^A ^{Bn} ^{Bn} ^{Bn} ^{Bn} ^{N-benzylheptan-1-amine (**3am**). Eluent: PE/EA = 15:1, ^a ^{Sn}}

N-heptyl-4-(5-(p-tolyl)-3-(trifluoromethyl)-1Hpyrazol-1-yl)benzenesulfonamide (**3an**). Eluent: PE/EA = 10:1, light yellow oil (14.9 mg, 31%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.82 (m, 2H), 7.50

-7.44 (m, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.2 Hz, 2H), 6.74 (s, 1H), 4.47 (t, *J* = 6.2 Hz, 1H), 2.94 (q, *J* = 6.8 Hz, 2H), 2.38 (s, 3H), 1.61 (s, 1H), 1.51 – 1.39 (m, 2H), 1.33 – 1.16 (m, 7H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 142.6, 139.9, 139.7, 129.9, 128.8, 128.2, 125.8, 125.7, 106.4, 43.5, 31.8, 29.7, 28.85, 26.6, 22.65, 21.5, 14.15. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.46. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₈F₃N₃NaO₂S⁺ 502.1747, Found: 502.1755.

Isopropyl 5-(heptylamino)-2-hydroxybenzoate (**3ao**). Eluent: PE/EA = 20:1, yellow oil (15.8 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1H), 7.04 (dd, *J* = 2.4, 1.0 Hz, 1H), 6.86 – 6.79 (m, 2H), 5.27 (hept, *J* = 6.2 Hz, 1H), 3.06 (t, *J* = 7.1 Hz, 2H), 1.66 – 1.55 (m,

2H), 1.44 - 1.23 (m, 14H), 0.94 - 0.83 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 154.3, 141.2, 122.4, 118.15, 112.9, 112.1, 69.1, 45.2 31.9, 29.7, 29.3, 27.3, 22.75, 22.0, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₈NO₃⁺ 294.2064, Found: 294.2060.

Ethyl 4-(heptylamino)benzoate (**3ap**). Eluent: PE/EA = 20:1, light yellow solid (7.1 mg, 27%, m.p. 67 – 69 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 6.57 – 6.49 (m, 2H), 4.31 (q, *J* = 7.1 Hz, 2H),

4.11 (s, 1H), 3.15 (t, J = 7.2 Hz, 2H), 1.65 – 1.59 (m, 2H), 1.42 – 1.26 (m, 11H), 0.92 – 0.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 152.2, 131.6, 118.4, 111.4, 60.3, 43.5, 31.9, 29.45, 29.2, 27.2, 22.75, 14.6, 14.2. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₅NNaO₂⁺ 286.1778, Found: 286.1781.

N-(3,7-dimethyloctyl)aniline (**3ua**). Eluent: PE/EA = 100:3, light yellow oil (11.9 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 2H), 6.71 – 6.66 (m, 1H),

6.63 - 6.58 (m, 2H), 3.54 (s, 1H), 3.20 - 3.05 (m, 2H), 1.69 - 1.59 (m, 1H), 1.55 - 1.39 (m, 3H), 1.36 - 1.23 (m, 3H), 1.21 - 1.09 (m, 3H), 0.93 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 129.35, 117.2, 112.8, 42.1, 39.4, 37.4, 36.95, 31.0, 28.1, 24.9, 22.9, 22.8, 19.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₈N⁺ 234.2216, Found: 234.2218.

1H), 6.64 - 6.57 (m, 2H), 5.15 - 5.04 (m, 1H), 3.56 (s, 1H), 3.19 - 3.04 (m, 2H), 2.10 - 1.91 (m, 2H), 1.73 - 1.58 (m, 7H), 1.50 - 1.30 (m, 3H), 1.25 - 1.16 (m, 1H), 0.95 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 131.5, 129.4, 124.8, 117.2, 112.8, 42.1, 37.2, 36.9, 30.6, 25.9, 25.6, 19.75, 17.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₆N⁺ 232.2060, Found: 232.2060.

N-(3,7-dimethyloct-6-en-1-yl)-4-methoxyaniline (**3uq**). Eluent: PE/EA = 50:1, light yellow oil (24.1 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 6.81 – 6.76 (m, 2H), 6.62 – 6.56 (m, 2H), 5.16 - 5.06 (m, 1H), 3.75 (s, 3H), 3.15 - 3.00 (m, 2H), 2.10 - 1.88 (m, 2H), 1.73 - 1,68 (m, 3H), 1.68 - 1.50 (m, 5H), 1.48 - 1.33 (m, 2H), 1.27 - 1.14 (m, 1H), 0.99 - 0.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 143.0, 131.4, 124.8, 115.0, 114.2, 56.0, 43.1, 37.25, 37.0, 30.6, 25.9, 25.6, 19.75, 17.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₈NO⁺ 262.2165, Found: 262.2161.

6.82 (m, 1H), 6.73 – 6.66 (m, 3H), 6.62 – 6.55 (m, 2H), 3.86 (s, 3H), 3.15 (t, J = 7.0 Hz, 2H), 2.68 (t, J = 7.6 Hz, 2H), 1.99 – 1.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 146.5, 143.9, 133.7, 129.4, 121.1, 117.35, 114.4, 112.9, 111.1, 56.0, 43.5, 33.2, 31.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₀NO₂⁺ 258.1489, Found: 258.1493.

N-(6-phenylhexan-2-yl)aniline (**3aaa**). Eluent: PE/EA = 100:3, light yellow oil (6.4 mg, 25%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.22 – 7.12 (m, 5H), 6.66

(tt, J = 7.3, 1.1 Hz, 1H), 6.60 – 6.54 (m, 2H), 3.56 – 3.25 (m, 2H), 2.66 – 2.55 (m, 2H), 1.70 – 1.59 (m, 3H), 1.52 – 1.37 (m, 3H), 1.16 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 148.8, 142.75, 129.4, 128.75, 128.7, 126.1, 115.5, 112.7, 47.6, 36.6, 35.7, 31.7, 25.9, 20.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₄N⁺ 254.1903, Found: 254.1904.

6-phenylhexan-2-ol (**4a**). Eluent: PE/EA = 5:1, colorless oil (16.1 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 3.86 – 3.73 (m, 1H),

2.64 (t, J = 7.7 Hz, 2H), 1.71 - 1.61 (m, 2H), 1.56 - 1.33 (m, 5H), 1.19 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 128.5, 128.4, 125.8, 68.2, 39.3, 36.0, 31.6, 25.6, 23.6. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₂H₁₈ONa⁺ 201.1250,

6-(4-(trifluoromethyl)phenyl)hexan-2-ol (4b). Eluent: PE/EA = 5:1, colorless oil (18.5 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.32 – 7.27 (m, 2H), 3.87 – 3.72 (m, 1H), 2.68 (t, J = 7.7 Hz, 2H), 1.70 – 1.61 (m, 2H), 1.53

-1.32 (m, 5H), 1.19 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 128.8, 128.1 (q, J = 32.1 Hz, 1C), 125.3 (q, J = 3.7 Hz, 1C), 124.5 (q, J = 270.1 Hz, 1C), 68.15, 39.2, 35.9, 31.35, 25.5, 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.24. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₃H₁₇F₃ONa⁺ 269.1124, Found: 269.1123.

6-(4-fluorophenyl)hexan-2-ol (4c). Eluent: PE/EA = 7:1, colorless oil (14.6 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.07 (m, 2H), 7.00 – 6.89 (m, 2H), 3.84 4c -3.73 (m, 1H), 2.59 (t, J = 7.7 Hz, 2H), 1.66 -1.56 (m, 2H), 1.54 -1.27 (m, 5H), 1.18 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 241.5 Hz, 1C), 138.3 (d, J = 3.3 Hz, 1C), 129.8 (d, J = 7.6 Hz, 2C), 115.1 (d, J = 20.7 Hz, 2C), 68.2, 39.2, 35.2, 31.75, 25.5, 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.07. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₂H₁₇FONa⁺ 219.1156, Found: 219.1152.

6-(4-chlorophenyl)hexan-2-ol (4d). Eluent: PE/EA = 7:1, colorless oil (15.3 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.20 (m, 2H), 7.14 – 7.06 (m, 2H),

3.85 - 3.72 (m, 1H), 2.59 (t, J = 7.7 Hz, 2H), 1.67 - 1.56 (m, 2H), 1.52 - 1.29 (m, 5H), 1.18 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 131.4, 129.85, 128.5, 68.2, 39.2, 35.4, 31.5, 25.45, 23.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₂H₁₇ClONa⁺ 235.0860, Found: 235.0855.

4e

6-(4-bromophenyl)hexan-2-ol (4e). Eluent: PE/EA = 6:1, colorless oil (10.3 mg, 40%). ¹H NMR (400 MHz,

CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.08 – 7.00 (m, 2H), 3.85 – 3.73 (m, 1H), 2.57 (t, J = 7.6 Hz, 2H), 1.67 – 1.57 (m, 2H), 1.51 – 1.28 (m, 5H), 1.18 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 131.4, 130.3, 119.5, 68.2, 39.2, 35.4, 31.5, 25.45, 23.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₂H₁₇⁸¹BrONa⁺ 281.0335, Found: 281.0329.

6-(4-methoxyphenyl)hexan-2-ol (**4f**). Eluent: PE/EA = 5:1, light yellow oil (14.4 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.05 (m, 2H), 6.87 – 6.76 (m, 2H), 3.83 – 3.74 (m, 4H), 2.56 (t, *J* = 7.7 Hz, 2H), 1.69 – 1.57 (m, 2H), 1.52 – 1.29 (m, 5H), 1.18 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 134.8, 129.4, 113.8, 68.2, 55.4, 39.3, 35.1, 31.9, 25.5, 23.65. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₃H₂₀O₂Na⁺ 231.1356, Found: 231.1352.

OH 5-phenylpentan-1-ol (4g). Eluent: PE/EA = 7:1, light yellow oil (11.7 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 2H), 7.22 – 7.15 (m, 3H), 3.70 – 3.60 (m, 2H), 2.67 – 2.59 (m, 2H), 1.70 – 1.58 (m, 5H), 1.45 – 1.36 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 128.5, 128.4, 125.8, 63.1, 36.0, 32.8, 31.4, 25.5. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₁H₁₆ONa⁺ 187.1093, Found: 187.1089.

4-phenylbutan-2-ol (**4h**). Eluent: PE/EA = 10:1, colorless oil (12.9 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.25 – 7.16 (m, 3H), 3.89 – 3.79 (m, 1H), 2.82 – 2.64 (m, 2H), 1.86 – 1.72 (m, 2H), 1.62 (s, 1H), 1.24 (d, J = 6.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.2, 128.5, 125.9, 67.6, 40.95, 32.2, 23.7. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₀H₁₄ONa⁺ 173.0937, Found: 173.0938.

N-heptyl-3-methyl-N-phenylbenzamide (5a). Eluent: PE/EA = 20:1, colorless oil (27.0 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ

7.25 – 7.09 (m, 4H), 7.06 – 6.95 (m, 5H), 3.95 – 3.84 (m, 2H), 2.21 (s, 3H), 1.67 – 1.57 (m, 2H), 1.37 – 1.19 (m, 8H), 0.89 – 0.83 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 143.7, 137.55, 136.5, 130.2, 129.5, 129.1, 127.9, 127.5, 126.6, 125.75, 50.6, 31.9, 29.2, 27.85, 27.0, 22.7, 21.3, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₈NO⁺ 310.2165, Found: 310.2167.

 $\begin{array}{lll} \mbox{Me} & \mbox{$\stackrel{\;\\{}\\}}}}}}}}}}}}}}}}}}}}}}}} N-heptyll-N-heptyll-N-octylaniline}(5c). Eluent: PE/EA}=100:1, colorless oil}}}}}}, close oil (26.0 mg, 85\%). ^1 H NMR (400 MHz, CDCl_3)} \delta 7.25 - 7.18 (m, 2H), 2H, 6.70 - 6.60 (m, 3H), 3.31 - 3.22 (m, 4H), 1.65 - 1.56 (m, 4H), 1.40 - 1.25 (m, 18H), 0.92 (t, J=6.6 Hz, 6H). ^{13}C NMR (100} MHz, 100} MHz, 100} MHz, 100} MHz, 100} MHz, CDCl_3)}}} \\ MHz, CDCl_3) \delta 148.3, 129.3, 115.2, 111.8, 51.2, 32.1, 32.0, 29.7, 29.5, 29.4, 27.41, 27.41, 27.39, 27.36, 27.33, 22.82, 22.79, 14.25. HRMS (ESI-TOF) m/z: [M + H]^+ Calcd for }}}}}} } \\ \end{tabular}$

 $C_{21}H_{38}N^{+}\ 304.2999,\ Found:\ 304.2999.$

(R)-N-(1-(naphthalen-1-yl)ethyl)-3-(3-

(trifluoromethyl)phenyl)propan-1-amine (**3xr**). Eluent: PE/EA = 4:1, yellow oil (20.1 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.1 Hz, 1H), 7.91 -7,87 (m, 1H), 7.79 -

7.74 (m, 1H), 7.68 -7.64 (m, 1H), 7.55 – 7.47 (m, 3H), 7.45 – 7.41 (m, 2H), 7.38 – 7.29 (m, 2H), 4.64 (q, J = 6.6 Hz, 1H), 2.78 – 2.56 (m, 4H), 1.90 -1.81 (m, 2H), 1.51 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.15, 141.2, 134.1, 131.9 (d, J

= 1.0 Hz, 1C), 131.4, 130.6 (q, J = 31.8 Hz, 1C), 129.1, 128.8, 127.3, 125.9, 125.8, 125.5, 125.2 (q, J = 3.7 Hz, 1C), 124.4 (q, J = 270.5 Hz, 1C),123.0, 122.8 (q, J = 3.7 Hz, 1C), 122.7, 53.8, 47.4, 33.5, 32.0, 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.47. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₃F₃N⁺ 358.1777, Found: 358.1773.

N-hexylaniline (**3za**). Eluent: PE/EA = 100:1, light yellow oil (6.6 mg, 37%). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 2H), 6.69 (t, *J* = 7.3 Hz, 1H), 6.61 (d, *J* = 7.9 Hz, 2H), 3.70 (s, 1H), 3.10 (t, *J* = 7.2 Hz, 2H), 1.67 – 1.57 (m, 3H), 1.36 – 1.27 (m, 5H), 0.95 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 129.4, 117.3, 112.9, 44.2, 31.8, 29.7, 27.0, 22.8, 14.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₂H₂₀N⁺ 178.1590, Found: 178.1587.

Ph (1E,2E,4E)-N,5-diphenylpenta-2,4-dien-1-imine(**int-1**). Yellow solid (420 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 9.2 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.41 – 7.34 (m, 4H), 7.33 – 7.27 (m, 1H), 7.24 – 7.19 (m, 1H), 7.19 – 7.14 (m, 2H), 7.05 – 6.93 (m, 2H), 6.88 – 6.79 (m, 1H), 6.72 – 6.61 (m, 1H). The analytical data are consistent with those reported in the literature.¹⁴

7. NMR Spectrum and HRMS Data

¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9.9 6 9.9 6 9.6 7 9.6 7 9.6 8 9.6 8 9.6 9 9.6 9 9.6 9 9.7 7 9.6 9 9.7 7 9.7 7 9.6 9 9.7 7 9.7 3 9.7 7 9.8 9 9.8 9 9.8 9 9.8 9 9.8 9 9.8 9 9.8 9 9.8 9 9.8 9 9.9 17 9.9 17 9.9 17 9.9 17 9.9 17 9.9 17 9.9 17 9.9 17 9.9 16 <li

¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

S71

S76

S79

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

10.34 11.32 11.32 11.32 11.32 11.33 1.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ſl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 F1 (ppm)

S107

`он

4g

- 142.17

143.71 137.55 136.46 136.46 130.19 129.49 129.09 129.09 127.92 127.48 126.58 - 170.57 77.48 77.16 76.84 - 50.57 31.89 29.16 27.85 27.03 27.03 27.03 21.33 14.19

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

